

Werk

Label: Article **Jahr:** 1980

PURL: https://resolver.sub.uni-goettingen.de/purl?312901348_0039|log9

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

UNIVERSITAS COMENIANA ACTA MATHEMATICA UNIVERSITATIS COMENIANAE

XXXIX — 1980

ON EQUIVALENCE RELATIONS

LADISLAV KOSMÁK, Bratislava

Dedicated to Prof. O. Borůvka on the occasion of his eightieth birthday

In this paper, the product of two binary relations R, S is denoted by R, the converse relation of R by R^- : We use the symbol E_M for the identity relation in a set M. If R is an arbitrary binary relation in M, we denote the transitive hull of R by t(R); so

$$t(R) = R \cup R^2 \cup R^3 \cup \dots$$

Let R, S be equivalence relations in a set A. It is well known that RS is an equivalence relation if and only if RS = SR (see e.g. [3], [4], [2]). One can easily verify that the condition RS = SR is equivalent to the equality

$$RS = (R \cup S)^2$$

We will next consider analogous questions for $n \ge 2$ equivalence relations. **Theorem 1.** Let $R_1, ..., R_n$ be equivalence relations in A $(n \ge 2)$. Then the following statements are equivalent:

- a) $R_1...R_n$ is an equivalence relation,
- b) $R_1...R_n = (R_1 \cup ... \cup R_n)^n$,
- c) $R_1...R_n = t(R_1 \cup ... \cup R_n)$.

Proof. Denote by I_n the set of all finite sequences $(i_1, ..., i_n)$ of the numbers 1, ..., n. If $R_1...R_n$ is an equivalence relation then $(R_1...R_n)^k = R_1...R_n$ for every $k \ge 2$. Specially $(R_1...R_n)^n = R_1...R_n$, and since the relations $R_1, ..., R_n$ are reflexive, if follows that

$$R_{i_1}...R_{i_n} \subset R_1...R_n$$

for every $(i_1, ..., i_n) \in I_n$. Therefore by the well known distributivity properties

$$(R_1 \cup \ldots \cup R_n)^n = R_1 \ldots R_n$$

Suppose now that b) holds. Then

$$R_1...R_n = \bigcup_{(i_1,\ldots,i_n)\in I_n} R_{i_1}...R_{i_n}$$

and

$$(R_1 \cup \ldots \cup R_n)^{n+1} = (R_1 \cup \ldots \cup R_n)^n (R_1 \cup \ldots \cup R_n) =$$

= $R_1 \ldots R_n (R_1 \cup \ldots \cup R_n)$

For every $k \in \{1, ..., n\}$ we have

$$R_1R_2...R_nR_k \subset R_1(R_1 \cup ... \cup R_n)^n = R_1...R_n$$

Thus

$$(R_1 \cup \ldots \cup R_n)^{n+1} = (R_1 \cup \ldots \cup R_n)^n$$

and consequently

$$(R_1 \cup \ldots \cup R_n)^k = R_1 \ldots R_n$$

for each $k \ge n$. Finally

$$t(R_1 \cup \ldots \cup R_n) = R_1 \ldots R_n$$

The implication $c) \Rightarrow a$) is obvious.

Corollary. Let R, S be equivalence relations in A and n a positive integer. Then

a) (RS)" is an equivalence relation if and only if

$$(RS)^n = (SR)^n$$

b) (RS)"R is an equivalence relation if and only if

$$(RS)^n R \supset S(RS)^n$$

Proof. Put in Theorem 1

$$R_1 = R_3 = \dots = R_{2n-1} = R$$

 $R_2 = R_4 = \dots = R_{2n} = S$

If (RS)" is an equivalence relation then by Theorem 1

$$(RS)^n = (R \cup S)^{2n} = (RS)^n \cup (SR)^n$$

Thus

$$(SR)^n \subset (RS)^n$$

and since

$$(RS)^n = ((SR)^n)^- \subset ((RS)^n)^- = (SR)^n$$

we obtain the equality

$$(RS)^n = (SR)^n$$

The converse follows from the equality

$$(R \cup S)^{2n} = (RS)^n \cup (SR)^n$$

The proof of b) is similar. Note that inclusion in b) can not be replaced in general by equality (see [5], p. 172).

Let now R be an equivalence relation in A and f a mapping of A onto a set B, i.e. $f^-f = E_B$. Define the binary relation S in B as follows: y_1Sy_2 means that there exist elements $x_1, x_2 \in A$ such that $x_1Rx_2, f(x_1) = y_1, f(x_2) = y_2$. In other words

$$S = f^- R f$$

We ask under which conditions S is an equivalence relation in B. The answer is given in the following theorem (F denotes the equivalence relation ff^-).

Theorem 2. The following conditions are equivalent:

- a) S is an equivalence relation,
- b) FRF is an equivalence relation,
- c) $FRF = t(F \cup R)$.

Proof. If S is an equivalence relation, then

$$FRF \supset E_A$$

$$(FRF)^- = FRF$$

$$(FRF)^2 = ff^- Rff^- Rff^- = ff^- Rff^- = fSf^- = ff^- Rff^- = FRF$$

So FRF is an equivalence relation.

By Theorem 1, we have b) \Leftrightarrow c).

Suppose that FRF is an equivalence relation. Since

$$f^-FRFf = S$$

we get

$$E_B \subset S$$

$$S^- = S$$

$$S^2 = f^- FRFff^- FRFf = f^- (FRF)^2 f = f^- FRFf = S$$

Therefore S is an equivalence relation and Theorem 2 is proved.

In the following theorem we characterize a special situation of this kind (cf. [1]).

Theorem 3. In the notations of Theorem 2, the following statements are equivalent:

- a) if X_1 , X_2 are different classes of R, then either $f(X_1) = f(X_2)$ or $f(X_1) \cap f(X_2) = \emptyset$,
 - b) FRF = FR,
 - c) FR = RF.

Proof. Suppose that a) holds and x_1FRFx_2 . Denote by X_1 , resp. X_2 the class of x_1 , resp. x_2 in R. By hypothesis, there are such x_1' , $x_2' \in M$ that $x_1'Rx_2'$, $f(x_1) = f(x_1') = y_1$, $f(x_2) = f(x_2') = y_2$. Let X_3 be the class of the elements x_1' , x_2' in R. Then

$$y_1 \in f(X_1) \cap f(X_3)$$
$$y_2 \in f(X_2) \cap f(X_3)$$

and consequently

$$f(X_1) = f(X_2) = f(X_3)$$

Thus there exists such $x_2'' \in X_2$ that $x_1 f y_1 f^- x_2''$, i.e. $x_1 F R x_2$. We have proved that $FRF \subset FR$; with the evident inclusion $FR \subset FRF$ we get the equality b).

Suppose now that b) holds. Then

$$(FR)^2 = (FRF)R = FRR = FR$$

 $(FR)^- = (FRF)^- = FRF = FR$
 $FR \supset E_A$

i.e. FR is an equivalence relation.

Suppose finally that the condition c) is satisfied and a) does not hold. Then there are such classes X_1 , X_2 of R that $f(X_1) \neq f(X_2)$ and $f(X_1) \cap f(X_2) \neq \emptyset$. Let e.g. $y_1 \in f(X_1) \cap f(X_2)$, $y_2 \in f(X_2) - f(X_1)$, $y_1 = f(x_1)$, $y_2 = f(x_2)$. Then $x_1 f y_1 f R x_2$, but there is no $x \in X_1$ such that $x_1 R x f f x_2$, since otherwise we should have $f(x) = f(x_2) = y_2 \in f(X_1)$.

Remark. The equalities

$$R_1R_2R_1 = R_1R_2$$

 $R_1R_2R_1 = R_2R_1$
 $R_1R_2 = R_2R_1$

are equivalent for arbitrary equivalence relations R_1 , R_2 in M.

Theorem 4. The following conditions are equivalent:

- a) the images of different classes of R in f are disjoint,
- b) FRF = R,
- c) $F \subset R$.

Proof. If a) holds and x_1FRFx_2 then there are x_1' , x_2' with $f(x_1') = f(x_1)$, $f(x_2') = f(x_2)$, $x_1'Rx_2'$. Let X_1 , X_2 be the classes of x_1 and x_2 respectively, and X the class containing x_1' , x_2' . Then $X_1 = X_2 = X$ by a) and thus x_1Rx_2 . So a) implies b).

If FRF = R then $F \subset FRF = R$, i.e. b) implies c).

Suppose now that $F \subset R$ and X_1 , X_2 are classes of R with $f(X_1) \cap f(X_2) \neq \emptyset$. Then there exist such $x_1 \in X_1$, $x_2 \in X_2$ that $f(x_1) = f(x_2)$ and by hypothesis it follows that x_1Rx_2 . Consequently $X_1 = X_2$ and the theorem is proved.

BIBLIOGRAPHY

- [1] Borůvka, O.: Foundations of the Theory of Grupoids and Groups. Deutscher Verlag der Wissenschaften, Berlin 1974, 7.2, p. 58.
- [2] Kosmák, L.: Množinová algebra. ALFA, Bratislava 1978, veta 8.11.
- [3] Ore, O.: Theory of equivalence relations. Duke Math. Journal 9 (1942), 573-627.
- [4] Šik, F.: Über Charakterisierung kommutativer Zerlegungen. Publ. Fac. Sciences MU, (1954), № 3, Brno, th. 1.1.
- [5] Шрейдер, Ю. А.: Равенство, сходство, порядок. Москва 1971.

Received October 25, 1978

Author's address: Katedra teoretickej kybernetiky MFFUK, Mlynská dolina, 816 31 Bratislava

SÚHRN

O EKVIVALENCIÁCH

L. Kosmák, Bratislava

Vo vete 1 sú nájdené nutné a dostatočné podmienky, aby súčin konečného počtu ekvivalencií bol ekvivalenciou. Vo vetách 2, 3 a 4 sa študujú zobrazenia rozkladov na množine.

РЕЗЮМЕ

ОБ ОТНОШЕНИЯХ ЭКВИВАЛЕНТНОСТИ

Л. Космак, Братислава

В теореме 1 указаны необходимые и достаточные условия для того, чтобы произведение $n \ge 2$ отношений эквивалентности было отношением эквивалентности. В теоремах 2, 3 и 4 исследуются отображения разбиений на множестве.