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Several authors stated conditions under which the interval topology of an
ordered set (eventually of some specific class) is Hausdorff. The present note
contains some generalizations of these results.') Also connections between the
interval topology and a kind of ““between topology’’ on a lattice [5] are considered.

In the whole paper ? = (P ; =) will denote an ordered (i.e. partially ordered)
set, £=(L; A, v) a lattice. Given a, b eP, denote (a,b)={xeP: a<x<b},
[a,b]={xeP: a=x=b}, (a]={xeP: x=a)} and symmetrically [a). a||b will
denote that a and b are incomparable. A subset A — P will be said to have the
finite maximal property if to each element a € A there is a maximal element m of A
with m =a and the set of all maximal elements of A is finite. The finite minimal
property is defined dually.

1. Hausdorff interval topology

The interval topology on @ is that which takes the family of all intervals (a]
and [a) (a€P) as a subbase for closed sets. Denote N(a)={xeP: x||a} and
N(a, b)=P—(((a] n (b])u([a)n[b))) (set-theoretic difference). A subset A c P
will be called a separating set of P whenever each element of P is comparable with
some element of A.

The following theorems give conditions on % to have Hausdorff interval
topology. '

Theorem A [4]. A sufficient (but not necessary) condition for an ordered set
to have Hausdorff interval topology is that for each a e P, N(a) have a finite
separating set.

') Some results of paragraph 1 of the present note were published without proofs earlier [3].
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Theorem B [6]. A necessary (but not sufficient) condition for a lattice to have
Hausdorff interval topology is that for each a, b € L, a <b, the interval (a, b) have
a finite separating set.

Theorem C [1]. A necessary and sufficient condition for the interval topology
of a lattice £ to be Hausdorff is that for eacha, be L, a <b, N(a, b) have a finite
separating set.

Theorem D [2,6]. The interval topology of a Boolean lattice ¥ is Hausdorff if
and only if to each element a e L, a# 0, there is an atom p =a.

In the present note we shall show that theorem C may be enlarged (with
a suitable modification) to arbitrary ordered sets. Also we modify the condition of
Theorem A to be sufficient as well as necessary. Further we generalize theorem D
to a class of complemented modular lattices (1.10.1). Theorems A, B, C are
corollaries of our theorem 1.2.

1.1. The following known assertion will be useful

Let & be a subbase of closed sets of a topological space X. X is Hausdorff if
andonly if to any a, b € X, a# b, there is a finite subset ¥ of ¥ with the property

(x) # covers X (i.e. U¥ = X) and no element of ¥ contains both elements a
and b.

1.2. Theorem. The following conditions on % are equivalent.
(i) The interval topology of % is Hausdorff.

(ii) For each a, beP, a#b, N(a, b) has a finite separating set:

(iii) If for an a € P, N(a) has no finite separating set then foreachb e P, b#a,
N(a, b) has a finite separating set.

(iv) Given a, beP, a#b, then:

if a||b then one of the sets N(a), N(b) and N (a b) has a finite separating set ;

if a <b then either there is c € (a, b) such that N(c) has a finite separating set
or N(a, b) has a finite separating set.

Proof. (i)=> (ii). Let a, b € P, a# b. According to 1.1 there is a set of intervals
of the form [u) or («], where u runs over a finite set F, satisfying (x). Obviously
FnN(a, b) is a separating set of N(a, b).

The implication (ii) = (iii) is trivial.

(iii)=> (iv). If a||b the assertion is trivial. Let a <b. Let there exist an element
c€(a, b). If N(c) does not have a finite separating set then both N(a, c) and
N(c, b) do have. Since N(a, b)=N(a, c)UN(c, b)u{c}, N(a, b) has a finite
separating set. If b covers a then N(a, b) has a finite separating set because of
N(a, b)=N(a)uUN(b) and the supposition (iii).

(iv)=>(i). Leta, be P, a#b. If a||b and N(a, b) or one of the sets N(a) and
N(b), say N(a), has a finite separating set F, then the set of intervals (u], [u),
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u € Fu{a}, has the property () in 1.1. Let a <b. If a <c <b and N(c) has a finite
separating set F then the set of intervals (u], [u), u € Fu{c}, has the property (x).
If N(a, b) has a finite separating set G then the set of intervals (a], [b), (u], [u),
(u € G) has the property (). This completes the proof.

1.3. Theorems A, B, C are corollaries of theorem 1.2. Indeed, theorem A
follows from the implication (iii)=> (i). Theorem B follows from the implication
(1)=>(ii): Let F be a finite separating set of N(a, b) (a <b). Then {uva: u € F and
u=x for some xe(a,b)} U {unb: ueF and x=u for some xe€(a, b)} is
a (finite) separating set of (a, b). Theorem C follows from the equivalence (i) <> (ii)
because of N(a, b) = N(anab, avb).

1.4. Lemma. Let an interval (a, b) (a <b) of a relatively complemented lattice
have a finite separating set. Then the interval [a, b] contains a prime interval (i.e.
elements u, v such that v covers u).

Proof. Suppose [a, b] does not contain a prime interval. It suffices to show :

(a) Any subset {a,, s, ..., a,} of the interval (a, b) = A is not a separating set
of A.

The proof of (a) proceeds by induction on n. If n=1 and a; is a relative
complement of a, in the interval [a, b] then a; belongs to A and is incomparable

with a,. Suppose the assertion is true for n and let a,, ..., a.., be elements of A.
According to the hypothesis there is an element ¢ € A which is incomparable with
a;, i=1, ..., n. First we shall prove:

(b). To each u€ A, u<c, there is an element ¢ such that u =t <c and ¢t||a;,
i=1...:n.

To prove this we find elements ¢, ..., t, € A such that ¢ is incomparable with
a, ..,aqandusy<c(i=1, ..., n). If ul|a, we set t, = u. Otherwise u <a, and we
choose t,€(a;Aac, ¢). Supposing we have elements ¢, i =k <n, choose ., as
follows. If £ ||ax+, we set ., =t. Otherwise t <a., hence u =c Aa... Let c Ag;
be a maximal element of the set [u)n{caa: i=1,..., k+1}. Choose
i1 €(c Agj, ¢). The element ¢ =t¢, satisfies (b). This completes the proof of (b):

Now we continue the proof of (a). If c|la.., the assertion is proved. Let
¢ =a,., (the case c =a,., is dual). If ¢ >a,., let u be a relative complement of a,,.,
in the interval [a, c]. According to (b) there is an element ¢ € [u, c), incomparable
with ay, ..., a,. Obwiously ¢||@,., too. If ¢ =a,.,, there is an element c, € (c, b).
According to the assertion dual to (b) there is an element ¢, c <t =c,, incompar-
able with a;, ..., a, and if suffices to take ¢ instead of c to get the previous case. This
completes the proof of the lemma.

1.5. Combining 1.4 with theorem B we get

Theorem. Let the interval topology of a relatively complemented lattice £ be
Hausdorff. Then each interval [a, b] (a <b) in £ contains a prime interval.

1.6. Lemma. Let £ be a lattice with O in which each element of any interval
[0, ¢] has in [0, c] a minimal relative complement. If each interval [0, b] (0<b) in
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& contains a prime interval, then to any element a # 0 of £ there is an atom p =a.

Proof. Given a >0, there are elements u, v €[0, a] such that v covers u. If
u >0 then a minimal relative complement of u in [0, v] is a desired atom. -

1.7. Applying 1.5 and 1.6 we get

1.7.1. Theorem. Let £ be a relatively complemented lattice with 0 in which
each element of any interval [0, c] has in [0, c] a minimal relative complement. If
the interval topology of £ is Hausdorff then to any element a # 0 of £ there is an
atom p =a.

1.7.2. Corollary. If the interval topology of a relatively complemented
modular lattice with 0 is Hausdorff then to each element a # 0 of £ there is an atom
p=a.

1.8. The proof of the following assertions is straightforward.

1.8.1. Let £ be a relatively complemented lattice with 0 such that to each
element a of £ there is an atom p =a. Then to any two distinct elements a, b of £
there is an atom satisfying exactly one of the relations p =a, p=b.

1.8.2. Let p be an atom of a relatively complemented lattice £ with 0 and I,
and let aeL, aZp. Then a complement b of p exists with a=b.

1.9. Theorem. Let £ be a relatively complemented lattice with 0 and I such
that to any element a#0 of & there is an atom p =a, and the set of all
complements of each atom has the finite maximal property. Then the interval
topology of £ is Hausdorff.

Proof. Let a, b be distinct elements of £. According to 1.8.1 there is an atom
p such that, e.g., p=a, p£b. Let q,, ..., q. be all maximal complements of p.
According to 1.8.2 the intervals [p, I], [0, ¢:] (i=1, ..., n) cover L and a €[p, I,
b &[p, I] and a €[0, q.] for no i. Now it suffices to apply 1.1.

1.10. In the case of modular lattices analogous theorems may be formulated
more simply.

1.10.1. Theorem. Let £ be a complemented modular lattice in which each
atom has only finitely many complements. The following conditions are equivalent.

(i) The interval topology of £ i§ Hausdorff.

(ii) Each interval [a, b] (a <b) in £ contains a prime interval.

(iii) Each interval [0, a] (0<a) in &£ contains a prime interval.

(iv) To each element a# 0 of £ there is an atom p =a.

Proof. (i)=> (ii) follows from 1.5. (ii) > (iii) is trivial. (iii)) > (iv): Let a >0 and
let [u, v] be a prime interval contained in [0, a]. A relative complement of u in the
interval [0, v] is the desired atom. The implication (iv)=> (i) follows from 1.9.

1.10.2. Remarks. :

1.10.2.1. In a relatively complemented lattice £ with 0 the implication
(ii))=>(iv) (or (iii)=>>(iv)) holds whenever £ satisfies the condition

(+) If xvy covers x then y covers xAy.

The implication (iv)=>(iii) holds whenever £ satisfies the dual of (+). In
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a relatively complemented modular lattice with 0 the conditions (ii), (iii) and (iv)
are equivalent.

1.10.2.2. The part (i)<>(iv) of theorem 1.10.1 gives a generalization of
theorem D.

2. Interval topology and between topology

2.0. Consider a ternary relation in a lattice : axb if and only if (¢ Ax)v(x Ab) =
=x=(avx)A(xvb) (x is between a and b) [7]. Y. Matsushima [5] considered the
topology B* on a lattice £ whose subbase of closed sets is the family of all sets
B*(a,b)={x€L:abx} (a, b € L), and studied inter-relations among the topology
A* and the interval topology .#. In this paragraph some results in [5] are
supplemented.

2.1. In any lattice $ = B*.")

Proof. It suffices to show that [a) is a B*-closed set. This is true because of
[a)={B*(u,a): u=a} (=A): If xe A then x e B*(a rx, a) hence (anx)ax;
on the other hand a(a Ax)x so that a Ax =a, i.e. x € [a). The converse inclusion is
trivial. .

2.2. Theorem. Let £ satisfy the following condition (i) and its dual:

(i) For each two elements a, b e L, a <b, the set M(a, b)={xeL:avx =b}
has the finite minimal property.

Then B*=¢.

Proof. In view of 2.1 it suffices to show B* = $. This follows from the relations
B*(a,b) = B*(avb,b)nB*(aAb,b) and, for a<b, B*(a,b) = U(m):
:m € M) where M is the set of all minimal elements of the set M(a, b) and an
analogous relation for a >b. (Note that B*(a, a) = L.) The proof of these relations
is straightforward (see [5, Th. 1.3].)

Remark. In the theorem the condition (i) cannot be replaced by the condition
(') that the set of all minimal elements of M(a, b) is finite as the following example
shows. Let L consist of the infinite chain A: a,>a,>a,> ... and of two elements
u, v such that u <v <a,, u <a, and v||a, for each n >0. The condition (i") and its
dual are satisfied but the set B*(v, a,)= A fails to be closed in .%.

2.3. Theorem. Let £ be a lattice with 0 and I. Suppose that for eacha e L,

(i) the set of all relative complements in [0, a] of each element of [0, a] is
non-empty and has the finite minimal property,

(ii) the set of all relative complements in [a, I] of each element of [a, 1] is
non-empty and has the finite maximal property. '

Then # = B*.

') In [5] this assertion is proved under supposition that the lattice has 0 and I.
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Proof. Let a, beL, a<b, and let K be the set of all minimal relative
complements of a in [0, b]. According to 2.2 (and the duality) it suffices to show
that a) KcM(a, b), and b) to each x e M(a, b) there is t e K with t=x. The
relation a) is obvious. As for b), let avx =b. A relative complement f of a Ax in
[0, x] has the desired property.

2.4. Corollary [ S, Th. 1.2]. If in a complemented modular lattice the number of
complements of each element is finite then # = %*. In particular .$ = B* in any
Boolean lattice [5, Th. 1.1].

Proof. It suffices to realize that 1) any two complements of an element are
incomparable, and 2) each relative complement ¢ of an element x €[0, a] in the
interval [0, a] is of the form t =a Ay where y is a complement of x in % (and to use
the duality). )

REFERENCES

[1] Baer, R. M.: A characterization theorem for lattices with Hausdorff interval topology. J. Math.
Soc. Japan 7 (1955), 177—187.

[2] Katétov, M.: Remarks on Boolean algebras. Colloquium Math. 2 (1951), 229—235.

[3] Kolibiar, M.: Bemerkungen iiber Intervalltopologie in halbgeordneten Mengen. General topolo-
gy and its relations to modern analysis and algebra, Proceedings of the Symposium held in Prague in
September, 1961. ’

[4] Matsushima, Y.: Hausdorff interval topology on a partially ordered set. Proc. Amer. Math. Soc.
11 (1960), 233—235.

[S] Matsushima, Y.: Between topology for lattices. J. Math. Soc. Japan 16 (1964), 335—341.

[6] Northam, E. S.: The interval topology of a lattice. Proc. Amer. Math. Soc. 4 (1953), 824—827.

[7] Pitcher, E—Smiley, M. F.: Transitivities of betweenness. Trans. Amer. Math. Soc. 52 (1942),
95—114.

Received March 20, 1979
Author’s address :
Katedra algebry a tedrie ¢isel MFFUK, Mlynska dolina,
816 31 Bratislava

SUHRN
VNUTORNE TOPOLOGIE NA USPORIADANYCH MNOZINACH
M. Kolibiar, Bratislava
V prici st uvedené podmienky pre (¢iastoéne) usporiadané mnoZiny a niektoré triedy zvizov, aby
ich intervalova topol6gia bola Hausdorffova. Zovseobeciiuji sa pritom niektoré vysledky prac [1], [2],
[4], [6]. V druhej &asti préce sa skima vzdjomny vztah intervalovej topolégie a topolgie odvodenej
z reldcie ,,medzi‘ [5] vo zvizoch.
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PE3IOME
BHYTPEHHHUE TOIIOJIOTHMH HA YIIOPAOOYEHHBIX MHOXECTBAX
M. Konu6buap, Bpatucnasa
H3yyarorcst yCnoBHS It 4aCTHYHO YTIOPAIOYEHHbIX MHOXECTB H PEIIETOK HEKOTOPbIX KJIACCOB,
4TOObI MX MHTepBajibHas Tononorus 6bu1a Xaycpopdosod. TIpu 3ToM 0606LAIOTCS HEKOTOpbIE

pe3ynbTathl pa6ot [1], [2], [4], [6]. Bropas yacTb paGOTbl NOCBSILLEHA OTHOLUCHHSM MEXMY HHTEp-
BAJILHOH TONOJIOTHEH H TOMOJIOTHEH CBA3aHHOM C OTHOLIEHHEM «Mexay» [5] B peweTkax.
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ON THE A-CONTINUITY OF REAL FUNCTIONS
JOZEF ANTONI—TIBOR SALAT, Bratislava
Dedicated to Professor O. Boriivka on the occasion of his 80th birthday
In [1] the following problem is formulated: Let x, eR (n =1, 2, ...): We shall
write x, — xo if '

x1+x2+...+x,.
- —Xo,

n

SO X, —>X, means (C, 1)—lim x, = x,, see [4], page 27, and (C, 1) is the first
Cesaro mean defined by the matrix

L

-
-

b

0,

b

» 0,

-
-

e W= N =
e W= N = O
.ee wl.ﬂ 9 c

We can say, that a function f: R— R is C-continuous at the point x, if
f(x,.)—c> f(xo) whenever Xn—> Xo. In the solution of the mentioned problem is

showed, that the function f: R— R is linear if f is C-continuous at least at one point
of R.
In conection with this result the problem arises to investigate the following
four types of “continuity” of functions f: R— R at the point x,:
1. x, > x> f(x.)— f(x,) (the obvious continuity)
Xn—>Xo > f(x,.)—? f(x0) (the C-continuity)

2.
3. x> x0>f(xn)—>f(x0)
4. x,—>x0>f(xa) = f(x0)
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The cases 1 and 2 are explained. Let us investigate the case 4.

Theorem 1. Let f: R— R have the following property : there exists such a point
xo€R that the following implication
(1) xn?xoif(xn)—"f(xo)
is valid.

Then f is a constant function.

Proof. The assertion (1) implies the following

Xn —E"xoéf(xn)—z"f(%)

The last implication and the quoted result of [1] gives that f is a linear function.
Puta = x,— 1, b = x,+ 1. We can construct a sequence {x,}.-.=a,b,a,b, ... . Itis

easy to see that Xn—> Xo. It follows from (1) that {f(x.)}.-1=f(a), f(b), f(a),

f(b),... converges. The last statement yields

(2) f(b)=f(a)

Since f is a linear function it follows from (2) that f is a constant function.

The case 3. seems as some generalization of the notion of continuity of
functions. It is not so as it seems. In the paper [2] there is namely the following
result proved:

Let A be a regular matrix (see [4], p. 7—8) and f: R—R a function. Let
A —lim f(x,) exist in R whenever {x.}.-: converges. Then f is a continuous
function on R.

In connection with the result from [1] the following question arises: Is it
possible to generalize the mentioned result by replacing the Cesaro matrix by
a nother regular matrix? We can formulate this question more precisely. Let A be
a regular matrix. We shall say that the function f: R—R is A-continuous at the
point x,€R if the following statement is true

A —lim x, =x,> A —lim f(x.) = f(x0)

Immediately the question arises: Does the A -continuity of the function f
imply that f is a linear function? Simple examples show that in general the answer
is negative. For example if A is a matrix equivalent to convergence (see [4], p. 11,
31) so every continuous function is also A-continuous. In the next theorem we
shall give a sufficient condition for linearity of A -continuous functions.

We shall say that a regular matrix A has the property L (a) if there exists such
a sequence {7, }.-1, }.=0o0r 1 (n=1,2,...) for which A —lim n, =a.

Using the same consideration as in the proof of the quoted result from [2] the
following auxiliary result can be proved. ‘
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Lemma 1. Let A be a regular matrix and f: R—R be an A -continuous
function at a point x,€ R. Then f is continuous at the point x,.

Theorem 2. Let A = (a,..) be a regular matrix with property L (a) for a number
a,a#0, 1 and let f: R— R be an A -continuous function at each point of R. Then f
is a linear function.

Proof. Let x, yeR. Let A-lim 1, =a,a#0,1and n,=00r 1 (n=1,2,..).
Let us put £, =71,y +(1—n.)x (n=1, 2, ...). Then we have

A —lim £, =lim » Gty =y lim > .0, +
n=1 m—=® p=1

m—so

(3)
+x lim Y a.(1-n)=ay+(1—a)x

o
m—= 1

It is easy to see that f(z,) =n.f(y) + (1 —n.)f(x) (n =1, 2, ...). In the same way as
(3) we have

4) A —lim f(t.) = af (y) + (1 - a)f (x)

Since the function f is A -continuous at the point ay + (1 —a)x, by (3) and (4) we
obtain

(5) flay + (1 -a)x)=af(y)+(1-a)f(x)

(for arbitrary x, y eR).
According to Lemma 1 and assumptions of Theorem 2 f is a continuous:
function on R. Further the function f fulfills the following functional equation

g((1—a)x+ay)=(1-a)g(x)+ag(y)

(x, yeR and a#0, 1—a#0) (see (5)).

On account of the well-known results on the functional equations of this type
(see [3] p. 68—70) we can conclude that f is the linear function and the proof is
complete.

Remark. Obviously the Cesaro matrix has property L (%) because the

sequence 0, 1, 0, 1, ... is (C, 1)-summable to %
There exist regular matrices with property L(a), a#0, 1, which are not

equivalent to Cesaro matrix. Such a matrix is the following
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-

S N= O
S NI= O

-

(=T S
S N

-
-

Ao=

-
-

I ST )
N O

The matrix A, has the property L (%) We can take 7u =1, nu-1=0

(k=1,2, ) and we obtain that A —lim n, =-;—. If we take e, =1 (k=1,2,...)
and €4..=0 (r=1,2,3 and k=1,2,...) we obtain the sequence which is
(C, 1)-summable to % and which is not A,-summable.

We already have mentioned that if the function f: R—R is C-continuous at
a point x, € R, then f is a linear function (cf. [1]). If we compare this assertion with
Theorem 2 the question arises whether the assumption of the A -continuity of f at
each point of R can be replaced by the assumption that f is A -continuous at one
point x, € R. The following example gives a negative answer to this question.

Example. The matrix

1 1
_E, 2’ 0’ 0,
o, 3, 1 9 o
2’ 2
A 0. 0 1 1 o o
bl ’ 2’ 2’ ’ ’
\: : : : : : e I

is evidently regular. Let us put f(x)=—1 for x=-1, f(x)=x for —-1<x<1,
f(x)=1 for x=1. Then f is a continuous, but not a linear function.
We shall show that the function f is A-continuous at 0 and it is not

A -continuous at any point x €R, x#0.
Let A —lim x, =0. We prove that A —lim f(x,)=0 (=f(0)). We put for

bres;ity: y,.=%(x,.+x,.“), t,.=—;-(f(x,.)+f(x,.+,)) (n=1,2,...). Since y,—0

(n— «), there exists such a n, that for each n =n, we have

(6) : [xa + x0ea] <1
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For fixed n =n, we have the following four possibilities :

1. % |21, |x..]21;

2. || 21, [xau| <15

3. |x] <1, |xasi| Z1;

4. |x,| <1, |x.0] <1.

1. According to (6) we have either x, =1, x,..=—-1 ar x,=-1, x,,,=1. In
any case we get , =0.

2. Lete.g. x, =1, |x,.,|<1. Then according to (6) we have —1<x,.,<0 and

so we get £, =% (1 + x,+1). Thetefore

1 1
|t = yal =5 1= x| =5 30 + s = ya]
2 2

- ] | | | 1
I 1 T I I 1
_x,. _1 X,.+1 0 1 Xn

If x,=-1 (and [x,.,|<1) then in an analogous way we get |t, — y.|=|y.|.
3. Let e.g. x..: =—1. Then according to (6) we have 0<x, <1 and so we get

t, =% (x, —1). Hence

1
[t = yal =5 (14 X0ir| Z yal
2

| il Nl | | |
1 I 1 T I 1

Xn+1 -1 0 Xn 1 ~Xn+1

If x..121 (and |x,|<1) we obtain similarly the estimation |£, — y,|=|y.|.

4. We have ¢, =y,.

Hence in all cases we have (for n =no) t, =0 or |, — y.|=|y.|. Since y,—0
(n—0), we get 1,0 (n— ).

We shall show that f is A -continuous at no point x eR, x#0. Let x e R, x#0.
Choose a positive integer k such that (k—2)|x|>1. Let us put x;,_,=kx,
X2n=—(k—=2)x (n=1, 2, ...). Then evidently we have A —lim x, =x and simul-
taneously £, =0 (n=1, 2, ...). Hence A —lim f(x,)=0%# f(x).
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SUHRN
O A-SPOJITOSTI REALNYCH FUNKCIf
J. Antoni—T. Salat, Bratislava
Nech A je regulirna matica. Funkcia f: R—R sa nazyva A-spojitdi v bode x,eR, ak

zZ A —lim x, =x, vyplyva A —lim f(x,)=f(x,). V préci si dokdzané postatujice podmienky k tomu,
aby z A -spojitosti funkcie vyplyvala linedrnost funkcie.

PE3IOME
O A-HEINPEPBIBHOCTH >BEC'IIIECI'BEHHBIX OYHKLIMHA
V. Anronu-T. Hlanat
ITycts A perynapnas matpuua. ®yskums f: R— R Ha3biBaeTcs A—uenpepsumoﬁ B TOYKE xo€R

3ciu u3 A —lim x, =x, BbiTekaetT A —lim f(x,) =f(x,). B paGoTe paHbl AOCTAaTOYHbIE YCNOBHS [UIA
TOro 4TOGLI H3 A -HENPepbIBHOCTH (PYHKIMI BbITEKANA JIHHEHHOCTDb DyHKIWMIA.
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