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We consider the differential equation

Ly+h(ty,y,...y"")=0 - (E)

where n>1,

L.y = a,(6)(a.-1(1)(...(a:(£)(ao(t)y)")"...)")")

a(t), i=0,1,..,n, are positive and continuous functions on [0, ©) and
h(t, Yo, y1, ..., Ya—1) is real valued and continuous on Q =[0, ©) X E,, E, being
Euclidean n dimensional vector space. Under a solution y(t) of (E) we will
understand a solution existing on some ray [T,, «) and satisfying the condition

sup {|y(t)|: 6=t<o}>0 forany tE€[T,, ®)

A solution y(¢) will be called nonoscillatory if there is ¢, = T, such that y(¢) #0
for t=t¢,. Sometimes we will require the following conditions to be satisfied :

yh(t, ¥, Y15 .., Ya-1)>0 or <0 for y#0 (1)

f %mv, i=1,3, o t~1 Q)

The expressions Loy =ao(t)y, Ly =a/(t)(Li-1y)’, i=1, 2, ..., n, will be called
quasi-derivatives of y. We restrict our considerations only to nonoscillatory
solutions of (E); we’ll examine their properties and the properties of their
quasi-derivatives. The equations of the type (E) were examined by various authors,
see [1], [2], [3], [4], [5], [6], [7]. [8], [9], [10]. There were mainly examined the
conditions which guarantee that nonoscillatory solutions tend to a finite limit (for
example to zero) as t— . We will also examine the asymptotic behavior of
quasi-derivatives.
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We start with some lemmas that elucidate the behavior of quasiderivatives of
some function y(¢) in relation with the properties of a,(¢), i=1,2,..., n—1.

Lemma 1. Let y(¢)#0 be such that L,y exists for 1=¢,=0 and let y(¢)
L.y(t)Z0 or =0 (=can hold only at isolated points) hold for ¢t=¢, Then

lim Ly(¢),i=0, 1, ..., n — 1, exist, are finite or infinite and there is T =¢, such that

Ly@)#0fort=T,i=0,1,...,n—1.If moreover (2) is satisfied, then for t =T
lirEL,y(t).sgny(t)éO, i=0,1,..,n-1 3)

Proof. Let be L,y(¢)=0 (=0) (=holding at isolated points eventually) for
tZ1,=0. Then (L.-,y(t))' =a.'(t) L.y(t)=0 (=0) for t=t, Thus L, ,y(¢) is

strictly monotone, therefore lim L,_,y(¢) exists (finite or infinite) and there is
t—00

at,=t,such that L,_,y(t) # 0 for t =¢,. Successively we get the strict monotonicity
of Ly(t),i=n—2,n-3, ..., 1, 0 and the existence of their limits for — % and the
existence of such a T that Ly(t)#0 for t=T, i=0,1,..., n —1.

Let be y(¢)>0 for t >¢, and let (3) be not true for some i€(1, 2, ..., n —1),

i.e. let !iq_) Ly(t)=—c <0. Then there is such a b, =¢, that Lyy(t)<—c/2<0 for
t=b,. Then

Loy @) =75 LYO< =5 25

for t=b,. Integrating on (b;, ©) we get

lim L1y () S Li-1y(b) f e
Repeating the same consideration for i —1, i —2, ..., 1 we get that lim Loy (f) =
= — o as t— o which contradicts the assumption that y(z)>0. This proves the
validity of (3). For y(¢t) <O a similar reasoning gives us the validity of (3).

Remark 1. It follows from the proof of this lemma that if y(¢).L,y(t) =0
(=0), where =holds only at isolated points and L,y(t) =0 (=0), y(t) must be
nonoscillatory.

Lemma 2. Let y(t)#0 'be such that L,y(t) exists on [f, ©) and let

y(¢) . L,y(t)=0 be true in this interval whereby =holds at isolated points

eventually. Let (2) be valid. Then there exists a T=0 and a k €0,1,...,n-1)
such that: if n is even, then

a) (-1)"*'y(t) Ly(t)>0, i=k+1,k+2,....,n—1,for t>T,

b) imLy(t)=0ast—x, i=k+1,k+2,...,n—1,

c) lim L,y(t) exists and is finite as t— o,
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d) lim Liy(t)=o-sgn y(t) as t—>», i=0,1, ..., k—1;
if n is odd, then b), c), d) is still true and instead of a) it holds
o ) (=Dy@)Ly(t)>0,i=k+1,k+2,...,n—1,fort>T

Proof. Let be y(t) >0 for t=¢,=0. Then following Lemma 1 there is a T =1,
such that Lyy(t)#0 for t=T and lim Ly(t)#0 as t >, i=0,1,....,n—1. It is
impossible that all lim Ly(t)=o as t— o because L,y(t)=0 and therefore
L,-,y(¢) is positive and decreases. Thus k=n — 1. If for some i (1, 2, ..., n —1)
lim L;y(¢t)>0 as t— then an easy calculus in which we respect (2) gives that
limLy(t)=x as t—»» for j=0,1,..., i—1. On the other hand the similar
reasoning gives that if for some i€ (0, 1, ..., n —2) lim L,y(t)=0 as t— e, then
limLy(t)=0 as t—>o for j=i+1, i+2,..., n—1. Therefore there is
a ke(0,1,..., n—1) such that lim Lyy(t)=» as t—»o for i=0,1,..., k—1,
lim Ly(t)=0 as t—>o for j=k+1, k+2,..., n—1 and lim L,y(¢) is finite as
t — . Thus the properties b), c), d) are true. In the case that y(t) <0 for t=¢,=0a
similar reasoning gives the validity of b), c), d).

Now, let n be even. Suppose that y(#)>0 for ¢t >¢,=0. Then L,y(t)=<0 for
t >, and therefore L,_,y(t) decreases and must be positive to avoid the contradic-
tion with the fact that y(t)>0. Thus 0<L,_,y(t) = (—1)"""*'L,_,y(¢). From this
fact and from the fact that lim Lyy(t)=0 as t>o fori=k+1, k+2,..,n—1 it
follows that Ly(t).L.,y(t)<0, i=k+1, k+2,..., n-2. Therefore
(=1)""'Ly(t)>0for t>T, i=k+1, k+2, ..., n-2.

If y(¢) <O for ¢t >t,, then L,y(t) =0 for ¢t > ¢, and L,_,y(t) increases. It must be
negative to avoid the contradiction with the fact that y(¢) <O0. In this case we have
(=1)"""'y(#) . L._,y(t)>0 for t>t,. From this and from the fact that
limLy(t)=0 as t—o for i=k+1, k+2,.., n—1 it follows that
Ly(t) . Liny(t)<O0, i=k+1, k+2,..,n—2. Finally we get (—1)"'y(z).
Ly(t)>0 for t>t, i=k+1, k+2, ..., n— 1. The validity of a) is proved.

Let n be odd. Let be y(¢) >0 for t =Z¢,. Then L,y (t) =0 for t =¢, and therefore
L, _,y(t) decreases there. It must be positive to avoid the contradiction with the fact
that y(t)>0 for t=t. Thus we have 0<L,.,y(f) = (-1)""" L._,y(). The
same reasoning as above gives that Liy(¢) . L...y(t)<O0 for i=k+1, k+2, ...,
n—2 and t>t, and (—1)'Ly(t)>0 for t>toand i=k+1, k+2, ..., n —1. Thus
validity of a') is true. If y(¢) <O for ¢ >, a similar reasoning as above in the case of
n even proves the validity of a’).

Remark 2. If (2) is not satisfied, Lemma 2 can not be true. For example, let
y(t)=t,alt)=1,a,(t)=t7", ax(t) =1, as(¢) =-;- t*,a.(t)=t"".Then Loy =t,L,y =
=t"', Lyy=—t"?, Lyy=t, Lyy=t"", and if as(t)=1, then Lsy = —t 2.
Definition 1. Let be 0=c <¢. Denote
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s, ds2 S 1 dS;

t dsl
= =| — 4
Po(t,c)=1, Pt c) fca.(s.) coaxs2) ) als) @
i=1,2,..,n-1
_ _ ¢ dS,.-: Sn—1 dsn_z r,‘l*I dsi
On(to C)—li O’(ti C)—J; an—l(sn—l) [ a..-z(sn—z)”'.jc a,‘(s’)
ji=1,2,..,n—-1
Lemma 3. Let (2) be valid. Then
lim P,(t,c)=, limQ,(t,c)=» as t—» )
for i=1,2,...,n—-1
lim ’;l(: C) o for 0Si<jSn—1, as t—w
Qi(t, ) ©
. i > - . .S
hmO,(t,c) o for 0<i<j=n as t->®

for t,>c there are constants a; >0 and f}; >0 such that for t=¢, and 0<i<j=
=n-1

a;Pi(t, c)<P(t,c), ByQ(t, c)<Qi(t,c) @)

Proof. It follows from (2) that lim P,(t,c)=% as t— . Suppose that
lim P;(¢t, c)=> as t—»>x forsome i € (1, 2, ..., n —2). Then for P,.,(¢, ¢) we get

_ [ _ds. (" _ds, o ds
P2, C)_I ai(s1) Je axs2)" ) a(s:)

al+l(sl+l) b aH-l(sl-H) e ai+l(sl+l)

for t=b. Thus lim P,(¢, c) = ® as t— % implies lim P,.,(¢, ¢) = ® as t—«. Thus
the first part of (5) is proved. The second part of (5) can be proved also in the same
manner. Then we get (6) from (5) by use of I’'Hospital rule. Let now t,>c and

0=i<j=n-1. Then from oontmulty and positivity of T’Lg_cg for t=¢, and from
i

(5) it follows that —%—— has on [t,, ®) a positive absolute minimum which we
i

denote by m. Then for a; = —2— we get the first part of (7). A similar reasoning gives

also the second part of (7).
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Remark 3. It is easy to see from the proof of Lemma 3 that for validity of (5) it
is sufficient that lim P,(¢, c) = as t— o and lim Q,_,(¢, c) = ® as t — x, respec-
tively.

Lemma 4. Let the assumptions of Lemma 2 be satisfied. Let k be the same as
in Lemma 2. Then there is a T, >0 such that for t> T,

sgn y(¢) =sgn L.y (¢). (8)

If n+k is even, then |L,y(¢)| increases and there exist two constants 0<c, <c;,
such that for ¢t > T,

0<c, <|Ly(t)|<c: )

<cs lim 200 _, (10)

e Pk-o-l(tv C) -

and

0<c, < |tim 2¥©)

t—so Pk t,C)

If n + k is odd, then |L,y(t)| decreases and there is a constant ¢ >0 such that
for t>T,

0<|Ly(t)|<c (11)
and
< i o)y (2) . ao(t)y(t) _
0= (lim P(t,0) | =€ !L“lpm(,,c) 0 (12)

Proof. Let n + k be even. Let n be even and k even. Then from Lemma 2, a)
we get (—1)**?y(t)Les1y(t) = y(t)Lesry(t)>0 for t > . If y(t) >0 for t > 1., then
Ly.,y(t)>0for t >t and L.y(t) increases and must be positive for t > T=¢,. If no,
we have L.y(t)<O for ¢ > 1., which means that L,_,y(t) decreases and therefore
lim L,_,y(t) <o which is in contradiction with the property d) of Lemma 2. Thus
we have that there exists T, >0 and positive constants c,, ¢, such that (9) is valid for
t>T, as also (8).

If y(t)<O for t>t¢,, then L,.,y(t)<O0 and L,y(¢t) decreases and must be
negative on (7T, ) for some T, =1, for to avoid the contradiction with the fact that

lim L,_,y(¢) = —oo. It is clear that (8) and (9) is valid also in this case. In the case

that n is odd and k is odd too, using the property a’) of Lemma 2 and by a similar
reasoning as above we get also the validity of (8) and (9). In both cases the validity
of (10) follows from (9) and the I’'Hospital rule.

Let now n + k is odd. Examine first the case : n even and k odd. Then from the
property a) of Lemma2 we have (—1)**’y(t)L...y(¢)>0 for t>¢. Thus
Y(t)Ly.y() <O for t >1,. Let y(¢)>0 for t>t. Then L,.,y(¢t) <0 and therefore
L.y (t) decreases for ¢t >, and must be positive in order to avoid the contradiction

with the fact that lim L,y (r)= oo (property d) of Lemma 2). Thus (8) and (11) is
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true for t>#. If y(t)<O for t>1, then from the property a) of Lemma 2
Lis:y(t)>0 for ¢t >¢,. Thus L,y(t) increases and it must be negative for >, in

order to avoid the contradiction with the fact that !irg Ly_,y(t) = —x (property d)

of Lemma 2). It is clear that also in this case (8) and (11) are true for all ¢ large
enough.

If n is odd and & even, the proof follows the same line using a’) instead of a) of
Lemma 2. The validity of (12) follows from (11) and the use of I’'Hospital rule.

Lemma 5. Let y(t)#0 be such that L,y(t) exists and let y(¢) L,y(t)=0
(=holding only at isolated points eventually). Let (2) be valid. Then:

Either there existsa T=0and a k € (0, 1, ..., n — 1) such that the following is
true: '

If n is even, then

a) (-1)'y(t) Ly(6)>0, i=k+1,k+2,....,n—1,for t>T;

B) !L'E Ly(#)=0,i=k+1,k+2,...,n—-1;

Y) !TJ L.y(t) exists and is finite;
0) lim Ly(t)=o-sgny(t), i=0,1, ..., k—1.

If n is odd, then ), v), d) are true and instead of @), @’) (—1)"*"y(¢t) Ly(t)>0
is valid for t>T, i=k+1,k+2,..,n—-1.

Or
£) !irg Ly(t)=o.sgny(t), i=0,1,...,n—1.

The proof can be made in the same way as it was done in the proof of
Lemma 2.

Lemma 6. Let the assumptions of Lemma 5 be satisfied. Then there isa T >0
such that the following is true:

1.If 0Sk=n—1, then

sgn y(¢t)=sgn L,y(¢) fof t>T (13)

and if moreover n +k is odd, then |L,y(f)| increases and there exist positive
constants c,, c, such that

0<c,<|Ly(t)|<c, for t>T (14)
and
F ao!t!!!l! . ao!t!!!t!_
0<c1<|!_1£t_1‘ Pu(t, ) <c,, }HPH,(‘,C)—O (15)

but if n + k is even, then |L,y(¢)| decreases and there is a positive constant c, that
0<|Luy(t)|]<cs for t>T (16)
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I ao(t)y(t)

0= |lim

t—oo Pk(t, C)

<cs, lim 2L _, (17)

Lt Pk+l(t7 C) a

2. If the case ¢) from Lemma S takes place, then

lim aot)y(t)

£=008 n—l(tv C)

The proof of this lemma is similar to that of Lemma 4.

Definition 2. We say that the function y(¢) has the property (V,.), k€ (0, 1, ...,
..., n—1), with respect to L, if it has the properties a) resp. a’), b), c), d) from
Lemma 2 or a) resp. a'), B), y), ) from Lemma 5. We say that y(¢) has the
property (V,) if it has the property ¢) from Lemma 5. We will denote by V, the set
of all solutions of (E) with the property (V,).

Theorem 1. Let (1) and (2) be satisfied. Then each nonoscillatory solution of
(E) belongs precisely to one set V,, k=0, 1, ..., n and Lemma 4 and LL.emma 6,
respectively, is valid.

Proof. If (1) and (2) are satisfied and if y(¢) is a nonoscillatory solution of (E),
then the assumptions of Lemma 2 and 5, respectively are satisfied and therefore
y(¢) has one and only one of the properties (V,), k =0, 1, ..., n. The validity of
Lemma 4 and 6, respectively is clear.

The problem we want to discuss is: how to insure that for every y(t)€ Vi,
k=0,1, ..., n—1, which is a solution of (E), lim L,y(t)=0 as t— . To this aim
we will need to know more precisely the formula expressing L.y (¢) of a solution
y(t) of (E) which belongs to V.. Integrating the equation (E) successively and
respecting the properties b) and ), respectively, we get

Ly =1y as %om(s, f) (18)
i=n—1,n-2,.. . k+1

where 7(s)=(y(s), y'(s), ..., y¥"""(s)) and Q....(s, ) is given by the Definition 1.
Denoting lim L,y(t)=L as t - we get

Ly@=L+ -1y [0 28I o, (19)

- Denote by D,_, the set of all functions f defined and continuous on J =[t,, ®)

such that all quasi-derivatives Lf, i =0, 1, ..., n — 1, with respect to the functions

a.(t), m=0,1, ..., n—1, exist and are continuous on J. Denote by D,._, « the set

of all feD,_, which have bounded quasiderivatives L.f, L,..f, ..., L,_,f. By the
norm

1=, max, {sup LA} + S L) (20)

ksisn—1
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D,_,« becomes Banach space. The convergence with respect to this norm ||- ||
implies the uniform convergence of the quasiderivatives of order i, i =0, 1, ...,
n —1, on every compact subinterval of J and moreover the uniform converg-
ence on J of the quasi-derivatives of order j, j=k, k+1, ..., n—1.
Theorem 2. Let (2) be valid. Let F(t, u) be a function which is continuous,
nonnegative on Jx(%, ©) and nondecreasing in u. Let be more

|h(t, y)|=F(t,y) forall (t,y)eJx(—o,®) (21)

Let r>0 be a real number, 0=k =n —1 an integer and

1 k
gi(t, to, r)=r P ‘_2‘61’,(!, to) (22)
f OH.,(:, t) %(t) F(t, g (t, to, r))dt<oo, 0<t,<t,<t (23)
for all >0 and
.1 (" 1
!‘.’2 = J:o Qi 1) m F(t, g«(t, to, r))dt =0 (24)

Let co, ¢y, ..., & be given real numbers. Then the equation
L.y+h(,y)=0 (E)
has at least one solution y(¢) defined on J and satisfying the conditions

Ly(t)=c, i=0,1,...,k—1
lim Ley (1) = v, (25)

lim Ly(t)=0, i=k+1,..,n—1

Proof. Let y(t) be a solution of (E,) satisfying (25). Then an easy calculus
gives that y(¢) is a solution of the integral equation

YO = s | et )+ (-1

f ds (% dsp (% dse (Th(s, y(s)
o 81(51) Jo 2(52)" )iy a(se) ) Ga(s)

' Qk+1(s, Sk) ds

for £ =1, and every solution of this integral equation is a solution of (E,) satisfying
the conditions (25). For the quasiderivatives of y(t) we get

Ly()=(-1)" "'*‘f Mom(s,t)ds, t=t,

i=k+1,k+2,..,n-1 @7
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ka(t)=Ck + (—1)"_"”-‘:“ M‘;_;(%)‘_S_D_ Qk+1(s, t) ds, r=t,

Denote by G, ={fe€D,_,«: ||Ifl|=r}. Then |Lf|=r,i=k,k+1,...,n—1and
IfI=gx(t, to, r). We define on G, the operator T as follows: if f € G,, then

v(t)=TF(t) =—— | }f:ciPi(t, to) +

ao(t) | i=0

n—k+1 ! dsl *1 dsz A3 dsk mh(s’f(s))
+(=1) f ) Jo @250 S @) b aa(s)

(28)
: Qk+|(S, Sk) ds, t=¢,.

Respecting (21) and (23) it is easy to verify that this operator is well defined
on G,. Moreover, we have

L,'v(t())=ci, i=0, 1,...,k'—1 !iI‘E Lkv(t)=Ck

Lkv(t)=ck +(_1)n—k+ljw h(_;"l{s()i)) Ok”(s, t) ds, t=¢,

Liv(t)=(—1)"_i+lj:°b—(;_:-é£)£uQ“”(S’ t)ds, t=t, (29)

limLv(£)=0, i=k+1,k+2,..,n—1

Thus Tf(t)= v(i) €D, _, «. Moreover, respecting (21) and the properties of F
and Q; we get

’F b : 'y
|Lku(z)|§|ckl+f F(s, 0u(s: 10 1)) 5, (5. 1) ds

to a,.(s) (30)
IL.v(t)Iéf %{s;—”» Quu(s, t)ds, i=k+1,...n—1

From Lemma 3 we get that there are constants (.., i=k+2, ...,n — 1, such
that

Prer.iQi(t, 1) <Qrsi(t, t,) for t>t(>t)

Then it is easy to see that from (23)

f w()’(,’ t) dt\<°° (31)

a(t)
i=k+2,...,n
and from (24)
.1 (T F(t, g(t, to, 7)) _
mel T ey QHu)de=0
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i=k+2,...,n

follow. Hence we can conclude that there is an r,>0 such that

ngt1 gk!t’ ‘0’ r!! <_r_
J: (1) Q(t, t) dt=2

forall r=r,and i=k+1, ..., n—1. Then we have
ILo@|=lel+5, |Lo@)|=3
forr=roand i=k+1, k+2,...,n—1, and

ITfll = ||v(t)||<2|Cz|+2» for rzr,

Thus, there exists an R =r, such that
ZIC.I +
i=0

That means that T maps the ball Gg into Gg.
Now, we are going to prove the continuity of T on Gg. Let be f,., f € Gg,
lfn —fll—0 as m— co. Then

—Tfll = |
| Tf.. — T¥|| ,max | sup

a,(s)

as m— o using the continuity of 4, (21), (23), (31) and the Lebesgue dominated
convergence theorem.
Denote TG =H and H?, j=0, 1, ..., n — 1, the set of the quasi-derivatives
of order j of all functions from H. Evidently the functions of H”, j=k, k+1, ...,
n — 1, are uniformly bounded by R. They are also equicontinuous on J. In fact,
for v e H we have

"' Qii(s, 1) [A(s, fu(s)) = h(s, f(5))] dsl }"’0

,,v(t)f an(s)

where f € Gg is a suitable function and

" F(s, gi(s, t.,,R))

|Ln-v(£) = L._,v(t")| = U a,,(s) '

. aa(s)
From this and from (31) the equicontinuity on J of all functions from H"
follows. Then from the uniform boundedness of H?, j=k, k +1, -1, the

equicontinuity of H®, j=k —1, k, ..., n —2, on J follows. Taking in aocount (21),
the monotonicity of F(¢, y) in y, the fact that for f € Gr|f|=g.(t, to, R) and the
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formulae for Ly, i=0,1,..., k—1, we get that H”, j=0,1,..., k—1, are
uniformly bounded and equicontinuous on every compact subinterval of J.

Denote by M the convex and closed envelope of H. Then M is convex and
closed and M?, j=0, 1, ..., n — 1, are uniformly bounded and equicontinuous on
every compact subinterval of J (See [3].) M being the convex and closed envelope
of H and H = TGr = Gg, we have that M c Gg. Then TM c TGr = H = M c Gkg.
Now, it is easy to see that TM is compact. Application of Schauder’s theorem gives
the existence of at least one fixed point of T in M, which is a solution of (26) and
also of (E,) with the properties (25).

Remark 4. We needed the assumption (24) only to guarantee the existence of
such a ball Gk that TGr = Gr. This assumption is not satisfied for example if

F(t, y) is linear in y. But we took ¢, fixed in our considerations. If we don’t do it we
k

can eliminate the assumption (24) in the following manner: We choose a r > Slal
i=0
and a ¢, such that

[0 . ([) O.'(t, t()) de=r ,-Zolc'l

i=k+1, ..., n. Then certainly TG, = G, and in the same way as Theorem 2 the
next theorem can be proved.

k
Theorem 3. Let all assumptions of Theorem 2 with r>3|c| be satisfied
i=0

except the assumption (24) and let the assumption (23) be substituted by

[ Bl g, 5,0 d5<a (32)

Then there is a t,>0 such that the equation (E,) has at least one solution y(t)
defined on [to, ®) and satisfying the conditions (25).

From Theorem 2 and 3, respectively, immediately follows

Theorem 4. Let all assumptions of Theorem 2 and Theorem 3, respectively, be
satisfied. Let k be an integer, 0=k =n — 1, and let ¢, be a real number. Then there
are k solutions of the equation (E,) which are linearly independent and the k-th
quasi-derivatives of which have the limit for t— o equal to c,.

Remark 5. We have supposed that 4 is a function of two variables ¢, y only.
We can extend our considerations to the case that h = h(z, Y5 Y15 ---s Ya—1)- Then it
is necessary to change the definition of the set D, _, : it will be the set of all functions
f defined on J which have continuous derivative of the order n —1 and all
quasi-derivatives Lf, i=0, 1, ..., n— 1, with respect to the functions a(t), i=
=0, 1, ..., n — 1. The last requirement is satisfied for example if we suppose that
a()eC"™'(J), i=0,1, .., n—1. Then D,_,, denotes the Banach space of all
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functions f € D, -, which have the bounded quasi-derivatives Lf, i =k, k + 1, i
..., n — 1. The norm is given by (20). _

Theorem 5. The conclusions of Theorems 2, 3 and 4, respectively still remain
valid if we substitute the function A(t, y) by h(t, y, yi, ..., y.—.) and instead of 21)
we have

lh(t, ¥, Y1y s ya)| SF(E, y) (33)

The proof of this theorem can be made in the same way as the proof of
Theorem 2, but it is necessary to respect Remark 5 and to make the needed
changes.

Remark 6. If F(¢, y) = 3,(t) + (¢)|y |, then condition (23) will be satisfied if

J:: Z?g; Qusi(t, to) dt <o 50
and
J:o ﬁ;&([) Pk([, to)okﬂ(t, t()) di<o (35)

In the case that A(t, y) satisfies the Lipschitz condition

|h(t, y1) = h(t, y2)| =By~ ya
then F(t, y)=|h(t, 0)| + B(¢)|y| and the condition (35) and

ft: J%tit()))l Q"‘H(t, to) dt<oo

guarantee the fulfillement of (23).
After this we can start to solve the problem: to state the conditions which
guarantee that if y(t) € V, is a solution of (E), then lim L,y(¢)=0 as t— .
Theorem 6. Let (1) and (2) be satisfied. Let there exist functions G(¢, y) =0,
F(t, y)=0 defined on J, continuous and nondecreasing in y such that

G(t,y)=|h(t, y, yr, ... ya-)| SF(2, y) (36)

for (t,y,y1, ..., ya-1)€J XE", where E" is the n-dimensional Euclidean vector
space. Let be k€(0, 1, ..., n —1). Then the condition

o« 1 ' ’
J: 26y Q15 OFG6, au(s, 1, ) ds = forall 7>0 (37)
is a necessary condition and
2]
[ ) Q506G g5, 1, ) ds=o forall r>0 (38)
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a sufficient condition that for every solution y(¢) € (E) such that y(¢) € V. holds
lim L,y(t)=0 as t— .

Proof. Suppose that the second part of (36) is true and that (37) is not true, i.e.
that the integral in (37) converges for an r>0. Then it is easy to verify that all
assumptions of Theorem 5 are fulfilled. Therefore, if we choose (co, i, ..., Ck),
¢ ¥ 0, arbitrarily, then there exists a #,>>0 such that the equation (E) has at least
one nonoscillatory solution y(t) which belongs to V, and lim L,y(t)=c,#0 as
t— . Thus the necessity of (37) is proved.

Let now be y(¢) € Vi a nonoscillatory solution of (E) and let lim L,y(¢)=L+0

as t— o, Then to -12: there exists a ¢ >0 large enough such that |L,y(t)| >%>O for
t=c and Liy(t), i=0, 1, ..., k, have the same sign for ¢t =c. Then the successive
integration gives

YOI [P )+ 5 Rt 0206, e,

where r = min {lLiy(c)l, i=0,1,.., k-1, 2} Suppose that the left part of (36)

holds. Then using the formula (27) where we set L instead of ¢, we get

L-Ly©I2[ 7

The left side is finite but the right side is infinite. This contradiction proves that

oo

Qi+i(s, ¢)G(s, gi(s,c, r)) ds

lim L.y (¢) can not be different from zero.

Corollary 1. Let (1) and (2) be satisfied. Let there exist functlons a(t)=0,
(3(t)=0 defined on J and such that

a(@)ly|=lht, y, y1, .. ya-)| SOy ] (36"

for (¢, y, y1, .. Yu-1)€J X E", where E" is the n-dimensional Euclidean vector
space. Let be k€(0, 1, ..., n—1). Then

T_BG) 5 ,
J: ao(S) (S) Pk(s t)Qk+l(s t)ds | (37 )

is a necessary condition and
J:-’;o—(s%(?jpk(s t)0k+l(s t)ds=oo (38')

is a sufficient condition that for every nonoscillatory solution y(¢) of (E) such that
y(t)e Vi, lim L,y(¢t)=0 as ¢t— « holds.
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This corollary follows immediatly from Theorem 6. We have only to respect
the monotonicity of F and G.

From Theorem 6 follows also

Theorem 7. Let h(t, y)=p(t)y, p(t)=0 (=0) continuous on J, where the
sign = in the last inequality can hold only at isolated points. Let (2) be valid and let
ke(0,1, ..., n—1). Then for every solution u(t) of the equation

L.y@®)+p(t)y=0 (Ez)
belonging to V, lim L,u(¢)=0 as t— o holds if and only if

T _lpel .
,[ ao(s)an (s) P (s, t)Qrii(s, t)ds = (39)

Corollary 2. Let p(¢) be as in Theorem 7. Then for all nonoscillatory solution
y(¢) of

Yy +p(t)y=0 (E)
belonging to V, lim y*’=0as t—»>», k=0, 1, ..., n—1, hold if and only if

[ ol ds == (40)

Proof. Because a;(f)=1, i=0, 1, ..., n, we have in this case that P.(s, t)=
=(s—1t)*, Qusi(s, t)=(s—1t)"*". Therefore condition (39) has the form

[ ol =or 5=

But this condition is satisfied if and only if (40) is true as it follows from an
easy calculus.
Theorem 8. Let (2) be valid and let be

yh(t,y, y1, ..., y}a-) =0 (=0) for y=#0

where = holds in isolated points at most. Suppose that the left part of (36) holds
and (38) is true for some k € (0, 1, ..., n — 1). Then the set V, of solutions of (E) is
empty if n + k is even (odd).

Proof. From Theorem 6 it follows that if y(¢) € V, is a solution of (E), then
lim L,y(t)=0 as t — . But from Lemma 4 (from Lemma 6) it follows that |L,y(¢)|
increases if n + k is even (odd).

Theorem 9. Let p(t)=0 (=0) be continuous on J, where =can hold only in
isolated points. Let (2) and (39) be valid. Then the set V, of solutions of (E) is
empty if n +k is even (odd).

A similar reasoning as in the proof of Theorem 8 gives the proof of this
theorem.
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Corollary 3. Let p(t) =0 (=0) be continuous on J, where = can hold in isolated
points only. Let (40) is valid. Then the sets V, of solutions of (E,) are empty for all
ke(0,1, ..., n—1) for which n + k is even (odd).

This result is the same as by W. J. Kim [4]. Theorems 2, 3, 4 are generaliza-
tions of earlier results of M. Svec [1], [2], [3] and Theorem 6, 7 and Corollary 2 of
the results M. Svec [1] and W.J. Kim [4], Theorems 8, 9 and Corollary 3 of
W. J. Kim [4]. ’

Remark 6. It can be seen from the proofs of theorems that the conditions
concerning the continuity of F(¢, y) in Theorem 2 and of G(t, y) and F(¢, y) in
Theorem 6 as also of a(t) and f$(¢) in Corollary 1 can be relaxed.
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SUHRN

SPRAVANIE SA NEOSCILATORICKYCH RIESEN(
NIEKTORYCH NELINEARNYCH DIFERENCIALNYCH ROVNIC

M. Svec, Bratislava

V prdci sa vySetruje spravanie neoscilatorickych rieSeni a ich kvaziderivacii diferencidlnych rovnic
typu L,y +h(t,y,y',.... y" ) =0, kde L, je diskonjugovany linedrny operator na intervale J = [0, »)
ayh(t,y,y', ..., y"~") mé konitantné znamienko. Je prevedeny disjunktny rozklad mnoZiny neos-
cilatorickych rieSeni na triedy V., k =0, 1, ..., n a stanovuji sa postacujiice a nutné podmienky, aby pre
riedenie y(t) € V, platilo lim L,y(¢)=0 pre t — . (L,y(t) znamen4 k-tu kvaziderivaciu y(¢).) Dalej si
stanovené postacujice a nutné podmienky, aby niektoré triedy V. boli prazdne.

PE3IOME

MOBEIEHHME HEOCLHWIALIMOHHbIX PEMIEHHUA
HEKOTOPbIX HETMHEWHBIX THU®®EPEHLIUATIbHBIX YPABHEHUH

M. llIseny, Bpatucnasa

B HacTosie# cTaThe HCCEAYETCH NOBENEHHE HEOCUMUTALMOHHBIX PELEHHHA W WX KBA3WUIPOM3-
BofHbIX NuddepeHIManbHbIX ypaBHenui Buga Ly +h(s, y,y', ..., y©)=0, e L, — Heocuun-
nsaunonnblit (disconjugate) nuuelHbI onepatop Ha J=[0, ©) u yh(t,y,y’, ..., y") He Menser
3HAKA. YCTAHOBNEHO Ppa3GHEHHE MHOXECTBA HEOCUMWLIAUMOHHBIX PpELIEHWH Ha MONapHO He
nepecexatoumecs knaccoi Vi, k=0, 1, ..., n ¥ 1aHbI AOCTaTO4YHbIE H HEOOXONMMbIE YCIIOBHS [UIS TOTO,
4TOGbl Mist peweHus y(t)€ V., umeno mecto lim L,y(t)=0 npu t—», (L,y(t) o6o3nauaer k-io
KBa3unpou3soaHyio y(t)). KpoMe Toro, npuBeaeHbl [OCTaTOYHbIE H HEOGXORUMbIE YCIOBHSA VIS TOTO,
4TO6bI HEKOTOpPbIE Kiaacchl V, GbUIH MyCTbIMH.
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