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The Thomas-Fermi equation is used in physical research for atomic cal-
culations. It is closely connected with three sets of boundary conditions, corres-
ponding to three different physical situations:

1. x(0)=1, x(a)=0 (the ionized atom),
2.x(0)=1, !irg x(t)=0 (the isolated neutral atom),

3.x(0)=1, —x(b)+ bx'(b)=0 (the neutral atom with Bohr radius b) ([3,
p. 515]).
Thanks to its meaning; the Thomas-Fermi equation has attracted the attention
of many mathematicians, among them let us mention Hille [2], Lunning [3], Mari¢
[4].
In the paper the mentioned boundary value problems are studied in a more
general setting and the existence as well as the uniqueness of a solution to such
generalized problems are established under various conditions. The extension of
some results by Opial [5, pp. 228—231], Bebernes and Jackson [1], is attained not
only for working under Carathéodory conditions instead of continuity, but for
a more general formulation of boundary conditions.
In what follows, the function f: G = [0, ) X [0, ©)— R will be considered, on
which some of the following conditions will be imposed as needed : -
(A.) f satisfies Carathéodory conditions, i.e. f{., xo) is measurable in [0, ®) for
each fixed x, € [0, ), for all t, € [0, ®) f(, .) is continuous in [0, =) and for
each compact set [a, b] X [c, d] = G there exists a function m € L([a, b]) such
that |f(¢, x)| =m(t) ((1, x) € [a, b] X[c, d]),

(A2) f(1,0)=0 (0St<w),

(As) there exists an £ =0 such that f(t, x)=0 (0St<o, h Sx <),

(A3) there existsan >0 and a k>0 such that f(t, x)Zk (0St<o, h=x< ®),

(A3) f(t,x)=0 (0=t <, 0Sx <x),
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(A.) f(t, .) is nondecreasing in [0, ) for each ¢ €[0, =),
(A%) f(¢, .) is increasing in [0, ) for any ¢ € [0, «),

(As) there exists a ¢ =hA such that f f(s,c)ds =,
0
(Aj) for any ¢ >0 j f(s,c)ds =00,
0

bl
(As) for any 0=a,<b, mf (s—a) fls, b+ k(s —a,)] ds =,
(A¢) for any 0=a,<b, and any /<0
bl
fim (b + [ (s =) fls, b+ k(s —a)] ds) = .

Since the function fo(t, x)=¢""2x*? (0<t<o, 0=x <) with fo(0, x)=x
(0=x < x) satisfies all listed assumptions except (A;), the differential equation

(1) x"=f(t, x)
under these conditions represents a generalization of the Thomas-Fermi equation.
With respect to (A,), by a solution of (1) on an interval i any function x such
that x’ is locally absolutely continuous on i and x satisfies (1) on i a.e. is
understood.
Consider the boundary conditions

@) a(,x(q)—b.,x’(a)=A
ax(b)+bux'(b)=B

where the real numbers a, b, A, B, a,, b, (i=0, 1) are such that
3) 0=a<b,a,b;20,a,+b>0 (i=0,1),A, B=0.

We shall call a function a =0 with absolutely continuous derivative on [a, b] a
lower solution of (1), (2) when

a"(t)=f[t, a(t)] A.e. in [a, b],

aa(a)—bea’'(a)=A
a,a(b)+b,a’'(b)=B

An upper solution =0 of (1), (2) is provided with absolutely continuous
derivative on [a, b] and satisfies

B'()=flt, B()] ae.in [a,bl,

aoB(a)— bof'(a)Z A
a,p(b)+b,B'(b)=B

The existence. result will be based on the following lemma which is an easy
- consequence of Theorem 8, (7, p. 50].
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Lemma 1. Assume that f satisfies assumption (A,), a, b, a;, b, (i =0, 1) fulfil (3)
and there exists a lower solution a and an upper solution 3 of (1), (2) with
a(t)=f(t) (a=t=>b). Then there exists a solution x of (1), (2) which satisfies

4) a()=x(O)=pG) (@aSt=b) '

Proof. Since a, 8 satisfy the first three conditions from the mentioned
Theorem 8, we have to find the functions @, ¥ which fulfil the conditions 4.—6.
from that theorem. Let H =max B(t) (a=t¢=b) and let m, € L([a, b]) be such that

|f(t, x)|=mi(1) (¢, x) € [a, b]X[0, H]). Put y =max (max |a’(¢)|, max |B(1)],

f my(s)ds +2H/(b — a)), ¢ =—1v. Then

4. p=vy.

S.9=a'(t), B'()=y (a=t=)b).

6. Let x be a solution of (1) satisfying (4). Then there exists a ¢ € (a, b) such
that |x'(c)] = |x(b)—x(a)|/(b—a) = 2H/(b—a) and from x'(t) = x'(c)

1 b
+ ff[s,x(s)] ds we get that |x'(¢)] = 2H/(b—a) + f m,(s) ds =vy. Hence

(5) e=Ex'(O=y

for all ¢ €[a, b].

By Theorem 8, [7, p. 50], all assumptions of which are satisfied, there exists
a solution x of (1), (2) which satisfies (4) and (5).

(A,) together with A, B=0 imply that the function a(t)=0 (a=t=b) is
a lower solution of (1), (2). By (As), we have that each linear function (t) =kt +q
with 3(t)2h (a =t =b) satisfies 3"(t)=f[t, (¢)] in [a, b]. Thus 8 will be an upper
solution of (1), (2) if it satisfies the boundary inequalities required for such
a solution. According to the form of boundary conditions (2) we have to consider
the following cases.

If a,, a,>0, then

(6) B()=H, (a<t=b)

where H, =max (h, A/ao, B/a,) is an upper solution of (1), (2).
In case ap=0, a,>0

(7) B)= % 1+q
where g =max (h +£— b, El- (B+b, bé+a, bé"b) ) is an upper solution of (1), (2).
0 1 0

When a,>0, a,=0,
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B
€)) /3(t)=b—1 t+q
with B 1 B B
g = max (h—gl-a,;—o (A+b°E_a°b_,a)>
is an upper solution of (1), (2).
Finally, if ap=a,=0 and A =B =0, then

) B(t)=h

is an upper solution of (1), (2).

The results can be summarized in

Theorem 1. If f satisfies (A;)—(A;), then for any a, b, A, B, a;, b, (i=0, 1)
satisfying (3) and such that

if ao=a.=0, then . A=B=0
there exists a solution x of the BVP (1), (2) which satisfies
0=x(1)=p@1) (@=t=bh)

with 8 determined by one of the equalities (6)—(9) according to the values of a,
a,.

The case a,=a,=0 in full generality can be dealt with by using a quadratic
function in the role of an upper solution of (1), (2). This requires a stronger
assumption than (A;). The obtained result is given in

Theorem 2. Let f satisfy assumptions (A,), (A,) and (A}). Then for any a, b,
A, B, a, b, (i=0, 1) satisfying (3) and such that a,=a, =0,

A B

there exists a solution x of the BVP (1), (2) which satisfies

0=x(1)=B(t) (a=t=bh)
where

B(t =§(r—c)2+h (ast=b)

and c is a real number fulfilling

A .<p_B

(11) a+kbo=c=b kb,
Proof. First we remark that (10) implies that a ¢ satisfying (11) does exist.
Further with respect to (A3), from B(1)Zh (a =t=b) we get B"(t)=f[t, B(?)] in
[a, b]. In view of (11), B'(a)=k (a—c)=—A/b, and B'(b)=k(b —c)ZB/b,.
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Thus 3 is an upper solution of (1), (2) and the statement of Theorem 2 follows
from Lemma 1.

Remark. The condition (10) represents a restriction either on k (k has to be
sufficiently great) or on b —a ([a, b] should be sufficiently long). In the case of the
Thomas-Fermi equation for a given interval [a, b] and given A, B, b,, b, =0 we
can take h sufficiently great so that k satisfy (10). Hence any BVP (1), (2) has
a solution for this equation.

In order to prove uniqueness of the solution of (1), (2) we need assumptions
(As) or (AJ).

Theorem 3. If f satisfies (A,), (As), and (A}) if a,=a, =0, then for any a, b,
A, B, a;, b; (i =0, 1) satisfying (3) there exists at most one solution of the BVP (1),
(2).

Proof. Let there exist two different solutions x,, x, of (1), (2). Denote
u = x, — x,. Properly choosing the indices, we may suppose that there exists a point
s €(a, b) at which u(s)>0. Let i <[a, b] be the maximal interval containing s in
which u(¢)>0. By (A,), u’ is nondecreasing in the closure of i. According to the
form of i, the following cases may arise.

1. i=(t;, t;). Then u(t,)=u(t;)=0, u'(t,)=0, u’(t,)=0. Since u’ is nondec-
reasing in [, £;], u'(¢)=0in [¢,, t;] and u(¢)=u(t,) =0 in (¢,, t,) which opposes the
fact that u(¢)>0 in i.

2.i=[t,, t;). Then t,=a, u(t,) =0, u'(,) =0 and the following subcases have
to be considered.

a) by=0. By (3), ao>0 and hence, (2) implies that u(a)=0. This is in
contradiction with ¢, €.

b) a,=0. Now we have u’(a)=0 and since u' is nondecreasing in [¢,, ],
u'(t;)=0, the identity u'(¢)=0in [a, ] is true. Thus u(¢) = u(¢,) =0 is valid for all
t€[a, t,) which again gives a contradiction.

) ao>0, by>0. From (2) u'(a) >0 follows which together with monotonicity
of u' in [¢,, t;] opposes the fact that u’'(t,)=0.

3.i=(t,, t;]. Then t,=b, u(t,)=0, u'(t,) =0 and we come to contradiction by
similar considerations as in the case 2.

a) When b, =0, we get that u(b) = 0 and this contradicts the fact that ¢, €.

b) a,=0 implies u’'(b)=0 and this involves u'(t)=0 in [t,, b]. Therefore
u(t)=u(t,)=0 in (¢, t,] which leads to contradiction.

¢) a,>0, b,>0. (2) implies that u’'(b)<0 and therefore «’(t,)=0 cannot
happen.

4.i=[t,, t;)=[a, b] . u’ is nondecreasing in [a, b] and we have to check the
following subcases.

a) bo=0 (b,=0). This subcase cannot happen, since bo=0 (b, =0) implies
that u(a)=0 (u(b)=0).

In the remaining subcases b,>0, b, >0 will be supposed.
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b) a,=0, a,=0. Then we have u’(a)=u'(b) =0 and hence, u'(¢)=0in [a, b].
This implies that x,(t)=x,(¢t)+c in [a, b] with a ¢ >0 and further, f[t, x.(¢)]
= f[t, xo(t) + c] a.e. in [a, b] which is, in view of (A%), impossible. b

¢) a,=0, a,>0. The boundary conditions (2) give that u'(a)=0, u'(b)<0
and this contradicts the fact that u’ is nondecreasing.

d) a,>0, a,=0. In this subcase u'(a)>0, u'(b)=0 which opposes the
monotonicity of u’.

e) a,>0, a,>0. Then (2) implies that u'(a)>0, u'(b)<0 which cannot
happen.

We have shown that the existence of two different solutions of (1), (2) leads to
contradiction which proves Theorem 3.

Remarks. 1. From the proof of Theorem 3 we see that this theorem remains to
be true when the strict monotonicity of f is required only on a subinterval of (a, b).

2. Since all three theorems hold for the Thomas-Fermi equation, in case of this
equation any BVP (1), (2) has a unique solution.

Consider the boundary conditions in [a, ®)

(12) apx(a)—box'(a)=A

sup |x(t)| <o

aSt<eo

Where a 30, ao, b()go, ao+bo>0, A go.
Theorem 4. If f satisfies (A,)—(A) and a,> 0, then there exists a solution x of
(1), (12) (in [a, )) which satisfies

0=x(t)=H, (a=St<x)
with H,=max (h, é) .
Qo

If f satisfies (A,), (A.), (A3) and a,=0, then there exists a solution x of (1),
- (12) which satisfies '

0=x(t)=H, (aSt<w)

A2
where Hy=h +m.
Proof. Consider the sequence of boundary conditions
(2.) aox(a)— box'(a) = A

x(@a+n)=0 (n=1,2,..)

‘Since f satisfies (A;)—(A,), by Theorem 1 for each natural n there exists
a solution x, of (1), (2,) satisfying the inequalities

(13) 0=x,(t)=H, (a=t=a+n) when a,>0,
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or

Oéx,.(t)é—bé(t—a—n)+h (@a=t=a+n) if ay=0
0

In the latter case the estimation from above can be improved. When
0=x,(t)=h for all te[a, a+n], we have

(14) 0=x,()=H, (@<t=a+n)

Suppose now that there exists a point ,, a =t,<a + n, at which x,(t;))>h. In
view of (A3), x.(t)=0 would imply that x,(¢)>h for all ¢, t,=t=a +n. This
contradicts x,(a + n)=0. Hence there exists only one (maximal) interval [a, t,],
ty<a+n, in which x,(¢{)=h and x,(t)<0. Since x.(¢)=Zk a.e. in [a, ;] and

x.(a)= ——1%, we have

0>x.(t)= -—'—:—+k(t—a) @=t=ut)
0
A
from where ¢, —a <-—, and further
kbq

x"(t)gx"(a)—%(t—a)+’§‘(t—a)2 @st=n)

2

Clearly x,(t;) =h and thus, x,(a)=h +'£— (thi—a)<h +:—bz-. As x, is decreas-
0 0

ing in [a, ;] and 0=x,(t)=h in [t;, a +n], (14) is true also in this case.

Fix a natural number n, and consider the sequence {x, }.-., in [a, a + no]. By
(13) and (14), respectively, this sequence is uniformly bounded in the mentioned
interval and thus, (A,) implies that there is an m,eL ([a, a +no]) such that

Iflt, x. (D] =ma(t) (tela, a+no), n=no). Then |xi(t:)—xi(t)] = rmz(s) ds

(a=t,<t;=a+ no, n =Zn,) and hence, {x,}.-n, is equicontinuous in [a, a + n.] and,
as there is a ¢,, a <c, <a + n,, with |x.(c,)| = |x.(@a +no) — x,(a)|/no = H./no,
where H,=max (H,, H,), {x.}n-n, is uniformly bounded in [a, a +n], too.
Therefore {x, }.-n, is equicontinuous in this interval and there exists a subsequence
{x.} of {x,} which together with {x,,} uniformly converges in [a, a + no]. In the
same way we get that there exists a subsequence {x,_} of {x.} such that both
sequences {x.,}, {x..} are uniformly convergent in [a, a + no+ 1]. Therefore the
diagonalization process can be applied which yields a subsequence {x..} of {x.}
that locally uniformly converges to a function x on [a, ®) and {x,,} to x' on the
same interval. Clearly x satisfies (12) as well as the inequalities (13) and (14),
respectively. Since x,, satisfy in [a, a + n,] the equation x,,(t) = x.(a)+xm(a)
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(t -—a)+j (t—5)f [s, xa(s)] ds, by the limit process we get that x satisfies (1) in

[a, a + no] and hence in the whole interval [a, ©). The proof of Theorem 4 is
complete.

Remark. Theorem 4 extends and, in a certain sense, strenghtens Theorems II
and III by Opial in [S, pp. 229—230].

A uniqueness result is given by

Theorem 5. If f satisfies (A,), (A.), and (AJ) if a,=0, then for any a =0,
ay =20, by=0, ay+bo>0, A =0 there exists at most one solution of (1), (12).

Proof. Suppose that there are two different solutions x,, x; in [a, ©) of (1),
(12). Denote u =x, —x,. The following cases may happen.

1. u(t)#0'in [a, »), say u(¢)>0. If a,>0, then b,>0 and u'(a)>0. By (A,),
we get u"(t)=0 a.e. in [a, ©) and hence u’ is nondecreasing in that interval.
Therefore u'(t)Zu’'(a)>0 in [a, ©) and u(t)Zu(a)+u'(a) (t—a) tends to ©
which contradicts the boundedness of x,, x,. If a,=0, then u’'(a)=0, but u’ is
increasing. Hence for a t,>a, u'(t)>u'(t,)>0 (¢, <t <) and again we come to
contradiction.

2. If there is a t,>>a such that u(t,) =0, then by Theorem 3, u(¢)=0in [a, t,]
and hence we may suppose that there is a t;=a at which u(#;)=0 and for 1 >,
u(t)#0, say u(t)>0. Then proceeding as in the foregoing case we come to
contradiction. This contradiction proves Theorem 5.

Remark. Theorem 5 extends the result of Theorem IV by Opial in [5, p. 230].
Both Theorems 4 and 5 bring a result symmetric to that given by Bebernes and
Jackson in Theorem 3.1, [1, p. 39]. Of course they have assumed continuity of f
and f(¢, 0)=0in [0, «) and they considered a special boundary condition (b, = 0).
A Mambriani’s result given in the monograph by Sansone [6, p. 377] also follows
from Theorems 4 and 5.

In the case a,=0 Theorem 4 cannot be applied to the Thomas-Fermi
equation. However the following theorem is of use.

Theorem 6. If f satisfies (A,)—(A;) (i.e. (A)), (Az2), (As), (As), (As)), then for
any a=0, a,=0, b,>0, A =0 there exists a solution x of (1), (12) such that

0=x(t)<H,

where H,=c +—f1 (ts—a) and ¢, is such that faf(s, c)ds =bé.
0 a (1]

Proof. First we remark that (A;) guarantees the existence of ¢, with the above
mentioned property. By Theorems 1 and 3 there exists a unique solution x, of (1),
(2,) (n=1,2,...). Now we proceed similarly as in the proof of Theorem 4, case
a,=0, with the only exception how the boundedness from above of the sequence
{x.} is shown. Again for each natural n there may exist at most one maximal
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interval [a, t,] in which x,(¢) =k and x,(¢) <0. Suppose that there is a t,=¢, such
that x,(t,)=c. Since x, is convex in [a, t,], we have
A
x.(t)=c +E— (t—t) (a=t=t)
0
and as

0>x!(ts) = —§i+f"f[s,xn(s)] ds = —bﬂ“+f’f(s, c) ds

and ] f(s. c) ds is a nondecreasing function of ¢, t, <¢,. Therefore 0=x,(t)=H, in

[a.t.] as well as in [a, a + n]. When 0=x,(t)<c in [a, t,], we have the same result.
Hence H, is an upper bound for all x, as well as for x in their interval of definition.
The proof of the theorem is completed.
The behaviour of bounded solutions of (1) in [a, ®) is described by
Theorem 7. Let f satisfy the assumptions (A;), (As), (As) and {A}). Then for
any a =0 each bounded solution x of (1) in [a, «) is nonincreasing, convex and

llirg x()= !irg x'()=0
Moreover, there exists at most one solution of the BVP (1), (12) for any a =0,

@ =0, by=0, a0+ by>0, A=0.
Proof. Suppose x is a solution of (1) in [a, ©). Then by (A}), x is convex and

there exists lim x'(t) (finite or infinite). When x is bounded, !irg x'(t) =0 necessa-
rily must hold and thus, x'(f)=0 (a =¢< ). Therefore x is nonincreasing and

}in_) x(t)=c=0. If ¢>0, then on basis of the inequality x'(¢)—x'(a)
= [ fls, 21 ds = [ f(s, ) ds and by (A2), we get that lim x'(r)= o which

contradicts the above proved equality !im x'(t)=0.

As to the last statement, with respect to Theorem 5, it suffices to consider
the case ao=0. Looking through the proof of that theorem and keeping the
notations from that proof we see that two cases have to be investigated. 1.
u(t)=x,(t)— x2(t)>0 in [a, ©). Then u’'(a)=0 and u’ is nondecreasing. Since

}i@u'(l) = !ilg [xi(t)—x3(1)]=0, u'(t)=0 in [a,) and by !HE u(t)=
=!LIE [x1(t) = x2(1)] =0, we have u(t)=0 in [a, ©) what is a contradiction. 2.
u(t:)=0, u(t)>0 in (5, ©), then u’ is nondecreasing and since !1.'9 u'(t)=0,
u'(t)=0 in (f5, ©). Therefore u is nonincreasing in [t;, ©). By u(t;)=0,
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lim u(t) =0, we get that u(t)=0 in [t,, ) what gives a contradiction. Thus the

t—oo
last statement of the theorem has been proved.
In the next section the BVP (1),

ao-x(a) —box'(a)=A

(15) —ax(b)+bux'(b)=B

will be considered where 0=a <b, a,, by=0, ao+ by>0, A 20, a,, b,>0, and B
are arbitrary numbers.

Suppose that f satisfies assumptions (A,;)—(A.). Then by Theorems 1 and 3,
for any C=0 there exists a unique solution x(., C) of the BVP (1),

(16) apx(a)—box'(a)=A
x(b)=C

Denote x(., C) as x. Consider the composite function

Flx(2), x"(£)] = aox (1) — box " (1) +
+[—awx(t)+ bix'(t) = [aox (1) = box'(D)]I(t —a)/(b—a) (a=t=b)

Clearly

17) © Flx(a), x'(a)]=aox(a)— bex'(a)= A
Flx(b), x'(b)]= —ax(b) + b.x'(b)

Since

(18) [Flx(2), x' (D]’ = aox'(t) — bof[t, x(£)] +
45— [(~ 0= ax(t) + (bo+ b)x' (1] +
—a)x'(t)+ (bo+ b))f[t, x(1)]] a.e.in [a, b]

and

o+an

f(s a)x'(s) ds =

ao+a,
b-a

% (- )+ 21 j x(s) ds
by integration of (18) frorp a to t we get
F[x(t), x'(1)] = F[x(a), x'(a)] +

(et 22

& (t-a)x(0)+
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”°”" f (s = alfs. > ()]s — bof fls, x(s)] ds  (a=t=b)

and hence
(19) Flx(b), x'(b)]= A +(bb°+b‘ @) x(6) -
_ (ao+bl;’i2‘) x(a)+% f(s—a)f[s,x(s)] ds—boL fls, x(s)] ds

We shall show that F[x(b), x'(b)] is a continuous function of C. When
0= C><C,, then by Theorem 3, u(t)=x(t, C,)— x(t, C;) =0 for all t €[a, b] and
by (A.), u’ is nondecreasing. Denote {C,} a decreasing sequence converging to C
(an increasing sequence can be dealt with in a similar way). Then x, =x(,, G,) is
a nonincreasing sequence in [a, b] bounded from below by x = x(., C) in [a, b].

Hence there exists lim x,(r)=y(¢) (a=t=b). The functions x, are solutions of (1)

which attain the values x,(a) and x.(b), respectively, at the points a and b,

respectively, and therefore, they can be represented as the solutions of the mtcgral
equation ‘
i

(20) X (£) = wa (£) + f "Gt 5)fls, xa(s)] ds (aSt=b)

where w,=0in [a, b], w.(a) =x,.(a), w.(b) =x,(b) and G is the Green function of
2"=0, z(a)=2z(b)=0. The limit process can be applied and we get that y satisfies
b

y(O)=w(t) + J;G(t, s) fls. y(s)] ds, where w(t)=y(a)+)Lbb)%(a) (t—a),

(@a=t=b). Hence y is the solution of (1) which satisfies y(a)='l'in“1° x.(a),

y(b)=x(b). Now two cases have to be considered. If y(a)=x(a), then the
uniqueness of two-point BVP for (1) implies that y(¢) =x(¢) in [a, b], and by (19)

we have that ’lll_l:!;! F[x.(b), xn(b)]=F[x(b), x'(b)]. When y(a)>x(a), then by

Theorem 3, y(¢t)=x(t) in [a, b]. Therefore y'(b)=<x'(b) and since u’ =y’ —x' is
nondecreasing in [a, b], u'(t)=0 in [a, b]. On the other hand, from (20) we get

that ,!i".‘, x.(a)=y'(a) and with respect to the first condition in (16), aoy(a)—

~boy'(a)=A. However, y(a)>x(a), and thus y’'(a)>x’(a). This contradicts the
inequality u'(a)=0 obtained above. Thus y(a)>x(a) cannot happen and the
continuous dependence of F[x(b), x'(b)] on C is proved.
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Suppose now that b, =0. Then, in view of (16), (19) can be written in the form

___Ab,
(b _a)a()

1) Flx(b), x'(b)] = +(b”_‘a—al) Cc+

+blea f(s —a)fls, x(s)] ds

The properties of F[x(b), x'(b)] depend on the sign of —a,. If

1
b—a
b,

b—a
lim F[x(b), x'(b)] = . Hence F[x(b), x'(b)] as a function of C maps [0, ) onan
C—

—a,>0, then by (21) and (A,), this function is increasing in [0, ©) and

interval [B,, «). With respect to (17), the existence of the solution of (1), (15) is
equivalent to the existence of the solution of (1), (16) for which F[x(b), x'(b)]=B
and this is possible if and only if B €[B,, ©). As to Bo, Bo=b,x'(b, 0)=0.

The results can be summarized in

Theorem 8. Suppose that f satisfies assumptions (A,)—(A.), bo=0,

b,

b _—
B €[B,, ) there exists a unique solution of (1), (15) while for B < B, there is no
solution of that BVP.

Consider now the case b,=0,

a—a,>0. Then for each A =0 there exists a B,=0 such that for each

b, _
(22) po——ai=0
Then, with respect to (A,), from (21) we get that
by |=—bL AL b [t
(23) Flx(b). x 0) == 2457 [ = a)fls, x()] ¢

and F[x(b), x'(b)] is a nondecreasing function of C. Assume that besides
(A1)—(As), (As) is true. Suppose further, that for each C=0 we have

(24) —ax(b)+b,x'(b)<B
which asserts that there is no solution of the BVP (1), (15) for a B=0. Let C>h,

(22), (24) imply that x'(b Je ( B—@b—‘i)ﬂ(b )) . The right-hand side of this
1

b—a
inequality represents the direction of the segment of the straight-line
C +B (b—a)

yc(z);—B(’;,l‘“M b_’;‘ (t—-a) (@=t=b)
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which goes through the points (a, —W), (b, x(b)). Hence x(£)>yc(t) is
1

valid, first in an interval (b — &, b), and then, by (A;), in [a¥, b), where yc(a¥t)=h.
b| b|

Thus b—afu(s_a) fls,x(s)lds = b_afl(s—a) fls, x(s, h)] ds

+ b[?—la r (s—a)fls, x(s,C)]ds = D+b—b_'; K (s —a?¥) f[s, ye(s)] ds where

ag*

blﬁa f : (s —a) fls, x(s, h)] ds, C>h, and y-(a*)=h, therefore at =a +-1-

k
B(b—a) C+B(bb_a)
(h+ 3 >, k= 3 al , Ye(s)=h+k(s —a?), (at=s=b).
. =
When C— «, then k also tends to infinity and a% goes to a. Nevertheless,

D=

1

b
for all =k, we have bbaf (s—at(k) fls.h+k(s—at(k)]ds =
- ay*(k)

b
"z'blea I ", (s —a*(ko)) fls, h + k(s —a*(ko))] ds and the last expression tends
to o as k — o, in view of (As). This guarantees that F[x(b), x'(b)] given by (23),
attains an arbitrarily large value of B. Since this expression is a nondecreasing
continuous function of C, the last statement is in contradiction with (24). Thus
F[x(b), x'(b)] attains all nonnegative values of B. Its value for C=0 is B, that is
considered in the last theorem. Thus we have proved

Theorem 9. Let f satisfy assumptions (A.)—(A.), (A¢) and let bo=0,
b b_' g = 0. Then for each A =0 there is a Bo=0 such that for each B € [B,, )

there exists at least one solution of (1), (15) while for B < B, there is no solution of
-that BVP.

Remark. Theorem 9 guarantees the existence of a solution of the Thomas-
Fermi equation satisfying the boundary conditions which characterize the neutral
atom with any Bohr radius b. In [3, p. 516] the existence of such a solution has
been proved only for some values of 5. Thus Theorem 9 generalizes and extends
Theorem 1 from that paper. '

The last case blfa —a,<0 can be dealt with in a similar way.

Theorem 10. Assume that f satisfies assumptions (A;)—(A.), (As). Let bo=0,

b,

b _a—a1<0, A Z0. Denote B,=b,x'(b, 0). Then for each B €[B,, @) there

exists at least one solution of (1), (15).

Proof. Again we have to show that F[x(b), x'(b)] as a function of C maps
[0, ®) on [B,, ) or a greater interval. This function is now represented by (21),
from where we see that it need not be monotonous since the second and the third
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term show an opposite monotonicity. Still it is continuous. Let B € (B,, ) and
suppose that (24) holds for each C =0. Using the same notations as in the proof of
the foregoing theorem we come to the inequality

b, A

(25) Flx(b), x'(b)]= - m;‘*’

b
+(b_’a—a.) C+D+——j (s —a¥)fls, yc(s)] ds
Since C=k(b —a)—J——lB l;)—a , and putting
1

E=-

b A _( b, \B(b—a)
Do 2 \o—g ') Bs

[=(b,—a\(b—a))(b—a)b,

we can write (25) in the form

Flx(b), x (b)]>E+b

Applying (A¢) we get, similarly as in the proof of Theorem 9, that

[lk-l-j (s —at)f[s, h + k(s —a*)] ds

b
lim [lk +f (s—at)f[s,h+k(s—at)]ds=
C—x a*

This stands in contradiction with (24). Hence F[x(b), x'(b)] attains all values
B greater or equal to B, and Theorem 10 is thus proved.

The study of the case bo,>0 will start with the following

Lemma 2. Let a,=0, b,>0, 0=a<b, a,>0, b,>0 be arbitrary numbers.
Then the function

(26) w(t)= w(a)+[ 0 w(a)—ﬂ] (t—a) (a=t=b)
- satisfies (15) and w(¢)=0 in [a, b] if either
(27) —a,+§§[q,-a1(b—a)]=o, B=—Az—(')
and
A(b—a)
w(a)"'b(,+ao(b —a)
or if v
@)  —atRb-ab-a1>0 (-a+Z[b-ab-a)]<0)

110



1 ( AMb-a)

=B =—!——r
LI b()lb()+a()(b—a)

[—alb()+Q()(b1 —ay(b _a))] —A[bl —a,(b —a)]}
(B=B,)
and
_ Bbo+A[b| —al(b _a)L
W(a)_ _a|b0+a()[b1 —a.(b _a)]

Proof. First we see that (26) satisfies the first condition in (15). The second
condition is fulfilled by this function iff

(29) 0+ 2215 - a(b —a)]} w(a)—béo[b, —ai(b—a)]=B
|

Further w(b)=w(a) [1 +%(b-a)]—£—(b —a), and hence, w(b)=0 iff
0 0 v

A(b—a)
Se NS W)
(30) W(a)—b()""a(](b —a)
. Ab—-a) _ N -
Since b+ ab —a) —a)=0’ (30) implies that w(¢)=0 for all t €[a, b].
Three cases may arise. If (27) is fulfilled, then a,>0, b, —a\(b —a) = -‘-1—;29 and
0

(29) holds.

If -a, +% [bi—ai(b—a)]>0, then (29) follows from w(a)=

0

_ Bbo+A[b,—a,(b—a)]
- _a|b()+ ao[b| _al(b —a)]
'(28).

The case —a, +-Z—° [by—a,(b —a)] <0 can be dealt with in a similar way.
0

and (30) is satisfied when B = B, where B, is given by

Now we can prove

Theorem 11. Let f satisfy assumptions (A,), (A.), (A3), (A4), let a0 =0, by>0,
0=a<b,a,>0, b,>0, A=0 and let either (27) or (28) be fulfilled. Then there
exists a solution of (1), (15).

Proof. As (27) or (28) is assumed, by Lemma 2 there exists a linear function w
in the form (26) which satisfies (15) and w(¢)=0 in [a, b]. Theorem 1 supplies the
existence of a solution x, of (1) which satisfies x,(a)=w(a), x,(b)=w(b). (A3)
implies that x, is a convex function and hence, xi(a)=w'(a) = w'(b)=xi(b).
Thus

(F[x:(a), xi(a)] = )aox\(a) — boxi(a) = A, Z A
(F[xl(b)’ x{(b)]=)—a,x,(b)+ blx;(b)=Bl =B
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For the solution x, of (1) which is determined by the conditions x,(a)=0,
x(b)=w(b), we have

Fx:(a), x3(a)]|=A,=0
Flxy(b), x3(b)] = B.

and by (A,) either x,(t) =x,(¢t) for all t € [a, b] or x,(t)=x,(¢) in [a, b]. In the first
case we get A,=A,=A =0, B,=B,=B. The second case is more general and it
will be investigated thoroughly. Then x, is a solution of (1), (15) with A,=0,
B,= B. Here also negative values of A are admitted in (15).

Consider now the system of solutions x; of (1) which satisfy the boundary
conditions

x;(a)=D (0=D=w(a)), xi(b)=w(b)

In view of Theorem 3, F[x,(a), x3(a)] is a function of D which will be shown
to be increasing and continuous in [0, ©). Suppose x5 ; (i =1, 2) are two solutions
of (1) with

xsi(a)=D;, D\,>D,=0, x;.(b)=w(b) (i=1,2)

Then u(t) =x;.:(t) —x32(t)=01in [a, b], u(b) =0, hence u'(b)=0. By (A.), u’
is nondecreasing in [a, b], therefore u’'(¢)=u'(b) =0 in that interval. This implies
that u is a nonincreasing function and

(31) u@)Zu(t)Zub)=0 (a=t=b)
At the same time u(a)>0, u'(a)=0 imply that
F(xs.(a), x3.(a)]>F[x;.(a), xS.z(a)]

which proves that F[x;(a), x3(a)] is increasing in D(x;(b) being fixed).
Now we shall prove continuity of F[xs(a), x3(a)]. (31) implies when {D,} is

a decreasing sequence such that !Lﬂl D,=D =0, and {x;,} is the sequence of
solutions of (1) satisfying

x3.(a)=D,, x;.(b)=w(b)
then x;.(a)—x:(a) = D, —Déx,,,,(t)—x,(kt)éo (a=t=b) and hence

lim x5, () = x5(f) in [a, b] .x,:,. can be written in the form

5= w50+ [ G s, x5.06)] 05

where w3, =0, ws .(a) =x5..(a), ws,.(b) =x3..(b) and G is the Green function of
x"=0, x(a)=x(b)=0. By differentiating we come to
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a0 =win0+ [ LD s x (a5 (@stsb)
and

lim x5, () = w;(t)+r Qgia‘t'—slf[s, x(s)] ds =x3(t) (@a=t=b)

Therefore lim F[x,..(a), x3..(a)] = F[xs(a), x3(a)] which shows the continuity of

F[xi(a), x3(a)] in D.

For D =0 F[xz(a), x3(a)]=A,=0 and for D =w(a) F[x,(a), xi(a)]=A,=
= A. Hence there is a unique D,, 0=D,=w(a), such that for the solution x,
of (1) with x4(a)=D,, xib)=w(b) the expression F[xi(a), xi(a)]=A. As
xa(t)=x,(t) in [a, b], xa(b)=x,(b), we have xi(b)=xi(b) and thus, F[x.(b),
x4(b)]=B.= B, = B. Now we apply the continuity of F[x(b), x'(b)] in C (F[x(a),
x’'(a)] being fixed) as it was shown above. If C=0, then F[x(b), x'(b)]=0.
Therefore there is a point Cs, 0= Cs=w(b) such that the solution x; of (1) which is
determined by F[xs(a), xs(a)]=A, xs(b)=Cs satisfies F[xs(b), xs5(b)]=B and
thus xs is a solution of (1), (15). The proof of Theorem 11 is complete.
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SUHRN
O ZOVSEOBECNEN! THOMASOVEJ-FERMIHO ROVNICE
V. Seda, Bratislava
V préci sa dokazuje existencia a jednoznatnost rieSenia troch druhov okrajovych iloh pre
zovieobecnenti Thomasovu-Fermiho rovnicu. Rozirené a zovieobecnené si niektoré vysledky Opiala,

Berbernesa a Jacksona, a to pouzivanim Carathéodoryho podmienok a vieobecnejSou formuldciou
okrajovych podmienok.

PE3IOME
OB OBOBUIEHMH YPABHEHHSI TOMACA-®EPMH
B. lllena
B pa6ore JOKa3bIBAETCH CyLLIECTBOBaHHE H EAHHCTBEHHOCTb PEILIEHHA TPEX BUIIOB KPaeBbIX 3a/ia4
s 06o6eHHoro auddepeHHanbHoro ypasHeHns Tomaca-®Pepmu. 3aeck pacpocTpaHeHbl H 0606-

LIeHbI HEeKOTOpble pe3ynbTaThl Onsia, BeGepreca u [IXX3kcoHa, 6arofaps HCTIONb30BAHHIO YCTIOBHH
Kapateonopu u Gonee o6iueit ¢opMy/IHpPOBKE KpaeBbiif yCIIOBHH.
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