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BANDS OF SOLUTIONS OF A DIFFERENTIAL EQUATION
OF THE THIRD ORDER WITH CONTINUOUS COEFFICIENTS
AND THEIR APPLICATION

MICHAL GREGUS, Bratislava
To Professor O. Boriivka on the occasion of his 80th birthday

The paper studies so-called bands of solutions [1] of the differential equation
of the third order '

(a) y'"4+px)y"+q(x)y' +r(x)y=0

where p =p(x), g =q(x), r =r(x) are continuous functions of x € (a, ®), —©=aq,
and their applications in solving certain boundary value problems with parameter.

The inspiration for introducing the notion of bands of solutions in the theory of
differential equation of the third order was the theory of linear differential
equation of the second order, worked out by O. Boriivka, today elaborated in
monograph [2] and other papers.

I
The adjoint differential equation to equation (a) is
(b) [(z'—pz) +qz] —rz=0

Let w be a solution of the differential equation (b) on (e, ®). In addition have
the differential equation of the second order

(©) wy"+(pw —w')y’ +[qw +(w'—pw)']y =0

The operator on the left side of the differential equation (c) follows from the
relation between solutions of adjoint differential equations (a), (b), [3]. .
Suppose in following, that the differential equation of the second order

(b)) (u'—pu) +qu=0

is disconjugated in (a, ®), i.e. each of its solutions has at most one null-point in
(a, »).
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The differential equation (b) can be written in the form of linear differential
system of the first order

from where it follows, that there exists for a number x, € (@, ®) and for every three
numbers zo, zo, zo unique solution of the differential equation (b), defined on
(a, »), with the properties z(xo,) = zo, z'(x0) =24, (2’ — pz)’(x0) =z

Denote

(b2) [(v'—pv) +quv]' =0

It is clear, if  is a solution of the differential equation (b,) with the property
u(x0) =0, u'(x0)>0, then u(x)>0 for x >x,, a<x,<o.

Let u;, u; be a fundamental system of solutions of the differential equation
(by), then their Wronskian is

uh u2
Ui—pu;, U;—pu,

u,, u,
ui, u;

Wo(x)=W'(u,, u) =

The function
u(x), ux(x)
ui(t), ux(t)

is a solution of the differential equation (b;) for fixed t € (a, ©). Wi(t, 1)=0,
W2(t, £)=—W°(t)#0. Hence W3(x, t)#0 for x >t.

Lemma 1. Let u,, u, be a fundamental system of solutions of the differential
equation (b;) and let W°(u,, u,)>0 for x € (a, ). Then the function

v(x)=—kf mdt, V-a<x(,<oo, x €(a, ©)

Wi(x, t)=

W(t)

is a solution of the differential equation (b,) with the property v(x,) =0, v'(x,) =0,
(v’ = pv)'(x0) =k# 0 and moreover v(x)# 0 for x > x,.

Proof. We easily see by the method of variation of parameters, that v(x) is
a solution of the differential equation of the second order

(u'—pu) +qu=k

and therefore of the differential equation (b,), too.
Clearly

v(x)=0, v'(x)=—k f %&’)—th
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so v'(x,)=0. We have also

V)= p )=~k [ g [ PENE: ) PN o
and
/() =p @ =k k[ s (4107 HM @ 7RO 6

and so is [v'(x)—p(x)v(x)] (x0) = k. If we suppose e.g. k>0, then v(x)>0 for
X >X(). X

Lemma 2. Let r(x)=0 for x € (o, ) and let w = w(x) be the solution of the
differential equation (b) with the property w(x,) =w'(xo) =0, (W' — pw)'(x0) =k >
>0. Then w(x)>0 for x >x,>a.

Proof. The differential equation (b) can be written in the form

[(z'—pz) +qz]'=rz

It follows from the method of variation of parameters [1], that the solution w
can be written in the form

* Wi(x, 1)

(N wx)=v(x)+ 0

r(t) dt,

where v(x) is suitable solution of the differential equation (b,) and W(¢) is the
Wronskian of the fundamental system of solutions v,, v,, v; of the differential
equation (b,) and

vi(x), va(x), vs(x)
Ul(l), Uz(t)» UB(t)
vi(t), va(t), va(t)

W.(x, t) is for fixed ¢ a solution of the differential equation (b.) with double
null-point in the point ¢. If W(¢)>0, then from the lemma 1 follows W(x, £)=0
for x =¢. If v(x) satisfies the conditions of the lemma 1, that is v (x¢) =v'(x0) =0,
(v' =pv)'(x0)=k>0, then from the relation (1) follows the assertlon of the
lemma 2.

Remark 1. If w(x) has the properties as in the lemma 2 and we substitute in
the equation (c) z =w(x), we get in the interval (x,, ) the differential equation of
the second order (w(x) # 0 for x >x,), which is regular on the interval (x,, ), i.e.
for the solutions of the differential equation (c) holds the theorem concerning the
separation of null-points.

Definition. The set of solutions of the differential equation (a) with the
property y(x,) =0 is called the band of solutions of the first type at the point x,, the
band at the point x, for short.

Remark 2. The band at the point x, satisfies a differential equation of the form
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(c) and is regular in the interval (x,, ), i.e. null-points of every two independent
solutions of the band separate each other (if they exist).

Remark 3. The condition of disconjugacy of the differential equation (b,) is
equivalent to the condition of disconjugacy of the differential equation

(a) y'+py +qy=0

in the interval (a, «).

The assertion follows from the relation between solutions of the adjoint
differential equations (a,) and (b,). If namely y,, y, is a fundamental system of
solutions of the differential equation (a,) with y,(x0)y2(x0) — y1(x0)y2(x0) =1, then

w=p e ([ pO ). w=5.0exp ([ p0at)

is the fundamental system of solutions of the differential equation (b,).

Corollary 1. Let r(x)=0 for x e(a, ©). Let y,(x) be the solution of the
differential equation (a) with the property yi(xo) =y'(x0) =0, yi(x0) #0, a <xo<
>, Then y,(x) # 0 for x <x,.

Proof. The assertion follows from the relations between the solutions of
adjoint differential equations of the third order [2].

Let namely y,, y,, y; be a fundamental system of solutions of the differential
equation (a) with the Wronskian W(y,, y,, y3)(xo) = 1.

The fundamental system of solutions of the differential equation (b) is of the
form

_|yi 2 . _|ye s .
z,—ly;’ y2 exP(Lpdt)’ & Yi, Y3 exP(L.pdt)’
_|y»y )
3= yz, 1 exp(Lp dt)

If yi(x0) =yi(x0) =0, yi(x0) # 0, y>(x0) = y5(x0) =0, y5(xo) # 0, then z, has the
property zi(xo) =zi(x0) =0, (zi—pz:)' (xo) = —y2(x0)yi(xo) #O0.

Now let x, <x, and suppose, that y,(x,)=0. Then we could write y, in the
form yi(x) = c,y:(x) + c.y:(x), where y,, y, are the solution of (a) with the
properties y,(x,) = yi(x)=0, yi(x,)#0, y:(x,) = yi(x1)=0, y5(x,)#0, i.e. y,
would belong to the band at the point x,.

Hence there would exist such constants c,, ¢, (not both zeros), that

c1¥1(xo0) + €292(x0) =0
‘€1y1(xo) + €292(x0) =0

would hold. But that would be in controversy with the assertion of the lemma 2 and
with the regularity of the band at the point x,.
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Lemma 3. Let r(x)=0 for xe(a, ) and let x,>x,€(a, ©) is the first
null-point of the solution y, (with double null-point at the point x,) to the right of
xo. Then each solution (independent of y,) of the band at the point x, has exactly
one null-point between x, and x,.

Proof. Let y=c,y,+c,y. be the band at the point x, of the differential
equation (a), where y(xo) =yi(x0) =0, yi(x0) #0, y2(x0) =y2(x0) =0, y3(x0) #0,
a<xo< and let x, >x, be the first null-point of the solution y,. Let further be
¢, ¥0. Then we have

(y_l)’= !;! _ztl!’
y y

Suppose y(x) # 0 for x € (xo, x,). After the integration of the last equality from

X to x; we get
. *oz g
0= Jim [—czf ?exp(—f p ds) dt]#:O

and, we arrived to a contradiction. Hence the conclusion of the lemma is true.

Lemma 4. Let r(x)=0 for x € (a, ). Let y, be the solution of the differential
equation (a) with double null-point at a point x, € (a, ®) and let y,(x,) =0, x, > x,,
where x, is the first null-point of the solution y, to the right of x,. Let xo<x <x,
and let y, be the solution of the differential equation (a) with double null-point at ¥
and let x,>x be its next nearest null-point. Then %, >x, holds.

Proof. Suppose the contrary, i.e. xo <X <X,=x,. Then there exist a solution
Yx» that belongs to the band at the point x, and that has a null-point at the point x,
hence that belongs to the band at the point x. However from the properties of
bands (lemma 3) it follows, that the solution y,, has another null-point between x
and x,, i.e. between x, and x, it has two null-points and that is impossible. Thus the
lemma is proved.

Consider a differential equation

(A) Y +p(x)y"+q(x)y’ +Ar(x)y =0

where p =p(x), g =q(x), r = r(x) are continuous functions x € (a, ®), r(x)>0 for
x €(a, ») and A is a real parameter. Besides let the differential equation (a,) be
disconjugated in (a, ). '

Lemma 5. Let the conditions mentioned above be fulfilled and let (a, b) c
(a, ®), a<a<b <. Let y,(x, 1) be a solution of the differential equation (A)
with the property y.(a,A) = yi(a,A)=0, yi(a,A) = k+#0. Then there exist
a >0, such that y,(x, 1) has at least one null-point in (a, b) for each A >1.
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Proof. Compare the differential equation (A) with
(A) v+ p(x)+q(x)v’ +Akv =0

where k =minr(x) for x € (a, b ). The differential equation (A) can be written in
the form

y'""+px)y"+q(x)y’ +Aky =Alk —r(x)]y

From the method of variation of constants it follows for y,, that

v )=, ) =2 [ [0 =K1
@) ,
W(x,t)exp(Lp(s)ds) Y, A) dr

where W(x, t) is of the form W;(x, t) of the lemma 2, but, v,, v,, v; form the
fundamental system of solutions of the differential equation (A) and their
Wronskian is equal to one at a. It is easy to see, that W(x, t) is for fixed ¢ the
solution of (A) with a double null-point at ¢. If y, and v, are the solutions of (A)
and (A) with the condition

yi(a,A)=0(a,A)=yi(a,A)=1(a, A)=0,

yi(a,A)=191(a, A)>0, and if x,>a is the first null-point of ¥, on the right of a,
then there is W(x, t)=0 for a =t =x =x,, which follows from the lemma 4 and
then from the relation (2) we obtain the assertion, that the first nullpoint of y, on
the right of a is less or equal to x,. From this result and from the asymptotic
formulas for the solutions of the differential equation (A) [4, kap. II] follows the
assertion of the lemma 5.

Theorem 1 (Oscillation theorem). Let the suppositions of the lemma 5 be
fulfilled. Let y(x, A) be an arbitrary nontrivial solution of the differential equation
(A) with the property y(a, 1) =0. Then to any naturel number v >0 there exists
such a A, >0, that for A >4, y(x, ) has at least v null-points in (a, b).

Proof. It is sufficient to prove the theorem for y,(x, A). Then there follows the
assertion for each y with null-point at the point a from the properties of bands of
solutions.

Divide the interval (a, b ) into v + 1 equal subintervals with dividing points

Xo=a <X|<...<xv<b=xv+|

For A =4 >0 let each solution y,(x) of the differential equation (A) with the
properties y,(x;)=yi(x;)=0, yi(x;)#0, i =0, 1, 2, ..., have another null-point in
the interval (x;, x;.,). The existence of such A follows from the lemma 5. From the
lemma 4 and from the properties of bands of solutions there follows, that it is
sufficient to take A, =1 and this proves the theorem.
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Lemma 6. Let the assumptions of the lemma 5 be fulfilled. Let y(x, 1) be
a nontrivial solution of the differential equation (A) with the properties y(xo, A) =
=0, a < xo< . Then the null-points of the solution y(x, 1), to the right of x,, are
continuous functions of the parameter A, A >0 (if they exist).

The proof of the lemma 6 is exactly similar to the proof of the lemma 7 in [1].

Theorem 2 (Three point boundary value problem). Let the assumptions of the
lemma S hold. Let a <a<b<c <. Let a(A), a,(1), B(A), B1(A) be continuous
functions of parameter and let be

la@)|+ ] (W)|#0, [BA)]+1B:(1)|#0

and besides let be either 3(A)=0 or 3(A)#0 for all A>0. Then there exist
a natural number v and a sequence of values of A (eigenvalues)

A Asty ey Avipy ooy p=0,1,2, ...
and a sequence of functions
Yos Yotts ooy Youps .- (€igenfunctions)

such that y,., =y(x, A,,,) is a solution of the differential equation (A), satisfying
boundary conditions

y(a, ) =0
al(lw-p)y(bv A’Vﬂ:) - a(AV+p)yl(b’ AVﬂ:) =0
(1(Avap)y (€, Avap) = B(Avsp)y ' (€5 Avap) =0

and y(x, A,.,) has exactly v+ p null-points in (a, c).
The proof is similar to the proof of the theorem 24 in the paper [1].
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SUHRN

ZVAZKY RIESENI DIFERENCIALNEJ ROVNICE TRETIEHO RADU
SO SPOJITYMI KOEFICIENTAMI A ICH APLIKACIA

M. Gregus, Bratislava

V préci sa §tuduju tzv. zvizky rieSeni diferencidlnej rovnice tretiecho radu

(a) y'"'+px)y"+q(x)y’ +r(x)y=0

kde p(x), q(x), r(x) su spojité funkcie x € (a, ®), —©=a, a ich aplikicic na rieSenie urcitych
okrajovych tloh s parametrom.

PE3IOME

CBS3U PEIIEHMN JU®PEPEHLIMAIIBHOIO YPABHEHMA TPETBEI'O ITOPSIIKA
C HEITPEPBIBHBIMH KO3®PHUILIMEHTAMHU U UX IMTPUMEHEHME

M. I'peryu1, BpaTucnasa

B pa6oTe u3yuyeHbl T.H. CBA3H pelleHHi R gepeHIHAILHONO YPAaBHEHHS TPETLENO MOPANIKa
(a) y'"+p(x)y"+q(x)y’ +r(x)y=0

rme p(x), q(x), r(x) HenpepbiBHble PYHKLMH OT X € (a, ©), —® =@, H UX PUMEHEHHNA I PELICHHS
HEKOTOPbIX KPaeBbIX 3afiay C MapaMeTpoM.
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