

Werk

Label: Article **Jahr:** 1980

PURL: https://resolver.sub.uni-goettingen.de/purl?312901348_0039|log14

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

UNIVERSITAS COMENIANA ACTA MATHEMATICA UNIVERSITATIS COMENIANAE XXXIX — 1980

REGULARIZATION OF THE POWER OF A GRAPH

MILAN SEKANINA-VLADIMÍR VETCHÝ, Brno

Dedicated to Academician Prof. O. Borůvka on his 80th birthday

A simple graph G with the vertex-set V and with the edge-set E will be denoted as G = (V, E) (so undirected graphs without loops and multiple edges are dealt with). If multiple edges are allowed (but not loops), one speaks about a multigraph and then the edge- set will be denoted by \mathscr{E} , so one gets a multigraph $G = (V, \mathscr{E})$ (the simple graph is a special case of the multigraph). If a, b are two vertices in a multigraph $G = (V, \mathscr{E})$, $\mathscr{E}_G(a)$ denotes the set of all edges incident to $a, \mathscr{E}_G(a, b) = \mathscr{E}_G(a) \cap \mathscr{E}_G(b), V_G(a)$ is the set of all verices connected with a. In our paper, we deal with finite multigraphs, i.e. the sets V and \mathscr{E} are finite.

Definition 1 (Berge [1]). Let G = (V, E) be a simple graph. A multigraph $G_0 = (V, \mathcal{E})$ is a regularization of G of degree k, if for every a, b in V there holds

- 1. $\langle a, b \rangle \in E \equiv \mathscr{C}_{G_0}(a, b) \neq \emptyset$.
- 2. card $\mathscr{C}_{G_0}(a) = k$ for each $a \in V$.

If there exists a regularization of G, G is called regularizable.

Proposition 1 (Berge [1]). Let G = (V, E) be simple, no bipartite graph. G is regularizable, iff $\operatorname{card} X < \operatorname{card} \cup \{V_G(x) : x \in X\}$ for every independent subset $X \subset V, X \neq \emptyset$.

In the proof of 3.1. in [1] the following assertion was used:

Proposition 2. Let G = (V, E) be a simple graph and let for every adge $\langle a, b \rangle \in E$ there exist a regular factor in G containing $\langle a, b \rangle$. Then G is regularizable.

Proof. We assign a regular factor $F_{(a,b)}$ containing (a,b) to each $(a,b) \in E$. Take such copies $(V, E_{(a,b)})$ of all $F_{(a,b)}$ for which $(a,b) \neq (c,d) \Rightarrow \Rightarrow E_{(a,b)} \cap E_{(c,d)} = \emptyset$. Then $(V, \bigcup_{(a,b) \in E} E_{(a,b)})$ is a regularization of the graph G.

Definition 2. A graph (V, E) is strongly hamiltonian, iff for each $e \in E$ there exists a hamiltonian circuit containing e.

Proposition 2 implies

Proposition 3. Every strongly hamiltonian graph is regularizable.

Definition 3. Let $n \ge 2$ be an integer and G = (V, E) be a connected simple graph. Let $G^n = (V, E^n)$ where $\langle a, b \rangle \in E^n$ iff $a, b \in V$, $a \ne b$ and the distance of a from b in G is at most n.

The graph G^n is called the n-th power of G.

Proposition 4 ([2]). If $n \ge 3$, G^n is strongly hamiltonian.

As corollary of Proposition 3 and Proposition 4 we get

Proposition 5. If $n \ge 3$ and G is a connected simple graph, G^n is regularizable.

Now, we shall deal with these simple connected graphs G for which G^2 is regularizable. The Main Theorem states that this is not the case exactly for the i-graphs, which are defined in the following lines.

Definition 4. A simple graph G = (V, E) is called an *i*-graph, if

- 1. card V is even.
- 2. There is $\frac{\operatorname{card} V}{2}$ end-vertices in G.
- 3. Every not-end-vertex has exactly one end-vertex as a neighbor.

Proposition 6. For a connected *i*-graph $G = (V, E)G^2$ is not regularizable.

Proof. Let V_1 be the set of all end-vertices in G, $V_2 = V - V_1$. We get $V_2 = \bigcup \{V_{G^2}(x) : x \in V_1\}$. It is card $V_1 = \operatorname{card} V_2 \cdot G^2$ is not bipartite as it contains triangles. By Proposition 1 G^2 is not regularizable.

Proposition 7. In a connected simple graph G = (V, E) there exists a spanning tree which is not an *i*-graph iff G is neither an *i*-graph nor a circuit of length 4.

Proof. If G is an i-graph or a circuit of length 4, then clearly all spanning trees of G are i-graphs.

Now, suppose G is neither an i-graph nor a circuit of length 4. Let $G^* = (V, E^*)$ be a spanning tree of G. Suppose, G^* is an i-graph. It is $E^* \subset E$, $E^* \neq E$. There exists $\langle a, b \rangle \in E - E^*$ such that at least one of the vertices a, b is an end-vertex in (V, E^*) (otherwise G would be an i-graph).

a) Let a, b be end-vertices in (V, E^*) and $a = a_1, a_2, ..., a_m = b$ be a circuit in $(V, E^* \cup \{\langle a, b \rangle\})$. It is $m \ge 3$. If a_2 is of degree 2 in (V, E^*) , then $G' = (V, E^* \cup \{\langle a, b \rangle\} - \{\langle b, a_{m-1} \rangle\})$ is a spanning tree in G, which is no i-graph. Namely, $a_3 \ne b$ as G^* is an i-graph and a_3 is no end-vertex in G', as G is not a circuit of length 4.

Let $\langle a_2, c \rangle \in E^*$, $a \neq c \neq a_3$. Then a_2 is not an end-vertex in $(V, E^* - \{\langle a_{m-2}, a_{m-1} \rangle\})$. The graph $(V, E^* \cup \{\langle a, b \rangle\} - \{\langle a_{m-2}, a_{m-1} \rangle\})$ is a spanning tree of G and no i-graph, as a has no end-vertex as a neighbor in it.

b) Let a be no end-vertex in G, b an end-vertex in G. Let $a_1, ..., a_m$ have the upper meaning. As a has at least two end-vertices in $G' = (V, E^* \cup \{\langle a, b \rangle\} - \{\langle a_{m-1}, a_m \rangle\})$ as its neighbors, G' is no i-graph and it is a spanning tree of G.

Definition 5. Let G = (V, E) be a simple graph, $a, b \in V \ a \neq b$. The vertices a and b form the conjugate pair (a, b) of type 1, if they are end-vertices and have the

distance 2 in G. The ordered pair (a, b) is a conjugate pair of G of type 2, if a is an end-vertex, b is a neighbor of a in G and is of degree 2 in G.

Generally we shall speak about a conjugate pair, if further specification is not needed.

Lemma 8. Let G = (V, E) be a tree, card $V \ge 3$. Then

- 1. In G there exists a conjugate pair.
- 2. If G is an *i*-graph, then there exist two conjugate pairs of type 2 (a, b), (c, d) such that $\{a, b\} \cap \{c, d\} = \emptyset$.
- **Proof.** Let $a_1, a_2, ..., a_k$ be one of the longest paths in G. If the degree of a_2 is 2, then (a_1, a_2) is a conjugate pair of type 2, if c is a neighbor of $a_2, a_1 \neq c \neq a_3, (a_1, c)$ is a conjugate pair of type 1.

If G is an i-graph, then $k \ge 4$ and (a_1, a_2) and (a_k, a_{k-1}) are conjugate pairs of type 2 with $\{a_1, a_2\} \cap \{a_k, a_{k-1}\} = \emptyset$.

Definition 6. Let G = (V, E) be a simple graph, (a, b) its conjugate pair, $G_1 = (V_1, E_1)$ a subgraph of G induced on $V_1 = V - \{a, b\}$. We write $G = G_1 \vee (a, b)$ and we say that G is constructed by a regular construction from G_1 .

Proposition 9. Let $G_1 = (V_1, E_1)$ be a connected simple graph, card $V_1 \ge 3$. Let G_1^2 be regularizable and $G = (V, E) = G_1 \lor (a, b)$. Then G_1^2 is regularizable.

Proof. As G^2 is not bipartite, we can use Proposition 1. Let X be an non-empty indepent set in G^2 . If $\{a, b\} \cap X = \emptyset$, X is independent in G_1^2 and $X^* = \bigcup \{V_{G^2}(x) \colon x \in X\} \subset \bigcup \{V_{G^2}(x) \colon x \in X\} = X^{**}$ and so $\operatorname{card} X < \operatorname{card} X^* \le \operatorname{card} X^{**}$.

 $\{a,b\} \cap X$ can be at most one-element set as $\langle a,b \rangle \in E^2$. E.g. let $a \in X$, $X_1 = X - \{a\}$. X_1 is independent in G_1^2 (may be empty). If $X = \{a\}$, then card $V_{G^2}(a) \ge 2$. If $X_1 \ne \emptyset$ then (with the upper notation using X_1 instead of X) card $X_1 < \operatorname{card} X_1^*$ and B non $E = X_1^*$ (B is not a vertex of G_1^*). Therefore card $E = X_1^*$ (E is not a vertex of E is not a vertex of E in the card E is not a vertex of E in the card E in the card E is not a vertex of E in the card E in the card E is not a vertex of E in the card E in the card E in the card E is not a vertex of E in the card E in the card E in the card E is not a vertex of E in the card E in the card E in the card E in the card E is not a vertex of E in the card E in the card E in the card E is not a vertex of E in the card E in the card E in the card E in the card E is not a vertex of E in the card E in the card E in the card E in the card E is not a vertex of E in the card E in the c

Proposition 10. Let G = (V, E) be a tree, no *i*-graph and card $V \ge 7$. There exists $G_1 = (V_1, E_1)$ such that G_1 is no *i*-graph and one gets G from G_1 by a regular construction.

Proof. By Lemma 8 there exists a conjugate pair (a, b) in G such that $G = G_1 \lor (a, b)$, where $G_1 = (V_1, E_1)$, $V_1 = V - \{a, b\}$. Suppose G_1 is an *i*-graph.

- a) Let (a, b) be of type 2 and c be the neighbor of b in G different from a. Then c is an end-vertex in G_1 (otherwise G would be an i-graph). Let (a_1, b_1) be a conjugate pair of type 2 in G_1 where $a_1 \neq c$. The induced subgraph of G $G_2 = (V_2, E_2)$, $V_2 = V a_1$, b_1 is no i-graph, as c does not neighbor an end-vertex in G_2 . It is $G = G_2 \vee (a_1, b_1)$.
- b) Let (a, b) be of type 1 and c be a neighbor of a (i.e. of b, too). Let (a_1, b_1) be a conjugate pair in G_1 , for which $a_1 \neq c \neq b_1$. The induced subgraph of $G G_2 = (V_2, E_2) \ V_2 = V \{a_1, b_1\}$ is no i-graph as c has at least two end-verteces as its neighbor. Again $G = G_2 \vee (a_1, b_1)$.

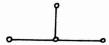
Definition 7. If $G_1, ..., G_k$ is a sequence of graphs such that G_i can be constructed by a regular construction from G_{i-1} , this sequence is called regular.

Proposition 11. If a tree G = (V, E) is no *i*-graph, card $V \ge 7$, then there exists a regular sequence $G_1, ..., G_k$ where G_i are no *i*-graphs, $G_k = G$ and G_1 has at most 6 vertices.

Proof follows immediately from Proposition 10.

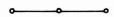
Proposition 12. Let a tree G = (V, E) be no *i*-graph, card $V \le 6$. Then G^2 is regularizable.

Proof. The assertion is clear for card $V \le 3$. If card V = 4 then G is isomorphic to

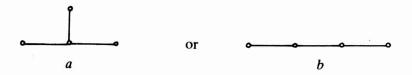


and G^2 is regular.

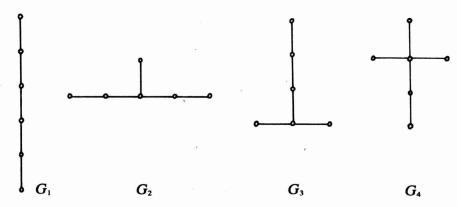
Let now card V = 5. Let $G = G_1 \lor (a, b)$. Then G_1 is isomorphic to



and G_1^2 is regularizable. By Proposition 9, G_1^2 is regularizable. Let card V = 6 and $G = G_1 \lor (a, b)$. Then G_1 is isomorphic to



For a we conclude again by Proposition 9. For b G can be isomorphic to one of the following graphs G_1 , G_2 , G_3 , G_4 .



 G_1^2 is regularizable as the multigraph.

is regular.

 G_2 is an *i*-graph. This case does not occur.

 G_3 , G_4 can be constructed by a regular construction from graphs which have the regularizable second power.

Main Theorem. Let G be a connected simple graph. Then G^2 is regularizable iff G is no i-graph.

Proof. Necessity was proved in Proposition 6.

Let G = (V, E) be a tree and no *i*-graph. Let card $V \le 6$. Then G^2 is regularizable by Proposition 12. Let now card $V \ge 7$. Suppose our assertion to be valid for all G with at most eard V - 1 vertices. By Proposition 11, there exists a regular sequence $G_1, ..., G_k$ such that all G_i s are no *i*-graphs, $G_k = G$ and G_1 has at most 6 vertices. Therefore $k \ge 2$. By Definition 6 of a regular construction and Definition 7 of a regular sequence the graphs $G_1, ..., G_k$ are trees. By the induction supposition $(G_{k-1})^2$ is regularizable. By Proposition 9 G_k^2 (= G^2) is regularizable.

Let G = (V, E) be no tree. The assertion is clear, if G is a circuit. Suppose G is no circuit. By Proposition 7 there is a spanning tree $G^* = (V, E^*)$ of G, which is no i-graph. As $(G^*)^2$ contains triangles, no subgraph of G^2 containing $(G^*)^2$ is bipartite. As G^* is a tree, $(G^*)^2$ is regularizable. G^2 can be obtained from $(G^*)^2$ by succesive adding of edges. By 3.2 [1] an adding of an edge to a regularizable graph, which is not bipartite, gives a regularizable graph. Therefore G^2 is regularizable.

REFERENCES

[1] Berge, C.: Regularizable graphs. Annals of Discrete Mathematics 3 (1978), 13-19.

Received December 13, 1978

Author's address:

Katedra algebry a geometrie přírodovědecké fakulty university J. E. Purkyně Janáčkovo nám. 2a, Brno, ČSSR

^[2] Sekanina, M.: On an ordering of the set of vertices of a connected graph. Publ. Fac. Sci. Univ. Brno, No. 412, 137—142 (1960).

SHRNUTÍ

REGULARIZOVATELNOST MOCNINY GRAFU

M. Sekanina-V. Vetchý, Brno

Obyčejný graf G, tj. graf bez smyček a paralelních hran, se nazývá regularizovatelným, když přidáním vhodných hran, paralelních k hranám v G, lze zkonstruovat konečný pravidelný multigraf. Graf nazýváme i-grafem, když právě polovina jeho uzlů je koncových a každý nekoncový uzel je spojen hranou právě s jedním koncovým. Je-li G konečný souvislý obyčejný graf, potom n-tá mocnina G^n grafu G je regularizovatelná pro $n \ge 3$. Druhá mocnina G^2 je regularizovatelná, právě když G není i-graf.

РЕЗЮМЕ

РЕГУЛЯРИЗУЕМОСТЬ СТЕПЕНИ ГРАФА

М. Секанина-В. Ветхы, Брно

Изучаются обыкновенные графы, т.е. неориентируемые графы без петель и параллельных ребер. Обыкновенный граф G по дефиниции регуляризуемый тогда когда добавлением подходящих ребер параллельных к ребрам в G можно получить конечный правильный мультиграф. Граф G называется i-графом если точно половина узлов является концовыми и если каждый неконцовый узел соединен ребрем точно с одним концовым узлом. Пусть G конечный, связный, обыкновенный граф. Потом n-тая степень G^n графа G для $n \ge 3$ является регуляризуемой. Вторая степень регуляризуемая тогда когда G не является i-графом.