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I. Introduction

The classical Floquet Theory is applicable on linear differential systems or
equations of the n-th order, both with periodic coefficients. As a background for
a generalization we take the fact that the change x+—x +d of the independent
variable (d being a period) either does not change at all such a system or equation
(supposed to be defined on the whole real line R), or we obtain a continuation of
the same system or equation.

Due to P. Stickel [12] and E. J. leczynskl [15] we know the most general
transformations of linear differential equations and systems. We may study the
systems and equations that can be transformed into themselves (or can be
transformed into their continuation) not only by a change of the independent
variable (and a very special one as in Floquet Theory) but by a transformation in its
most general form. .

A generalization of Floquet Theory for the 2nd order differential equations of
the form y”"=gq(x)y given in [6] by M. Laitoch and studied also by S. Stanék
[13, 14] was based on the theory of global transformations of the second order
differential equations (especially on the theory of dispersions) developed by
O. Boriivka [1], see also [2]. Invariant differential equations on homogeneous
manifolds were studied in 3], changes of the independent variable that leave linear
differential equations of the n-th order invariant were investigated in [10].
Problems concerning of possible generalizations of Floquet Theory were consi-
dered by D. R. Snow [11]. Transformations of linear differential systems were
deeply studied by N. P. Jerugin, e.g. in [4, 5].

Our considerations take their origin from Boriivka’s theory of transformations
of the second order linear differential equations extended in [7] and [8] for

53



equations of arbitrary orders. We also substantially use the form of solutions of
vector functional equations described in [9].

II. Transformations of a linear differential system into itself

Let C"(I) denote the set of all real (if not explicitly stated else) scalar, or
vector, or matrix functions defined on an open interval IcR and having here
continuous derivatives of the n-th order; C° means continuity.

Consider a system of n linear homogeneous differential equations of the 1st
order, n=2:

(1) : y'=A(x)y, AeC’(I), '=d/dx

with a fundamental n by n matrix solution Y, Y e C'(I).
The most general pointwise transformation of any system of the form (1) into
a system of the same form (see [15]) is

(2) TY(x)=Z(t):=F(t)- Y(p())
with ¢ (J)<I, ¢ € C'(J), dep(t)/dt#0 on J,

FeC'(J), detF(t)#0 onJ

F is called the multiplier and ¢ the parametrization of the transformation
t=(F, @). If, moreover, @(J)=1I we speak about the global transformation.
Consider another system of n linear homogeneous equations of the 1st order

(3) ¢=B(t)z, BeC’(J), "=d/dt

with its fundamental n by n matrix solution Z.

Theorem 1. Let two differential systems (1) and (3) be given. There always
exists a transformation (2) that transforms (1) into (3).

We may even prescribe a parametrization ¢ of the transformation, if only
@eC'(J) and de(t)/dt+0 on J. If ¢ is a bijection of J onto I, then the
transformation is global.

Proof. For a given ¢ € C'(J), de(t)/dt# 0 on J, define

F(@):=Z@)- Y '(¢(2), teJ

We have Fe C'(J) and Z(t)=F(t): Y(@(t)) on J. Hence t=(F, ¢) trans-
forms (1) into (3), and if ¢ is a bijection of J onto I, then the 7 is also global. QED.

We get immediately

Corollary. Each system (1) can be globally transformed into itself. Moreover,
we may prescribe arbitrarily the parametrization @ of the transformation if only ¢
is a bijection of I onto I, @ € C'(I) and de(¢)/dt#0 on I.
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III. Transformations of the n-th order linear
differential equation into itself

Consider a linear homogeneous differential equation of the n-th order,n=2:
(P) YO+ paca(X)y“ ™V + ..+ po(x)y =0, pieC°(I)

fori=1, ..., n —1. Denote by the column vector y its n-tuple of linear indepen-
dent solutions (y;, ..., y.)". Let (Q) be a linear differential equation of the same
order defined on J, and Z its n-tuple of independent solutions.

The most general pointwise transformation of (P) into (Q) is of the form

4) ' Ty(x)=2z(t):=C-f(1) y(9(1)
where C is a regular constant n by n matrix

eI, peC"(J), de(t)/dt+0 on J
feC'(J), f:J->R, f(1)¥0 on J, seealso[7]

We shall write also T=(Cf, ). If ¢(J)=I we speak about a global
transformation.

All global transformations of all linear homogeneous differential equations of
arbitrary orders n (n=2) with respect to the composition form Ehresmann
groupoid. Each component of the groupoid is Brandt groupoid. Objects of ‘each of
the Brandt groupoid (considered as a category) are globally equivalent differential
equations, see [8]. ,

For (P) let B(P) denote all equations globally equivalent with (P). Let
G(P) denote the set of all global transformations of (P) into itself, it is a group. If
(Q)e B(P) and T globally transforms (P) into (Q), then T~'G(P)T is a group of
all global transformations of (Q) into itself, i.e.

G(Q)=T"'G(P)T

see [8]. Hence the groups of global transformations of two globally equivalent
linear differential equations into themselves are conjugate.

First we shall investigate when (P) restricted on an interval j=I can be
transformed by means of T = ( Cf, @) into its continuationon ¢ (j) = I, jn@(j) # 0,
de(t)/dt >0 on j. With respect to (4), we have the following vector functional
equation

) y(x)=C-f(x) y(p(x)), xe€j

If Wy(x)=(y(x), y'(x), ..., ¥ "(x)) denotes Wronski matrix of y(x), then
det Wy(x) is the Wronski determinant of y(x). For @(x)=x on j, the Wronski
determinant of y(x) should be the same as that of C-f(x)y(x) that is equal to
det C-(f(x))" - Wy(x). Hence f(x) is a nonzero constant and C-f(x) is a regular
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constant matrix. Forming Wronski matrices of both sides of (5) we get that C-f(x)
is the unit matrix E, and the transformation T in this case is trivial, i.e.
T=(E, id;). Hence, if T is not trivial, ¢(x)+# x for some x €j.

For an interval i cR and a constant d € R, define i +d={x+d; x €i).

Hence our problem consists in solving the functional equation (5). We can
apply results of [9], to get

Theorem 2. Let (P) restricted on j can be globally transformed by means of
a nontrivial transformation (Cf, ¢ ), ¢'>0, onto (P) restricted on ¢(j), j ve())
being an interval.

Then each x €j, such that @(x)=x, is an isolated point. On each interval
(a,b)cj where @(x)#x the equation (P) is globally equivalent to a linear
homogeneous differential equation with real n-periodic coefficients on an interval
(c, d). The equation (P) has an n-tuple y of independent solutions in the form

(6) y(x)=r(x)-e”** k(e (x))

where re C"(jue(j)), r(x)>0 on jue(j),
D is a complex constant n by n matrix such that e” =C,
0€C"(jue(j)), de/dx>0 on jue()),
e()=i, e(p())=i+en, e=sign(p(x)—x),
ke C'(iu(i +em), k is a generally complex periodic (k(t+em)=
= k(t)) for f>0,
or half periodic (k(z+ em) = —k(t)) for f<O.

Moreover ¢ =— if and only if @(a+)=a,
d=x if and only if @(b-)=b.

Proof. The assertion about isolated points follows from Lemma 1 of [9]. From
Theorem 2 of [9] we have the global equivalency between (P) on (a, b) where
@(x)—x#0 and a differential equation with periodic coefficients. Theorem 1 of
the same paper gives the form (6) of y with do/dx # 0. If we take —p instead of g in
the case of do/dx <O (that is just when @(x)—x <0), we get the above for-
mulations. QED.

Now we investigate the case when (P) can be globally (on its whole interval of
definition I) transformed into itself.

Theorem 3. Let a linear differential equation (P) of the n-th order, n =2,
defined on I, can be globally transformed by a nontrivial transformation (Cf, @),
@'>0, into itself. Each point x, such that ¢(x)=x, is an isolated point. The set
I-{xel; p(x)=x} is a union of finite number of countable many disjoint open
intervals. On each of the intervals the equation (P) is globally equivalent to a linear
differential equation with n-periodic coefficients defined on (-, ),

Proof. In our case, ¢(I)=1. If (a, b) is one of the open intervals forming the

56



decomposition of I—{xel; @(x)=x}, it is always @(a)=a and @(b)=>b
(@p(—o)=—o and (%)= o are not excluded). According to Theorem 2, c = —
and d = ». QED.

IV. A generalized Floquet Theory

Guided by the fact that in Floquet Theory a linear differential system or
equation of the n-th order with m-periodic coefficients is not changed by the
change x —x +  of the independent variable, we have considered linear differen-
tial systems and equations that are transformed into themselves by transformations
of the most possible general form.

Accotding to Corollary each system of n linear differential equations of the 1st
order can be transformed into itself even by any prescribed parametrization
@ (peC', @' #0). Hence we do not obtain any restriction on the form of its
solutions. .

Of course, another situation occurs, when some conditions on the transforma-
tion are required, see e.g. N. P. Jerugin [4] and [5].

A different situation is also for linear differential equations of the n-th order,
n =2. If such an equation can be globally transformed by a nontrivial transforma-
tion (Cf, @), @' >0, into itself, then on each maximal interval where @ (x)# x, the
equation can be globally transformed into nt-periodic linear differential equation on
(=, ) and the form of its solutions is given by (6).

For the second order linear differential equations of the form y"+ q(x)y =0
our approach gives exactly the generalization introduced by M. Laitoch in [6].

It is also possible to restrict our generalization of Floquet Theory only on the
case of those linear differential equations of the n-th order that are on their whole
interval of definition I globally equivalent to a linear differential equation with
periodic coefficients. In the case the form (6) of solutions of the equations would be
valid on the whole I.
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SUHRN
ZOBECNENI FLOQUETOVY TEORIE
F. Neuman, Brno
Za zdklad pro klasickou Floquetovu teorii pokldddme to, Ze linedrni periodické diferencidlni
systémy &i rovnice se neméni pfi transforrhaci nezivislé proménné x — x + perioda. V préci je poddno
zobecnéni tohoto principu v nejsir$im smyslu, nebot jsou popsény linedrni diferencidlni systémy 1. fddu
a rovnice n-tého Fadu pfipoustéjici nejobecnéjsi transformace na sebe, a je odvozen tvar jejich feseni.
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PE3IOME
OBOBIIEHHUE TEOPHH ®JIOKE
®. Heiman, BpHo

OCHOBHbIM /11 KJIACCMYECKON TeopuH PlioOKe Mbl CYHTAEM TO, YTO JIMHEHHbIE MEPHONHYECKHE
auddepeHIMaNbHbIE CHCTEMbI HMIIM  YPAaBHEHHS HE M3MEHATCS MOCPENCTBOM Mpeobpa3oBaHus
HE3aBUCUMON NEPEMEHHON X — X + nepholl. B paboTe u3noxeHo 0606LIEHHE 3TOrO MPHHLIMNA B CAMOM
IUMPOKOM CMbIC/IE, TaK-KaK OMHCaHbl JHHeHHble NuddepeHUnanbHbie cucTeMbl 1-ro nopsaaxa

¥ ypaBHEHHsi n-TO MOPsAAKA MO3BOJSAIOLIME caMble o6lme npeo6pa3oBaHus B ce6e, U NaHa opma Ux
peLueHHUH.
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