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1. Introduction. The notion of radical class of lattice ordered groups has been
introduced in [3]. Martinez [4] investigated torsion classes of lattice ordered
groups. Each torsion class of lattice ordered groups is a radical class.

For any lattice ordered group G and any radical class A we denote by
0(A)(G) the join of all convex /-subgroups of G belonging to the class A. Then
0(A)(G) is an [-ideal of G ; it is said to be the radical of G corresponding to the
radical class A.

Let A, B be radical classes of lattice ordered groups. The class of all lattice
ordered groups G having the property that G/g(A)(G) belongs to B will be
denoted by AB.

For torsion classes the following assertions are known to be valid [4]:

(o,) If A, B are torsion classes of lattice ordered groups, then AB is also

"a torsion class.

(o) If A, B, (i =1, 2) are torsion classes of lattice ordered groups such that
A,cB; (i=1,2), then A,A,cB;B,.

(For further results on products of torsion classes cf. [4] and [2].)

In this paper it will be shown that if A, B are radical classes of lattice ordered
groups, then AB is also a radical class. There will be described radical classes
generated by linearly ordered groups and by means of this description the validity
of the assertion (a.) for radical classes will be investigated. It will be shown that if A
is a radical class generated by linearly ordered groups, then A cannot be
represented as a product BC of radical classes B, C with B# {{0}} # C. For any
radical classes A, B, the lattice of radical classes generated by the set {A, B, AB}
will be characterized. It will be proved that if A, B are radical classes generated by
linearly ordered groups and if G € AB, then no convex /-subgroup of G can be
expressed as a direct product of an infinite number of nonzero lattice ordered
groups.
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2. Preliminaries. Let us recall some basis definitions.
A nonempty class A of lattice ordered groups is said to be a radical class if it
has the following properties :

(a) A is closed with respect to isomorphisms.

(b) If He A and H, is a convex /-subgroup of H, then H,e A.

(c) If G is a lattice ordered group and {H},., is a family of convex
[-subgroups of G such that each H, belongs to A, then \/; .,H; also belongs to A .

A radical class that is closed with respect to homomorphisms is called a torsion
class. Each variety of lattice ordered groups is a torsion class (Holland [1]).

For each nonempty class L of lattice ordered groups we denote by R(L) the
intersection of all radical classes A having the property that L c A. Then R(L) is
obviously a radical class; R(L) will be called the radical class generated by L.

If H, (i e I) are lattice ordered groups, then we denote by IT,.,H; and I1:_,H,
their restricted direct product and (complete) direct product, respectively. Let K;
(j € J) be convex [-subgroups of a lattice ordered group G. Consider the following
conditions :

(i) For each jeJ and each element 0=g € G the set [0, g]nK; possesses the
greatest element (this element will be denoted by g; or g(K;)).

(ii) g =V,e,9; holds for each 0=g €eG.

(iii) K;,nKj,={0} whenever j, and j, are distinct elements of J.

(iv,) If 0=h’ €K, for each j € J, then there exists g € G such that g, = A’ for
each jelJ.

(iv2) For each 0<g € G, the set of those g; (j €J) that are distinct from 0 is
finite. '

If (i), (ii), (iii) and (iv,) are valid, then G is said to be the (internal) direct
product of its /-subgroups K; (j € J) and we denote this fact by writing G =TT, ,K;.
We write G =11 .,K; if the conditions (i), (ii), (iii) and (iv,) hold ; in this case G is
said to be a restricted (internal) direct product of its /-subgroups K; (jeJ). It is
easy to verify that there exists an isomorphism of IT;.,K; onto IT;_,K; and an
isomorphism of IT;.,K; onto IT;,K;.

Let K, be a lattice ordered group and let K, K, ..., K, be linearly ordered
groups. We denote by K oK;o...oK, (the lexicographic product of K, ..., K,) the
set of all n-tuples (a, ..., a,) such that @, € K; (i =1, ..., n) with a binary operation
+ defined coordinatenwise and by a partial order = defined as follows: for a,
beKio..oK,,a=(ay, ...,a,),b=(b, ..., b,) witha#b let ioe (1, ..., n} be such
thatq, =b, foreachie (1, ..., n}, i >i,, and a, # b, ; we put a <b iff a,,<b,. Then
K =Kio...oK, is a lattice ordered group; K is linearly ordered if and only if K, is
linearly ordered. -

Let G be a lattice ordered group and let XcG. We put

X°*={yeG:|y|a|x|=0foreachx € X}.
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X? is said to be a polar of G ; each polar of G is a closed convex /-subgroup of G
(cf. Sik [5]).

The symbols N,, R, and R, will denote the additive group of all integers, all
reals or all rational numbers, respectively, with the natural linear order.

3. Radical classes generated by linearly ordered groups. The following
assertion is contained in [3]:

3.1. Lemma. Let A be a radical class of lattice ordered groups. Let H, be
a convex [-subgroup of a lattice ordered group H. Then o(A)(H,)
= Hine(A)(H).

3.2. Proposition. Let A, B be radical classes of lattice ordered groups. Then
C=AB is a radical class as well.

Proof. The validity of the condition (a) for C is obvious. Let H € C and let H,
be a convex /-subgroup of H. For proving (b) we have to verify that H,/o(A)(H,)
belongs to B. From 3.1 it follows that H,/o(A)(H,) is isomorphic with
(H,vo(A)(H))/o(A)(H). The lattice ordered group (H,vo(A)(H))/o(A)(H) is
a convex [-subgroup of H/o(A)(H). Since H € C, we have H/p(A)(H)€ B and
hence (because B fulfils (b)) we infer that (H,v(A)(H))/o(A)(H) belongs to B.
Thus H,/0(A)(H,) e B and therefore H, e C. Hence C fulfils the condition (b).

Let H; (i € I) be convex [-subgroups of a lattice ordered group G, V. ..H, = H.
Suppose that each H; belongs to C. We have to verify that H/o(A)(H) € B. Let
iel. Then H;/o(A)(H;) e B and according to 3.1,

(1 e(A)(H)=H,ne(A)(H)

holds. Denote H, = (H,vo(A)(H))/o(A)(H), H=H/go(A)(H). From (1) it fol-
lows that H,/o(A)(H,) is isomorphic with H;, hence H; € B for each i € I. Thus
V.<:H, € B. Let H, be the set of all g € H such that g + o(A )(H) € \/H,. From the
fact that \/H; is a convex /-subgroup of H it follows that H, is a convex /-subgroup
of H. Clearly H, c H, for each i e I and thus H,= H. Therefore \/H, = H, which
implies H € B, completing the proof.

3.3. Lemma. Let H, and H, be convex linearly ordered /-subgroups of a lattice
ordered group G. Suppose that H,nH,# {0}. Then H, and H, are comparable
(i.e., either H,cH, or H,c H,). ’

Proof. From H,nH, # {0} it follows that there exists 0<g € HnH,. Assume
that neither H,c H, nor H,c H, holds. Then there are elements 0<h,e H,,
0<h,e H, such that A, ¢ H, and h,é H,. Put u =h, —h,Ah,, v =h,— h,Ah,. Thus
O<ueH, 0<veH,and u Av=0. Now both 4 and v must be comparable with g,
but each of the relations g =u and g = u leads to a contradiction. Therefore H, and
H, are comparable. ‘

3.4. Theorem. Let L be a nonempty class of linearly ordered groups. Suppose
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that L is closed with respect to isomorphisms. Let {0} # G be a lattice ordered
group. Then the following conditions are equivalent:

(i) GeR(L).

(i) There are linearly ordered convex [/-subgroups {0} #A; (iel), A,
(j€J(i), i e I) of G such that each A; is a convex /-subgroup of a lattice ordered
group belonging to L, A, =|J;c;»A; is valid for each i eI, and G =I1;,A..

Proof. Suppose that (ii) is valid. From (b) and (c) it follows that all A; belong
to R(L). Clearly V..:A, = G and hence according to (c), G is an element of R(L).
Thus (ii) = (i).

Let T be the class of all lattice ordered groups G fulfilling the condition (ii).
Then L = T < R(L). Hence for proving that (i) implies (ii) it suffices to verify that
T is a radical class. Obviously T fulfils (a). Let G be as in (ii) and let K be a convex
I-subgroup of G. Then K =I1;.,(KnA,) and KnA; = | ;o (KnA;) holds for
each i eI, whence KeT. Thus T fulfils the condition (b).

Let G be any lattice ordered group and let {H,,}(m e M) be a system of
convex [-subgroups of G such that each H,, belongs to T and H,,# {0}. Thus each
H,, fulfils (ii); let A, (iel,) and A,.; (j€J.(i),i€l,) be the corresponding
linearly ordered groups with properties analogous to those of A; and A; in the
condition (ii). Without loss of generality we can assume that all linearly ordered
groups A, are nonzero. Let m, € M and i, € I, be fixed. We denote by (A,.,;,)” the
set of all linearly ordered groups A, such that A,,NA.,.., # {0}. Then XnY# {0}
for each X, Y € (A..,)” and hence according to 3.3, X and Y are comparable. Thus
the set-theoretical union A %, of all linearly ordered groups belonging to (A..,;,)” is
a convex linearly ordered /-subgroup of G.

We denote by S = {X, }, ¢ the set of all linearly ordered groups A% (meM,
i € I,). Further we denote by H, the set of all elements of G that can be expressed
as a join of a finite number of elements of the set |, .X,. Then H, is a convex
sublattice of the lattice (G* ; =) and, at the same time, H, is a subsemigroup of the
semigroup (G™; +). From this it follows that the set H={g,—g.: 9., g.€ Hy} is
a convex [-subgroup of G.

Put \/memH.=H'. From the definition of H we obtain immediately that
HcH' holds. Let me M and 0<h € H,,. Then A is a join of a finite number of
elements belonging to | Jic;, Am. Since A,.cAX%, we get heH, Therefore
H,, c H for each m € M. From this and from the fact that H is a convex /-subgroup
of G it follows H' c H. Hence H' =H.

For verifying that the condition (c) holds for the class T we have to show that
H fulfils the condition (ii). 7 ‘

Consider the linearly ordered /-subgroups X, (p e P) and A,.; (meM, i€l,,
j €Ja(i)). According to the construction of X,, each X, is a union of some A,,;.
Hence it suffices to verify that H =I1,.,X, holds.

Let p, and p, be distinct elements of P. From the construction of X,, and X,,, it

34



follows immediately that X, nX,,={0} is valid. Let pe P and 0<g € H. Then
there are distinct indices p,, p, ..., p- € P and elements 0<x,€X,, ..., 0<
<xm€X,, suchthat g=x,v...vx,. If pé&{pi, ..., pn}, then [0, g]n X, = {0}. Let
y€[0, g]nX,,. We have y=yAag=yA(x, v...v x.)=yAx,, whence x, is the
greatest element of the set [0, g]nX,, ; the situation for p,, ..., p.. is analogous.
Thus (under the denotation as in the definition of the internal restricted direct
product) we have g, =0 whenever p € {p,, ..., pn}, and g, =xi, ..., Gy, =Xm,
completing the proof.

3.5. Lemma. Let A be a radical class generated by linearly ordered groups and
let A’ be a radical class of lattice ordered groups such that A’ is a subclass of A.
Let L' be the class of all linearly ordered groups belonging to A’. Then
A'=R(L"). '

This follows immediately from 3.4.

3.6. Lemma. Let A be a radical class generated by linearly ordered groups. Let
G, be a lattice ordered group that is not linearly ordered and let G,# {0} be
a linearly ordered group. Then G,-G, does not belong to A.

Proof. The lattice ordered group G = G,-G; is not linearly ordered and there
exists 0 <g € G such that g > g, holds for each element g, € G incomparable with
0. From 3.4 it follows that if Ge A, then no element g having the mentioned
property can exist in G ; hence G¢A.

The radical class containing only the one-element lattice ordered group {0}
will be called trivial. Let L, be the class of all linearly ordered groups distinct from
{0}.

3.7. Lemma. Let A be a radical class generated by linearly ordered groups.
Then A cannot be represented as a product BC where B is a nontrivial radical class
and CnL,#9.

Proof. Assume that there are radical classes B, C with A = BC, where B is
a nontrivial radical class and CnL,# @. Hence there exist lattice ordered groups
{0} #G,eB, G,e CnL,. Put G=(G, X G,)-G,, H=0(B)(G). The elements of
G are triples (g, g1, g.) with g,, gi€ G, g.€ G,. Let H, be the set of all
(91, g1, g-) € G with g,=0. Then H, is a convex /-subgroup of G isomorphic with
G, X G,, whence H, < H. Let G; be the set of all g, € G, having the property that
there are g,, g: € G, with (g,, g1, g.) € H. Then G; is a convex /-subgroup of G,
(thus G; is linearly ordered) and H = (G, X G,)-Gj;. Hence (G, X G;) - G;€B.
From A = BC it follows B c A, thus according to 3.5 B is a radical class generated
by linearly ordered groups. From this and from 3.6 we obtain G;= {0}, hence
H = H,. Therefore G/o(B)(G) is isomorphic with G, and G e BC=A. But this
contradicts 3.6, since A is generated by linearly ordered groups.

3.8. Theorem. Let A be a radical class generated by linearly ordered groups.

Then A cannot be represented as a product BC of nontrivial radical classes B and
C.
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Proof. Assume that there exist nontrivial radical classes B, C such that
A=BC. Let A be generated by a class L of linearly ordered groups. Let
{0}#A,eL. Then A,eBC, whence A;/o(B)(A))eC. Since A./o(B)(A)) is
linearly ordered and since in view of 3.7 we have CnL,=@, we infer that
A,/0(B)(A,) ={0}. Therefore o(B)(A:) = A;, whence L c B. From this it follows
A cB. On the other hand, from A =BC we get Bc A ; thus B=A and A = AC.
There exists {0} # G € C. Denote G,=0(A)(G). If G, # {0}, then according to
3.4 there exists a convex [-subgroup {0} # G, of G, such that G, is linearly
ordered; in such a case we would have G, € C (since G, is a convex /-subgroup of
G), whence CnL,# @, which is a contradiction. Thus ¢(A)(G)={0}. Hence
G/0(A)(G) is isomorphic with G and therefore G belongs to AC. Because of
AC=A we have Ge A, whence 0(A)(G) =G, a contradiction.

4. The condition (0.). In this paragraph it will be shown that the condition (o)
does not hold, in general, for radical classes of lattice ordered groups ; i.e., there are
radical classes A;, B; with A, c B; (i =1, 2) such that A A, fails to be a subclass of
B,B..

4.1. Lemma. Let A be a radical class of lattice ordered groups. Let H;
(i eI) be convex [-subgroups of a lattice ordered group H, \/...H,=H. Then
o(A)H) = V..0(A)(H).

Proof. Denote o(A)(H)=K. According to 3.1 we have

K=KF\H=K!'\(V1¢1H)=V:eI(KnH)=ViEIQ(A)(I-Ii)
Let us denote
G = NooRo, G;=NyoR0oN,

Let A and B be the radical class of lattice ordered groups that is generated by
the set {G,} or {G.}, respectively. If K# {0} is a convex /-subgroup of G,, then
either K=G, or K is isomorphic with N,. Similarly, if K+ {0} is a convex
[-subgroup of G, and K # G,, then K is isomorphic either with N, or with G,. From
this and from 3.4 we obtain:

4.2. Lemma. Let G# {0} be a lattice ordered group. Then

(i) G belongs to A if and only if G can be expressed as a restricted direct
product G =TT; .,;A; such that each A, is isomorphic to some of the linearly ordered
groups No, G, ;

(ii) G belongs to B if and only if G can be expressed in the form G =11, A,
such that each A, is isomorphic to some of the linearly ordered groups No, G,, G..

Clearly A is a proper subclass of B. We shall show that-A? fails to be a subclass
of B?; moreover, the class of nonisomorphic types of lattice ordered groups that
belong to A” and do not belong to B is a proper class.

Let I be a nonempty set. There exists a lattice ordered group G(I) that can be
expressed as G(I) =I1;.,G;, where each G, is isomorphic with H = Nyo RooNyo Ro.

36



For any nonempty sets I, I' the lattice ordered groups G(I) and G(I') are
isomorphic if and only if card I =card I'.

We have (A )(H) = NooRy0{0}-{0}, whence H/g(A )(H) is isomorphic with
NooRo= G, and thus He A”. Clearly G(I) =V, .G:. From this and from 4.1 we
obtain 0(A)(G(I)) = V..0(A)(G)eA (because ¢(A)(G,) is isomorphic with
o(A)(H)). Hence G(I)e A*.

Similarly we have ¢(B)(H) = NyoRooNyo{0} and thus H/g(B)(H) is isomor-
phic with R,. Hence according to 4.2, H/o(B)(H) does not belong to B and
therefore H does not belong to B>. By applying 4.1 we infer that G(I) does not
belong to B*. So we have verified that the condition (a.) does not hold for products
of radical classes.

We can also consider the question whether for each triple of radical classes A,
B, C of lattice ordered groups the implications

(2) AcB=>CAcCB,
(3) AcB=>ACcBC
are valid.

The implication (2) follows immediately from the definition of the product of
radical classes. If A and B have the same meaning as above, then we have A c B
and

A’¢ BA, AB¢B?

(these relations can be proved by analogous reasoning as we did by proving
A’¢&B?); hence (3) does not hold in general. _

Let A, B be radical classes of lattice ordered groups. Then A B is a radical
class and clearly A N B is the greatest radical class that is a subclass of both A and

z
AB AvB
Y B
A X
AAB
Obr. 1
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B. Thus we can denote AnB=AAB. If C is a radical class such that Co A,
C2B,and Cc C, whenever C, is a radical class with C, oA, C, o B, then we shall
write C=A vB.

4.3. Lemma. (Cf. [3].) For each pair of radical classes A, B of lattice ordered
groups there exists a radical class C such that C = A v B. Moreover, for any triple
of radical classes A,, A;, B we have (A,vA;)AB = (A,AB)v(A,AB).

4.4. Proposition. Let A, B be radical classes of lattice ordered groups. Then
the lattice L' of radical classes generated by the set {A, B, AB} is a homomorphic
image of the lattice L on Fig. 1. There exist radical classes A, B such that the
corresponding lattice L' is isomorphic to L°.

Proof. From the distributivity of L' and from A c AB it follows that L' is
a homomorphic image of L. We denote by A and B the radical class generated by
the set {NooR,} or {NyoNo, NyoR,} respectively. Put (AB)v(AvVB)=2Z,
(AB)A(AVvB)=Y, (AB)AB=X.

From 3.4 it follows that NyocR,¢ B, whence AABc A, and thus XY,
B c A vB. Further we infer from 3.4 that A vB is the class of all lattice ordered
groups G that can be expressed as G =I1;.,G,, where each G, is isomorphic to
some of the linearly ordered groups Ny, Noo Ny, Noo Ry, NooR,. The lattice ordered
group NyoRooNyoR, belongs to AB and fails to belong to A v B, whence Y =« AB
and thus A vB c Z. Clearly NyoR, € B and (NooR)/9(A)(NyoR,) is isomorphic
with R,, thus N,oR, does not belong to AB. Therefore X<B and hence
YcAvB, ABcZ. Next we have Ny, oN,eB, NyoN,e AB and NooN,¢ A,
whence AABc X, A cY, completing the proof.

S. Direct decompositions. In this section the following result will be proved :

S.1. Theorem. Let A, B be radical classes generated by linearly ordered
groups and let G € AB. Let D be a convex /-subgroup of G. Then D cannot be
expressed as a direct product of an infinite number of lattice ordered groups
distinct from {0}. ’

For proving 5.1 we need some lemmas.

S.2. Lemma. Let A, B be radical classes of lattice ordered groups and let
G e AB. Then (0(A)(G))’ €B.

Proof. Denote G,=¢0(A)(G), G.=(¢(A)(G))’. Then G,nG,={0} and
0(A)(G,vG,)=G.,. Since AB is a radical class, G,vG, belongs to AB, hence
G,vG,/G, belongs to B. The lattice ordered groups G, v G,/G, and G,/{0} =G,
being isomorphic, we obtain G, € B.

5.3. Lemma. Let G be a lattice ordered group, 0<a, € G (i), 0<d, e G
(5€S),9€G,g=Victt, g =\ sd,. Suppose that [0, a,] is a chain for each i e I.
Further suppose that a; Aa, =0 whenever i and i, are distinct elements of I, and
that d, Ad,, =0 whenever s and s, are distinct elements of S. Then there exists
a mapping ¢ of I onto S such that d, =\/,.,-'¢,a; holds for each s €S.
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Proof. Let i e I. From
4) a=ang=\,es(and,)

it follows that there exists s € S with a;Ad, >0. Let s, €S, s, #s. If a, Ad,, >0, then
0=d,nd,, Z (d,ra;)) A (d,Ara)>0 (because d, Aa;, d,,Aa, € [0, a]), which is
a contradiction. Thus a;Ad,, =0 for each s,€S, s,#s. Put @(i)=s. Hence
according to (4), a; =a; Adyq).

Let s be any element of S. We have

ds =dx Ag =Viel(ds Aaﬂ)

hence there is i € I with d, Aa;>0; thus s = @(i) and @ is a mapping of I onto S.
Since a;Ad, =0 whenever jé @ '(s) and a;Ad, =g, if je@~'(s), we obtain d, =
=Vieo 0 tti.

In what follows we assume that L and L’ are nonempty classes of linearly
ordered groups and that A and B are radical classes generated by L or L',
respectively.

5.4. Lemma. Let G be a lattice ordered group and let D be a convex
[-subgroup of 0(A)(G). Then D cannot be expressed as a direct product of an
infinite number of lattice ordered groups distinct from {0}.

Proof. Assume that D can be expressed in the form D =11, .5, D, with D, # {0}
for each s€S,, card §,=R,. Choose 0<d’ €D, for each s€S,. There exists
0<g e D with g(D,)=d’ for each s € S,. Then we have g =\/,.s,d". Let A, (ieI)
be as in 3.4 with the distinction that we take o(A)(G) instead of G. There is
a finite subset I, of I such that g =\/,.,,9(A:) and 0<g(A,) for each i e I,. Hence
according to 5.3 we have card S, =card I,, which is a contradiction.

If we take B instead of A, then from 5.2 and 5.4 we obtain

5.5. Lemma. Let G € AB and let D be a convex /-subgroup of (0(A)(G))’.
Then D cannot be expressed as a direct product of an infinite number of lattice
ordered groups distinct from {0}.

Let G be a lattice ordered group. Let X = G. The closed convex /-subgroup of
G generated by X will be denoted by c(X). If H is a convex /-subgroup of G, then
(c(H))* is the set of all elements g € G having the property that there exists
0=b, e H (s €S) such that g =\/, .sb,. From this and from 3.4 it follows:

5.6. Lemma. Let G be a lattice ordered group. Let A, (i € I) be as in 3.4 with
the distinction that we take o(A)(G) instead of G. Let 0<g e G. Then the
following conditions are equivalent :

(i) gec(e(A)G)).

(ii) there are elements a; (i€I) such that 0=a,€ A, for each iel and
VI edi =g.

Proof. Clearly (ii) implies (i). Suppose that (i) holds. Then there are elements
0<b, € 0(A)(G) (s €S) such that g =\/, .sb,. There exists a subset I, of I having
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the property that each b, can be expressed as a join of some elements belonging to
UiennAi. Hence there are elements 0<c, (teT) with ¢, €| Jicr,A: such that
9 =V.erc.. We can assume that {c,}..rnA,# @ for each i € I, and that, whenever
iel, and 0<a, €A, with g, =g, then a,€ {¢.}/cT.

Let i € I,. Suppose that g =a; for each a; € A;. Choose 0<a,€ A;. Then

g<avt+g=ao+V.erc.=V.e{av+c)

If ¢, € A, then a,+c, € A;, hence there is t,€ T with a,+c, =c,. If ¢, € A, then
apnc, =0, thus ay+c, = apve, = c,Vvc, where a,=c,. From this it follows that
Vier(ao+c¢) = Ve, hence a,+ g =g, which is a contradiction. Therefore for
each i € I, there exists 0 <ay € A; such that g£ a,.. Denote a’ =g Aay. It is easy to
verify that a' is the greatest element of the set {a;€ A;: 0<a,=g}. Hence
gd=Vicna'. If we put a' =0 for each i e I\I,, then g =\/,.a".

Denote 9(A)(G)=G,, G| =G..

5.7. Lemma. Let G € AB and let D be a convex /-subgroup of ¢(G,). Then D -
cannot be expressed as a direct product of an infinite number of lattice ordered
groups distinct from {0}.

Proof. Assume that D =TI1, . sD, where S is infinite and D, # {0} foreachs € S.
According to 5.4, D cannot be a convex /-subgroup of G,. Hence there exists
0<g, €D such that g, does not belong to G,. Further there exists 0<g, e D such
that the set {s €S: g,(D,)>0} is infinite. Put g =g,vg,. Then 0<geD, g ¢ G,
and the set S(g)={seS: g(D,)>0} is infinite. From GeAB it follows
¢(G,) e AB. Since ¢(A)(c(G,)) = G., we have c(G,)/G, € B. Therefore according
to 3.4 there exist linearly ordered groups B; (j € J) (having analogous properties to
those of A; with the distinction that G is replaced by ¢ (G,)/G, and L is replaced by
L') such that ¢(G,)/G,=10j,B;. In ¢(G,)/G, we have 0<g + G,, hence there
exists a finite subset @ # J, of J such that g + G, =/, .,,b; where 0<b; € B; for each
j €J,. From this it follows that there are elements 0<b; € b; (je€J,) with g =
=V,enb;. Let jeJ,. We have b eD. Put S,={seS: b;(D,)>0}. Obviously
$(9) = es,S; ; hence there exists j € J, such that S is infinite ; let such an index j
be fixed. There exist s,, 53, 53, ... €S; such that s, #s, whenever n# m. Further
there exists d € D such that d(D,)=3b;(D,) for each s€{s,, s4, S ...}, and
d(D,)=b; (D) for each s € S\{s3, 4, Ss, ...}. Then b; <d <4b;, hence in c¢(G,)/
/G, we have d + G,>0 and d + G, € B,. Since B; is linearly ordered we infer that
d + G, is comparable with 2b, =2b; + G,.

Denote G,=0 (zero element in ¢(G,)/G,), x=d+G,—(2b; +G,)=
=(d —2b;) + G,. From the comparability of elements d + G,, 2b; + G, it follows
that either xv0=0 or xA0=0. Hence either (d—2b;)v0eG, or (d-
—-2b;)A0€G,. Put (d—2b;)v0=y. We have y(D,)=b;(D,) for each
s€{2,4,6, ...} and y(s)=0 otherwise. Clearly 0<y € c(G,). According to 5.6
there is a subset @#I,cI and there are elements 0<a, € A; (i €I,) such that
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¥ = Viena:. Then from 5.3 and from the fact that the set {s € S: y(s) # 0} is infinite
we obtain that y cannot belong to G,. Similarly we can verify that (d —2b;)A0
does not belong to G, and so we arrived at a contradiction.

Proof of 5.1:

Assume that D =TI, .sD, where S is infinite and D, # {0} for each s€S. As
above, put G, =0(A)(G), G,=(G,)’. We denote D’=Dnc(G,), D®=DnG,,
D{"=D,nc(G,), D> =D,NG, for each s € S. Then D" is a convex [-subgroup of
¢(G,) and D? is a convex [-subgroup of G,. Since ¢(G,) and G, are closed convex
[-subgroups of G, we have

(5) DU=ML,.,DY, DP=ML..DP

Put S,={seS: D"+ {0}}, S.={seS: D+ {0}}. For each s €S we have
either D” =D, # {0} or D!" # {0}. Thus we have either D’ =11, .s,D‘" with card
$1Z R, or D® =TI, s,D;” with card S, ZR,; both these cases being impossible in

+view of 5.5 and 5.7, we have a contradiction.
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SUHRN
SUCINY RADIKALOVYCH TRIED ZVAZOVO USPORIADANYCH GRUP
J. Jakubik, Kosice
Pojem radikélovej triedy zvizovo usporiadanych grip bol zavedeny v autorovej praci [3].
V predlozenej prici sa ukazuje, Ze siéin takychto radikilovych tried je opit radikalovi trieda a skimaju
sa niektoré vlastnosti tohto si¢inu. Je charakterizovand radikdlova trieda generovani lubovolnou

triedou linedrne usporiadanych griip.
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PE3IOME
MPON3BENEHHUSA PAIWUKAJIbHBIX KIIACCOB CTPYKTYPHO YIIOPAOOYEHHBIX I'PYTI
‘ . siky6uk, Koumue
[MoHsiTHE PagHKANbLHONO KJIacca CTPYKTYPHO YTIOPANROYEHHbIX IPYTIN BBEICHO aBTOPOM B paGoTe
[3]. B HacTosiel cTaThbe MOKa3bIBAETCH, YTO MPOH3BEAECHHE TAKHX PaiWKA/IbHbIX KJ1aCCOB SIBNSETCH

panMKanbHbIM KJIACCOM H H3y4aloTCs HEKOTOpbIE CBOMCTBA 3TONO NpOU3BeNeHNUs. [laHa XapaKTepHCTH-
Ka pajiMKalbHOINO KJIacca, MOPOXKAEHHOIO JOGbIM KJ1acCOM JIMHEHHO YMOPANROYEHHbIX IPYIL.
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