

Werk

Label: Article Jahr: 1981

PURL: https://resolver.sub.uni-goettingen.de/purl?312901348_0038 | log8

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

UNIVERSITAS COMENIANA ACTA MATHEMATICA UNIVERSITATIS COMENIANAE XXXVIII - 1981

ON MEASURABILITY OF BINARY RELATIONS

VLADIMÍR TOMA, Bratislava

In this paper two generalization of Theorem 6.2 of the paper [1] are given. We prove measurability of a relation defined from a function of two variables which is measurable in one variable, and quasicontinuous or regular with respect to a P-system in the other one.

DEFINITIONS AND BASIC PROPERTIES

Throughout this paper we consider a binary relation F as a subset of T x X (notation F: $T \longrightarrow X$), F being called a relation from T to X. For a relation F and any set M

$$F[M] = \{x \mid \exists t \in M : (t,x) \in F\}.$$

Instead of $F\{t\}$ we shall write F(t). If F^{-1} is the inverse relation to F then

$$F^{-1}[M] = \{t \in T \mid F(t) \cap M \neq \emptyset\}.$$

Let 2^M be the family of all subsets of M. The following definition generalizes measurability of functions.

Definition 1. Consider a relation $F : T \rightarrow X$,

 $\mathcal{M} \subset 2^{\mathbb{T}}$, $\mathcal{N} \subset 2^{\mathbb{X}}$. F is said to be $\mathcal{M} - \mathcal{N}$ -measurable relation iff

$$\forall E \in \mathcal{N}: \mathbb{F}^{-1}[E] \in \mathcal{M}$$

If the family $\mathcal M$ (or $\mathcal N$) is fixed we say simply that F is

*M-measureble (or *M-measurable, respectively).

In the following we shall call attention to the special case when a structure of a measurable space is given by means of a \mathbf{G} -algebra $\mathbf{A} \subset 2^{\mathrm{T}}$ covering \mathbf{T} and topological structure is defined on \mathbf{X} .

<u>Definition 2</u>. Let \mathcal{A} be a \mathcal{G} -algebra on \mathcal{T} and \mathcal{X} a topological space. The relation $\mathcal{F}: \mathcal{T} \longrightarrow \mathcal{X}$ is said to be measurable (weakly measurable, B-measurable) iff \mathcal{F}^{-1} [M] $\in \mathcal{A}$ for every closed (open, Borel) subset M of X.

Remark 1. Since for any sets A, B the inclusions

$$\mathbf{F}^{-1}[\mathbf{A} \cap \mathbf{B}] \subset \mathbf{F}^{-1}[\mathbf{A}] \cap \mathbf{F}^{-1}[\mathbf{B}], \quad \mathbf{F}^{-1}[\mathbf{A} \setminus \mathbf{B}] \supset \mathbf{F}^{-1}[\mathbf{A}] \setminus \mathbf{F}^{-1}[\mathbf{B}]$$

are in general strict, three types of measurability introduced above need not coicide. Some connections are shown by the next theorem.

Theorem 1. Let $F: T \rightarrow X$ be a relation. Then B-measurability of F implies both measurability and weak measurability. If in X every open set is of the type \mathcal{F}_{F} , then measurability implies weak measurability.

<u>Proof.</u> Let \mathcal{F} , \mathcal{G} , \mathcal{B} be the family of all closed, open, Borel subsets of the topological space X, respectively. The first part of the theorem follows from \mathcal{F} , $\mathcal{G} \subseteq \mathcal{B}$. When $0 \in \mathcal{G}$ is a \mathcal{F}_{\bullet} -set in X and F is measurable, then

$$0 = \bigcup_{n=1}^{\infty} A_n, \quad A_n \in \mathcal{F}$$

and therefore

$$F^{-1}[0] = \bigcup_{n=1}^{\infty} F^{-1}[A_n]$$

The example given below indicates that in general other implications are not true.

Example. Let $\mathcal{A} \neq 2^{T}$ be a 6-algebra on T and (X, \mathcal{T}) a topological space. If $\{a\} \subset X$ is closed and not open we can define a relation $F: T \longrightarrow X$ as follows. Choose a non-measurable set $N \in 2^{T}$ and put

$$\mathbf{F}^{-1}(\mathbf{a}) = \mathbf{N}$$

For any open set $0 \subset X$ we define a relation $R(0) = T \times 0$ in the case $a \notin 0$. If $a \in 0$, then we put $R(0) = T \times \{p\}$, where $p \in 0 \setminus \{a\}$. If we define

$$F = N \times \{a\} \cup \cup \{R(0): 0 \in \mathcal{T}\}$$
.

then F is weakly measurable since the inverse image of any open set is the set $T \in A$. As {a} is closed and $N \notin A$, F fails to be measurable.

If we demand, in the preceding example, {a} to be open and not closed and 0 to be closed, then we obtain the relation which is measurable but is not weakly measurable. Summarizing this example and Theorem 1 we have that weak measurability does not imply B-measurability and measurability fails to imply B-measurability either. A more interesting example is given in [1] p. 58 which shows that measurability fails to imply B-measurability even if X is a topological T₁-space.

Remark 2. If F is a function, these three types of measurability are equivalent since the inclusions in Remark 1 become equalities.

SPECIAL TYPES OF RELATIONS

$F(t) = \{x \in X : f(t, x) \in 0\}.$

The last type of relation is discussed in the following theorem proved in [1] p. 65.

Theorem 2. If X is a separable metric space, x_t is measurable for each $x \in X$, f_t is continuous for each $t \in T$, then F is a measurable relation from T to X.

This theorem can be generalized assuming only f_t to be quasi-continuous. We recall the definition of quasicontinuity ([3]), since the notion is less known than that of continuity.

<u>Definition 3</u>. A function f which maps a topological space X into a topological space Y is said to be quasicontinuous at a point $x_0 \in X$ iff for every open set $V \ni f(x_0)$ and every open set $U \ni x_0$ there exists a nonempty set $G \subset U$ with

$f[Q] \subset V$.

f is said to be quasicontinuous iff it is quasicontinuous at every point of the domain of f.

Theorem 3. Let X be a separable topological space, Y be a topological space in which an open set 0 is fixed and let T be a measurable space. If $f: T \times X \longrightarrow Y$ is such a function that Xf is measurable $(x \in X)$ and f_t is quasicontinuous $(t \in T)$ then the relation

$$F(t) = f_t^{-1}[0]$$

is weakly measurable.

<u>Proof.</u> Choosing $U \subset X$ open, U is separable due to the separability of X and there exists a countable dense subset H in U. We have to prove the measurability of the set

$$\mathbf{F}^{-1}\left[\mathbf{U}\right] = \left\{\mathbf{t} \in \mathbf{T} \mid \mathbf{F}(\mathbf{t}) \cap \mathbf{U} \neq \emptyset\right\}.$$

We shall prove the equivalence $F(t) \cap U \neq \emptyset \Longrightarrow F(t) \cap H \neq \emptyset$. Since $F(t) \cap U \neq \emptyset$, there exists $x \in U$ with $f(t, x) \in O$ and hence there is $x \in U$ with $f_t(x) \in O$. Making use of quasicontinuity of f_t there exists an open set $G \subset U$, $G \neq \emptyset$ such that $f_t[G] \subset O$. As H is dense in U, $G \cap H \neq \emptyset$ which implies the existence of a $z \in G \cap H$. For the point z we have $f_t(z) \in O$, $z \in H$ i. e. $z \in F(t) \cap H$. Now as the implication $F(t) \cap H \neq \emptyset \Longrightarrow F(t) \cap U \neq \emptyset$ is obvious, we have

$$\begin{split} \mathbb{F}^{-\eta^{1}}[\mathbb{U}] &= \big\{ \mathbf{t} \in \mathbb{T} \mid \mathbb{F}(\mathbf{t}) \cap \mathbb{H} \neq \emptyset \big\} = \big\{ \mathbf{t} \in \mathbb{T} \mid \exists \mathbf{z} \in \mathbb{H} : \mathbf{z} \in \mathbb{F}(\mathbf{t}) \big\} = \\ &= \bigcup_{\mathbf{z} \in \mathbb{H}} \big\{ \mathbf{t} \in \mathbb{T} \mid \mathbf{f}_{\mathbf{t}}(\mathbf{z}) \in \mathring{O} \big\} = \bigcup_{\mathbf{z} \in \mathbb{H}} \mathbb{E}_{\mathbf{t}}^{-1} \left[O \right] \cdot \end{split}$$

The last set is measurable as a countable union of measurable sets.

To prove another generalization of Theorem 2 we introduce the notion of a P-system. (See [2] pp. 149-150.)

Definition 4. Let (X, \mathcal{M}) be a measurable space and let for each positive integer $k \in \mathbb{N}$ an at most countable covering \mathcal{P}^k of the set X be given, which consists only of non-empty measurable sets. Then $\mathcal{P} = \{P \mid P \in \mathcal{P}^k, k \in \mathbb{N}\}$ is called a P-system on X.

We shall always consider the P-system as a two-indexed system

$$\mathcal{P} = \{P_n^k \in \mathcal{M} \setminus \{\emptyset\} \mid k \in \mathbb{N}, \ n \in \mathbb{N}_k\}$$

where Nk is a subset of the set N of all positive integers.

Definition 5. If on a measurable space (X, \mathcal{M}) a P-system \mathcal{P} is given and (Y, \mathcal{T}) is a topological space, we shall say that a function $f: X \longrightarrow Y$ is regular at a point $x_0 \in X$ with respect to \mathcal{P} iff for any neighbourhood G of $f(x_0)$ there is $k_0 \in X$ such that for $k > k_0$ and every $n \in X_k$, $x_0 \in P_n^k$ implies $f(P_n^k) \subset G$. A function is said to be regular iff it is regular at any point of its domain.

<u>Definition 6</u>. A P-system \mathcal{P} on a measurable space (X, \mathcal{M}) is said to be regular relative to a topology \mathcal{T} on X iff the identity mapping

is regular with respect to ${\mathcal P}$.

If on a measurable space a P-system is given then the coverings of which this P-system consists, need not be partitions of the underlying set. However, the following lemma is true.

Lemma. If $\mathcal{P} = \bigcup \{ \mathcal{P}^k \mid k \in \mathbb{N} \}$ is a P-system on a measurable space (X, \mathcal{M}) which is regular relative to a topology \mathcal{Y} on X and $f: X \longrightarrow Y$ is a function regular with respect to the P-system \mathcal{P} then there exists a P-system $\widetilde{\mathcal{P}} = \bigcup \{ \widetilde{\mathcal{P}}^k \mid k \in \mathbb{N} \}$ regular relative to the topology \mathcal{Y} and such that $\widetilde{\mathcal{P}}^k$ are measurable partitions of X, whereby f remains regular with respect to $\widetilde{\mathcal{P}}$.

<u>Proof</u>. Let be $\mathcal{P}^k = \{P_n^k \in \mathcal{M} \mid n \in \mathbb{N}_k\}$. Form new sets

$$\widetilde{P}_n^k = P_n^k \setminus \bigcup_{i \le n} P_i^k \qquad (n \in N_k)$$

As \mathcal{M} is a 6-ring, for every $(k, n) \in \mathbb{N} \times \mathbb{N}_k$ we have $\overset{\sim}{P_n^k} \in \mathcal{M}$ and these sets are pairwise disjoint and cover again the set \mathbb{X} . Dropping out the empty set we obtain a measurable partition of \mathbb{X} ,

$$\tilde{\mathcal{P}}^{k} = \{\tilde{\mathbf{P}}_{n}^{k} \in \mathcal{M} \setminus \{\emptyset\} \mid n \in \tilde{\mathbf{N}}_{k}\}$$

where $\widetilde{N}_k \subset N_k$. The only thing which has to be proved is regularity of f with respect to the P-system $\widetilde{\mathcal{P}} = \bigcup \{\widetilde{\mathcal{P}}^k \mid k \in N\}$. As a special case we obtain the regularity of \mathcal{P} relative to \mathcal{F}_{τ} . Since for every $(k, n) \in \mathbb{N} \times \widetilde{N}_k$ we have $\widetilde{P}_n^k \subset P_n^k$, it follows

$$f(\tilde{P}_n^k) \subset f(P_n^k)$$
.

It is clear now that f remains regular also with respect to $\stackrel{\sim}{\mathcal{P}}$. We make use of this lemma when proving the following theorem.

Theorem 4. Suppose (T, \mathcal{A}) , (X, \mathcal{M}) are measurable spaces, and \mathcal{P} is a P-system on X regular relative to the topology \mathcal{F} on X. Let (Y, \mathcal{T}) be a topological space and $f: T \times X \longrightarrow Y$ such a function that every $X \cap Y$ is measurable and every $X \cap Y$ is regular with respect to $Y \cap Y$. When we fix an open set $Y \cap Y \cap Y$ then

 $F: T \rightarrow X$, $t \mapsto F(t) = \{x \in X : f(t, x) \in 0\}$

is an $A-2^{X}$ -measurable relation.

Proof. If MCX then

$$F^{-1}[M] = \{t \mid F(t) \cap M \neq \emptyset\} = \{t \mid \exists x \in M : f(t, x) \in 0\} = \{t \mid \exists x \in M : t \in {}^{x}f^{-1}[0]\} = \bigcup \{{}^{x}f^{-1}[0] \mid x \in M\}.$$

We prove that the last union can be written as a countable union of measurable sets in T. Supported by Lemma we can suppose $\mathcal{P} = \{P_n^k \in \mathcal{M} \setminus \{\emptyset\} \mid (k, n) \in \mathbb{N} \times \mathbb{N}_k\} \text{ to be such a P-system on } \mathbb{X} \in \mathbb{N} \times \mathbb{N}_k\}$

that for every $k \in \mathbb{N}$ $\mathcal{P}^k = \mathbb{P}^k_n \mid n \in \mathbb{N}_k$ is a measurable partition of X and f_t is regular with respect to \mathcal{P} . For every pair $(k, n) \in \mathbb{N} \times \mathbb{N}_k$ form the set

$$\mathbf{M}_{n}^{k} = \mathbf{M} \cap \mathbf{P}_{n}^{k} .$$

The system $m^k = \{M_n^k \neq \emptyset \mid n \in N_k'\}$, where $N_k \subset N_k$ is a partition of $M \land N_k' = \emptyset$ iff $M = \emptyset$). Choosing a point x_n^k in each set M_n^k we obtain a countable set of representatives

$$R = \{x_n^k \in \mathbb{N}_n^k \mid (k, n) \in \mathbb{N} \times \mathbb{N}_k'\}.$$

We prove the equation

$$\bigcup_{x \in \mathbb{N}} x_{f^{-1}} [0] = \bigcup_{x \in \mathbb{R}} x_{f^{-1}} [0]$$

The inclusion " > " is true because M > R. Since

$$t \in \bigcup_{x \in M} f^{-1}[0] \Leftrightarrow \exists x \in M : f_t(x) \in 0$$

0 is an open neighbourhood of $f_t(x)$ and due to the regularity of f_t with respect to $\mathcal P$ it is true that

$$\exists k_o \in \mathbb{N} \ \forall \ k > k_o : x \in \mathbb{P}_n^k \Rightarrow f_t[\mathbb{P}_n^k] \subset 0 \ .$$

However, $\forall k \in \mathbb{N} \exists n \in \mathbb{N}_k' : x \in \mathbb{N}_n^k \subset P_n^k$ and therefore the representative $x_n^k \in \mathbb{N}_n^k$ and we have

$$f_t(x_n^k) \in f_t[M_n^k] \subset f_t[P_n^k] \subset 0$$
.

This implies $t \in {}^{k}_{n} f^{-1}[0]$, which proves the required equation. Considering measurability of each ${}^{x}f$ we obtain the claimed measurability of $P^{-1}[M]$.

Remark 3. There exists a class of objects which fulfil the assumption of Theorem 4. In the paper [2] (Lemma 4.2) it is proved that in every topological space (X, Y) with a countable base of Y there is a P-system regular relative to the topology Y if it is measurable i. e. $Y \subset \mathcal{M}$. In such a case every continuous function is regular with respect to the P-system.

Remark 4. It follows from Remark 3 and from the fact that every continuous function is quasicontinuous that Theorem 2 is a special case of Theorem 4.

References

- [1] Himmelberg, C. J.: Measurable relations. Fundamenta math. 87, 1975, 53-72.
- [2] Dravecký, J. Neubrunn, T.: Measurability of functions of two variables. Mat. časopis 23, 1973, 147-157.
- [3] Martin, N. F.: Quasicontinuous functions on product spaces. Duke Math. J. 28, 1961, 39-44.

Author's address: Vladimír Toma, Katedra matematickej analýzy PFUK Mlynská dolina

816 31 Bratislava

Received: 25. 10. 1977

Súhrn

O MERATELNOSTI BINÁRNYCH RELÁCIÍ Vladimír Toma, Bratislava

V práci sú dokázané dve vety o merateľných reláciách. Nech

F je binárna relácia z merateľného priestoru T do topologického priestoru X definovaná pomocou funkcie dvoch premenných

f(t, x), ktorá zobrazuje T x X do topologického priestoru Y.

Je dokázaná slabá merateľnosť F, keď f je merateľná v t
a kvázispojitá v x. V prípade, že f je merateľná v t a regulárna vzhľadom k P-systému v premennej x, je dokázaná merateľnosť relácie F.

Реарме

ОВ ИЗМЕРИМОСТИ БИНАРНЫХ ОТНОШЕНИЙ Вледимир Тома, Бретислева

В этой статье приведены две теоремы об измеримых отношениях. Пусть F отношение из измеримого пространства T в топологическое пространство X, которое определено при помощи функции двух переменных f(t, x) отображающей T x X в топологическое пространство Y. Доказывается слабая измеримость F когда f измерима в t и квазинепрерывна в x. Когда f измерима в t и регулярна по отношению к P-семейству в переменной x, тогда доказывается измеримость F.