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0. Introduction

In [4] a structure of closed category for any initially
structured category in the sense of [8] has been constructed.
Moreover, the corresponding tensor product has been shown to be
in a certain sense the smallest possible. The known closed struc.-
tures, e.g. the known closed structurein the category ‘J~ of topo-
logical spaces, in the category of partially ordered sets, the
closed structures studied in [10], [4] and other, are either the
special cases of the closed strugture defined in [4] or the ca;-
tesian closed structures. In this paper, closed structures in
the category C of all topological spaces in Gech'é sense from
the year 1937 (see [2]) and continuous maps will be studied. It
will be shown that this category admite (up to a natural iso-
morphism) precisely two closed structures without being carte-
sian closed. This shows that the above mentioned two types of
closed structures do not include all closed structures in ini-
tially structured categories. Moreover, it will be pr;ved that
in the full subcategory ‘J-- of /C consisting of all F-spaces
there exists (up to an isomorphism) exactly one closed structure.

Note that # is the reflective hull of the category ‘J'- (whichis



a full subcategory of C) and the coreflective hull of § in €
is the category ’of closure spaces studied in [4]. The concept
closed category is used in the sense of [7, p. 150] and it co-
incides with the concept symmetric monoidal closed category used
in [5]. Recall that a tensor product is a symmetric monoidal
structure extendable to a closed structure.

Throughout this paper all subcategories will be supposed to
be rul1‘ and isomorphism-closed.

1. Tensor products in the category C

A C-space, i.e. a topological space in Jech’s sense from
P

the year 1937, is a pair (P, u) where P is a set and u: 2 —'ZP
is a map satisfying

(i) uw=9¢

(ii) MC uM for each M e 2¥

(i1i) Lc M implies uL C uM for all L, M g 2F
and called a C-topology.

It (P, u), (Q, v) are C-spaces, then a map £: (P, u) —>
—>(Q, v) is said to be continuous provided that f[uM] C vf(M]
for each M e 2F.

The class of all C-spaces together with the class of all
continuous liaps between C-spaces form a category which will be
denoted by C . We shall often write only P instead of (P, u) and
then M instead of uM for M C P.

Recall (see [8]) that (@, U) is said to be an initially
structured category provided that @ is a category amnd
U: @, —™ Set is a functor such that the following hold:

(1) 1 ("'i: x-—-UA’_)i €1 is a source in Set, then there

° Ua
exists an (epi, monosource)-factorisation (X — UA —5-*-IJA:|.):l cI
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in Set such that (.i)i €1 is a U-initial source, i.e. for every
source (bif B_.Ai,i €I and every map g: UB—>UA with Uliog =
= Uby for each i € I there exists k: B—>A for which Uk = g
and Iiok = bi for all i € I.
(2) U has small fibres, i.e. for every set X there is at
moat a set of pairwise non-isomorphic Q@ -objects A with UA = X,
(3) There exists (up to an isomorphism) precisely one
A -object Z such that UZ = {#} (the singletom in Set).

Initially structured categories are closed under the forma-
tion of non-trivial coreflective and epiu-mﬂective subcatego-~
ries (k is an epiu-norphism iff Uk is an epimorphism).

It is obvious that the category C together with the forget-
ful functor U: { —> Set; (P, u)—>P, £ —>f is an initially
structured category (we identify Uf and f).

Let X, Y, Z be sets and f: X XY—>Z a map. Then for each
a€X f, denotes the map Y—>Z defined by fa(y) =z f(a, y) and
for each b€ Y £° denotes the map X—>Z given by fb(x) =
=f(x, b). If MC X XY, then for x€E X xM =
={y€Y: (x, y)E MY and for y €Y My ={x €X: (x, y) € M}.

lel. Definition. Let (P, u), (Q, v) be C-spaces,
MCP X Q. Define (u ® V)M = (Ux c P(lx) X v(xM))) U
U(U’ c Q(u(ly)X {y})). Then (P XQ, u ® v) is a C-space and
it will be denoted by (P, u) ® (Q, v).

1.2. Remark . Xusually denotea the cartesian product
in Set. All other categorical products will be denoted by I1.

l.J3. Proposition. Let P, Q, S be C-spaces. Then
the map £: P ® Q —*S is continuous if and only if for each

Q€ Pand bE Q £, and £® are continuous maps.
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Proof . Immediate from the definition of P ® Q.

The map @: obl X obC —> ob{ defined in 1.1. is a spe-
cial case of that in [4]. By [4; Proposition 1.6.] it can be
extended to a functor by putting f® g = £ X g for all ( -mor-
phiems £, g and by [4; Theorem 1.9.] ® is a tensor product.
Following [4] the corresponding internal hom functor is defined
as follows: Let (Q, v), (S, w) be C-spaces and (s, w)Q a (object
part of) (C-power. Denote by [(Q, v), (S, w)] the subspace of
(s, w)Q consisting of all continuous maps (Q, v)—> (S, w). It
f: P°—sP, g: Q— Q" are C-morphisms, then the map
(£, &]: (P, Q1—>[P", Q] is given by [£, gl(t) = gotef. The
assignments (2, Q)—>[P, Q], (£, g)—=[f, g] form the required
internal hom functor. Thus we have:

l.4. Theorem. (C, ®, [-, -]) is a closed category.

1.5. Definition. Let (P, u), (Q, v) be C-spaces.
‘Put (u RBv)M = Uy x g c u{ud X-¥B) for each MC P X Q. Then
(PXQ uBvw) is a/.d:pace and it will be denoted by
(P, u) & (Q, v). |

1.6. Lemma . Let £: P—»P’, g: Q—> Q° be C -morphisms.
Then £ X g: PEQ—>P  ®Q " is a C -morphism.

Proof .Let MCP®Q and (a, b) € M. Then there exist
ACP, BCQeuch that AXBCMand a €3, b€ B. Evidently,
£[A1 X g[B1 = (£ X g)[A X B] € (£ X g)[M]. Since £(a) € F[A]
and g(b) € g-[B_] we obtain that (f X g)(a, b) =
= (f(a), g(b)) € T]A1 X g[B] C (£ X &) [M].

1.7. Corollary. ®: CXC——>(|; (P, Qr—PmQq,

(£, g)—>f X g is a functor.

1.8. Proposition. (C,®) is symmetric mono-
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idal category. }

Pr oo f . Evidently, {%} is a unit object of m,
1p: (v} ®P—>P; (», y)—y, rp P ® (%} P; (x, ¢ )—>x
and cpq: PRQ—>QB8P; (x, y)>(y, x) are natural isomor-
phisms, Let P, Q, S be C-spaces and <pes’ (PRQA B S—
—>P B (Q ®S) be the map defined by ((x, y), s)—>(x, (y, 2)).
Let M C (P ®Q) ®S. Then ((a, b), ¢) € H iff there exist
ACP,BCQ, CCS witha€ 4, bEB, cEC *nd (A XB)XCCM.
Clearly, A X (B X C)C &p 5[M] and this is equilvalcnt with
(a, (b, ¢)) = dPQs((a, b), ¢) EdPQs[l]. Honcd\ < pas is en iso-~

morphiem which is evidently natural. The coherence axioms are
obviously fulfilled.

Recall (seoi [3]) that if ((Pg, u'a))a €4 is a set-indexed
family of C-spaces, ((ja)a e a» P) is a Set-coproduct of
(Pa)a c A and u is the C-topology on P defined by uM =
= U, ¢, dgugd7' 11, then ((2, w), (j,)

duct of ((P

a€ A) is a € -copro- .

a? “a))a e A° It is eaey to see that it holds:

1.9. L e mm a . For each C~space Q the functor

-®Q: ¢ —> ¢ preserves C-coproducts.

1.10. L e m m a . For each C-space Q the functor
= BQ: ¢ —> ¢ preserves (-coequalizers.

Proof . Recall (see [3]) that (e, E) is a coequalizer
of £, g in ¢ iff (Ue, UE) is a coequalizer of Uf, Ug in Set
(U: ¢ —>Set is the forgetful functer) and e is an extremal
C*Dinorphign. A C-morphism h: (P, u)—>(Q, v) is an extre-
mal (-epimorphism iff h is a surjection and for each M CQ
VK = h(un™' [M]]. Let (e, E) = Coeq(f, g) in C. Evidently,
(Ue X Ulgs UE XUQ) is a coequalizer of Uf X Uly, Ug X Uly in
Set. Thus it suffices to prove that the functor - B Q preserves
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extremal C -epimorphisms. Let e: P—aK be an extremal (-epi-
morphism, M CK ®Q and (a, b) € M. Then there exist A CK,
BCQsuch that AXBCMand a€ L, b €B. Since e is an

extremal (-epimorphism there exists c € e '[A] with e(c) = a.
But "™ (A] XBC(e X 1Q)" [M] and this implies that

(e, b) € (¢ X 19)7' [u]. Evidently, (e X 1g)(c, b) = (a, b) 80
that e X IQ is an extremal (-epimorphism.

111l Proposition . For each C-space Q the func-

tor - ®Q: ¢ —>(C preserves colilits‘;

Proof . Since € is cocomplete, well-powéred and co-

-well-ppwered it follows from 1.9. and 1.10. (see [6]).

1.12. Theorem [6]. Let F: @ — ® be a functor,
Q> be well-powered, complete and have a coaoparator& Then the ‘ ‘
functor F has a left adjoint functor if and only if F preserves
limits. '

1.13. Th e or em . There exists an internal hom functer
H: C°’XC —> C such that (C,R, H) is a closed category.

Pr oo f . The category £ has a separator (every non-emp-
ty C-apcco)_ and is co-well-powered and cocomplete. Hence by
1.11. and thi dualigation of 1.12., for each C-space Q the func-
tor - ®8Q: C—>C has a right adjoint functor.

1.14. Rem a r k . Denote by 02 the Sierpinski doubleton.

It is easy te check that a® ® a2 is not isomorphic with

6% @ 0° and therefore m is not isomorphic with ©. Recall (see
[3]) that if ((P,, u,)), ¢, is a set-indexed family of C-spaces,
(P, (p.). € A) ie a cartesian proeduct of (P‘). c A d u is C-to-
pology defined by uM = a €A p;' [u.p. M]] for each MC P, then
((P, u), (pg)y g 4) 18 & € -product of ((P,, u,)), ¢ o Now dcf /;
note by D, the discrete doubleton. It is easy to see that D, M né
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is not discrete so that [} is not a temsor product. Thus ( is

not cartesian closed.

To show that any tensor product in C is isomorphic either
with ® or with B the next theorem will be very useful. Recall
(see [7]) that a pair (3, V) is a concrete category provided
that ¥ is a category and V: ¥ —> Set is a faithful functor.

1.15. Theorem [9] . Let (¥, V) be a concrete cate-

gory with the following properties:

(1) If e¢: VA—>VB is a constant map, then there exists
a X-morphism k: A—>B with Vk = c.

(2) For every bijection f: VA—>X in Set there exists a
X -isomorphism h: A—>B with Vh = f.

(3) Thore'oxieta a X -object A with card VA 2 2.

Let there exist a closed structure (00, H) on ¥X. Then
there exists a closed structure (O, G) on X isomorphic with
(O, H) with the following properties:

(a) Card VI = 1 where I is the unit of O.

(b) VA X VB C V(A O B) for all ¥ -ebjects A, B.

(c¢) For each £y, g: A O B—>C, Vflv‘ X VB = Vg|v‘ X VB
implies £ = g (| denotes a restriction of a map).

(@) V(£ O @)|y, x yg = V£ X Vg for each f: A—>A",

g: B—B", ;

(e) va(B, C) = K(B, C) for any K-objects B, C.

(£) v(er)(a) = (b+—> Vf(a, b)) where 6: K(A OB, C)—>
—>K(a, G(B, C)) is the corresponding adjunction.

(&) V(6 'g)(a, b) = (Vg(a))(b).

If, moreover, (¥, V) fulfils ,

(4) XC VA implies that there oxiat/o jJ: B—>Awith VB=X
and Vj(x) = x for all x € X and e
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(5) for every ‘X -epimorphism e Ve is a surjection,
then
(1) VAX VB = V(A O B) for all ¥-objects A, B.

Since C and % fulfil (1) - (5) of the last theorem we can
adopt the following restriction without loss of generality.

1.16. Convention . Throughout the remainder of

this paper all closed structures on C, Y will be assumed to
fulfil (a) - (i) of 1.15.. It is easy to check that if
aef{c,¥Y, (a,0, H) is a closed category satisfying this
convention, a is the associativity and ¢ the symmetry of O, then
for any P, Q, S € obQ 8pas is given by ((x, y), z)—(x, (y, z))
and cpQ by (x, y)—(y, x).

1.17. Proposition. If (C,0O, H) is a closed ca-

tegory, then for any C-spaces (P, u), (Q, v)
idp Q (P, u) ® (Q, v/ (P, u) D (Q, v) is a C -morphism.
Proof . Immediate from [4; Proposition 1.12.].

Let (P, u), (Q, v) be C-spaces. We shall write

(P, u) = (Q, v) iff P = Q and for each MC P uM C vM. Let §

be an arbitrary cardinal. Choose a fixed point in € and denote
it by Op. Put Ag = € - {O;}. Now define the C-topology on { by
M= M for each Me 2§ - {A;} and Kg = § . Denote the just de-
fined C-space by Gf. If ¢ =Vn is a finite cardinal, then On =0
(n={0, 1, ..., n = 1}). Note that for any cardinal § o is
also an F-space (i.e. the closure operation is idempotent). In
[3] it has been proved that for any cardinal « 22 the core-
flective hull of the class Y;‘ = {GE: §2«} in C coincides
with C and then, evidently, the coreflective hull of L2 Iin 5
coincides with ¥ and for § ® ¢ every map f: GE—- 6% such
that f(Og) = O and f([Ag] ='A§ is an extremal C -epimorphism
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and also an extremal ‘i:-epimorphism.

1.18. Proposition. Let A€{¢,¥}, (a,O, H)

be a closed category and o« 22 a cardinal. Then the tensor pro-
duct O is uniquely determined by its values at (Gg, Gf) for all
€, § = «.
Proof . Let P, Q be A-objects. Since the coreflective
hull of f;‘ in @ coincides with 4 there exist extremal Q-epi-

GEb —> Q for sui-

morphisms f: Ua €A Gh—»P, g: Ub €B
table Gia, (3Eb belonging to !f; and sets A, B. The Q@ -morphism
G?b)

tog=1~ Xag: (I_I‘IEAGE"‘)r_uube13
= U(a, b)€EAXB (Ggaucb)——’PDQ is an extremal Q -epi-

morphism ( O preserves extremal (l-epimorphisms which coincide
with regular ones in (') so that the a-topology of the space
POQ is uniquely determined.

1.19. Proposition. Let (Q,0, H) be a closed
category, @, €{C, 3’} . Then for any cardinals §, §{ & 3,
G§D 6'= 0t 0c’ where the C -topology v of af (o) of is de-
fined as follows:

(i) I (x, y) € vM - N, then x=0§ or y = 0f .

(ii) (OE, yo)E vM - M for y, # O¢ iff My, =
={x€q: (x, yo) €EMY= Ag.

(iii) (xy, Og) € VM - M for x, # 0¢ iff x M = Ag.

(iv) (OE' O¢g) € vM - M iff for each x € Ag xM UOGI = Ag

or O¢ € xM and for each y € Ag hUlOg =AE or °§E My.

_ Proof . For each x EAE define £ : GE—’A§ (the sub-
space Ag of Gs is a discrete space) putting fx(y) =yfory# 0;
and fx(O‘) = x. Evidently, f_is an extremal Q -epimorphism. If

X is a discrete space, then X = Llx €x {x}. Hence for an arbi-



- 38 -

trary (-space Y XOY = (leex {(x}D)oY-= le € X ({x}0O¥Y).
Clearly, if Y is also a discrete space, then XO Y is discrete
8o that A; O A¢ is a discrete space. Denote the Q-topology of
of o af by u. "

(1) Lot Mcaf 06l ana (x, y) € uk - M. Let x # 0¢ and y # O
‘ana x° €0}, y'€ @ such that Of #x' #xana O £y #y.
Then (f_- ny')(x, y) = (x, y) g (£ - ny')[ll] =

= (£,- O fye)[l] - a contradiction. Hence x = Og or y = Of.
(ii) Let (OE’ Yo) € uM - M, y, # Og and y, € A¢ - {y,}- Then
for each x € Af we have the (A -morphism

. af qaf =
: 48 Df’l' @’ aac —->A§ DAg with (f, ny‘)(o§, ¥o)
= (x, yo) € (fx o fy1 Y] = (fx a fy1)[ll]. Since

-1
(£, ny‘) (x, ¥o) = {(O;, yo), (x, yo)} and (Ot, yo) & M it
follows that (x, yo) € M. Hence I(yo = Af‘
. (1ii) Analogously as (ii)- '

f
(iv) Let (0;, O) € uM -gl, 7o € Ag. Consider 1 nyO: o oa
—dlaag=U, ¢, @O (- 1) (ot g, o) =

U((Myy U M0g) X {y,}). Thus for each y, € Ag,

(0,, ¥o) € (WOU MO¢) X [yo}, i.e. for each y, € A¢ My, U MO¢ =
= AE or °§ € ho. Similarly it can be shown that for each
x € Ag xlUO;ll- Ag or Og € xM.

1.20. Remark. Let £, ¢ & 2 Dbe cardinals. Denote by u
the C-topology of G‘ ® G§ and by v the C-topology of Ge (o) GE.
If (x, y) € of xaf - {(0§, 0¢)} amd MC ot X Gg, then

(x, y) € uM iff (x, y) € vM. Hence, if (C, O, H) is a closed ca-
tegory and v is the C-topology of ('}§ D G', then for
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(jA) A€y uniquely determines the s'-norphian

p: U AEY A—>G3 06> which is evidently an extremal ';-opi-
morphism. But then p D1, 1 O p are also extremal ?-opinor-
phisms which uniquely determine the F-topologies of

(63 oa’) oa’
map a: (03003)06 :
—>(x, (y,‘s)). Since (\f,l:l, H) is a closed category (by 1.16.)

and G3 a (03 o 03) respectively« Consider the
3 —d oo (x, ), 2)—

a has to be an f-iaonorphiu. Denote by v, the C-topology on

63 X a3 ) X a> for which pD1 is an extremal € -epimorphism
and by w, the C-topology on G3 X (C}3 X 63) for which 10 p is
an c%trenai € -epimorphism. Then the F-topologies of

(06’ Da® ana ¢® O (63 063) are the F-modifications of

v, and v, respectively. Now consider the set X =

= {((0, 0), 1), ((2, 2), 1), (2, 2), 0), ((O, 1), 2), ((1, O), 2),

((1, 1), 2)}. Then ((0, 0), 0) € w,X. Indeed, h: Gg'—; @3;

(0, 0)—0, (2, 2)—1, (0, 1)+—2, (1, 0)—>2, (1, 1)—>2
is an extremal ‘5-epinorphin. Evidently, (h O 1)-‘[31] = X.
If ((0, 0), 0) ¢ X in Gg' DG3, then it is easy to verify that

X=X in 0210 G3' and therefore X = X in Gg a 03. Since
1
hO1 is an extremal %-epimorphism and (h O1 )'1[H;I is closed

it follows that H, is closed in G3 O@3 - a cont}adiction. Hence
(0, 0), ® €X in 031 D 6 and therefore ((0, 0), 0) € w,X.
Since the F-modification of v, is coarser than v, (0, 0), 0) €X
in (6 0 @) oa’. consider alxl = {(0, (0, 1)), (2, (2, 1)),
(2, (2, 0)), (0o, (1, 2)), (1, (0, 2)), (1, (1, 2))}. Let

(x5 (3or 35)) € w,alX] - a[X]. Then there exists A€ ¥ such

that (xg, (¥4, 25)) € EL -B, in 6> O A where B, =

= (13 p)~'[alx]1 N (6> D A). Then by 1.19. Xy =0 or (yy 3zy) =
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(x, y) € (a* xa%) - 1o, o)) ama Mcal xa' (x, ) eun
iff (x, y) € wM. Therefore GQ CJG§ # Gt ® Gf iff there exists
wcat xol with wu - um= {(OE, 0¢)}.

. Let (C,0, H) be a closed category and

a
there exist §, ¢ = 2 such that (Of', 0(')¢ AG’XAg’ in
ot oet' . Tmen o= 0®.

1.21. Lem

\‘a

Proof . Consider the extremal C-epimorphisms

2 og >0, nlagd = {1}, & of — a2, o’ >0,

n: 6f—a
k[Ag'] = {1). Since h O k is an extremal C-epimorphism and
(ho K7 (1, 1) = A¢ XA¢ we obtain (0, 0) ¢ {(1, 1} in

a2 [m] 62 so that (it can be easily shown that) a2 [m] (}2 =

= g2 ® a°. Now suppose G, § 2 2 to be arbitrary cardinals. We
need to show (by *¥.20.) that for each M C Gg DG§

(0g, Of) €U - M in 6t Ot implies OgM = A¢ or MOg = Ag. Let
(Oe,' Og) € M- Min GE D Gg and there exist some elements

(O¢, ¥o)» ¥o # O and (xy, O¢), x, # Of for which (Of, y,) €M
and (x5, O¢) ¢ M. Define the C(-morphiems f: GE —’quii} by
0g—=0, xg—>1, £lAg - {x}] € {#} and g: 65 —=a?Li{v} by
0g—>0, y,+>1, g[Ag - {yo}] C {#}. For the C-morphism

toe o 0t —=62 U () D (2L (s = (62 0e?) U (62 o whUl
U({*} 06%) U ({sYD {s)) we have (£o g)(u]lN (a° oa?) =

= {(1, 1)} 8o that (fug)(0§, 0¢) = (0, O) &

¢ (to)MIN @2 06 = (£ o &) MN (62 06°). Hence
(£ O g)(OQ, Og) € (fog)M] - a contradiction. Thus G.E D(!§ =
4-('.}t0(.}f for any cardinals g,gaz so that O =@®.

1,22, Lemma ., If (C,0, H) is a closed category and
O# ® ®, then G ma3 <a Oad.

Pr oo f . Evidently, it follows from 1.21. that O # ®
implies 0f maf € o' O for each ¢, 2 2. Let oF ®.
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Then there exist g, ¢ > 3 such that Gg ® G§< GE (m] Ge (by 1.18).
Therefore there exists MC o§ x Gg with (OE' O¢g) € vM - uM
where u is the topology of G§ = G§ and v is the topology of

(!§ DGf; (O§, Og) € uM implies M ¢7A§ X Ag and there exist
X, € Ag and y, € A¢ such that (Of’ Yo) ¢ M and (x,, Of) & M.
Since (Oe, Og) € vM it follows that (xo, 'yo) €E M (by 1.19.). Let
(xq, yl) € (AE X Ag) - M. Then (x,, y,) # (x5, J,) 80 that

x, # x, or y, # Yo+ Denote by w the topology of @ ® a3 ana by
~ the topology of a3 DG3.

1. Let x, = x, and y, # y,. Define f: a8 — a3 by £(0g) = 0,
£xg) = 1, £[6f - {0, x}] = {2) and g oS =3 (x} by
g(0g) = 0, g(yo) =1, g(yl) = 2 and g(y) = ¥ otherwise. Clearly,

f, g are C-norphigne so that f Dg: GE a G§—>G3 (m] (G3L| {«}) =
= (G3 a G3) U (G3 O4{%}) is a ( -morphism. Therefore

(£ 0 @) (0g, 0¢) = (0, O) E (fO@MIN (3 o) =

= (o) mIN o6 c o, 2), (2, 0, (1, 1), (2, 1), (2,2)}.
But (0, O) does not belong to
v{(0, 2), (2, 0), (1, 1), (2, 1), (2, 2)}. Thus &3 ® a<a® Oa’.
2. ¥5 = y, and x, # x, - similarly as 1..
3. Let x, # x,, yo # ¥+ Define £: af —a3L (s} by £(0g) =
= 0, f(xo) =1, f(x,) = 2 and f(x) = ¥ otherwise and g as in 1..
By considering the (-morphism £ O g we similarly as in 1.
obtain that G ®a>< a3 oal.

Now denote by f the ( -morphism G3—'G3; 0—0, 12,
2+ 1, Evidently, f is a (-isomorphism and therefore f; =
=fQ 103, £, = 1G3 of and f3 = £ Of are (-isomorphisms.

Throughout the remainder of this section let ((,0, H) be

a closed category with O# ®, ® . Then (1.22.)
33 ®a3 <o 063, Denote the C-topologies of G3 @G>, 63 m a3
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and 03 (m] G3 by u, v and w respectively. Let MC 63 X 03 such
that (0, O) € wM - vM. Since (0, 0) € wM - M, M must fulfil
1.19.(iv). Since (0, 0) & vM it follows that card MO S1 and
card OM €1 (M0 = {xEG: (x, 0) E M}, OM = {y €63 (0, y)EN);
if card OM>1 or card MO > 1, then (0, O) EuUMC VM - a
contradiction). (0, O) ¢ vM implies {1, 2} X {1, 2} ¢ M ana
therefore MO ¥ @ or oM % 2. (Suppoao. the contrary. Then
1.19.‘(1v; implies {1, 2} X {1, 2}cM.) I£ (0, i) and (j, 0) o
not belong to M for i, jE {1, 2}, then (j, 1) € M (1.19.(iv)).
Put ¢, = {(0, 1), (1,70, (2, 2}, ¢; , , =£,[Cc], 15123,

b, ={(0, 1, (1, 2), (2, 22}, o, , , = £,[D] for 151 53,

D, 4 i c[DJ] for 1S j 4 where c: (x, y)—> (y, x). From
the considerations above it easily follows that (0, 0) € wi - vM
implies C; C M for some i€ {1, 2, 3, 4})or D; C M for some j,
1&j%8 foreach Mc 3 xa’. Put 4, ={(0, 1), (1, 0),

(1, 1), (1, 2), (2, 2}, &y, =2£,[a,] where 151 =3, A o
= c[a;] where 1 5 j 54, B, = {(0, 1), (1, 0), a, 2), (2, 1),
(2, 2)}, By , ;4 =2,[B,) where 1541 3. Let ¥ =

={a: 1 =4 §~8}U{Bj: 1 £§ S4). Evidantli, (v, 0) € vX

for each - X EY . On the other hand all X € ¥ fulfil the con-
dition 1.19.(iv). Moreover, every M CG3 X g3 satisfying
1.19.(iv) and such that (0, O) ¢ vM is a subset of some X € ;.
Evidently, G3 ® G3 < 03 o 03 implies that there exists some

X e ; with (0, O) € wX. Since (0, 0) €EwA; for i€ {1, 2, ..., 8}
iff (0, 0) € wA, ana (0, 0) EwB; for j€ {1, 2, 3, 4} ire

(o, 0) €.wB, we have:

1.23. Lemma_. If 6 Ba’ <a® 0a3, then (o, 0) € wA,
or (0, 0) € wB

I ° ’
Now suppose the topology w of ¢3 aa’ to fulfril (O, O)EvB1 .
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Let ¥, be the family of all subssts M of 63 X a3 with

(0, 0) € wM - vM. For each M € ¥, define the C-space G= on
the set M | {(0, 0)} by M=MU {(0, 0)} and K = K for all
KCMU{(©, 0)) ,K#M (m=1+card M and evidently Gy is
isomorphic with G"). The family {Gy: M€ ¥,} denote by ¥,. Ana-
logously define G on K U{(0, 0)} where K = {1, 2} X{1, 2}
Pat P={{x} 00 0sx s2}U{c? o{x}: 0=k s2}UY,U{cg}.
For each De ¥ p: p—a3 0g3: s—>3 isa C -morphism and
the family (jp)pc ¢ uniquely determines the C -morphism

p: Upey? —>a3 0a® which ise evidently an extremal ( -epi-

morphism. Then pO1 3 and 1 ;0p are extremal (-epi-
G

3
morphisms which uniquely doterngno the C-topologies of

@3 06)0ad anda 63 0 (a3 0ed) respectively. Next we show
that the map a: (63 D @3) 0@ —a° O (a3 o ad);

((x, y), s)—>(x, (y, 2)) is not a C-isomorphism. Consider the
set X = {((0, 0), 1), ((O, 1), 0), ((O, 1), 2), ((1, O), 1),

(G, 1), 1), (2, 1), 1), (2, 2), 1), ((1, O), 2), ((1, 1), 2),
(2, 1), 2), ((2, 2), 2} (a® 0 a®) o ¢>. Then ((0, 0), ) € X
in (63 0a3) 0 63, In fact, (p O 103)"‘ [x] N (Gg1 06) = X and

((0, 0), ) E X 4in G OG> because f: th—’GB;
1 _

(0, 0)—>0, (0, 1)1, (1, O)—>2, (1, 1NF>2; (2, 1)+—>2,
(2, 2)—>2 is an extremal ( -epimorphism and therefore f O 1|

(we write 1 instead of 1 3) is also an extremal ( -epimorphism,
G

(tan7'[B] =x anda (£ a7 (0, 0) = {((0, 0), )} (ana
(0, 0) € wB,). Now it suffices to show that (0, (0, 0)) ¢ alx]
in @3 o(e® o6’). Clearly, alxl = {(0, (0, 1)), (0, (1, 0)),
(o, (1, 2)), (1, (0, 1)), (1, (1, 1)), (2, (1, 1)), (2, (2, 1)),
(1, (o, 2)), (1, (1, 2)), (2, (1, 2)), (2, (2,'2))}.
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(0, (0, 0)) € a[X] iff there exists D& 9 such that

(0, (0, 0N € (1a P '[alx]]1 N (6> @D) in 6 OD. Denote
(+ o p)” ' [alx]] N (3 o) by Hj. We want to show that for each
DEY (0, (0, 0)) ¢ Hyin G O D. Obviously, it suffices to
consider the following cases:

(1) Let D = {0} O G3. Then 1y = {(0, (0, 1), (1, (0, 2)),
(1, (0, 1))} and evidently (0, (0, 0)) ¢ﬁD (because

(0, 0) ¢ {(0, 1), (1, 2), (1, N} in &> OG> by 1.19.(iv)).

(2) 1£ D = G 0 {0}, then Hy = {0, (1, 0))} end clearly
(0, (0, 0)) ¢ ﬁD.
() 1r D=0l then Hy = {(0, (1, 2), (1, (1, 1)),
(2, (1, 1), (2, (2, 1)), (1, (1, 2)), (2, (1, 2)), (2, (2, 2))}.
Let (0, (0, 0)) eED. Since Hp(0, 0) = # we have H)(2, 1) =
= {1, 2} by 1.19.(iv) but this fails to be true. Hence
(0, (0, 0)) ¢ H.

(4) Let D€ ¥,. Because Hp(0, 0) = g, (0, (0, 0)) € H
implies that 1Hj U OHp = D - {(0, 0)} ana 2Hp U OHj =
=D - {(0, 0)}. But HyN 2 {0, 1), (1, 2)},
o, < {(0, 1), (1, 0), (1, 2)} so that D - {(0, 0)} C
c {0, n, (1, 2), (1, 0), (1, 1)}. Since D - {(0, 0)} belongs
to f, it follows that D - {(0, 0)} has to fulfil 1.19.(iv).
But {(0, 1), (1, 0), (1, 2), (1, 1)} does not fulfil it. Hence
(0, (0, 0)) & Hy.

Thus for each D€ ¥ (0, (0, 0)) ¢§D y in @ oD eo that
(o, (0, 0)) ¢ a—[x—] in 63 o (a3 DG3) and therefore a is not
continuous. i

So, we have proved that (0, O) cannot belong to wB, and
therefore also to wB; for each i€ {1, 2, 3, 4}. Obviously,
(0, O) & wi if M CB; for some i€ {1, 2, 3, 4}. This implies
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that if G3 ®GS <G> DGl (£G° O0G2), thea (by 1.23.)
(0, 0) € wA,. Put ¥; ={K: Mced Xxa3 and (0, 0) € wi - vM}

(clearly, M € 93 implies M C A, for some j€ {1, 2, ..., 8}).

J
For each M€ YB define G: analogously as in the previous case
and put ¥, = {0} ue ¥} Lot ¥'= ¥, U{{x} D3 05k =2}U
Uf{e O{x}: 0 £x =2} U{6g}. The C-morphisms

(J‘D: p—»a> o G3; z+—> ‘)De?' uniquely determine the

€ -morphism p: UD €y p—a3 ogd

which is evidently an
extremal ( -epimorphism. Again the extremal (€ -epimorphisms
pO1 and 1 O p uniquely determine ((}3 (] G3) o’ and

3o e na) respectively. By considering the set X =

= {((0, 0), 1), (1, 1), 0), ((1, 1), 1), (C1, 1), 2), ((1, 2), 2),
((2, 2), 2), ((0, 1), 2), ((1, 0), 2)}Cc (a® @a®) OG> it can
be easily shown that the map a: (G5 OG3) OG> —

—a3 o (G3 003); ((x, y), 2)—>(x, (y, z)) is not a € -iso-
morphism. In fact, it is easy to check (analogously as in the
previous case) that ((0, 0), 0) € X in 63oed) o but
(0, (0, 0)) ¢ a[X] in G DO (@G> O G3). Hence the hypothesis

a3 & G3 < 63 a G3 yields a contradiction so that it holds:

1.2. Theorem. If (C,0, H) is a closed category,

then O is naturally isomorphic with @ or with ®.
. c
2. Tensor products in the category #

Recall (see [2]) that an F-space is a C-space (P, u) for
which u(uM) = uM for each M C P. The subcategory %ot C
consisting of all F-spaces is a bireflective subcategory of (C
(see [3]) and therefore (by [8]) it (together with the forgetful
functor) is an initially structured category. If (P, u) is a
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C-space, v is the F-modification of u (i.e. v = ut vhex‘-e A is
the smallest ordinal such that u’*'M = u'M for all M C P), then
(idp, (P, v)) is the % -reflection of (P, u).

Let (P, u), (Q, v) be F-spaces and (idp X Q? (P, u) @’(Q, v))
is the ¥-reflection of (P, u) @ (Q, v). Then, obviously,
O FXF — F (r, Or—>P0ogQ, (£, g)—7 e e=1fXg
is a functor.

2.1, Proposition.Let P, Q, Sbe F-spaces. Then
a map h: PO“ Q—>S is continuous if and only if for each

a€ Pand b €Q ha and hb are continuous.
Proof . Immediate from 1.3. and from the properties of
the ¥ -reflection (iap X Q’ P 0;. Q.

Since ¥ is bireflective it is closed under the formation
of C(-products and subspaces. Therefore if P, Q are F-spaces,
then [P, Q] is also an F-space so that [-, -],_=
= [-, -] lgOP X§* §°P xF —>F is a functor and by

[4, Theorem 1.9.] we have:

2,2. Theorem. (%, ®g, (=, -]’) is a closed category.

In the following we shall prove that it is (considering Con-
vention 1.16.) the only closed structure on 5.

2.3. Proposition. If(f,D,H) is a closed ca-
tegory, then idp Q (P, u) O, (Q, v)—/ (P, u) O(Q, v) is an

g-norphin for all F-spaces (P, u), (Q, v).
Proof . Immediate from [4, Proposition 1.12.].

Recall (see the first section) that for any cardinal «=2
the coreflective hull of ¥, = {af: §2«} in ¥ coincides
with %. Hence, if (¥, 0, H) is a closed category, then 0O is
uniquely determined by its values on % X%
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Let g, § 2 2 be cardinals and u be a C-topology of
G‘ 00‘. It is easy to verify that’ u2 is the F-modification of
u, i.e. u2 is the topology of Gﬁegaf.

2,4. Proposition. Let (5’,0., H) be a closed ca-
tegory, @ OG> = ¢°@¢ G°. Then D= . |

Proof . Suppose D # @q‘ Then there exist §, § =3
such that G’e’G§< ¢t oc’ (sl 0a'). is implies that
there exists a set M C G‘ X G§ for which (0! y Og) € wi - u’M

where w denotes the F-topology of G‘ o Gg and u is the C-topo-
logy of af e af. (0g, O¢) ¢ u’M implies that there exist v
Yo €Ag amd x, e&; with (Oi, yo) €uM and (x,, Og) €uM. But'
then My, G Ag and x M G A¢. From 1.19.(iv) it follows that

(xy) ¥o) € M. Therefore the maps f: & —a3u {x}; OV—-DO,

f[A; - My, C {1}, xym>2 and f(x) = * otherwise,

g: Gg—-’G3LJ{&}; og+—>0, glAg - xMJC {1}, y,—>2 ana g(y) =
= % otherwise are defined correctly and evidently they are con-
tinuous. Then £ 0 g o 0 o —= (a3 U {sh) o (@ LD =

=@ o) Uxo o) U@ o{s) U Uajo ) is also conti-
nuous and (£ O g)(0f, Og) = (0, 0) € (f Og)[M] in

(63U ) O (U {#Y) ire (0, ) e(f0D)MIN(G O in
o =adeged. Bt (romMIN @ oed) cio, n, (1, 0,
(1, 1), (2, 2)} =D and (0, 0)& D in G3@$ @ - a contra-
diction. Thus GQ D G‘ = G‘Q;G‘ for all cardinals f, § =3,
i.e. O = 03 a

Throughout tho- remainder of this section, let (¥, O, H) be
a closed category with 0O # O;. Then by 2.4. and 1.19.
og 0’ < 03 06® = 6> 0 63, Recall that £: 63— a3; 0o,
1—2, 2—>1 is an ';-:leo-orphian end £, =f0O1, f,=10Tf1,
f3 =fOf are also y-iaonorphiane (1 is a].y&ya written instead
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of 103). Put M, = {(0, 1), (1, 2), (2, )}, W, = £, [N, M, =

=c[M], M, = cM] and K= {1, 2Y X{1, 2}. Denote by w the
F-topology of 03 DG3, by u the C-topology of (}3@ 03. Then v =
= u2 is the topology of 03 0;‘. G3. It is‘eaey to see that
(0, 0)€ vM = u’M iff (0, 0) € M or (0, 0) € uM or there
exists i€ {1, 2, 3, 4} such that M;C M or KCM. In fact,
(0, 0) € u’M - uk ife {0}X {1, 2}CuM or {1, 2} X {0} C uk
and simultaneously {O0YX {1, 2}¢ M and {1, 2y X{O} & M end
this holds iff there exists i€ {1, 2, 3, 4} with M, C M or
K CM. '

Now let D C G5 X GO with (O, O) € wD - vD. Then card DO =
= card OD = 1 (otherwise 1.19. implies that there exists
ie{1, 2, 3, 4} such that M; cDorKcCDor (0, 0) € uD).
It can be easily checked that then D is one of the following sets:
B, = {(0, 1), (1, 0), (2, 2}, By , 4 =f;[B]] where 15 i =3,
B ={(, 1, 0,0, 0, 1, (2, 2}, By , | = £;(H] where
1=i=3 (observe that for each i, B; C Hy). It is obvious that
a3 ®g °< 6> 0a® irr (0, 0) € wh,. Hence suppose (0, 0) € wH
et ¥, ={{x}oc}: oscs2}u{cdo(x) osks2}U

‘-

U{,(}4 t1F14 54}U{Gg} where G:li is the F-space defined on

L

U {0, 0} by ¥, =M U {(0, 0)} and X = X otherwise (iso-

morphic with G*), G2 is defined on K U {(0, 0)} similarly. Put
Y; ={H: 15154}, ¥ =(B: 135154} Lot ¥ be the fa-
mily of all subsets D of G3 OG> with (0, 0) € wD - vD. Then,

clearly, ?; c ¥Y'c ?; U ‘f; Let Yz = {Gg: DEY'} where a =
=1+ card D and Gg, is defined analogously as 0:1 Put ¥ =

= ?1 9] 92. For each A € ¥ define the F-morphism

3, A— a3 pad’ by jA(n) = 3 for all z € A. Then the family
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= (0, 0).

1. If A ={k}DG3 or A= G3D{k} for O ¥ k % 2, then it

can be easily verified that —BA = BA in G3 a A.

2. Let A€ Y- and A be different from the spaces considered in 1.
Let q,: a3 X (&3 x G3)-—>G3 be the projection (x, (y, 2z))r—

—x, gy @ X (@ X6 — ¢ x@
(x, (y, z))—>(y, z). Since for each jE€ {0, 1, 2Y card jB, =
¥ card j(alx)) = 2 (jB, = {(y, 2) € a: (, '(y, z)) € BAl) we
obtain (j, (0, 0)) ¢§A for each je{0, 1, 2}. Let

be the projection

(y, z2) € q23[a[x]]. Then O € BA(y, z) or card BA(y, z)

£ card alXl(y, 2) =1 (B,(y, 2) = {j €03 (j, (3, 2)) €}
so that (0, (y, 2z)) € EA -B, in acdoa for each AEl?
excludi'ﬁg the spaces considered in 1.; card 0B, £ card o(afx]) =
=2and (1B, 2B,) C (1a[x)N 2 a[X]) = # so that by 1.19.

(0, (0, 0)) €& BA in @3 O A. Hence for each A€ ¥ EA =B, in

63 O A and therefore wza[X] = ![x]. But then for any ordinal

A (wz)ha[X] = a[X] and therefore Z[T] = a[X] in a3 (m] (03 EIG3).
Thus a is not continuous, i.e. the hypothesis a3 @3’ G3< G3 m] 63
yields a contradiction so that G:3 u] G.3 = G3Q;G3A- Then by 2.4.

it holds:

2,5 Theorem. If (‘;,D, H) is a closed category,

then D is isomorphic with @3"
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Si4hrn

TENZOROVE SGCINY V JEDNEJ KATEGORII
ZOVSEOBECNENYCH TOPOLOGICKYCH PRIESTOROV |

Juraj (in%ura, Bratislava
Topoldgia u topblogického priestoru (P, u) v Sechovom

zmysle z roku 1937 spliia nasledujice axiomy: 1. ugd = g ,
2, M C uM pre ka2dé MC P, 3. uL C uM, ak L C M C P. Zobrazenie
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£: (P, u)—(Q, v) sa nazfva spojité, ak f[uM] C vf[M] pre kai-

dé Mc P. V préci je dokézané, %e v kategorii ( topologickjch
priestorov a spojitych zobrazeni v horeuvedenom zmysle existuju

| (aZ na prirodzeny izomorfigmus) préve dva tenzorové suidiny. Na-

viac je dokézané, %e v (plnej) podkategorii Y kategorie  , kto-

ré pozostévazo v3etkych C-priestorov (P, u) s vlastnostou u(ulf) =

= uM pre ka%dé M C P, existuje préve jeden tenzorovy su&in.

Pespopue

TEH30PHHE [TPOM3BEIEHMSA B OZHO! KATETOPYM
OBOBIEHHHX TOMNOJOTMYECKNX MPOCTPAHCTB

Dpealt Uxruype, Bparmcxesa

TonoXorns Tomoxormdecxoro mpocrpamctea (P, u) B cuucae
Uexa ms 1937 roza mcnoxEser cxexynmme sﬁclon: I. ug =4,
2. MCuM nxs xaxpgoro M C P, 3. uL C uM, ecax LC M C P. Oro-
G6pexeame f: (P, u)—> (Q, v) HesHBaeTcCs HENPEeDHBHHM, €CAN
f{uM] C vf[M] &as xexzoro M C P. B paGore pnoxasuesercs, WTO
B xareropmn ( TONOXOrMYeCKNX NPOCTPAHCTE B HENPEPHBHEEX OTOSpa-
xeHnt B NpMBENeHHOM BHWE CMHCXEe MOXHO ONpeXeiANTL C TouROCTED Ro
nmsomoppmeMa TOWYHO IB8 TEeHsOPDHHX NpoNsBefeHXs. Boxee Toro moxa-
88HO, YTO B (noxkol) nozxereropmn # mcex npocrparers (P, u)
nenoxrapmux u(uM) = uM  gxs xexzmoro M C P xareropun C Moxmo
onpeneAmMTs C TOYHOCTHD JO W8OMOpdMBME& eIMHCTBEHHOE TEHSODHOE

npomseenenne.
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