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ON SIMPLEXES IN THE HERMITIAN SPACE H,, WITH CERTAIN
PROPERTIES OF REAL SIMPLEXES

VALENT ZATKO. Bratislava

The purpose of this paper which refers directly to [3] is to
forhulate the necessary and sufficient condition for a simplex in
the space Hn to have an obvious property of real simplexes, name-
ly that the “orthogonal bisectors” of its edges have exactly one
point- in common. More-over, it will be shown that this case occurs
iff there exists a point-in the Hn such that one of the two bi-
sectors of the angle of each pair of distinct, (n-1) ~dimensional
faces of the simplex passes through this point. The mathematical
apparatus de?eloped in [3] will be currently used throughout this
paper.‘The part of this work showing the criteria of orthocentrity
of real simplexes, formulated by M. Fiedler in [2], to be also the
criteria of orthocentrit& of simplexes in Hn is not without intes

rest too.

All undefined concepts and unproved statements or relations
used in this paper are defined or proved in [3].

.Be'fore introducing the problem itself we will prove three lem-
mas containing the most important relations which determine the
distences and the angles (the orthogonality particularly) of the
basic figures of the space Hn by means of the barycentric coordi-

nates of their elements and (e+g)-norms of a certain simplex.



Let > be a fixly chosen n-simplex in the space un with the

vertices A, ieN ={O,1,...,n} end let e j [gij]’ i,JEN are

its e-norms [g-norms].

when speaking about the barycentric coordinates of an element
§€ Hn we always consider its barycentric coordinates with respect
to this n-simplex. Moreover, it is always assumed that the indices
i, J, k, p, ess TUN OVer the set N, the indices L, B, ¥, ...
run over its subset N,={1,2,...,n} end the indices r, s, t, ...

over the hyperset N,= {0,1,...,n,n+1}.
Lemma 1, The numbers x, = > g d, » LEN may be
=== = i = ki %k

considered to be the barycentric coordinates of a vector perpendi-

cular to the hyperplane o with the equation E d3%z; = Oe
i

Proof, At first it is evident that not all X, sre equal
to zero. QOtherwise the (n+l)-tuple (.Lo, &1,..., eLﬁ) would be a so-

lution of the homogeneous system of linear equations:

%gikzk=0 9 i=0, 1, eeey N
i. e. it would be & multiple of the solution (1,1,...,1) [ since
for all i€N >~ 8jx = 0 end rank (g; J-) = n] o This contra-
X .

dicts the properties of the coefficients of the hyperplane equation.
The fact, that the numbers x; may be considered as the barycentric
coordinates of a vector ge H is a consequence of the following

calculation:
Fue a3 (Fa)ho
Since

[exi] = % eijxiij = I’ZJ’k eijgki Ik;:, = 'j'zk(% °ijski d_k;,j =



= Jzk (-2 sjk - gk,m-l) Ik;j =

R R I
for each direction vector § = (zi) of the hyperplane «, the vec-
tor f is perpendicular to the hyperplane L and the proof is com-
plete.

Lemma 2., Let ¥ be the angle of the hyperplanes

& = Z&izi=0 and A= Zfsizi=0. Then:
i i

cos P = —V.[B—JT‘% where [gdn] = % 8;; 43 A (1)

and analogicallj for [gda] and [g /3/5].

Proof, Let pld, qL» be arbitrary lines. According to

Lemma 1 the numbers xj = % By Ly [ y; = % 8y Ay ]

i=0,1, .cey n are the barycentric coordinates of the direction

vector of the line p [q]. Then:

coe‘f=cos4pq=Ml—-——[0<4pq 4'72] (2)

VlexxT Ve |
Moreover:
[eﬁ] = % eij (% gpi zp)(% ng /Ik) =
= % (jz°i.ig.ik> 8pi p Ay =

= %(-2 Sk - 8n+1,1:) Epi ‘Ip By =

-2 % 8pi dp Ay - % ('{: Spi) &nel, L,y = -2[8dn]



It can be shown analogically that
[exx] = -2[gd&] and [eyf] = -2 [g3A]
Substituting these results into (2) we get (1) .
Lemma 3. The distance from the point A, which homoge-
neous bsrycentric coordinates are (ai),‘ to the hyperplane  with
the equation Zd.i 23 =0 is given by the formula:
2
>_ dsa, |
I T ii
| Z"il 2 [gdt]

Proof. Let (&) be nonhomogeneous barycentric coordina-

+ a2 (A,4) =

Q)

tes of the point A and let (b'i) be nonhomogeneous barycentric co-
ordinates of the orthogenal projection A° of the point A on the
hyperplane ¢ . Since the vector A'- 4 is perpendicular to the hy-
perplane &« , there exist a complex number & # O such that
. ‘ - \} \ 51
¥ien B =aj+ (‘*(% Bei &)

Substituting these values in the equality > «B; =0 [Res]
i

4%
[ 8441

we obtain the equality:
consequently
2
JRSE L
2 2
¢ | 3= =] [824]°

Since the distance from the point A to the hyperplane‘ &L is equal

to the distance between the points A, A", we have:

.

a@,d) = [ -a)2 ="3‘1,Zj°ij ((ungkiZk) (‘“%_ &p3 %p) =

=-3 |l %(iz%?u}lk%p*p‘ ‘
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1 2 T
-fl{”| %('2 J_jk - 3k,n+1) J‘kg:jp*p =

2 T 2 T
|l % Exphk dp +% el % ( % g.ip) 8,n+1 %k %p =

l("‘lz [5'1*] = lz a.‘Z [SGZ"L]

Lemma 4. The e-norms of the simplex > are real iff

the e-norms of all its two-dimensional subsimplexes are real.

Proof. Let &, be any two distinct indices of the set
Ny« Let us consider two-dimensional subsimplex ¥ = {A°,A‘ ,A”} of
the simplex Z. I': follows from the assumption of its e-norms
being real [[3] ’ (19)] that cy4 is resl. The rest of the state-

ment follows from the relations (17), (30) of the paper [3].

Remark 1. It is evident that a sufficient condition

for the e-norms of the simplex > to be real is the e~norms of all

its two-dimensional subsimplexes with one common vertex are real.

Remark 2, It follows from the above mentioned relati-

ons (17), (19) of the [3], from the matrix (g,) being the in-

verse of (c,,) end from the equalities: g_ = - Z ; =
(L o = & i B

= - 2&, velid for each 4 € N,, that the e-norms of the simplex

> are real iff its g-norms are real.

Corollary. The g-norms of the simplex >  are real

iff the g-norms of all its two-ciimensional subsimplexes are real.
Lemma 5. All g-norms of the simplex = are real iff

the product:

8; 28 + Bi 4 +oe8s g; (4)
1112"'iq i1, 1213 1q_1i.q lqil
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is real for each variation il, iz, . iq 3 2<q<n+l of numbers

o, 1' 0..' n.
Proof. Let Zh be the (n-l)-dimensional subsimplex of
the simplex >, which does not contain the vertex Ah. Iet us con-

sider the matrix Gh with the elements:

&y &n

&ny &hh

By =

B MY €N -{n} | (5)

If h #£0, its submétrix Gh(O/O) is the inverse of the Gram ma-
trix of the system of vectors {Al- A°, A% A°,..., K Ao}\{Ah- Ao}..

This follows from the following equalit.i_ee:

oL - ] )
R R S R
= ‘g,ljh [Snn(‘;w = Cnény) * Sm"xhghn] =
where X\,¥ € N'= N~ {n}.

Let us assume now that h = C and denote g, = (& -al, £-al),
where o, A€N" = N\{0,1}. Then: '

] - _l_ - - ; _ £
> o &y = &0 G‘ZN“(%‘f ¢ ~ %t ¢1y) (3§vgoo 8;0301')
= L [({-cg 4+ Cq18yp * Cyq8. . + C 181y = CqaB., =
&0 \4 A1°1e 11°1y A1 oy A1”1e 110y
= C1181p) 8o + (1 + cyyg)g - 1 - ek, - o8, -
= 231810 * 1180 * ©11810) 8o~f] = gx
for all ), Y €N", ‘
Thus we have shown that the submatrix Gh(l/l) is the inverse of
the matrix (84s), &,meN' for h =0.

Moreover, it can be easily shown that the sum of all elements

of any row or columnof the matrix Gh is equal to zero.
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Subsequently, it follows from the above stated that the num-

bers g, &re g-norms of the (n-1) -simplex 3.
P be any distinct elements of the set

N - {h}. If we suppose that all numbers 35'15'2"'>’iq are real, then

Let now i,, i,, veey 1

the following product is evidently real, too:

] ) \
L. @ eeeB i T B: i B: oz eeeBi i+
81,1811, ipiy T Bigin0ipiyt e ttigd

: _
B R T [t )

(P)

".gia,_?’) wo's (gh-i-‘k.#l“.si'kh)] : ;
where

1/ Sy is a set consisting of all k-tuples (sl,az,...,ak), de-.
&
fined as follows: s, = 65__'; d, - &, where 4, d2, ceey dp is an

arbitrary set of natural numbers satisfying the conditions:

(i) 26d1<d2$ coe $d €+l

() 2 g4 =pex

2/ P is a set consisting of a p-tuple (11,12,...,ip) and of
all its cyclic permutations

3/ (P) is an arbitrery maximsl subset of the set P, having
the property that the members belonging to its elements are dis-
tinct, } '

Of this is applied on each m-dimensional subsimplex 3'
(3¢<m<n-1) of the simplex > (i.e. the n-simplex 3 is replaced
by m-simplex ') we get that the product g; astikgfi is real for
each two-dimensionsl face z.s {Ai,Aj,Ak} of the simplex > . That
means the equality g; jstjksii = 5:1:5;:)531 holds. This equality may
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be rewritten as:

&ii 8&;
51 853

(85 - &3;) =0

from vghere it foliou that g; j is real. But then also the numﬁers
o * » * » o
Bix = - Bjj ~ 83 and Bk =~ 831 = 83; must be real. Now the

reility of the g-norms of the simplex > follows from the corolla-

ry of Lemma 4. The converse statement is evident.

Similarly as in E; the hyperplane passing through the mid-
point of a line segment and perpendicular to the line segment will
be called the perpendicular bisector of the line segment.

Lemma 6., lLet 8 ; be the perpendicular bisector of the
edge AiAJ of the simplex 2 . Then

°m(1.;eu 11)41 | (s)

Proof. Let A4,B€ A ®;; - Then:
i,JjeN
1<)

¥ ded; B-alY =£-a

From these relations and the fact that {51} is the basis of the
space V, it follows that B - ALV, , particularly B - AlB-A
j.e. (B~ A, B=A) =0. The latter equation and the well known
properties of the inner (scalar) produkt in unitary vector space
give B - A to be the zero vector i.e. the points A, B are iden-

K

tical. This completes the‘proof.

Lemma 7. The perpendzcular biséctor s;; of the edge
A", of the n-simplex Z has the followmg equation in the bary-

centric coordinates:

2 (o = ong) 7y = F (og5- 03p) ()
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Proof., The point Z = (z;)€ 853 iff the vectors:
- 32‘ (Ai + A‘i) end AY - Al are perpendicular, i.e.
- 4 y . ] [ s = 3. ] = i -
k’Zp exp [zk 2 (& + J.)k) JJP le 0. After a minor rear
rangement of this equality the (7) is obtained.

Coroooeary. The perpendicular bisectors 804 and s, ,

are given by the following equations:
E%c" ¢ - 2 M =0 ’ *31,2,000,11 (8)

8, 2 Zc“z” - 2 Sy -(%cmzr -%cM> =%—(0M-cu§ (9)

-1 -
where ¢, =3 (e, + e, en) o

Definition 1, The simplex 2 will be called edge-

’

centric if card ( /\ 8; J) i.e. if the perpendicular bisec-
1!1

tors of all its edges have exactly one point in common, This point

will be called the edgecenter of the simples > .

.

Theorem 1. The simplex > is edgecentric iff all its

e-norms are real.
.

Pr oo f. As the matrix (c,,) is not singular the system of
linear equations (8) has exactly one solution i.e. the hyperpla-
nes s, A=1, 2, ...y n have exactly ‘one point in common. It

follows from (8) and (9) thet»/‘)‘ 8op€ 88 Iff ¢y -c4, =0
1

i.e. if ém is real. The rest of the proof follows from the rela-
tions (17) ané (19) of [3].

Corollary l. The simplex 2 is edgecentric iff all

its g-norms sre real.
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Corollary 2. The edgecenter of the simplex 2 (it

it exists) has the barycentric coordinates:

('% &n+l,0 * '%gn«rl,i 1oy '%3n+l,n) (10)
Proof. The statement is evident because if the matrices
(’ij)' (315) are real then the n-tuple ('%'gn-o—l.l A '%511-01,2 ’

ceey "}'sm-l,n) is the solution of the system of linear equations
(8). ‘

Corollary 3. Every k-dimensional subsimplex (1< k<n)

of an edgecentric n-simplex > is an edgecentric k-simplex.
Proof. The statement follows from Theorem 8 of [3].

Corollary 4. The e-norms of an edgecentric simplex

are the squares of the lengths of its edges.

Remar k, Using the above corollary and corollary to Lem~
ma 6 of [3] we may verify analogicaly as in E, the validity of
the following statements: .

1/ Every set (n;l) = 1 independent inner angles of an edge-
centric simplex uniquely determines all remasining inner angles.

2/ Two edgecentric simplewes are congruent if at least
y= (n;l) -1 indqpendant inner angles of one simplex are equal,

' "rcepcctinly to Y independent inner angles of enother simplex and
if there exists at least one pair of distinct indices i,je€N such

that e%

\j = &5 (see [3], Lomna 7, Corollary 2).

Lemma 8. ILet wj, Wy, i #3 be two (n-l)-dimensional
nonperpendicular faces of the aimpiex = . Then there exist exactly
two hyperplanes

w .
Tig® ey VEgy e tlelley sy =0, 422 D)
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such that:

\)
(‘OJ(wi) = qu - A= 1'2

where ¥o- is the symmetry getermined by Fi4e

Pr oo f. Every hyperplane “Pi j 2 u)if\ w j distinct from

wj; eand wj has an equation z; = &zj where & is a nonzero com-
" plex number. According to Lemma 1 the vector g with the barycen-
tric coordinates” x, = g;, - gjkl', k=0,1, eeoy n is perpendi-
cular to the hyperplane ‘fj;. Let us choose a point A = (a;) in
the set w.\ (u)-n u)) and denote by A its mirror image in the
hyperplane \f IR Since A' - A _L‘-P there exists a complex number
A such that A‘ =A+nf. Further, it follows from %(A + Ne Yij
that:
2 oLaJ

8ii~ 813‘* Bjik * &jj l*l

/b:

The following equation for & follows from the condition A € w 3
* 8 5% - 8; ok 8 J|aL|

This equation has exactly two solutions

dy ,= + —hi | B
’ |85l ¥ 855

These solutions determine two hyperplanes with the equations {11).

Definition 2., Each of the hyperplanes (D‘flj .

@ V will be called bisector of the angle of the faces wy
J. The bisector of the angle of two perpendicular faces wy uop

will be any of the pair of hyperplanes:
Yskkz,:\/sppzk=6 (12)

Definition 3. The simplex ¥ will be called angle-
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centric if there exists a point O (englecenter) in the space H,
that '
Vijen, i#3 11 4ef1,2] o€ “’\pﬁ

As an anglecenter cannot lie on any face of the simplex >, all its

barycentric coordinates are nonzero (complex numbers).

Theorem 2. The simplex > is anglecentric iff all its

g-norms (e-norms) are real.

Proof, Let 0 = (o;) be anglecenter of the simplex X,
Then for each peir of distinct indices i,j€N there exists a real

number eij = Ejie {1,-1} such that:
8jVE5505 - €55l85 Vegy05=0 (13)

Let now {il,iz,...,ip} be any sequence of distinct elements from
N. If the pairs (ip,il), (ik_l,ik), k=2, 3, «eoy p are substi-
tuted into (13) instead of (i,j) the following system of equa-
lities will be obtained:

o4
= I Oi

8 .
ipll o

E. . |lg
1p11| ii)

£ / 8 :
-1tk i1:-‘-111:| ipeai] 2

&

It follows immediately from tbe‘se equalities that the product
311122._ sip-lipgipil is real. From this fact according to Lemma 5
we get that all g-norms of the simplex 3 are real.
Conversely, if the g-norms of the simplex >~ are real, then
v_g;:j z; z Vay; = j=0

are the equations of the bisectors ) ‘{’1 i (2)"{’1']- . Consequently,
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a point with the hoinoganeoua barycentric coordinates (Vgii ) is

the anglecenter of the simplex 3 and the proof is over.

It is known that for a resl n-simplex ¥ (i.e. 2C En) 8
point Q with the above described barycentric coordinates is the
center of the inscribed hypersphere. Therefore a question may be

put whether this is not valid for the simplexes in Hn’ too..

Theorem 3. Let 3 be an arbitrary simplex in H . Then

the point Q with the homogeneous barycentric coordinates

(V-E;o— y V811 2100 m ) (14

with respect to the simplek 5" is the center of the minimal hyper-

sphere inscribed into the simplex X ; more exactly

1
€ s ———
b/ for each point le%‘ satisfying the condition
ireR  YicN a(Mwy) ='r Q5)
the following relation holds:
r > S| -
o
Proof. let (mi) be the homogeneous barycentric coordi-
nates of a point M which satisfies (15). It is obvious from Lem-
ma 3 that the ratio V%__ is independent on i, hence it may be de-
1)

noted e.g. by v.
Then:

T ) ——=— = e
PR =T S L
The rest of the statement follows from Lemma 3.

Definition 4. The simplex > is called orthocentric

if all its altitudes have exactly one point in common. This point
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is called orthocenter of the simplex 3.

Theorem 5. All e-norms (g-norms) of an orthocentric

simplex are real and form a symmetric matrix.

Proof. Let H be the orthocenter of the simplex 3. It
is obvious that the vector By = Al- H, i€ N is either zero or

perpendicular to the face uui i.e.
YokeN -{i}, j£k nLA-al=1n_4

k™ 3
Qa
Tesp. (B4, B = (8, B3) K

If in (16) the vector f5i is replaced by the vector aj and fsk

respectively, the following equalities are obtained:

(ﬂjv Be) = (/531 /51) y (/33, By) = (ﬂﬁa /31()
and consequently (/AJ, /51) = (Bi, /59. This equality and (16)
show that (Ai, fbj) is real. Since & = T~ 3, the numbers

¢ =(¥%,¥) ere real too and according to [3] - (17) the same

is valid for the e-norms of the simplex 3.

Theorem 6. Let 3 be an orthocentric simplex. Then:

1/ There exist real numbers ﬁt’d, P T,

satisfying one
of the conditions:

a/ ‘V ienN T;_> o]

b/ (I T; =0) A ($jen - {4} T;>0)

e/ (J Ti<10)/\(fj€N-{i‘3 T;> 0)1\%’:%;(0

such that

i,jeN, i#j 55 = Xy + T (17)

2/ The numbers h; = T 1T Te»i=0,1, ..., n are the ho-
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mogeneous barycentric coordinates of orthocenter H. If neither one

of the numbers Ti is equel to zero then also the numbers %i—_- ’
i

i=0,1, ..., n are the homogeneous barycentric coordinates of

the point H.
Proo#f. 1/ Let us consider the numbers:
qro="(/5°’ ﬁ)v r’t‘;:(@(va:()v*:lv 2, «eep N (18)
where 4, = Al_ 4 ana &= £ - A°. Definition of the number €
is correct because

Yoomen A L% -8 ice. (A,8) = (A, 4) .

It is known from the proof of the preceding theorem that the num-
bers (fsi, /5J.) are real and (A,,%) =0 for o #/3 . Because of
(ai, ¥) = (/51’/3&) - (A5) Ay) 8ll the numbers T]'_ defined in
(18) are rea:.

Besides, it holds for 8ll &,/ € Ny, K ES:
o‘ dz( AOQA*)

a2 (a*,a®)

e

(¢]

(£, 8) = (A=A, 8> = T, + T,
Y,

u
1}

€xn (rA" d’x‘b-b&)=(ﬂ’ﬁ-/5d\!x/‘5-&)= T&*T;ﬁ

i.e. the conditions (17) are satisfied. Simulteneously we have
proved that

¥i,jeN i#j T + T; >0
This result leads to the conclusion that at most one number of T;’a

is not positive, i.e. the numbers ']l'; satisfy one of the conditi-

“ons s/, b/, of.

It may be easily shown that for any two vectors § = (!i),

'X‘—'(yi)eﬂn [% x5 = Zl yi=0] ¢

1

1 - -
(£.%)=-3 IZ“; ;%75 = > Tx;¥, (19)
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so that:
2 Tlz)250 (20)
i .

for every set of complex numbers z; , i=0,1, ¢¢ey, n, not all ze-

ro, such that 2 z; = 0. Let us assume now that for example "jto
, i
is negative. If we put
= -4 -1

z = e H 2z = d = l 2 eece n

0 Z m r Y 'ﬁ' ’ y S ’
in (20) the following inequality is obtained:

T, > A > Ao
T R T W

As T ;< 0 eand ;-.tl: > 0 it follows from the above inequality

that % 7;3': < 0. This inequality may be proved analogically
k
for T, <0, & € N;.
2/ It is evident from the definition of numbers Tl and equa-
lities (A4, ¥,) = 0 velid for each & # /5 that Ti =0 iff the

vector s; is perpendicular to each vector &,, where Y€ N,. As
i b 4 .

. 1
(V\’) is the basis of the space H, f]t’i =0 &> H=a' (i.e.
/51 = O). In the case b/ the validity of ‘the second part of the
theorem is evident from the above remarks.

Let us consider now that neither one of the numbers Ti equals

t0 zero and denote by M the point with the barycentric coordina-
tes [—%_—] where L = > %‘ . Let us choose three distinct in-
% i i

dices i, j, k in the set N and form the vectors § = all M and
%= ak- a9, 1t mey be easily shown by using the expression (19)
that their scalar product is equal to zero and therefore the vec-
tor Al-u is perpendicular to the face w; for each i€ N. Thus
the point M is an orthocenter of the simplex 2 and the proof is
completed.
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Theorem 7. Let T, Wys oeen ﬂ;‘ be a sequence of real
numbers, setisfying one of the conditions a/, b/, ¢/ of the prece-
ding theorem. Then there exists an orthocentric simplex > such

thet (17) holds for its e-norms.

Proof. Itis sufficient to prove that the numbers e
defined as

e.: =0, e..=

i ' . s
ii L, + U fOI"lf‘]

ij i J

satisfy the assumptions of the Theorem 3 of [3] . The fulfillment
of the conditions (i) and (ii) is evident. Also (]':ii) is sa-
tisfied for the cases &/, b/ because according to (19) it holds,

for every nonzero (n+I}tupel (zi) of complex numbers the sum of

which is zero
e..z.i.=-2 le 2(0
Now we show the fulfillment of the (iii) under the assumption
that ’Jt'o < 0. Let (zi) be agein any nonzero sequence of complex
numbers satisfying the condition z z; = 0. After writing the
i

Schwarz inequality for the vectors (z, V‘E’d\ ), ( Tt )e v, (c)

[unitary] and multiplying it by the number To we get the ine-
quality:

2
T % 2 Glul® ¢ T

such that:
Zela o n 2(* Wolg|®+ TOIE z*lz)g
2(; T lz |2 + T, Z th;lzd )

|ZTI¢I Tk“

The proof is done analogicaly for the case when one of the numbers
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T, is negative.

Theorem 8, Every simplex to which a sequence of real

numbers T, T‘l, eeey @, satisfying some of the conditions &/, b/,
¢/ of Theorem 6 may be assigned is orthocentric if (17) 1is valid

for its e-norms.

Proof. Let ﬁ]{ = 0. Then for each peir of distinet indi-
ces i,je€N\{k} the following relation holds:

Z em( A-pi' ka) ( é—mj' Jmk)

p,m

-2 %Tp (Fpi~ dpe) (dp5™ o) =

=2 %Tpa'pk =-2T =0

It follows from the above calculation that the vector Axw Ak is

perpendicular to the (n-1) -dimensional face wy for each i€N

(ad- Ak, JENN{i,k} is the basis in the direction wj;) . By this

k

it was proved that A° is the orthocenter of the simplex 3. The

proof is not done for the case of all numbers Ti different from

zero as this is identical with the last part of the proof of Theo-

rem 6.

.

Theorem 9, Every k-dimensional subsimplex > 'of an or-

thocentric n-simplex ¥ is an orthocentric k-simplex.

Proof. Let W, k=0,1, ..., n be the real numbers be-
longing to the simplex 3~ according to Theorem 6 and
N'= {ieN| e 3_'} . It follows from Theorem 8 of [ 3] :
fi,5eN, i#5 e mey= Ty Wy
The statement is evident on the basis of this relation and the pre-

vious theorem.

According to Theorems 1 and 5 every orthocentric simplex 2

is necessarily edgecentric (and anglecentric too, naturally ).
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Therefore we may ask whether the mutual position of the center 'of
gravity, orthocenter, and edgecenter of the simplex > is the same
as in E . The following, last theorem of this work answers the

given question.

Theorem 10. The center of gravity T, edgecenter S,

and orthocenter H of an orthocentric simplex 2. lie on the same 1li=-

ne and:

= =fe n-1
T= 431 S+ B (21)

Proof. The elements of the matrix 02 = (gra> belonging
to the orthocentric simplex > may be expressed by means of numbers'

Ti’ i=0,1, «coy n as follows:

1 I .
S8 = Fi(? -‘r}{:) v S8 T T E R et t #3 o

n-1 _

?gx;+l,i =—TE,— €1 $8ni,na1 = F %T:‘ - (-2 ’
| 1
¢ = 2

if T, #0 for each i€ N and

811"8{k=‘%i’815=°’8kk=j%1% yiAJAKEL

J
J#k
(23)
&n41,i = -1 for i#k, 8nel,k = P2 v Bnyy nnl a.q% -%
J#k
if Tk = 0.

We will not confirm these relations as it is more or less mechani-
cal calculation and similar to that in En. It follows from the
above relations, Theorem 6 and relations (10) that the barycen-

tric coordinates of the points S, H are either the numbers

oo =-3 (3 -1]. m=

Q'Ei S qTi ’ i = 0, l’ LY n
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or the numbers:

& i n -
8 = 2 for i#k, a‘k-l-2 y by = ;ik

according to whether all nambers T; are nonzera or whether there
exists an index k (unique) in the set N such 'l"k = 0. Since

= -n—if y 1 =0, 1, .esy n are the barycentric coordinates of the
‘point T in both cases, the validity of (21) is obvious and the

proof is complete.
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Sdihrn

O SIMPLEXOCH HERMITOVSKEHO PRIESTORU H, S URSITMI
VLASTNOSTAMI REALNYCH SIMPLEXOV
Valent Zatko, Bratislava

Této préca bezprostredne navazuje na prdcu [3) , v ktorej su
zavedené vietky pouZivané pojmy a dokdzend tvrdenia na ktoré sa
v tejto préci odvolévame. Hlavnym cielom préce bolo dokézat, Ze
kaZdy z vyrokov:

"Symetrédlne nadroviny videtkych hrén n-simplexu 3  prechédzaji
Jednym bodom"

"V hermitovskom priestore H, existuje bod taky, Ze pre kaZ-
dé (i,j)€ NxN, i # j Jje obsiahnuty v jednej z osovych nadrovin
stien w;, wj n-simplexu z",

Je ekvivalentny s tym, Ze 5. je redlne &islo pre kaZdé 1i,j € N. .

Okrem toho je v prdci dokézané, Ze bod s homogénnymi barycen-
trickymi suradnicami (V'gl_l) je stredom minimédlnej gulovej nad-
plochy vpisenej do > .

V poslednej &asti préce sa ukazuje, Ze v orthocentrickom sim-
Plexe 3> su vietky &isla e 3 i,j € N redlne, vytvéraji symetric-
ki maticu a Ze podmienky pre orthocentricitu simplexov v H, sd
také isté ako v euklidovskom priestore E.
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Pesvrue

OB CUMIVIEKCAX B MPOCTPAHCTBE OPMUTTA H, C HEKOTQPHMA
CBOMCTBAMM PEAJNBHHX CHUMIUIEKCOB

Baxenr 3aTbko, BpaTucaesa

9Ta pafoTa SBASETCH HENOCPEICTBEHHNM NpojoxxenueM paborm [3]
B KOTOpO/ MOXHO HaliTu ompejeseHus BCeX HYXRHNX nouaTul#t u fnokasa-
TeXbCTBA BCEX MCHOJBLI3OBAHNX TeopeM, [IeBHHM pesayabTaToM palGOTH
ABAAETCH AOKE3aTEJbCTBO, UYTO KaXjoe U3 CJAEefyKIUX yTBepEIeHu:

"T'UNepnAOCKOCTH CUMMETDPM BCeX pebp n~CUMIIEKC2 3 MpCXOoJAT
yepes OAHY TOUKy"

"B npocTpaHcTBe H, cymecTByeT Texas TOUK®, UTO ANA KAEACTO
(i,j) € Nx-N, i # ] oHa HaXonuTcs B OnmHO¥} us 6mcekTpaanux
runepnaockocre#t yrxe (n - 1)-uepuux rpanei Wy Wy cuMmrexca 3",

J
9KBUBAJEHTHO TOMY, YTO IAf Kaxmoro i, JEN wumcxo e; ; ecTb Beme-

Jd
CTBEHHOE,

Kpome Toro B pef6Te NOKA3BHO, WTO TOYKA, KOTOpas uMeeT Gepu-
LEHTPUYECKNE KOOPAMHATH (Vgii ) , ABASETCA LUEHTPOM MUHUMBJIBHOTO
runepmapea, kacammerocs Bcex (n - 1) -mepENX rpaHelt n-cumniexca X .

B saxapumresbHO? uacTM paGoTH NMOKABIHBAETCH, YTO y CPTOLEH-

TPHUECKOI'O N ~CHUMIIEKCa 3~ BCe uucaa e i,jeN gpelicTBUTENBHH,

ij#
OHM COCTEBJAADT KOCOCHUMETPUUECKYD MaTpuOy ¥, UTO YCJOBUA Iafd TOrO,
yToBH > SBJAAACA OPTOUEHTPUUECKMM OJHM U Te Xe€ KeK ¥ B MpOCTpaH-

cTBE OBKJIHZE.
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