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DIOPHANTINE EQUATIONS
x2 +xy - y2 =22 AND x4 £x2y2 - y4 = 22

IVAN KOREC. Bratislava

The solutions of the first equation will be. presented in the
form suggested in Theorem 4, Chapter 7 in [1]. Then they will be
used to show that the other mentioned equations have only trivial
solutions, i.e. solutions with y = O or y = + x.

Denote by D(x1, Sy xn) the (nonnegative) greatest common
divisor of the Integers X,y ..., X,. Let a solution (x, y, 2z) of
(1) be called primitive if D(x, y, z) = 1. Since the equation (1)
is homogeneous every its solution is a multiple of a primitive
solution., Hence it is sufficient to find formulas giving all pri-

mitive (and, maybe, some other) solutions of (1).

Theorem 1., Every primitive solution of the Diophantine

equation
x% + xy - y2 -2z22 -0 (1
has ;ne of the forms
) (p2 + 2, p2 + 2pr, - p2 + pr + r?) (2)
(2 + 2, p2 + 2pr, p? - pr - rP) (3)
( -p%-1? -p?-2pr, p? - pr = r?) (4)
( - p%-12 -p?-2pr, - p? 4 pr + r?) (5)

where the integers p, r are relatively prime.
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Conversely, for arbitrary integers p, r, (2), (3), (4) and
(5) are solutions of (1).

Proof . Let (x, y, z) be a primitive solution of (1). If
D(x, y) # 1 then there is a prime p such that p | x, p | y. Then
obviously p lz, which is a contradiction. Hence D(x, y) = 1 and

analogously D(x, z) = D(y, z) = 1.

Denote d = D(x - z, y - z). Then there are integers p, q

such that D(p, q) = 1 and
X =2 + pd, Yy =2 + qd (6)

Substituting (6) into (1) we obtain

de( z.(3p - q) + (p2 + pq - q2).d ) =0 (7)

For 4 = O'we obtain the primitive solutions (1, 1, 1) and
( =1, =1, =1) which can be obtained from (3) and (5); assume further
d 40, If3p-q=0 then (7) implies -5p% = O, i. e. p = O,
q = 0, which contradicts D(p, q) = 1, Hence. 3p - q # 0 and
d.(p2 + pq - ¢°)

z = (B)
q - 3p

Since D(d, z) = D(z + p.d, z) = D(x, 2z) = 1 we have d | (g - 3p).

Further we have

D(q - 3p, P° +pq - q°) = D(q - 3p, p? - 2pq) =
= D(qg - 3p, p - 2q) = D(q - 3p, -5p) = D(q - 3p, 5) |5

Hence there are four possible cases
qQ-3p=%4d, q-3p=7%5d

In the first two cases we have q = 3p + d. If we denote r =

= q - p we have
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qQ=p+rT, d-‘(q\YBP)-l(r-Zp)
and then 2
2 2
d.(p + pq - q°)
z = - «adl(a- p2 + pr + rl)
+4d
x=2+pd=2 (p2 + r2)

y=2z +qd=2 (p2 + 2pr)

These results coincide with (2) and (4).

In the third and the fourth cases we have q=3p + 5d. To
obtain the results in a nicer form denote e = ¥ d and r = P - 2e,
Then

p=rT + 2e, q=3p +5d=3r +e

and
2 2
d.(p© + pq - q°)
g = = — =% (r2 - re - €?)
+ 5d
X=2 +pd=2 (r2 + e2)

I+

y=2 +qd=% (r? 4+ 2re)

These results coincide with (3) and (5) up to the notation.

By an easy computation we can check that every of (2)-(5) is
a solution of (1); in fact it suffices to verify'(z). Moreover,
if one of (2)-(5) is a primitive solution of (1) then obviously
D(p, q) = 1, This completes the proof.

Notice that no one of (2)-(5) can be omitted in Theorem 1.
It cen be seen from the case p = q = 1,

Now we shall consider the equations x% % x%y2 - y* . g2, 1t
obviously suffices to study their nonnegative solﬁtiona, i. e,

the solutions consisting of nonnegative integers.
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Theorem 2. All nonnegative solutions of the Diophantine
equation

DU G T AL (9)

are (x, O, x2) and (x, x, xz) where x is a nonnegative integer.
Proof . Anonnegative solution (x, y, 2z) of (9) is said

to be primitive if it is not of the form (at, bt, ctz) for some

nonnegative integers a, b, ¢, t, t # 1. Every nonnegative solution

of (9) can be obtained from a primitive solution (a, b, ¢) and

a nonnegative integer t in this way. Hence we have to show that

the only primitive solutions of (9) are (1, 0, 1) and (1, 1, 1).

Let (x, y, 2) be a primitive solution of (9).

"If t = D(x, y) then (x, y, 2) = (at; bt, ct?) for some non-
negative integers a, b, ¢ and hence t = D(x, y) = 1. Analogously
D(x, z) = D(y, 2) = 1,

If x is even then y, z are odd and 4 *(14 + x2y2 - y4 - 22),
which contradicts (9). Hence x must be odd. If 3 | x then 3/y,
3*5 and hence 3*(:4 + x‘?y2 - y‘ - 22), which also contradicts

(9). Hence x = 1 or x2 5, For x = 1 we have

1452 - 3% ag?

which implies y ® 1. For y = 0, 1 we obtain the primitive solutions
of (9) mentioned above. It remains to show that there are no other
primitive solutions.

Let (x, y, z) be a primitive solution of (9) with x= 5 and
let there be no primitive solution (a, b, ¢) of (9) with 1 <a<x.
. Since D(x, y) = 1 we have y # O. Denote X = xz.' Y = y2. Then

X2 +x¥ =¥ - 22 20

X >0 and D(X, Y, z) = 1. Hence by Theorem 1 there are relatively
prime integers p, r satisfying '
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x° = p2 + 1l (10)

y2 = p% + 2pr. (11)

Obviously p # O, r # O, Moreover, we may assume p > 0; if p <0
we can change the signs of both p, r. By (10) and D(p, r) = 1

there are integers m, n such that
\

2

p(my, n) = 1, 2 I mn, —X= m? + n (12)

and one of the cases takes place:

p = 2m , r=m°-n ' (13)

p = m? - n? s r = 2mn (14)

It holds m # 0, n # 0, and we ﬁay assume m > O in both cases.

Moreover, m2 + n2 2 5, and hence

m+inl 2 3 (15)
If (13) holds then p > O implies n > O. Further,

2

y¢ = p.(p + 2r) = 4mn.(m2 + mn - nz)

2 2

The numbers m, n, m“ + mn - n° are pairwise relatively prime and

positive, hence there are natural numbers u, v, w such that

m = u2 ’ n = v2 » m + mn - nl = wl (16)

Then (u, v, w) is a primitive solution of (9). If u = 1 then
m=1, 1 +n=n220, hence n =1 which contradicts (15);
therefore u > 1. Then u < m < x, which contradicts the choice of

(x. Yy Z).
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If (14) holds we have |n|< m and

y2 =p.(p+2r) = (m +n).(m - n).(m2 + 4mn - n2)

The factors of the right-hand side are pairwise relatively prime

and positive, hence there are natural numbers u, v, w satisfying

m+ns= u2 ’ m-n= v s m® - n? + 4on = we (17)
The numbers u, v are different and D(u, v) = 1, Further, ml - n2 =
= u2 v2 and
4mn = 2m.2n = (u2 + vz).(u2 - v2) = ut - v4 (18)
hence
P (19)

Therefore (u, v, w) is a primitive solution of (9). If u = 1 then
(19) implies v = 1, which contradicts u # v; hence u > 1, Further,
‘u<u? =m+n<x which contradicts the choice of (x, y, z). This
contradiction completes the proof of Theorem 2,

Theorem 3. All nonnegative solutions of the Diophantine

equation
(

»

2 x2y2 - y‘ = 22 (20)

argﬁqf the form (x, O, xz) where x is & nonnegative integer.,

Proof. Since the proof is very similar to the proof of
Theorem 2 we shall do some details more briefly.

Define the primitive solutions of (20) analogously as those
of (9). We have to show that (1, O, 1) is the unique primitive
solution of (20). It can be easily verified that (1, 0, 1) is the
unique primitive solution with x S 4.

Now let (x, y, z) be a primitive solution of (20) such that

x 2 5 and let there be no primitive solution (a, b, ¢) of (20)
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with 1 <a < x. Then D(x, y) = 1 and y # 0. Por X = x°, ¥ = = y°
we have D(X, Y¥) = 1 and

X2 4+ XY - Y - 2220
Hence there are integers p, q satisfying (10) and

y2 = = (p2 + 2pq) (21)

It holds D(p, q) = 1, p # 0 and q # O; we may assume p> 0 and
then q < 0. There are integers m > 0, n which safisfy (12), (15)
and one of (13), (14).

If (13) holds then n > 0 and

Y2 = - p.(p +2q) = 4mn.(n2 - nm - m2)

The integers m, n, n2 - nm - m2 are positive and pairwise relati-

vely prime. Hence there are positive integers u, v, w satisfying

m-uz, n-v2, na-nm-mzawz

Then we have D(u, v) = 1 and

Voo uwt-wao (22)

i. e, (v, u, w) is a primitive solution of (20). However, v < |nl<
<|r|l <x, hence v = 1 by the choice of (%X, y, 2). Then n = 1,
m® +m=1-w, m.(m + 1) S 1, which is a contradiction.

If (14) holds we have |n|<m and

y2 = = p.(p+2q) = (m +n).(m-~ n).(n? = m° + 4mn)

The numbers m + n, n2 - m2 + 4on, m - n are positive and pairwise

relatively prime, hence there are positive integers u, v, w such
that
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m+ns= u2 ’ mens= v2 ’ n2 - m2 + 4mn = '2

and hence
u4 - u272 - vt . w = 0 (23)

Since obviously D(u, v) = 1, (u, v, w) is a primitive golution
of (20). Moreover, (23) and v # O imply u # 1 and then 1< u < w .
=m +nSp<x. This inequality contradicts the choice of (x, y, z),

and the proof is completed.
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Sdihrn
DIOPANTICKE ROVNICE x° + xy - y° = 22 a x% % x2y2 _ 34 . ;2

Ivan Korec, Bratislava

Hradaji sa explicitné vzorce pre primitivne rieSenia prvej
g uvedenych rowvnic., N4jdené vzorce sa potom pou’ivaji na dékaz, Ze
dalZie dve uvedené rovnice maji iba trividlne rieSenia, t.j. rie-

Senia s vlastnostou y = 0 alebo y = ¥ x,
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Pespopue
IO AHTOBH VPABHEHMA x° + xy - yo= © M x? 2 x%y° - y8 = 2

Nean Kopen, Bparmcxesa

B craree HaltneHH aBHHe QJOPPMYyJH OXA BCEX NPHMUTRBHHX ﬁemeuul
NepBoOro ypeBHeHus. OTHM JOPMyJH NOTOM MCNOABSYDTCH A8 AOKAsATENAb-
CTBE TeOpeM yTBEpEXASDIMX, HYTO CIEAYDMMX NBA YPBBHEHHS obranapT
TOABKO TPUBMBALHHMM DEmMEeHMAMM, T. €., TAKWMM pemeHusMu, duTro y = O

mwiw y = £ x,
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