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PREFACE

This volume contains abstracts of the lectures held at the Sum-
mer Session on the Theory of Ordered Sets and General Algebra,
at Hornf Lipova in the days from the 3rd till 11th of September,
1972,

These Summer Sessions have regularly been organized since
1962 jointly by the Departments of Mathematics of the Faculty of
Science of the J. E. Purkyné& University in Brno, the Comenius
University in Bratislava and the Technical College in KoSice.



NIEDERSACHS.
STAATS.U.UNIV.-
BIBLIOTHEK

GUTTINGEN



(ACTA F. R. N. UNIV. COMEN.-MATHEMATICA, SPECIAL NUMBER, 1975)
ACTA FACULTATIS RERUM NATURALIUM UNIVERSITATIS COMENIANAE

MATHEMATICA - SPECIAL NUMBER - 1975

ON A REPRESENTATION OF LATTICES BY CONGRUENCE
RELATIONS

H. DRASKOVICOVA

The proofs of the results of this abstract can be found in [3] .

In this note under a lattice £ it is always meant a lattice with
the least element 0 and the greatest element 1. Given a set A,
E(A) denotes the lattice of all equivalence relations on A and
A its least element.

Definition 1 [4] A lattice £ (0,1€ Z) is said to be stron-
gly representable as a congruence lattice if whenever £ is iso-
morphic to a sublattice &' of E(A) for some A, where A,

A x A € X£’, then there is an algebra based on A whose con-
gruence lattice is &’

In [4] it is shown that every finite ditributive lattice is strongly
representable.

The above notion of strong representability seems to be desig-
ned for finite lattices. The class of infinite strongly representable
lattices is relatively small. E. g. the infinite chain ap < a; <
< ag <... <u is not strongly representable because it suffi-
ces to find a chain of equivalence relations
A<abl<o02 ) < A x A ona set A, such that \_/a(q#
A x A, There is np algebra based on A having this chain
a congruence lattice: Moreover the stronger assertion h01d5°

Theorem 1, No infinite distributive lattice £ is strongly re-
presentable,
The following definition seems to be useful.

Definition 2. A complete algebraic lattice [2] & is said to
be quasi strongly representable as a congruence lattice if whene-
ver £ is isomorphic to a closed sublattice [2] £ of E(A) for
some A, where A and A x A belong to &', then there is an
algebra based on A whose congruence lattice is £

Lemma 1. Every strongly representable lattice is quasi stron-
gly representable.



Remark 1. The class of quasi strongly representable lattices
is larger than that of strongly representable lattices.
Using results of the paper [1] we get the following theorem:

Theorem 2, Let £ be a completely distributive [2] closed
sublattice of E(A) containing A and A x A, Then there is an
algebra L based on A whose congruence lattice C (w) = &£ .
The algebra (& can be choosen in such a way that all its operations
are unary and two-valued [1]

Corollary 1., Every complete algebraic and completely di-
stributive lattice is quasi strongly representable.

Remark 2. If £ is a closed sublattice of E(A) containing
A and A x A which is distributive but not completely distri-
butive then it is possible that there is no algebra & based on A
having only unary and two-valued operations such that the con-
gruence lattice C (Cb) = & . Such an example is the congruence
lattice C (L) on the ring & of all integers.

Remark 3. It can be easily shown by an exainple that the la-
ttice of all congruence relations of an algebra with only unary
two-valued operations need not be distributive.
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ON A CONSTRUCTION OF COVERING GROUP
FOR AN N-GROUP

KAZIMIERZ GLAZEK, Wroclaw, Poland.

In 1929 Ddrnte introduced the notion of an n-group [1], which
is a natural generalization of the notion of a group. They were
investigated by Post [7] , who called them polyadic groups.

By an n-group we mean a set A with an n-ary operation defined
in G and which satisfies the following conditions:

1° for all Xq,...,%X9, 1 € A,

f(f(xl,...,xn), xn+1""“x2n-1) 2 f(xl,f(xz,...,xm.l),...,
-x2n_1) = ... = f(xl""’xn-l' f(xn,....xzn_l));

o

2~ for all xO'xl'”"xi-l’ X010
sely one element xie A (1=1,. ; .,n) such that

ceea X € A there exists preci-

f(xl""’xi-l' xi, xi’l,...,xn) = Xg-

We shall call condition 1°, which is a natural generalization of
the associativity in a group, the associative law in an n-group.
Condition 2° is a generalization of the solvability of equations
ax = b and ya = b in the group, and it defines n operations
g; (i=1,2,...,n) inverse relative to f in A. It follows from the
definition of n-group that it may be conceived as a universal al-
gebra q, = (A; f, 81s.0e gn) with n+1 fundamental n-ary ope-
rations. . _

In particular, a 2-group is just a group. A special case of
n-groups form also Priifer’s Schar 8].

An element x which satisfies the equation

f(x,x, I ,x,;:) = x
is called skew to x. One can prove that

f(x,...,x,x) = £(x,...,%X,x) =... = £(x,x%,...,X%),



and that

f(y,x,...,i....,x) s f(x.----i.---:x-}') =y

for all x, y € A, where x can appear at any place under the sign
of the function f.

In 1966 I proved together with B. Gleichgewicht that the follo-
wing theorem is true

Theorem 1. A set with an n-ary operation (n> 2) satisfying
the associative law is an n-group if and only if for every x € A
there exists an element x € A such that for any y € A the follo-
wing conditions are satisfied;

Wy, % DX, %)
f(y,x,...,}-{,x)

Theorem 1 gives a possibility to define, for n>2, an n-group
with the aid of another set of axioms. Thus the n-group n>2)
can be also conceived as universal algebra 4« = (A; f, () with
two fundamental operations: an n-ary operation f and an unary o-
peration ~

£(x,x, .. X, Y)
f(X,)-{,, o-:xn}')

Y
y.

Corollary. The class of n-groups is a primitive class of
algebras.

The group (G; o) is a covering group for an n-group (4; f,”),
if there exists an injection T : A — G such that

T(xl)oT(xz) oT(xn) =-T(f(xl.....xn))

and T (A) is a set of generators of G,

In particular, an n-group is reducible to group if the mapping -
T is "onto". The covering group G is a free covering group if for
every covering group G* and for any injection T, : A—+ G sa-
tisfying the same conditions as the mapping T, there exists epi-
morphism ¥ such that ‘f Te= T .

Let the n-grou (A f, =) have a covering group (G; o), and
let G, = (T'(A)j) {T.'(xl)o T(x32)o0... oT.'(xn_l) : x5 €4,
i=1,...,,n-1

Post [7] (for finite n-groups, Miller [5]) has proved that then
Go is a normal subgroup of G and T (A) is a coset of G with res-
pect to G,. Moreover G/Gg is a finite cyclic group, whose the
rank divides n-1.




Theorem 2. (Post [7] , Miller [5]) Every n-group has a
covering group.

A similary theorem: ""every n-semigroup is a subreduct of a se-
migroup" is also true (see Gluskin [4], Monk and Sioson [6] ).

I obtained another proof of Theorem 2, My construction is more
simple then the Post’s construction. For simplicity I shall des-
cribe one for 3-groups (see [3]) . In general it is more compli-
cated.

Let (A: f,~) be a 3-group, thus

f(f(x,y,z)‘,u,v)= f(x,f(y,z,u),v) = f(x,y,f(z,u,v)),

f(i,x,y) = f(y,x,i) =y = f(x,;(,y) = f(y,:-(,x) and X = x,

On the set Azu A we define the operation o as follows:

(1) xoy =<x,y>,
() xo<y,z> = f(x,y,2),
(i) <x,y> o z = f(x,y,2),
(iv) <x,y> o <z,u> =<f(x,y,z),ud.
Further we define the relation ~v on the set A2 v A by:
X~y ifand only if x = y,
<x,y>~n<x’,y> if and only if there exist a,b € A such that

f(x',a,b) = x, f(a,b,y) =y’

Lemma 1., <f(x,y,z),u>~<x,1f(y, z,u)>.
Lemma 2, <u, uw~<v,v> for every u,v € A,
Corollary. <u,u>~<u,u> for anyu € A.

Lemma 3. The relation ~ is a congruence relation in the
algebra (A2 u A; o).

( Theorem 3, (Az 7] A/~ : ®) is a covering free group for 3-group
A; £,7).

Here © is the operation induced by o in the factor algebra. In
this group the element [<u,u>j ~ is a unit.
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QUASI-CONSTANTS IN UNIVERSAL ALGEBRAS
AND INDEPENDENT SUBALGEBRAS

KAZIMIERZ GLAZEK, Wroctaw, Poland

1. Introduction

In this report I shall use the terminology and notations of papers
by Professor E. Marczewski [6] and [5] (see also [1]) By an
algebra 0L I shall mean a pair 00 = (A; F), where A is a non-
-empty set, and F is a class of fundamental operations consisting
of A-valued functions of several variables running over A, A (or
A(at,)) is the class of all algebraic operations, i.e. the smallest
class containing trivial operations '

and closed under superpositions with the fundamental operations.
A(n) p(n) (o)) is thessubclass of A consisting of all n-ary al-
gebraic operations of L. A(°)(6L) = C (@) denotes the class
of constant algebraic operations of OL as well as their values
the set of algebraic constants).

The sense of notions: homomorphism, isomorphism, subalgeb-
ra, subalgebra c(T) generated by a set T CA {is clear, 200 de-
notes the set of all subalgebras of the algebra 00, '

Let M(A) (or shortly M) denote the family of all mappings
p: T—A fromany TCA andlet QCM, finally let Ol =
(A; F) be a given algebra. Further H (0t)(shortly H) will de-
note the set of such mappings p: T— A (for T C A which have
an extension to the homomorphisms p: C(T) — A, Then set ICA
will be said independent with respect to the family Q or, shortly,
Q -independent (in the algebra OU), if Q CAINH (oU). Ind (Q)
denotes the family of all Q - independent sets of Ol (see [1]).

If we put @ = M, we obtain the notion of "algebraic independen=
ce" introduced by E. Marczewski in 1958 (see [4]). I € Ind (M)
if and only if for any system of different elements ay,...,a, € I
and for every pair operations f, g € A™he equality f(ay,..., ap)=
g(ay,...,ay) implies f = gin OL.



Recently, in February 1972, Professor Marczewski sugested
the notion of independence of subalgebras of a universal algebra.
Two subalgebras By and By of an algebra o = (A; F) are inde-
pendent if for every pair of homomorphisms hj: Bj— A(i-l,z)
there exists a homomorphisms h; C(B;U By)— A, such that
hIBi = hy(i=1, 2)Then one can verify that hy(a) = hy(a) = a for
any a € By N By. It leads to a new notion of quasi-constant ele-
men;s with respect to a subalgebra B of Ob(see the following sec-
tion ).

Majority of results presented here I obtained together with An-
zelm Iwanik (see [2] and [3]) A part of the theorems arose
from questions posed to us by Professor Edward Marczewski,

2. Quasi-constants

An element a of a subalgebra B of Ol is a quasi-constant with
respect to B if h(a) = a for every homomorphism h: B—A,
We denote by Q(B) the set of all quasi-constants with respect to
B in the algebra OU. It seems worth to notice that any element of
Q(B) is a fully invariant element and that the sets Q(B) are fully
invariant subsets in the sense of [11] . It is easy to see that

(1) 1f Q(B) # ¢ then Q(B) is a subalgebra of B

(i) Q(B1) CQ(By) for subalgebras By C By CA.
(iii) Every element a € Q(B) is self-dependent, ([7])
(iv) Q(B)Ch(B) for every homomorphism h: B—A,

Theorem 1. If a is the only fix-point of a unary algebraic
operation f of 0L, thena € Q(C ( {a} .

Consequently

(v) ceQlc({c})) for ec(e).
(:i) ((:?a))(: (éc?C (0)3rcegggy)(i‘or ev(erzr subalgébra Bof OL.

Note that, in general, the inclusion in (vi)is proper, which
shows the example: 0L = ({a,b,c ; f)where f(a) =b,
f(b) =c and f(c) =c. Here C(#)= ¢ and c € Q(C({c})) .

From statement (iv) follows that, if {c is a subalgebra of
oL, then Q(A) C{c} . Hence, if an algebra has exactly one the
one-element subalgebra(e. g.the algebraic constant ) c_} , then
Q(A) = {c} . Consequently Q(A) = {0} = C(@) for groups, for
rings (without unit as the algebraic constant) or for modules. It
is also clear that Q(A) = ¢ = C(P)whenever 0L has at least

10



two idempotent elements, which is valid in idempotent (at least
two-element ) algebras, e.g. in lattices and diagonal algebras
([8 D Another class of algebras with at most one the quasi-con-
stant we obtain from

Theorem 2, If an algebra Ol is weakly commutative ([1] "

p. 10) then there is at most one the quasi-constant (respect to A)
in OL,

In particular, in groupoids in which (xy)(uv) = (xu)(yv)(moreo-
ver in groupoids with (xy)2 = x2y2) and thus in medial semigroups
the set Q(A) is at most one-element and ¢ € QQA) is only idem-
potent element, It is also true in generalized diagonal algebras
(for definition see [8]).

From the following theorem we obtain a class of algebras in

which Q(A) = c(¢).

‘Theorem 3, LetI€ Ind(M)and ¢ € C(I) in an algebra OL .
Then c is a quasi- constant with respect to C(I) if and only if c
is an algebraic constant in 0. ’

Corollary. If Ol has a basis then Q(A) = C(¢).
It would be interesting to know the answer to the following

Problem 1. For which algebras Q(A) = C(ﬂ)?

Problem 2, For which algebras Q(A) = ¢ ?
The following example shows that, in general, Q(Q(B)) # Q(B).
‘Let o = (4; f,g), B=A= {a,b,c,d,e} and

b forx=a c forx = a
f(x) = ¢ forx=b gx) = b forxsc
a forx=c,d,e a for x = b, d,e.

Then Q(B) = {a,b,c}, Q(Q(B)) = 9.

Denote Q%(B) = B and Q®(B) = Q(Q™1(B)) forn'=1,2,... .
Observe that if QXK(B) = QM(B) for some m >k,, then Qk(B) z
= QK I(B)= ... If QMA)is one-element for some n >1 then it
is obviously Q1(A) = ... = Q%(A) = Q™" (A) = ... Other possible
sequences QP(B) are given by the following theorem, which ans-
wers the question posed by Jerzy Pfonka: 4

Theorem 4. Letnbe a natural number and # # 1 be a car-
dinal number, Then the following three cases can be realized in
unary algebras:

11



(1) Q@)D Q(B)D... QB) =™ (B), |1Q"®B)| = =,

(2) Q(B)D Q%*(B)D... ,Ql Qk(B)l =%,
(3 Q® = *®)=..., le@®@)| = % or1,

where the inclusions in (1) and (2) are proper.
The proof is complicated. We use the following lemma:

Lemma, Let 0"0 = (AO; Fo) be a unary algebra without
one-element subalgebras.Then there exists a unary algebra 0l =
(A13 Fl) such that A is a proper subalgebra of 0l; and Q(Al) =
Ao.

Put QV(B) = Q(Q’ QT (B)) for a limit ordinal number ~V.

Problem 3. (M. Novotny) Is there the subalgebra B of an al>
gebra Ot and is there the ordinal number M such that Q'“'(B) =
= Q**1(B)=... and QT(B) D Q*(B) for an ordinal number
T < and |Q*(B)| =% for an arbitrary cardinal number 3¢ ?
In the set Q(A) in an algebra dt= (A; F) we shall distinguish
elements a such that aeQ(C ({a})). These elements we shall call
semi-constants, By (v) all constants are semi-constants. Note
that Theorem 1 is concerned with semi-constants,
In general, semi-constants do not form a subalgebra. For exam-
ple oL= ({a.b.cz; f,g), where f(a) = g(b) =b,f(b) = g(a) =
= g(c) = aand f(c) = c. Here g(c) = a ¢ Q(C({a})), while ¢ €

e Qc({})).

Theorem 5. Let aj,...,a, be semi-constants in O( and let
an arbitrary b € C ({al. Slek=ts an}). Then b is a quasi-constant with
respect to C ({al, e, an}) . Moreover, if C ({b}) = C({al e ,an})
then b is also a semi-constant, )

Problem 4. In which algebras the set of all semi-constant
forms a subalgebras.

3. Independence of subalgebras

A set ) of subalgebras of the algebra Ol = (A; F) is indepen-
dent if for every family of homomorphisms hg : B—A, B € ¥,
there exists a homomorphism h : C ( \é/,’ B)—-» A such that
h|g =hg for B € J. We use the notatf3h 3 € ind 2% (or shortly
Ye ind) if Jis an independent set of subalgebras of 0, It follows
immediately from the definition of independence of subalgebras

12



that the homomorphism h is unique. It is also obvious that the in-
dependence of set J of subalgebras of Ol is hereditary property
with respect to subsets of J .

Example 1., The following notion of independence (which we
shall call % -independence) of subalgebras of a Boolean algebra
is well known: The indexed set {Bt} te T ‘of subalgebras of Boo-
lean algebras 6L = (A;U,N,°,0,1) is B-independent if
/é\T bt # 0 for arbitrary finite To C T and by # 0, by € B
Esee 0[1 0], § 13). Theorem 13.1 of [10] shows that any 93 -in-
dependent set of subalgebras is independent in our sense. One can
show that the converse is also true.

Example 2. If 0l is a unary algebra, then any pairwise dis-
joint set of subalgebras of Ot is independent. The following exam-
ple shows that, in general, it is not true in non-unary algebras.
Viz, A = {a,b, c} and o be a binary fundamental operation, such
that x ox =cox =c forevery x €A and xoy =xfor x fc
andy # c. Let hy: {a}—{c} and hy: {b} —{b} . If there were
a homomorphism h: ga, b} — A such that h(a) = ¢ and h(b) =
b, thenb =h(b) = h(boa) =h(b) oh(a)=h(b) oc =c, which
is a contradiction.

Theorem 6. The following conditions are equivalent:
(1) 9eind 2%,

(2) The subalgebra C (]§€J B) of the algebra (X is a XK -free
product of subalgebras =~ Be Y (see [9] and [4]) for any class X
of algebras such that oL €X C 29,

(3) {h(B): Bey}e€ind 2% for every meromorphism (i.e. an
injective homomorphism) h: C( B\éjy B) — A,

(4) For any family of homomorphisms hg: B—A, B € ¥, if
f, g are n-ary and m-ary algebraic operations in 00 and aj € Aje
€e ¥, b; € B;eJ (i=1,...,n, j=1,...,m; n,m = 1,2,...) then
the equaiity f(1,...,ap) = g(by,...,b,) implies f(hA1 (ap.,..
coos by (8300 = g(hp, (by) ,...,hg_(by, |

(5) For any family of homomorphisms hg: B—+ A (BelY) if

f is an n-ary algebraic operation in 0L and a; € Bje¥ (i=1,...,n;
n=1,2, .. ) then the implication s

(+) f(al.....an) = g(aln---:an) >

hOId? f(hg, @D ... hp (a;)) = glhg, (ap),..., hp_(a,)

13



(6) For any family of homomorphisms hg: B—A (B € ¥) if f
is an n-ary algebraic operation in 0t (n=1,2,...) and a1,...,a,
are different elements such that aj € Bj€J (i=1,...,n) then the
implication (+) holds.

D) B\e/ B € Ind (HY), where H! is a subfamily of the family
H, H, is the smallest family of mappings from subsets of
algebra Ol = (A; F)into A, containing H and closed with respect
to restrictions and ''sticking together' of mappings on disjoint sub-
sets; see [1] p.28> such that for every TCA and B ed if

p € Hz N AT then p|TﬁB = hpg |TﬂB for some homomorphism
hg: B—* A,

The equivalence (1)<=*(2) shows that the notion of independence
of subalgebras is connected with the notion of free product of sub-
algebras ([9] s [4]) similarly as the algebraic independence of
elements is connected with the notion of free generated algebra,

From the equivalence (1)«>(4) we have

Corollary 1. The independence of a set of subalgebras is a
property of finitary character (i.e.Y € ind if and only if ¥ € ind
for any finite subset ¥ of the set .

Corollary 2. Every independent set of subalgebras is con-
tained in some maximal independent set. of subalgebras.

Corollary 3, Let Y€ ind 2% and |¥|>2 and b € B for
every B € ¥, Then b is a quasi-constant with respect to each sub-
algebra B € ¥, .

In particular in algebras with exactly one constant 0 (e, g. in
groups, rings and modules) the intersection of independent sub-
algebras is always equal to {0} . In algebras with the basis this
intersection is equal to C($), and in idempotent algebras it is
empty set.

From the equivalence (1)«<=(7) we have several corollaries

Corollary 4. Let {It} t e be a family of pairwise disjoint
subsets of an algebra 0. Then '

7 ;hgcs:(lt): t € T}e ind 2% if and only if (tke/T It) Ind (BY).

Corollary 5. Let {It} t e T be a family of pairwise disjoint
subsets of an algebra 0 and I; € Ind(M)(t€ T). Then
{c),teT}eind 2% if and only 1 (A 1€ Ind (M),

Since the notions of H,- and Hf'-indepence coincide for one-
element sets, hence, in virtue of Corollary 4, we obtain

14



Corollary 6, {C({a}): ae€ I} € ind 2% if and only if I €
Ind (B,)

Hence we have two corollaries, which answer one of the ques-
tions posed to us by Professor Marczewski:

Corollary 7. If I is an algebraic independent subset of A in
the algebra (t, then {C({a}) ta€ I} € ind 2%,

Corollary 8. Let I be a set of non-self-dependent elements
( (TT)of the algebra OL. Then, if {C({a}):a € I} ind2% then
I € Ind (M).

The next theorem is analogous to the '"exchange theorem' from

[5] ((i), p.58).

Theorem 7. Let (¥ UY)eind2%, I NY =9 Y, €
i oYy o0 My 2
€ ind 2% and let there exists the set 71 C Y, such tl}:‘at
C(M? B) = c(B\e/,,zB), Then (Y U¥,) e ind 2%,

The following problems are connected with the study of the no-
tion of independence of subalgebras:

Problem 5, Given a pair A and B, where B is a subalgebra
of (A; F), describe the congruences © of B such that © core-
sponds to some homomorphism h: B—A,

Problem 6. The same in the case B = A, (Added in proof:
the congruences in this case are called nuclear, see [1 1])

Problem 7, Which algebras Ol = (A; F) have the property

that for every subalgebra B there exists a homomorphism h; A-
— B?

Problem 8 (J. Jeiek). Let A be an arbitrary set and
B, } be a family of subsets of A, Under which assumptions
tf te€T
By:t €T} = {h(A); h is an endomorphism of 0t} for some al-
gebra Ol on the set A?

Problem 9. Let B be a subalgebra of an algebra ot., Under
which assumptions on the algebra Ol and the subalgebra B, every
homomorphism h: B—A has an extention to some endomorphism
of the algebra ot?

15
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ALGEBRAICITY OF ENDOMORPHISMS OF SOME
STRUCTURES

JAROSLAV JEZEK, Praha

Let a transformation monoid H on a set A be given, i.e. a set
of transformations of A which is closed under composition and
contains the identical transformation, H is called algebraic if H
is just the set of all endomorphisms of some universal algebra
(with the underlying set A). B. JONSSON raised the following
problem: give a necessary and sufficient condition for a transfor-
mation monoid to be algebraic.

The following theorem, proved by M. SEKANINA, implies that
there are many transformation monoids which are not algebraic:

Theorem 1. Let <A, F> be an algebra with finitary opera-
tions such that any isotone mapping of a given ordered set <A,r>
into itself is an endomorphism of <A, F>, If <A, r> is not
linearly ordered, then any transformation of A is an endomorphism
of <A, F>.

I have two remarks to this theorem:

1. Theorem 1 holds if we replace "ordered set" by "yuasiorde-
red set". (The proof for quasiordered sets that are not ordered
is not difficult.) As there is a well-known correspondence between
finite quasiordered sets and finite topological spaces (and between
isotone and continuous mappings), this shows that that a re-for-
mulation of Theorem 1 could be given for finite algebras and fi-
nite topological spaces,

2. Theorem 1 holds if "finitary" is replaced by "infinitary".
The proof in the infinitary case differs essentially from the ori-
ginal Sekanina“s proof. In fact, Sekanina got the result by sho-
wing that any operation of F is trivial; this is not true if <A,F>
is infinitary. ‘ '

The following theorem gives an answer to the problem formula-
ted above, in one special case:

17



Theorem 2, Let H be a transformation monoid on A such that
every h € H is either injective or constant. H is algebraic iff it sa-
tisfies the following three conditions:

(1) Ifhis an injective transformation of A, then h € H iff for
ex_rfry finite X CA therle exist some hy,... »ho € H such that
hoh 'Xth-l « «se. o h3% . hy is defined on X and coincides with

on X; .

(@2 If h€H is injective, a € A and the constant transformation
with value h(a) belongs to H, then the constant transformation
with value a belongs to H, too;

(3) If a€ A and the constant transformation with value a does
not belong to H, then there exists a beA different from a such
that whenever fi,...;f2n, €1,...,82, € H are injective and

-1 -1 -1 -1
(fzn. NI A fl) (a) = (an v Byp g+ coe 2By - gl)(a)

(so that a belongs to the domain of these two mappings), then

-

-1 : <1 -1 =
(on.  NEPTRNIN S fl)(b)- (gzn. ol 2 e B .gl)(b)

(so that a belongs to the domains, too).

The problem formulated above is closely related to the following
problem: given a relational structure <A,R>, decide whether the
transformation monoid of all its endomorphisms is algebraic, The
following theorem gives an answer in the special case of <A, R>
being unary (i.e. R being a set of subsets of A and endomorphisms
of <A,)R> being transformations h such that h(r) Cr for any
re R). »

Theorem 3. Let <A, R> be a unary relational structure. For
every a € A denote by a the set of all b€ A such that aer€R
implies b € r; denote by B the set of all a€ A suchthat a= {a}.
The transformation monoid of endomorphisms of <A, R> is al-
gebraic iff the following four conditions are satisfied:

(D 1f B is empty, then every r € R is either empty or equal to A;
(2) 1f Card (B)=1, then B <r for any non-empty r € R;
(3) Whenever a,b€A-B and be3, then a=b;
(4) Whenever B seees an(whe‘re n>2) are pairwise different
elements

of A«-B and Uy,...,Un pairwise different elements of B such

:hat ‘:19 a, N 2y, u, € azﬁ 8g00aes u € 5nn 51, then 51-

n

18
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EQUATIONAL CLASSES OF MODULAR P-ALGEBRAS
TIBOR KATRINAK

A universal algebra <L; U, N, ¥, 0, 12> of type <2, 2,
1, 0, 0> is called a (modular) p-algebra iff <L; U, N, o,
1> is a bounded (modular) lattice and where, for every a € L,
the element a* is a pseudocomplement of a, i.e. x < a¥ iff
aN x = 0, The class of all (modular) p-algebras is equationally
definable (see [1]) The standard results on p-algebras may be
found in [1]

For a p-algebra L define the set B(L) = {x€ L; x= x**} of
closed elements. The partial ordering of L partially orders B(L)
and makes the latter into a Boolean algebra .

<B(L); V, N, *, 0, 1> for which
) * %k
aVb= (aUb)

holds. Another significant subset of a p-algebra L is the set of
dense elements D(L)={x eL; x¥ =0} . D(L) is a filter in L.,
For a p-algebra L define the relation © by

x =y(©) iff x*¥ = y*,

It is easy to see that @ is a congruence relation on L and L/© &
B(L). Each congruence class of © contains exactly one element
of B(L), which is the largest element in the congruence class,
Hence, © partitions L into {Fa; a € B(L)} , where F, =
{x €L; x¥* = a} , a€ B(L). Obviously, Fg = {0} and
F, = D(L). -

An element x of a p-algebra L is said to be a Stone element if
it satisfies the identity ‘

x¥ U x** = 1
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Theorem 1 ([3]) In a modular p-algebra L the subset
S(L) = {x € L; x is a Stone element } is a subalgebra of L,

Theorem 2 ([3]) Let L be a modular p-algebra, Then L
is subdirectly irreducible iff L, satisfies the following conditions:

(1) D(L) is a subdirectly irreducible lattice;
(li)for each closed Stoné element 0 < a <1 of LL we have card
(Fa)>2. ‘

Theorem 3 ([4]) There are 2§° distinct equational classes
of modular p-algebras.

Theorem 3 gives a solution of [1, Problem 65].

We shall study now the equational classes of modular p-algebras
generated by subdirectly irreducible modular p-algebras L satis-
fying D(L) € M, (n > 3), where M, is the modular lattice of
dimension 2 and order n+2 (see the diagram of Mg in Fig, 1).
Let M; is the the one-element, and M, the two-element lattice.

Fig. 1

By B. J6nsson [2],~a modular subdirectly irreducible lattice L
satisfies

(1 xN[x,U(xgNxIIN (x,Nx,) < x,U(xN2,)U(x,Nx)
iff L ¢ M, for some cardinal number n > 1, ‘

First we characterize the subdirectly irreducible modular p-al-
gebras L with D(L)® M, (n »3). (For D(L) ¥ M_, n < 2,
see [6]). We construct a map GL: D(L) — F(B(Lg) FB@W)
is the lattice of all filters of B(L) ordered under set inclusion
in the following way: GL(1) = [1), GI(s) = B(L), where s de-
notes the smallest element of D(L), and for s <d <1 set

GL(d) = {xGB(L);xUs s d}u{l},
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Theorem 4 ([59) Let L be a subdirectly irreducible modu-
lar p-algebra with D(L) ® M, (n > 3). Then GL is a dual (e,VU)-
homomorphism of D(L)into F(B(L)), i.e. GL(Q1) = (1), GL(e)=
B(L) and GL(d Ue) = cL@)nagL(e).

The triple < B(L), D(L), GL> characterizes L up to isomor-
phism.

Theorem 5 ([5]) Given a Boolean algebra B, a modular
lattice M, (n 2 3) and a dual (e,U) -homomorphism G: M, —
— F(B), there exists a subdirectly irreducible modular p-al-
gebra L such that <B(L), D(L), GL> = <B, M, G> .

Finally, there is given in terms of identities a characterization
of all equational classes of modular p-algebras satisfying (J)
and containing subdirectly irreducible p-algebras L with GL(d)-

= [1) for s #d € D(L) only. The lattice of all such equational
classes is also described.
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DECOMPOSITIONS OF N-ANGLES
ONTO THE 2-COMPONENT SUMS

A. KOSLINSKI, Wroclaw

We accept the definition of a graph from [1] . A graph L is a
pair <X; R> where X is a non-empty set (the set of vertices)
and R is the binary relation in X, The pairs <a, b> € R are
called edges. Here we consider only symmetrical unigraphs wit-
hout lodps (see [1]), therefore we denote by (a, b) the undirected
edge. A finite graph L will be called an n-angle if there exists
a simple cycle in it containing all its vertices. We shall numerate
the vertices of the n-angle by aj, ag,...,an according to their
order on a chosen simple cycle containing all vertices of L. An
n-angle we can consider as a convex geometrical n-angle containing
some diagonals or not, where the simple cycle is the circuit.

In [2] the definition of the sum of a direct system of graphs was
given,

In [3] one proved that if a graph L is decomposable into the sum
of a direct system of graphs then L is decomposable into the sum
of a direct system of two graphs. Here we recall the notion of the
sum of a direct system of two graphs called further the 2-compo-
nent sum. Take two graphs L; = <Xi1; R;> , Lp = <Xp;Rp>.
The mapping h: Xj—>Xs is a homomorphism of L into Lo iff
for any a, b € X; we have a R1b == h(a) Ry h(b). Asajﬁi‘ne
X1 N X3 = ¢ and there exist a homomorphism h of Ly into Lg.
We define the two component sum of Lj and L as a new uni graph
L in the following way: '

L = (X,VU X,; R); R=R UR)UR; where
R, = {(a,b) : a€X, bE X,, h(a) R, b}U

U{(c,a): c€X, d€X,, cRyh(d)}

We say ( see [2]),. that the graph is decomposable into the
. 2-component sum iff it can be represented as a 2-component sum.
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In [3] one proved that the an angle without diagonals is decom-
posable iff n=4,

In [2] one can find that the a-angle with all diagonals is not de-
composable,

In this paper we consider the case when an n-angle has some
but not all diagonals.

Theorem 1, An n-angle with exactly one diagonal is decom-
posable iff n=4 or n=6 where in the last case the diagonal is
main.

t

An n-angle is called (n-1) -replete iff it has all diagonals wit-
hout those which go out from the fixed vertex aq.

—

Theorem. 2, An n-angle (n-1)-replate where n > 2 is de-
composable iff n=4,

Theorem 3, The n-angle having all diagonals going out from
the fixed vertex and having no others diagonals is decomposable
iff n=4 or n=5,

Theore ma) For any pair n, k of integers where n >4,
I <k <—L— there exists an n-angle having exactly k-diagonals

which is decomposable,

Theorem 5, From all 5-angles we have four which are de-
composable and four which are not decomposable,
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SOME REPRESENTATIONS OF ORTHOMODULAR
AND SIMILAR POSETS"Y)

M. J. MACZYNSKI - T. TRACZYK

Let us consider a partially ordered set (L; g). A mapping m:
L—[0,1] is said to be a state on L iff

a £ b implies m(a) < m(b)

for every a,b € L. A set M of states on L is said to be full iff

[ \V/ m(a) m(b)] implies a b
meE€ M

Using the notion of principal filters one can easily prove the follo-
wing theorem:

Theorem 1, Every poset admits a full set of states.

Now Iet us suppose an unary operation ° ; L — L to be defi-
ned in L. The algebraic system (L; <, ’) is saidto be an
orthocomplemented poset iff for every a,b,a;,...,a, in L the
following axioms are satisfied:

(A1) a € b implies b’ a’;

(a2) a'"'=a;

(A3) if a; < a! for i# j, then the least upper bound
U...U a, exists in (L; <);

(A4) auUa’ = bUD.

It evidently follows by (A1) - (A4) that the orthocomplemented
poset (L; < , *) has two algebraic constants; the greatest ele-
ment 1 which is equal to a U a’ for every a € L, and the least
element 0 which is equal to 1’, Note that the existence of the
least upper bound a U a’ follows by (A2) and (A3).

Any two elements a,b of an orthocomplemented poset are said
to be orthogonal, al b, if agb’. Wehave ala’ by A2.
It is also easy to whow that

2y

alb implies afNb = 0
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It means that for every pair of orthogonal elements of an ortho-
complemented poset the greatest lower bound exists and equals 0,

An orthocomplemented poset (L <, ) is said to be ortho-
modular iff the additional axiom (A5) is satisfied:

(As5) a < b implies b = a U(aUDb’)’ for every a,b€L,

The axiom (A4) can be left out if one suppose (A5) and the
existence of the greatest element in (L; <).

In an orthomodular poset we can now define a state to be a map-
ping m: L —* [0,1] such that

(s) mQ) =1,

(ss) m(ag V... U ay) = m(ay) +... + m(ay) whenever
ay L a; for i # ]

Each state on the orthomodular poset (L; € , ’) is a state
on the poset (L, <) in the above mentioned sense, as well. The-
re are orthomodular posets which neither admit a full set of sta-
tes nor even a single nontrivial state, [] . On the other hand there
are some important examples of orthomodular posets which do
admit a full set of states, e.g. Boolean algebra and the lattice of
all closed subspaces of a Hilbert space. Another example will be
shown later.

2. Let F be a set of functions from a set A into a set B, Let a
be a mapping from F into B defined by h

a(f) = f(a) for every f € F and for a fixed a € A, The set
F’ = {§ :aé€ A}

is said to be the dual of F.

The If M is a full set of states of an orthomodular
poset (L; <, ) and M’ is the dual of M, then M’ is an or-
thomodular poset with respect to the natural order of real func- '
tions and the complementation f* = 1 -f, i,e. f#(m) = 1 -f(m)
for every m € M, Moreover the orthomodular posets (L; <, *)
and (M’; <, *) are isomorphic, and the mapping a —+ a is
the isomorphism in question,

One can prove this theorem by rather easy verification. Now
we will formulate the main result of the paper, which implies an
important characterization of any orthomodular poset admitting
a full set of states.

Theorem 3. Let L. be a set of functions from a set M into
the closed interval [0,1] and such that
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(D) the zero function belongs to L;

(ii) f €L implies 1 -f € L;

(1) if f),fy,f3 € L and f; «+ £ <1 for 1#j, then f; +
+ f + f3 € L.

Then L is an orthomodular poset with respect to the natural or-
der of real functions and with the complementation f* = 1 - f,
Moreover, if f1,...,f, € L and f; L fJ for i # j then the least
upper bound f; U... U f,,» which exists on account of (A4), is
equal to the e T fl +... ¢1 .(L; <, ’) admits
a full set of states.

Conversely, if (L; €, ’) is an abstract orthomodular poset
admitting a full set of states M, then the dual M’ satisfies (1) -
(iii).

Corollary. An orthomodular poset L admits a full set of
states if and only if it can be represented as a set of functions sa-
tisfying (i) - (iii).

The proof of theorem 3 can be found in [] .

3. The orthomodular poset (L, <, ’) is called Boolean iff

aNb = 0 implies alb.

Note that the converse implication holds in every orthomodular
poset.

Theorem 4, Every Boolean orthomodular poset admits a full
set of states.

One can build up the proof of this theorem (see (D by taking
in account the notion of maximal filters in Boolean orthomodular
posets and its properties, which has been found by Barros,

Let M be a full set of states on a Boolean orthomodular poset
(L; <, ’). Let M’ be the dual of M. By theorem 3 it satisfies
(1) - (m) Since (M’; € , ’) is Boolean, it also satisfies the
following condition
~ (iv) If for some f,g € M’ the only function h € M’ such that
both, h € f and hg g, is the zero function, then f+ g € 1,
Hence we have the following characterization

Corollary. Every Boolean orthomodular poset can be iso-
morphically represented as a set of functions satisfying (1) - (iv).
Conversely, every set of functions satisfying (1) - (iv) is a Boo-
lean orthomodular poset with respect ot the natural order and the
complementation £’ =1 - f,
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If instead of (iv) we assume the stronger condition

(iv’) for every f, g € M’ there are hy, hy, hg € M’ such
that hy +h; < 1for 1 #j and f=hy +hy, g=hy + h3,
then M’, and consequently L, appear to be Boolean algebras. Sin-
ce the converse statement is also true, we then have the following
important characterization of Boolean algebras, which has been
found recently by M. Maczynski, [ ]

Theorem 5. Every Boolean algebra can be isomorphically
represented by a set of functions satisfying (i) - (iii) and (iv’).
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ON SOME OPERATORS REDUCING GENERALIZED
GRAMMARS

M. NOVOTNY

If V is a set then we denote by V* the free monoid over V,

i.e. the set of all finite sequences of elements of V - including the
empty sequence - provided by the binary operation of concatenation.
The elements of V¥ are called strings. We identify x € V with
(x) € V¥ for each x € V, Thus, V < V¥, If x € V* then there
is an integer p > 0 and some elements x;, X3,.. - s Xp € V such
that x = xyx9...x,. We put |x| = p.

If V is a set ancF L < V* then the ordered pair (V,L) is cal-
led a language. .

If R K V¥xV* then the elements of R are called rules or pro-
ductions. We denote by =3—E->(R) the reflexive, transitive and stab-
le closure of R in V¥, Ifx, y € V¥ and x =% y (R) then we de- '
fine the norm in R of the ordered pair (x,y) which is denoted by
| (x,y) g to be the least nonnegative integer N such that there
is R* £ R with the following properties: . ‘

(1) max {|s|, |t ]|} N for each (s,t) € R*;
(2) x —_Libyl(R’).}

Let V be a set, S V¥, R £ V*xV* sets. Then the ordered
triple G = <V,S,R > is called a generalized grammar. We de-
note by Z the class of all generalized grammars,

If G € Z,G= <V,S,R> then we put
£@G) = gx; x € V¥, thereis s € S such that s —*@x(R)};
(v,%(G)) is called the language generated by G.

If G € 2, G= <V,S,R> and the sets V,S,R are finite
then G is called a grammar. We denote by G the class of all gra-
mmars.,

We are interested in languages generated by grammars. Thus,
the following problem is natural:

Problem. Let an arbitrary G € 2, G = <V,S,R> be
given. Find conditions for the existence of G’ € G, G’ =
<Vv',S,R’> suchthat V' L V, 8¢ S, R’ £ R and
that the languages generated by G and G’ are equal.
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If such a G’ exists then, clearly, V’ = V. This problem leads
to following definitions:

Definition 1. Let G, G* € Z, G= < V,S,R>, G’ =
< V'S ,R"> begiven. Weput G’ G if V' =V and S’ S,
R’ R; further, weput G’== G if V' = V and ¥£(G’) =¥(Q),

Definition 2., Let o :Z —> Z be an operator assigning,
toeach G € Z anelement &G € Z suchthat £ G =G,
oG £ G. Then & is called a reducing operator.

Clearly, the operator obtained by superposition of two reducing
operators is a reducing one, : '

We denote by A the class of all reducing operators provided
by the operation of superposition.

Definition 3. Letus have G€ Z and £ €4. Then we say
that G is well reducible by means of & if G € G. We say
that G € Z is well reducible if there is o € A such that G is
well reducible by means of & .

It is easy to see that our Problem can be reformulated in the
following way:

Problem: Letan arbitrary G € Z be given. Find conditions
for G to be well reducjble, i.e. for the existence of a reducing
operator & € A such that G is well reducible by means of .

Definition 4. Letushave G € Z, G= < V,S,R> . Then
we put B(S,R) = {s; s € S and the conditions t € S, t =L s
(R) imply |t] > |s]}, AG= <V,B(S,R),R> .

Definition 5. Letus have G € Z, G= <V,S,R> . 'Then
for each z € L(G), we put "Z"% = min {"(s,z)"R; s € S,
s == z(R)}. Further, we put .

Z(S,R) = {(y,x); (¥, x)€R and there is z €4(G) such that
max {lyl, I1x] <lzI&}. §G = <V,8,2(5,R)> .

Definition 6. We denote by I' the monoid of all transfor-
mations of the class Z generated by the set {/!;,f} provided by
the operation of superposition.

. Theorem 1, I has precisely five elements & = idg, A,
§ ., ¥ =ng, é= § & ; the operation of superposition on I
is given by the following table

30



St M

VYIS M |™
0, %% > |
A R Bl
NN NN R
G @ ©2 0 g |

Theorem 2. 1If §€I', G € Zthen §G =G, §G  G.

Theorem 3. K A and the operation on I is the restric-
tion of the operation on A ., ’

Theorem 4. Let G € Z be arbitrary. Then it is well re-
ducible iff it is well reducible by means of &',

Definition 7. Letus have §, 4 € A, Weput §— = if
the following condition is satisfied: Each G € Z which is well
reducible by means of % is well reducible by means of §

Theorem 5. (A) d&—§ foreach £ €n
(B) §—4&, 5§ €I imply §=4.

Definition 8. Let (V,L) be a language. Forx, y € V¥,
we put (y,x) € >(V,L) ifu,v € V¥ uyv € L imply uxv € L,

Theorem 6, Let (V,L) be a language, G = <V,S,R>
a generalized grammar generating (V,L). Then G <V,L,>
>(V,L)>.

~ Definition 9. Let (V,L) be alanguage, R £ V¥xv*
a set. Then R is called sufficient for (V,L) if there is G =
< V,S,R> € Z suchthat £(G) = L.

Corollary. Let (v,L) be a language, R v*xv*. Then
R is sufficient for (V,L) iff R >(V,L).

Definition 10. Let (V,L) be a language, R a sufficient
set for (V,L). Then (V,L) is called R-bounded if & <V,L,R>
€ G.

Theorem 7. Let (V,L) be a language, R a sufficient set
for (V, L). Then the following two assertions are equivalent:
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(A) (V,L) is R-bounded. ,
(B) Thereis G € G, G= <V,S,R’*> generating (V,L)
such that R’ { R.

Theorem 8. Let {(V,L) be a language, Ry £ Ry suffi-
cient sets for (V,L). If (V,L) is Rjp-bounded then it is Ry-
bounded.

/

Definition 11. A language (V,L) is called bounded™’ if
there is a sufficient set R for (V,L) such that (V,L) is R-boun-
ded.

Theorem 9. Let (V,L) be alanguage. Then the following
two assertions are equivalent:

(a) (Vv,L) is bounded.
(B) (v,L) is (V,L)-bounded.

Definition 12. A language (V,L) is called grammatizable
if there is G = < V,S,R> € G generating (V,L).

Theorem 10. Let (V,L) be alanguage. Then the following
two assertions are equivalent:

(A) (V,L) is grammatizable.
(B) (V, L) 1is bounded.

Definition 13. Let (V,L), (U,M) be languages. We put
w,L) n(u,m) = (VvNnu LNM.

Definition 14. A language (V, L) is called constructive
if there is a grammatizable language (U,M) such that (V,L) =

Theorem 11. Let (V,L) be a language. Then the following
two assertions are equivalent:

(a) (V,L) is constructive. _
(B) There is a bounded language (U,M) such that (V,L)=
C(uyMm) N (v, vH),

The definition of a grammatizable language (V,L) operates
with the existence of a grammar generating this language. Accor-
ding to our results, the existence of such a grammar can be re-

x/We use the expression "bounded language'' in another sense than in the book
S. GINSBURG, The Mathematical Theory of Context-Free Languages. New
York, 1966,
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cognized on the basis of information given by (V,L) only, i.e.
by interior means of the language. It is sufficient to know the re-
lation > (V,L) and &< V,L, > (V,L)> , especially the car-
dinalities of the sets V, B(L, > (V,L)), z(B(, > (V,L),>
> (V,L)) which are constructed on the basis of > (V,L).

Author’s address: Mathematical Institute of the Czechoslovak Academy of Scien-
ces Brno, Mendlovo nédm, 1
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ON RELATIONS BETWEEN DECOMPOSITIONS
OF AN ALGEBRA INTO THE SUMS OF DIRECT SYSTEMS
OF SUBALGEBRAS

| PAONKA Wioclaw

In [l] the notion of the sum of a direct system of algebras and
of the partition function were given; we shall use results of [1]
For this reason in this paper we consider only algebras of a fixed
type and without nullary fundamental operations. If gL is an al-
gebra, L is a direct system of subalgebras of Ol and Ot = s,
we say that Il is a decomposition of 0t. It was proved in [1]
(theorem 2) that there exists a 1-1 correspondence between the
decompositions of Ol and the partition functions of 0L . We con-
sider relations between different decompositions of an algebra 0t,
in particular we are looking for a decomposition with smallest
components.

1, Let I}y and U3 be two decompositions of an algebra 0bL.
Let '

@ p, <I:{Xi}1e1'{hg} 1<j,1,j€1>

<K, {Yk} kex'{gi} k € 1,k 1€ K.

Wy

We say that U = Ug if for all a € Xj, b€Xj, b € Yq,
a € Y we have: )

Xi = Yk; i

hi(a) = b & g{{(a) = b.

N

jek L1

Let [D (ov) be the set of all decompositions of OL.[) (0)is not
empty because the trivial direct system <{1} , {X;}, {h% (x)p
with the unique component X; = X is a decomposition of ot.
For Uy, Uy where Uj and Uy are defined by (1), we define
a relation . as follows: U <C Yo iff for a € Xj, a € Yy
we have X; c Yk. Obviously, the relation £, is a quasiorder.



Lemma 1, If ov is a non-unary algebra, Lll and Uy€D (o)l o
and U, are defined by (1), U3 <C o then for all a,b,

(@€ x;, beXx, a€ Y, bEY) i gj —=kgl,

It means that if ovis not a unary algebra then the relation <
preserves not only components but also the relation < . Let us
define in D (ov) the relation g, as follows: Ly <, lp iff
for a € Xy, b€ Xj, a € Yy, be Y, g (a) =b implies hi(a)-b.

Lemma 2. If 0L is a non-unary algebra then for U, Uy €
D (o) we have:

The meaning of the relation <y, is obvious by Lemma 2. If
Ly <n Ug then Uy preserves inclusion of components, order
of indices and homomorphisms of §J;. From Lemma 1 and Lem-
ma 2 we get:

Corollary 1. The relation <, is a partial order in D (ob).
The binary term which is a p-function in 0L will be called alge-
braic p-function. Such p-function is unique, see [2]

Lemma 3. If x,y is the algebraic p-function in 0L and Lo
is the decomposition corresponding to x.y, then Lo is the
smallest element in the relational system (D (otL); <n).

Lemma 4, If x.y is an idempotent term in 0L then we have

<t S

Lemma 5. If there exists an idempotent binary term x.y in
ov and U; and Uy are two decompositions of 0Ot with the °
corresponding p-functions oy and os then there exists in ot a
decomposition UL such that the partition of ot defined by U is
exactly the intersection of the partitions defined by L, and Usy.
In other words, U = U N U, in (D(0u); ). .o

The relational system (D (ov); <c) in general is not closed
under join. :

Theorem 1. If there exists in 0Ot the algebraic partition
function then the relational system (D (ot); <.)is a meet semi-
lattice with 0 and 1 which is isomorphic with some subsemilattice
of the semilattice of congruences of OL with meet operation,
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SUBLATTICES OF THE LATTICE OF TOPOLOGIES

JIRD ROSICKY, Brno

By a topology J on a set E is meant a system J” of subsets of T
cloced under finite intersections and arbitrary unions. The sys-
tem B (E) of all topologies on a set E ordered by the set-inclu-
sion forms a complete lattice. The least element of B (E) is the
indiscrete topology {qS, E} , the greatest element the discrete
topology exp E. An important complete sublattice of B (E) is the
lattice K (E)of all T; -topologies on E, The least element of
K (E) is the cofinite topology K(E)= {X [ E - X is finite } U
{¢} and K (E)= [K(E), exp E].

I. ROMAN DUDA has put the problem (see Coll, Math, XXIII
(19m )L 2, P 749) whether any lattice is isomorphic to a sublatti-
ceof B (E) (or even of K (E)) for a certain set E, Let mbe
a cardinal number. A topology is called m-resolvable if it con-
tains m disjoint dense sets. A topology J on E is defined to be
m-generated if X € F<«<—=>XNA € /A forevery A C E
with card A  m.

Theorem 1. L.et C be a class of topologies with the pro-
perties: 1° 7 € C n B (E),7’€ B (E), € 7" =—=>7"€C
20 C contains an m-resolvable topology for any cardi-
nal number m. ‘
Then for any lattice L there exists a set E and an embedding
4 :L— B(E)with yLK C.

Corollary 1. For any I;attice L there exists a set E and an
embedding 4 : L —— B (E) such that 7y (x) is a Ty-topology
for any x € L.

Theorem 2. Let C be aclass of Tg-topologies such that
for any lattice L there exists a set E and an embedding @ : L—>
— B '(E) with YL < C . Let m be a cardinal number. Then
there exists a topology J* € C which is not /a-generated.
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Corollary 2. There exists a lattice Lh with no embedding
@ : L — B (E) such that Y (x) is metrizible for any x € L.
It is a problem whether any lattice can be represented by means
of regular topologies.

II. The lattice B (E) is not modular for card E > 3 (see
[5]) and the lattice K (E) is not modular for an infinite set E
(see [1]) It arises a question whether an interval [7’1,9’2] of

B (E) is distributive resp. modular.

Theorem 3. Let E be a set, 71,73€ B (E)and Ty < 7.
Let J¢/M - Intgw (M) = T9/M - Intg, (M) for every M € 7.
71 7 2
Then (T, 7'2] is a distributive lattice.
Any finite distributive lattice is isomorphic to an interval of
K (E) for some E (see [7]).

Corollary 3: Let L be a finite lattice. Then L is distributi-
ve iff it is isomorphic to an interval of K (E) for some E,

The following theorem shows that the condition from Theorem
3 is not necessary.

Theorem 4. Let 7“7 € B (E) The following conditions are
equivalent: )

() gf‘] is modular

(ii) (7 is distributive

(iii) 7 isachaininexpEor 7 = {é,X,E - X,E} for
X <E, ¢ ¢ XtE.

Theorem 5, Let 7 € B (E). The following conditions are
equivalent: v

(1) [7) is modular
(i1) [7) is distributive
(ii1) /™M - Intj»(M) is discrete for every M < E.

A.K. STEINER has proved that the lattice B (E) is comple-

mented (see [_5]) and K (E) not (see [6]) A topology is called
submaximal if any dense set is open.

Theorem 6. Let 77 € K (E). The following conditions are
equivalent:

(1) []“) is complemented

(ii) 7) is a complete atomic Boolean algebra

(iii) 7° is submaximal and for any infinite system @ < exp E
of mutually disjoint sets it holds A/E\a, Clp(A) = 4.
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Theorem 7. Let 7€ K (E). The following conditions are
equivalent:

(i) K(E), 7] is complemented
%ii) K(E), 7| is a finite Boolean algebra.
ii) There exists F ¢ E with 7 = K(E)uU exp F.

The given results can be found in [2], [3] and [4].
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BEITRAG ZUM PROBLEM DER INNEREN DIREKTEN
PRODUKTE VON GRUPPOIDEN

LADISLAV SEDLACEK, Olomouc

In diesem Beitrag werden nur ganz kurz einige Fragen aus der
erwdhnten Problematik behandelt. Dabei werden manche Begriffe
und Ergebnisse aus der Arbeit [1] benutzt, besonders der Be-
griff des relativ konvexen und des konvexen Gruppoides. Es wird
die Verwendbarkeit dieser Begriffe in der erwihnten Theorie ge-
zeigt. Vorher es ist aber n6tig die nowendigsten Begriffe und
derer Eigenschaften aus [1] anzufiihren,

D* 1, Es sei « eine natiirliche Zahl, ¢t1,..., ‘¥,, © Grup-
poide. Gibt es eine isomorphe Abbildung d des Gruppoides “t auf
das Gruppoid ‘¥yx...x U = et sagen wir, dap das Grup-
poid ‘@ das direkte Produkt von Gruppoiden rq,..., Py ist
und wir schreiben auch & —— ¥ 1x...x ¥, oder kiirzer @L<«
et (<] Wenn fiir a € e, (aj,...a,) e @™l q(a) = (a1,..
s++4.,8,) gilt, schreiben wir auch a «— (a1,.v.08p,..0,80) .
Das Element a, (L=1,,..,4) heit die L-te Komponente des
Elements a oder auch die Projektion von a in .

"ab

D* 2. Ein Unterﬁuppoid £ des Gruppoids ‘¢ «— el“lpeipt
in bezug auf e [« konvex, wenn es die folgende Eigenschaft be-
sitzt: Seien a,b € £, (al, .. .,a‘,) , (bl,. ...by) € exl<]

a «— (21,...,845) , b —+ (by,...by) und x_ einbe-
liebiges der Elemente a, , b, € €t (L =1,..., oc), X —>
(xl, ‘o ,x“) . Dann gehdrt auch das Element x in .

Ist ¥ in bezug auf jedes direkte Produkt & [?1= % x...x Zrg
H\’% konvex, so sagt man, daBp £ ein konvexes Untergruppoid

in 9, ist.

S*1, Es seien & — o, x...x o, = %] ‘ff—’xx, X...xx',f
% [2], e das idempotente Element aus s ee—(eg,....e0)
wl*l, e e—(ef,...,e3) ¢ £[°] &l ({e1} x...x e,
ox {ew} , Aper({el} x...x £y x...x {e’}),

Xro ’ z » «
a) Es sei w}, die Projektionvon ¢ in %, und %, die
Projektlonvon X%°, in e fir L=1,,..,4, 2 =1,..., 3.
Dann gilt

X moa
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1. ¢l ist in bezug auf % -F%lund gleichzeitig %, in bezug
auf ‘¢t[*] dann und nur dann konvex, wenn *

2, @ — TL x...x X%, und gleichzeitig £, < &
X,..X uI“-

b) Ist e/ in bezug auf X’r[‘“'] und ofv:; in bezug auf & (4]
konvex fir L=1,,..,<«, #=1,..., 4, besitzen die betrach-
teten direkten Produkte isomorphe Verfeinerungen und das Grup-
poid ‘¢ ist das direkte Produkt von Gruppoiden L, » die mit
ef N &% isomorph sind,

Jetzt wollen wir schon zur Frage der inneren direkten Produkte
iibergehen.

D1. Esselen ®, Untergruppoide des Gruppoides ¥ (¥ >2
eine natlirliche Zahl, L =1,.,.,., oC) ." Es sei 4’}« das direkte
Produkt von diesen Gruppoiden, dh. es sei % «— A 1x...x A =
A, r ¢ ¥, r, € &, Ist die isomorphe Abbildung d von <
auf #A*Jdurch die Vorschrift d(r) = (ry,...,10) gegeben
dann und nur dann, wennr = ryrs...r, , So sagt man, dap ¢
das innere direkte Produkt seiner Untergrupgoide A, istund
man schreibt auch ¢ = #, x...x #,= A%, '

Mit Riicksicht auf D 1 folgt unmittelbar aus [1] .

S 1. 7 seidas Zentrum der Halbgruppe ¥ = ﬁlx. .x Ry
und 3%, das Zentrum in &, (b=1,... ,0). Dann ist % in ¢
konvex. -

Folgerung 1. ‘3' ist das innere direkte Produkt der Zentren
Fv.dh. 3= Fyxoox e

Weiter konnen wir mit Rucksicht auf D 1 die folgenden Sitze
beweisen.

S2., ¢ seieine Gruppe ohne nichtriviales Zentrum und % =
Rix...x 4, = n=l, % = Px...x Pp = }“["]. Dann ist
M, inbezug auf 0% und pp ist in bezug auf #A “ fir
t=1,,..,4, %#=1,,.., % konvex. .

Folgerung 2. Die betrachteten inneren direkten Produkte
besitzen isomorphe Verfeinerungen und ‘¢ ist das innere direkte
Produkt genau aller Untergruppen Ly = &, N Py

S 3. Es sei £ die Kommutatorgruppe in dér Gruppe Y =
A1x...x R, und &, die Kommutatorgruppe in #, (L=1,,
..,#) .Dannist £ in ¢ konvex.

Folgerung 3. £ istdas innere direkte Produkt von £,
dh, & = LHyx...x &, .
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Weiter konnten wir zum*Problem der direkt zerlegbaren Grup-
pen und des Isomorphismus derer Zerlegungen, der mit dem Be-
griff des vollstindigen Systems von Homomorphismen zusammen-
hingt, iibergehen und noch manche andere Fragen lésen. Diese
Problematik soll in meiner Arbeit,"Zum Problem der inneren di-
rekten Produkte von Gruppoiden'' in ACTA Un, Pal, 01., F.R.N,-
Mathematica im Jahre 1973 erscheinen, Darum wird auch nicht
die Literatur angegeben,
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DISTRIBUTIVE SEMILATTICES AND BOOLEAN LATTICES
J. C. VARLET

The notions of filter and ideal can be defined in a /\-semilatti-
ce (henceforth semilattice) as follows.

A filter of a semilattice S is a non-empty subset F of S such
that x A y € F iff x € F and y € F. An ideal I of a semi-
lattice S is a nonempty subset of S such that
(I1)) y<x and x€1 imply y€ I;

(I;) for any x,y € I, there exists z € Isuchthat z >x and
z =Y.

A filter F of S is prime if, whenever two filters F; and Fy are
such that ¢ # F1/\Fy ¢ F, then F; or Fj belongs to F.

A filter F is maximal if the only filter strictly containing F is S.

The concept of distributive semilattice is due to G. Grétzer and
E.T.Schmidt. A semilattice is distributive if ¢ > a /A b (a,b,c ¢
€ S) implies the existence of aj,by € S such that aj > a,
b1 > band a3 A by =c. In 1968 we introduced the notion of O-di-
stributive lattice, in order to generalize that of pseudo-comple-
mented lattice, As a matter of fact the concept of O-distributivity
applies to semilattices bounded below. A semilattice S with least
element O will be said O-distributive if, for any a € S, the
subset I = {x €E S:x A as 0} is an ideal, It is easy to prove
that a distributive semilattice with'O is O-distributive.

A semilattice S with O is weakly complemented if for any pair
a,b of distinct elements of S, there exists an element ¢ disjoint
from one of these elements but not from the other (or, equiva-
lently, there is a maximal filter containing one of them but not
the other).

Finally we make use of another notion introduced by G. Gréitzer
and E, T.Schmidt: a lattice with O is very weakly complemented
if the zero ideal is the kernel of a unique congruence, the iden-
tity.

First the classical definition of a Boolean lattice can be impro-
ved, as shown by
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Theorem 1. A bounded distributive semilattice is a Boolean
lattice iff it is complemented.

The four steps in the proof of the "if'"' part are:

1/ the complement a’ of any element a of S is unique;

2/ complementation is order-reversing: a > b=—=2a" < b’;

3/ S is a lattice: the 1,u.b. of any two elements a and b is
(a: /\ b:)o;

4/ since S is distributive as a semilattice, it is distributive as
a lattice.

Then the meaning of O-distributivity in an up-directed semila-
ttice is clarified by : '

Theorem 2. An up-directed semilattice with O is O-distri-
butive iff any maximal filter is prime.

Stone characterized distributive lattices by means of the follo-
wing separation property: a lattice is distributive iff when a filter
F and an ideal I are disjoint, there exists a prime filter containing
F and disjoint from I, This result can be generalized to semilatti-
ces as follows. "

Theorem 3. An up-directed semilattice is distributive iff
for any filter F and any ideal I such that FNI = ¢, there exists

a prime fiiter containing F and disjpint from |

While the necessity of the condition has already been mentioned
in the literature, its sufficiency seems to be established for the
first time and in fact we only use the weaker assumption: a filter
- and an element not belonging to it can be separated by a prime
filter. Hence the question arises whether the still weaker condi-
tion: any two distinct elements can be separated by a prime fil-
ter, would suffice to ensure distributivity. We were unable to
answer this question and were obliged to deviatg from semila-
ttices to lattices in our last theorem.

Theorem 4. A bounded very weakly complemented lattice L
is Boolean if prime and maximal filters of L coincide,

This theorem is to be compared with Nachbin’s classical re-
sult: a bounded distributive lattice is Boolean iff every prime
filter is maximal, :

The operation /\ we have dealt with so far is idempotent,
associative and commutative. We deliberately abandon these re-
strictions and consider a partially order groupoid, i.e. a p.o.
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set G with a binary multiplication satisfying the isotonicity con-
dition

a  b=—=ax < bxand xa< xb for every a,b,x € G.

Distributivity is then defined by

z2xy ==Jx,7; € G:ix, >X ¥, >¥ Xy *z

a condition which can take the concise form

[x) [y) =[xy) forevery x,y € G

where [x) = {g:g € G, g> x} and the multiplication in the
first member has to be interpreted as in the calculus of comple-~
xes, :

Among the numerous examples of distributive p.o. groupoids
let us just mention the following ones:
the negative cone of any p.o. group having the Riesz Interpolation
Property (in particular, any lattice-ordered group) is a distri-
butive p.o. semigroup; the real numbers in [0,1] under the usual
multiplication or under the operation aob = a+b ~-ab form
a distributive integral (i.e. with a neutral element which is at the
same time the greatest element) totally ordered semigroup.

A sample of the various properties of distributive p.o. groupoids
is: in a distributive integral p.o. groupoid, if b and ¢ are both
coprime to a, then so is bc.

As in the case of lattices and semilattices but under a slight
supplementary hypothesis, the distributive character of the di-
stributive groupoid is reflected upon its filter lattice.

REFERENCES

J. VARLET, Modularity and distributivity in partially ordered groupoids. Bull.
Soc. Roy. Sci. Liége 38 (1969), 639-648,

J. VARLET, Distributive semilattices and Boolean lattices. Bull. Soc. ARoy. Sci,
Lidge 41 (1972), 5-10. :

49






(ACTA F. R. N. UNIV. COMEN.-MATHEMATICA, SPECIAL NUMBER, 1975)
ACTA FACULTATIS RERUM NATURALIUM UNIVERSITATIS COMENIANAE
MATHEMATICA - SPECIAL NUMBER - 1975

A REGULAR VARIETY OF TYPE «2,2,1,1,0,0»

J. C. VARLET

An algebra Jb = <A; F> is regular if any two congruences
of /& are necessarily equal when they have a class in common,
A variety is named regular if all algebras belonging to it are re-
gular. The nicest examples of regular varieties are the varieties
of quasi-groups, groups, rings, modules and Boolean algebras;
among these no one has the type indicated in the title., We fill up
the gap by the variety of double pseudo-complemented lattices sa-
tisfying the condition

*

(M) if a* = b* and a* = b*, then a=h,

The binary operations are the lattice operations V and /\ , the
unary ones are pseudo-complementation (*) and its dual (*)
while the distinguished elements are the least and greatest elements
of the lattice, 0 and 1 respectively. But let us make this clear.

A pseudo-complemented lattice is an algebra & =-<L; V, /A,
*,0,1> satisfying the following axioms:

(1) <L; V, A> is a lattice;

(2) foranya € L, 0 Va =1/ a = ga

(3) for any a € L, there exists a* € L suchthat a A x =0
ifi x < a¥, i.e, any element a has the pseudo-complement
a¥,

When (3) is replaced by

(3’) for any a € L, there exists a* € L suchthat a V x =1

iff x > a%, S is said to be dually pseudo-complemented.

When L at the same time satisfies (1), (2), (3) and (3’), it
will be named double pseudo-complemented, '

A Stone algebra ¥ = <S; V, A,¥%¥,0, 1> is a distributive
pseudo-complemented lattice satisfying the additional axiom
(4) forany a €S, a* v 2¥*% =1,

A Stone algebra satisfying (3°) and
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(4% for any a € S, a*t A a** =0,
is a double Stone algebra,

We point out that pseudo-complemented lattices as well as Stone
algebras are equationally definable. The three-valued Lukasiewicz
algebras, introduced and deeply investigated by G. Moisil, are the
double Stone algebras which satisfy the condition (M).

In a pseudo-complemented lattice &, an element a is dense
if a* = 0. The dense set D(L) is the filter of dense elements of
L. The definitions of dually dense element and dual dense set (de-
noted by D (L)) are obvious.

In any pseudo-complemented lattice &, the relation ~v; defi-
ned by

a ~u, b iff a% = p¥

is a congruence, that is an equivalence relation preserving the
operations V, A, * . Its kernel is {0} while its antikernel,
i.e. [1] ~1, is D(L). Similarly, in any dually pseudo-comple-
mented lattice ¥, the relation ~vg9 defined by

a sz iff a* = p*

is a congruence with kernel D (L) and antikernel {1}. Not so tri-
vial is the fact that in any double pseudo-complemented lattice .
v = rup A vy (die.,a A~ b if 2% = b¥ and at = bt
is also a congruence. The axiom (M) can thus be rephrased as
follows: ~v = w , the equality relation.

In a pseudo-complemented lattice, ~~; = w iff the lattice is
Boolean. This implies that a pseudo-complemented lattice is a re-
gular algebra iff it is Boolean. On the contrary, a double pseudo-
complemented lattice can be a regular algebra without being Boo-
lean, In fact we have

Theorem 1, The double pseudo-complemented lattice & =
<L;V , A,¥,%0,1> isaregular algebra iff ~v= w ,

Under the assumption of distributivity we can provide two other
forms of this last condition.

Theorem 2, In a distributive double pseudo-c:omplemented
lattice &, the following conditions are equivalent:

(1) AN W .

(ii)  any chain of prime ideals has at most two elements;
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(ii*) any chain of prime filters has at most two elements;
Yy
(iii) any dense element of L is an upper bound of 5(L).

The kernel I of any congruence of a pseudo-complemented latti-
ce enjoys the following property: the ideal I contains a** whene-
ver it contains a. Such ideals will be called *%-closed ideals.

We now introduce three derived binary operations:

pr(x,y) = (x* A y¥O)V (x¥* A y*),
pp(x,¥) = (x* A ¥V (x*r Ayt),
p (x,7) = p(xy) V palx,y).

Theorem 3. Ina double Stone algebra ¥ = <S; V, A,
%, ¥, 0, 1 > , for any *%-closed ideal I the binary relation
©; defined by a = b(©p) _iff p(a,b) € I is a congruence.

Finally the correspondence between the congruences and the
**_closed ideals is made clearer by

Theorem 4, In a distributive double pseudo-complemented
lattice £ = <L; V, A,*, ¥, 0, 1 > , there is a bijection
between the congruences and the *%*-closed ideals iff & is a
three-valued Lukasiewicz algebra.

_Theorems 3 and 4 enable us to claim that in a three-valued Lu-
kasiewicz algebra p(x,y) determines the form of any congruence,
generalizing the well-known fact (due to J. Slomifski) that any .
Boolean algebra is a regular algebra in which, for every congru-
ence ©, x=y (©) iff (xAy)V (x’Ay)= 0(e). Infact,
when x* = x* for an element x, clearly x* =x", Then p(x,y)
takes the preceding form and any ideal is *%*-closed.
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OF QUASI-ALGEBRAS
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Let G be a set such that for every element g € G is subordi-
nated an ordinal number n(g), called arrity of an element g.
Quasi-algebra of type G is called a sequence A = <A, (ga,

g € G) >, where A is a set, called support of A, and ga for eve-
ry g € G, n(g)-ary quasi-operation determined on a set A, that
is a function gp : D(ga) — A, where D(gp) & AR(E),

The set D(gp) is called a domain of quasi-operation ga. A quasi-
operation gp is called an operation, if D(gy) = AP(8J. If for
every g € G a quasi-operation gp is an operation, then a quasi-
algebra A of type G is an algebra A of type G,

Let P*(G) = < P%(G), (g , € € G)> be Peano-algebra
of type G generated by set X = 2 X, A<L}, i.e.:
1. X € P*(a), ‘
2. the elements of X are not values of the operations gp«(G)>
g € G, for elements of P%(G), E—
3. for all g, g’ € G and all sequences (wg, ¢ <n(g)) € P¥(G)n(E
and (wg , ¢ < n(g")) € P¥(G)"(ED , if g (wy , 0 < n(g))=
g’ we , ¢ <n(g’)), then g=g’ aﬁ%ﬁ(v%-l= wp for
n g)’
4. the set X generates the algebra P“'Q Q).

The elements of the set X we will call the variables and the ele-
ments of the set P¥(G) are called the terms,
- Let A be a quasi-algebra of type G, Every term p € P*(G)
induces in quasi-algebra A «-ary quasi-operation AP defined in

the following way: .

1. anelement a = (a,, A<d)€ A  belongs to D(ap) iff p e D(P),
where f:X— A is such mapping that Y(x,) = a, for A<y,
and ¥ denotes a partial homomorphism of Peano-algebra
P*(G) in quasi-algebra A induced by ¢;

2. ap(a) = ¥(p) for a € D (up).

The pairs of terms <p,q>, p,q € P*(G), are called the equa-

tions. Farther on we will write lp = @ instead of <p,q>. .
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In the case of quasi-algebras there are posible three different
kinds of validity of equations (J. Stomifiski - Peano-algebras and
quasi-algebras, Dissertationes Math. 57 (1968)).

Definition 1, Equation p = ¢ is said to be weakly valid
in the quasi-algebra A if for all sequences a = (a,, A <& ) in A

we have ap(a) = aq(a) provided a € D(ap) n D(xa).

Definition 2. Equation r'p = q is said to be valid in the
quasi-algebra A if D( p) =D(apq) and Ap(a) = Aq(a) for
each sequence a € D(Ap) - Dé;q)

Definition 3., Equation fp = ¢ is said to be strongly valid
in the quasi-algebra A if we have p rvg q for each sequence
a € A%, where ~, denotes the least’c congruence relation ~v of
the Peano- algebra P#(G) such that for all r,s € P*(G) we
have:

rrns if a€ D(ér)h D(As) and Ar(g) = AS(E)'

Every equation strongly valid in quasi-algébra A is in this quasi-
algebra valid. Every equation valid in quasi-algebra A is weakly -
valid in A, In the case of algebras all three kinds of validity are
equivalent, but in the case of quasi-algebras they are different,
which is proved by the following examples, Let_Ad be a discrete
quasi-algebra of type G (i.e. for every g € G D{(g EY) $) such
that G ¢ and Ad = {a} . Then the equation fp = A" , where
p#q and p,q are not variables, is valid, but it is not strongly
valid in quasi-algebra Ad, Whereas the equation 'x = p' , where
x is a variable and p is a term different than a variable, is weakly
valid but not valid in Ad.

Let E be any set of equations of type G. Denote by Cny (E)

_the least congruence relation of Peano-algebra P¥*(G) containing
the set E, and by Cn(E) - the least full invariant congruence re-
lation of -P"“QG) containing E, By (weak, strong) E-quasi-algeb-
ra we will understand such a quasi-algebra in which all equations’
from the set E are (weakly, strongly) valid. Farther on denote
by wG(E), G(E), sG (E) and G¥(E) the classes of all weak E-qua-
si-algebras, E-quasi-algebras, strong E-quasi-algebras and E-
algebras, respectively.

The question arises: for which sets E the following relations
take place (the subject commenced by J. Stominski - above):
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1. ¢*¥(E®) = sG(Ccn(®E)), 7. G¥(E) = sG(E),

2. G*(E&) = G(Cn(E)), 8. G¥@® =G(E),

3. G*(E®) = wa(Cn(®)), 9. G*(E) = wG(E)

4, G*¥ (E) = sG(Cnyx(E)), 10. sG(cn(E)) G(Cn(E))
5. G¥(E) = G(Cnx(E)), e et tter i,
6. G¥(E) = wG(Cnx (E)), 45, G(E) = wG(E).

Examples of theorems:

Theorem 1, For any set E sG(Cny(E))
G(Cng(E)) = G(E).

Theorem 2. There is no set of equations E for which the
equations 3, 6 and 9 would take place.

sG(E) and

Theorem 3. If equations 2, 5 or 8 take place, then the sets
Cn(E), Cnyx(E)or E recnectwely contain the equation ™x = p' ,
where x is a variable.

Theorem 4. Let E be an arbitrary set of equations of type G.
Then each weak E-quasi-algebra A, where A > 2, is E-quasi-
algebra (problem 45) if and only if the set E is empty, or E con-
tains only equations of the form T =p'

Theorem 5. Each weak E-quasi-algebra is a Cn(E )-quasi-
algebra if and only if the set E of equations is empty or contains
only equations of the form M = p’

Theorem 6, The sufficient condition for every E-quasi-al-
gebra to be Cn(E)-quasi-algebra is that the set E should contain
only such equations ™ = q' in which the terms p and q have the
same variables,

It seems that these results may find the application in the in-
vestigations connected with the formation of axiomatic systems
for certain classes of quasi-algebras of the fixed type G.
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CAYLEY COLOR GRAPHS OF GROUPS AND THEIR
GENERALISATIONS

BOHDAN ZELINKA

1, Introduction

In this lecture we use the graph-teoretical terminology of ORE
[2 and the translation of the algebraic terminology of BELOUSOV
[1]. The term "loop" will be used here in two quite different sen-
ses: in the algebraic sense (a quasigroup with a two-side unit ele-
ment) and in the graph-theoretical sense (an edge joining a vertex
with this vertex itself). For avoiding misunderstandings due to
this homonymy, after the word ''loop'' we shall always put either
"a.s." (algebraic sense), or "g.s." (graphtheoretical sense) in
brackets,

Proofs are omitted; they can be found in [4] and [5]

One of the earliest problems which were met at studying inter-
relations between the graph theory and the abstract algebra was
the problem to characterize automorphism groups of graphs. The
results of CAYLEY and FRUCHT (quoted in [2]) showed that eve-
ry at most countable group is isomorphic with the group of all
automorphisms of some graph.

To any group H we can assign the so-called Cayley color graph
C(H). Its vertices are the elements of H. The edges of C(H ) are
directed and colored so that there exists a one-to-one correspon-
dence between the set of colors of edges and the set of elements
of H. If x € H, y € H, then in C(H) a directed edge of the color
corresponding to y goes from x into xy, It can be proved that the
group of all automorphisms of C(H) which preserve colors of
edges is isomorphic with H. But the group of all automorphisms
of G is a symmetric group, because C(H) is a complete digraph
with loops (g.s.). Therefore the Cayley color graph is not a com-
plete solution of the problem, .

If H is at most countable, we adapt C(H) to obtain the so-called
Frucht graph F(H) of H. We number the elements of H by positi-
ve integers (quite arbitrarily). For each positive integer n by G,
we denote the graph on Fig. 1, In C(H) we substitute any edge of
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the color corresponding to the n-th element of H by G,, so that the
initial vertex of this edge is identified with the vertex a of G, and
the terminal one with b. The graph F(H) thus obtained has the
automorphism group isomorphic with H,

a . b
{
PATH OF | PATH OF
THE LENGTH |1 THE LENGTH
2n i 2n+1
FigA.

We shall study the above defined concépts in the case when H is
not a group, but a quasigroup, a loop (a.s.) or a semigroup.

2. Quasigroups and loops (a.s).

A quasigroup is a groupoid in which the equations ax = b and
ya = b have unique solutions x and y for any a and b.

A loop (a.s.) is a quasigroup with a two-side unit element,

An isotopy of a quagigroup Qi onto a quasigroup Qg is an orde-
red triple <&, 7, > of one-to-one mappings of Q1 onto Qg
such that for any three elements x, y, z of Q the equality « (x).
A(y) = 27(2z) in Qy is equivalent to the equality xy = z in Q1. An
isotopy of a quasigroup Q onto itself is called an autotopy of Q.

Let G; and Gy be two digraphs whose edges are colored by some .
way. A color-preserving isotopy of G; onto Gg is an ordered trip-
le <fy, f3, ¥ >, where f; and fg are one-to-one mappings of
the wertex set V; of G; onto the vertex set Vg of Gy and ¥ is
a one-to-one mapping of the set of colors of edges of Gy onto the
set of colors of edges of Gy such that for any two vertices u, v of
G the existence of the edge UV in Gy is equivalent to the existence
of the edge f; (u)fa(v) in Gy and if G¥ in Gy exists and has the
color ¢, then fi(u)fz2(v) in Gy has the color ¥(c). (Compare [3])

The Cayley color graph C(Q) can be considered as an ordered
pair <F , £>, where F is a decomposition of the complete
digraph I-\’n with n vertices with loops (g.s.) into edge-disjoint
linear factors and § is a one-to-one mapping of the vertex set
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of R’n onto the set of factors of F (as well-known, if ﬁn is decom-
posed into linear factors, the number of these factors is exactly n).
The decomposition F corresponds here to the coloring of edges
and € to the correspondence between elements of Q and the colors
of edges. (From the definition of the quasigroup it follows that
C(Q) is again a complete digraph with loops (g.s.).) ‘

Now we shall introduce some theorems. Their proofs can be
found in [4] .

Theorem 1, Let Kn be the complete graph with n vertices
with loops (g.s.), where n is a finite or infinite cardinal number.
Any ordered pair < F, £> , where F is a decomposition of Kn
into edge-disjoint linear factors and § is a one-to-one mapping
of the vertex set of Kj onto the set of factors of F , determines
a quasigroup Q such that the Cayley color graph C(Q) of Q can
be considered as < F , §> as described above.

Theorem 2. Let Q and Qg be two quasigroups on the same
set M of n elements. The following two assertions are equivalent:

(1) The Cayley color graphs of Q and Qg can be considered as

pairs <F, §1> and <F , €3> respectively, F being the
same in both pairs.

(2) There exists an isotopy of Q onto Qy of the form <E, 3, &>
where & 1is the identical mapping of the set M.

Theorem 3. Let Qp, Qg be two quasigroups, let there exist
an isotopy of Qi onto Qg. Then there exists a color-preserving
isotopy of C(Qq) onto C(Qg) and vice versa.

Theorem 4. Let Q, Qg be two quasigroups, let thete exist
an isotopy of Qi onto Qg of the form <« ,4, « > . Then there
exists a color-preserving isomorphism of C(Q;) onto C(Q2).

Theorem 5. Let Q be a quasigroup, let C(Q) be its Cayley
color graph. The group of strongly color-preserving automor-
phisms of C(Q) is isomorphic to the group of all isotopies of Q
having the form <, €, £> where & is the identical mapping
of Q. 4

A strongly color-preserving automorphism of a graph is a co-
lor-preserving autotopy < fi, f3, > , where f; = f3 and ¥
is the identical mapping of the set of colors of edges of thi& graph.

Theorem 6. Let Q be a quasigroup, let C(Q) be its Cayley
color graph, The group of color-preserving automorphisms of
C(Q) is isomorphic to the group of all isotopies of Q having the
form <&, 2, £>. ' -
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Theorem 7. Let L be a loop (a.s.). Then its Cayley color
graph C L can be considered as a pair <F, >, where F
is a decomposition of i{n into edge-disjoint linear factors and g
is a one~to-one mapping of the vertex set of K, onto the set of
factors of F and which has the following properties:

(1) One of the factors of F is formed by all loops (g.s.) of K,.
(2) There exists a vertex of Kn such that any edge outgoing from
it belongs to the factor g(v), where v is its terminal vertex.

Any pair < F, £ > with the described properties determines
a Cayley color graph C(L) of some loop (a.s.) L.

Corollary. To any decomposition F( of a complete digraph
with n vertices without loops (g.s.) into pairwise disjoint linear
factors and for any arbitrarily chosen vertex v of it there exists
a loop (a.s.) L such that the pair < F, £ > , where F is
obtained from F( by adjoining a linear factor consisting of loops
(g.s.) at each vertex and § 1is a suitable one-to-one mapping
of the vertex set of this graph onto the set of factors of F, is its
Cayley color graph and the vertex v corresponds to the unit ele-
ment of L.

Theorem 8. The group of strongly color-preserving auto-
morphisms of the Cayley color graph C(L) of a loop (a.s.) L is
isomorphic to the left kernel of L.

As defined in [1] , the left kernel of a quasigroup Q is the set
of elements a of Q such that (ax)y = a(xy) for any two elements
x and y of Q. The left kernel of a loop (a.s.) L is a group under
the multiplication in L,

Theorem 9. Let H be a group. Then its Cayley color graph
C(H) can be considered as a pair < F, £> , where F isa
decomposition of Rn into edge-disjoint linear factors and § is
a one-to-one mapping of the vertex set of Kn onto the set of fac-
‘ tors of F and which has the properties (1) and (2) from Theo-
rem 7 and a further property:

(3) In each acyclically directed triangle T of K, the factors of F
to which two edges of T belong determine uniquely the factor of
F ta which the third edge of T belongs.

Any pair < F, § > with the described properties determines

a Cayley color graph C(H) of some group H.
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3. Semigroups and their meromorphisms

A meromorphic mapping, or shortly meromorphism, of a graph
G is an isomorphic mapping of G into itself.

By other words, it is a one-to-one mapping m which maps the
vertex set of G into itself and the edge set of G into itself, such
that the vertices m(u) and m(v) are joined by the edge m(h) if
and only if the vertices u and v are joined by the edge h.

Evidently automorphisms are particular cases of meromor-
phisms, They are such meromorphisms which map G onto G (this
means the vertex set of G onto itself and the same for the edge set).
A meromorphism of G which is not an automorphism of G is called
a proper meromorphism of G. Obviously only infinite graphs can
have proper meromorphisms.

We can prove following two theorems.

Theorem 10. Let M(G) be the semigroup of all meromor-
phisms of a graph G. Then M(G) is left-cancellative and M(G) =
A(G) U My(G), where A(G) O Mo(G) = @, A(G) is a subgroup
of M(G) and MO(G) is either a torsion-free subsemigroup of
M(G ) which is an ideal of M(G), or is an empty set. The unit
element of A(G) is a unit element for whole M(G).

Theorem 11. Let M be an at most countable left-cancellati-
ve semigroup and M = A U My, where A ® M = @, A is a group,
Mg is either a torsionfree semigroup which is an ideal in M, or
an empty set. Let the unit element of A be a unit element for who-
le M. Then there exists a graph G whose meromorphism semi-
group is isomorphic to M,

A subgroup of a semigroup is a subsemigroup of this semigroup
which is a group. The meromorphisms of a graph evidently form
a semigroup.

The proof of theorem 11 is based also on an analogon of the
Cayley color graph and of the Frucht graph. For a semigroup
satisfying the assumptions of the theorem we construct such an
analogon by the same way as we made it for a group. (The analo-
gon of the Cayley color graph will not be complete digraph in ge-
neral.) Then we prove that the semigroup of all meromorphisms
of the analogon of the Frucht graph is isomorphic with the given
semigroup.
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