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ACTA F. R. N. UNIV. COMEN., MATHEMATICA XXI-1968

ACTA FACULTATIS RERUM NATURALIUM UNIVERSITATIS COMENIANAE
MATHEMATICA XXI-1968

Regularly connected trivalent graphs
without non-trivial cuts of cardinality 3

ANTON KOTZIG, Bratislava

Troughout the present paper we mean by a graph a non-empty finite
graph.

Conventiomn: the set of vertices (or edges) G will be deno-
ted by V(G) (or E(G)). We shall deal especially with trivalent graphs, i.e.
regular graphs of the third degree.Such a graph will be called a C-graph if
and only if it is connected and remains connected even after the deleting
of fewer than three of any of its edges (according to the ter-inolo;y'n-od
used in [XJ , 8 C-graph is a regularly connected and regular graph of the
‘third degree). Examples of the simplest C-graphs are given in Fig. 1 (re-
presenting all non-isomorphiC-graphs with fewer than 8 vertices). )
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Let G be any graph and let R be such a subset of the set E(g) that
has the following properties: after deleting all edges of the set R we.get
from G a graph which has one component wore than G and if we delete from
G all edges of R with the exception of arbitrary one edge, we get a graph
with the same number of components as G. The set of edges with the above
properties will be called an edge-cut of G. When speaking of cardinality of
the edge~cut R (symbol ‘Rl) we mean the number of its edges. As usually a
single edge of the edge-cht of cardinality 1 is called a bridge (sea [Q]).

It follows directly from the definition of the C-graph that it is

" connected and does not contain either a loop, or a briage. or an edge-cut of
cardinality 2. Hence it follows that if a C~graph has more than two vertices
it does not contain a two-gon (i.e., it does not contain multiple edges).
Since, if two edges, e, f, were incident at the same two vertices u # v.
of a connected 3-valent graph G with more than two vertices, the third
edge incident at u together with the third edge incident at v would form an
edge-cut of cardinality 2.

It 1? known (see [1], [il ) that after deleting all edges of any
edge-cut of a graph, one of its components is decomposed into exactly two
components. These are called the banks of the cut. It is also known that each
edge of the edge-cut joins two vertices belonging to different banks of the
cut. Further, the following holds:

Theorem 1. Let R be.an edge-cut of the graph G and let K
be a circuit of G. If p denotes the number of edges from Rn K then we
have p=0 (mod 2).

Proof. If p=0, it is not necessary to prove anything.'Lat p>0.
If we delete from the circle K all p edges belonging to R, the circuit K
will split into p paths (an isolated vertex is considered here as the path
of a zero lenght). Each of these paths is joined to another path by at most
two edges from R. Running along the circuit K, the path belonging to one
bank of the cut R must alternate with the path belonging to the other bank
(as the edge of R joins two vertices of different banks and each of the
considered paths belongs entirely to one of the banks of the cut R). Hence
it follows that the number of such paths is even and p= 0 (mod 2), q.e.d.

The edge-cut of a graph is said to be non-trivial if each of both its
banks contains a circuit as a subgraph, In the reserve case it is called a
trivial edge-cut. A trivial (or non-trivial) edge-cut will be called hence-
‘forward a t-cut (or u-cat).



Theorem 2, Ina 3-valent graph no t-cuts of cardinality 1
and 2 can exist. An odge-gut of cardinality m £ 3 is a t-cut if and
only if the number of vertices of at least one of the banks is exactly m-2.

Pr oo f. The validity of the first assertion of the theorem is
evident. Let us prove the validity of the second assertion. Let R be such
an edge-cut of cardinality m 2 3 of the 3-valent graph G that one of
its banks contains exactly m-2 vertices. With respect to the number p of
the edges of the bank the following holds: 2p = 3(m-2)-m. Hence p=m-3 and
thus the number of edges of the bank is one less than the number of its ver-
tices. As the bank of the cut is a connected graph, it follows that tho
considered bank is a tree. Hence it is a t-cut.

>

Let Q be any t~-cut of cardinality m = 3 in the 3-valent graph G
and let B be that of its banks which does not contain a circuit. In such
a case B is a tree, Let b be the number of vertices of the bank B.
The number of its edges is b-1 and 2(b-1) = 3b-m holds. Hence, if Q is a
t-cut of cardinality m, the number of vertices of one of its banks is m-2.
This proves the theorem.

Examples of t-cuts and u-cuts of cardinality 3 and 4 in a C-graph
are given in Fig. 2 (the edges of the cut are in a dashed line).
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Fig. 2
Examples of edge-cuts in C-graphs

Let G be a C-graph and let e # £ be edges of E(G); let u;,u, be
the endpoints of the edge e; MURL) the endpoints of the odgo f. Let G be
a graph arising from G as follows: (1) the paths of length one {ul.o uai



and (vl.f.va) are substituted by the paths of lenght two (ul,ol.uo,ez.nz}

and {'l'rl"O'tz"zl (where u,,v, are new vertices and °l'°2'f1'f2 are
‘new edges) and (2) two new vertices uy.vy are joined by another new edge g.
We shall say that the graph G°, arising as described from G, is the H-exten-
sion of G on the edges e,f. The reverse proéess.i.o the chance of G° into
G is called the H-reduction of the edge g of G°.

ITheorem 3. Let G be any C-graph and let G° the graph
which arises by an H-extension of G on any two of its edges; then G° is a
C-graph and every C-graph can be constructed from the C-graph containing
exactly two vertices by repeated H-extensions.

Pr oo f. The first assertion of the theorem is evidently valid.
The proof of the validity of the second assertion may be found in paper 4] .

We say that a graph G is a planar graph if it can be realized in a
plane in such a way that its vertices are points and its edges simple arcs
joining the corresponding pairs of points and no two arcs have any common
point apart from the end-point (whiéh is the vertex of the graph). A graph G
constructed in this way decomposes the plane into connected regions called
faces. The set of faces arising in a given plane from G will be denoted
~ by S(G). Instead "the face s ¢ S(G) is bounded by elements of G" we shall

say (as in the special case of polyhedra) that the face is incident. at verti-
ces and edges from G. The tollowing‘is evident: If G is a connected planar
fraph without cut points and loops containing at least one circuit), then each
_face is incident at all elements of a circuit and only at elements of this
circuit. In such a case each edge of E(G) is incident at exactly two elements
of V(G) an also at exactly two elements of S(G). For any s € S(G), e ¢ E(G),
v € V(G) we have: [ s 18 incident at e; e is incident at v} = [ s is incident
at v] . If a face is incident at the vertex v, then there exist exactly

two edges incident both at the face and the vertex v. The triple of sets

{v(G),E(G),S(G)} with thus defined incidence will be called the P-complex of
the graph G and will be detoned by P(G).

Let G be a connected planar graph and P(G) its P-complex. Let us
assign to it a topologically dual complex P(G*) so that within each face
8 € S(G) we choose a vertex ¥: to each edge e € E(g) we assign an edge
€ ¢ E(G*) cutting the edge e, which joins the vertices X,y chosen of the
faces lying on both sides of the edge e (see Fig. 3). '



vertices ¢ V(G) - vertices <V(G™)
Fig. 3
'
If P(G*) is the topologically dual P-complex of the P-complex P(G), we
say that the graph G* is conjugate with the graph G. It is known that if G*
is conjugate with G, then G is conjugate with G™ and there exists a one-
to-one mapping c¢ of the set V(G)v E(G)wv S(G) onto the set V(G*) E(G")v
S(G*) with the following properties:

(1) cle) ¢ E(G¥Y)V e € E(G) for any
(2) clv) € S(G*)VY v ¢ V(G) for any
(3) c(s) € V(G*)Y s € S(G) for any

(4) the edge c(e) € E(G®) is in G™ incident at the vertices c(li).
c(sJ) and at the faces c(vp), c(vq), if and only if the edge e in the graph

G 1is incident at the faces 8;:8; and the vertices vp.vq.

Theorem 4. Let G,G™be conjugate graphs and P(G),P(G*) their
P-complexes. Let ¢ be a mapping with the properties (1),(2),(3),(4). Then
the c-images of the edges of any circuit of G form an edge-cut of the graph
G ™and the c-images of the edges of any edge-cut of G form the set of edges
of a circuit of G*,

Proof . It follows directly from the definition of the P-complex
‘that if two faces s # t of S(G) were incident at two edges ep,e then
these edges would form in G an edge-cut of cardinality 2 (see ng.4). This,
however, is not possible, since G is a C-graph. The theorem follows.




Fig. 4

Theorem 6. Let R be any edge-cut of cardinality n in the
planar C-graph G and let P(G) be its P-complex. Then S(G) contains
exactly n faces incident at edges from R. These faces can be detoned by
818500048, and the edges of R can be denoted by’ ©1:05,000,8 so that
for a1l i« {1,2,...,n) the following holds: the edge e, is incident at

the faces 8.8, (we put s i™ -1).

n+ ’

Pr oo f, The theorem is a li-blc corolla@y of Theorem 4.

Theorem 7. Let G be any planar C-graph and P(G) its P-complex.
Let G° be a graph arising by an H-extension on its edges e % f, then G° is
planar if and only if e, f are incident at the same face of S(G); by an
H-reduction of G on each of its edges there always arises a planar graph.
The proof is evident.

KRote 1. It follows directly from Theorem 7 that if, in case of
extensions of planar C-graphs, we bear in mind that both edges with the
H-extension be incident at the same face (this face is in the case of H-exten-
sion decomposed into two new faces) then starting from a C-graph with two
vertices (see Fig. 1) we can construct in this way successively all plansr
C-graphs with a given number of vertices without the necessity to construct
non-planar C-graphs.

Note 2. If by a3-valent polyhedron we mean such an Euler poly-
hedron in the sense of Steinitz (see [7] ,p.133) where each vertex is incident
at exactly three edges, we evidently have: Any planar C-graph with more than
two vertices is a graph of & 3-valent polyhedron and the graph of such a poly-
hedron is always a planar C-graph. Hence Theorem 7 enables us to construct
all 3-valent polyhedra. ’ \ ’

When studying the decomposition of planar 3-valent graphs into three
linear factors (which play an important role in the well-known four-colour
problem) we can restrict - as it is known - to such graphs which contain more



than three vertices and do not contain a u-cut of cardinality 3. Through the
method mentioned in note 1 enables us to construct successively all planar
C-graphs with the given number of vertices, this way of construction does not
seem to be convenient, as we obtain a (for us useless) byprodukct in the form
of planar C-graphs with u-cuts of cardinality 3. We should like to avoid these.
If, however, in constructing planar C-graphs with the method of repeated
H-extensions, we avoid at every step a planar C-graph with a u-cut of cardi-
nality 3 (in ether words: we avoid a planar C-graph with a triangle), it may
happen that we do not obtain some graphs with the required property by our
method. Of course, there is still the possibility that there exist more graphs
than one planar C-graph without a u-cut of cardinality 3, wherein the H-re-
duction cannot be accomplished without a u-cut of cardinality 3 arising (such
grapqp would inevitably be avoided in the mentioned procedure). In the follow-
ing we shall deduce theorems which will enable us to avoid such difficulties.

Convention: Fot the sake of simplification we shall call in

the following a planar C-graph with more than 4 vertices, not containing any
u-cut of cardinality 3, a Y-graph.

Theorem 8. Let G be any Y-graph and R any its u-cut of
cardinality 4, then no two edges of R are adjacent.

Pr oo f. If two edges e,f of a u-cut R (where lRf = 4) were
incident at the same vertex v, then the bank with the vertex v would contain,
apart from a circuit, also an edge which is one edge of the bank incident at
the vertex v (let us denote this edge by g - as two other edges incident at v
belong to R). If in the cut R both edges e,f were substituted by a single
edge &, we should evidently obtain a u-cut of cardinality 3. This is a
contradiction to the assumption that G is a Y-graph. This proved the theorem,

Theorem 9. Let G be such a Y-graph wherein each edge belongs
‘to 8 u-cut of cardinality 4, then G is isomorhic with the graph of a
(3-dimensional) cube.

Proof. G contains a u-cut of cardinality 4. Hence it contains four
edges, no two of which are adjacent (see Theorem 8). This mean that G has
at least 8 vertices.

Assertion: G does not contain any triangle. Proof of the
assertion: Three edges incident at the vertice of a triangle and not belonging
to this triangle would form such an edge-cut of cardinality 3 that one of its
banks would be the considered triangle and the other bank would contain at
least 5 vertices. According to the Theorem 2 it would 2 it would be a u-cut
of cardinality 3, which is not possible in a Y-graph. This proves the vali-
dity of the assertion.

v



‘Asgsertion: G contains at least one quadrangle. Proof: Let us
assume, on the contrary, that G does not contain a quadrangle. It is known
(see [6] , pJ25) that the P-complex of a 3-valent graph without bridge, not
containing either a triangle or a quadrangle, must have at least 12 such faces
that are bounded by a pentagon. Hence G contains a pentagon.

Let lo be any pentagon O0f G, let e, be any of its edges and “1
any u-cut of cardinality 4 containing ° . According to the Theorem 1 R1
contains an even number of edges from Ko. Therefore there is in Ko another
edge (denoted by oa) belonging to R;. According to the Theorem 8 e, is not
ad jancet at ey and the refore there is in ‘0 exactly one edge (denoted by
°2) adjecent both at e, and e, (since K, is a pentagon). The remaining
two edges of ‘0 will be denoted by 8 .85 80 that we have: L is odjaccnt.
at e; and o, is adjacent at e,. It is evident (see Theorem 8) that none of
the edges ez.o‘.os-bolon;- to Rl'

Denote the faces of S(G) ¢ P(G) as follows: -o'ia the face boundsd by
Ky sy (1€ {1,2,...,5) ) is the face adjacent at 8, on the edge e . Denote
the vertices and edges of G as follows: denote by \£ the vertex of ‘0
incident at the edges LY and by ti.j (see Theorem 6} tho'fdgo incident
at v‘.J and not belonging to xo. )

Fig. S

L Apart from the edges e;,e, Ri contains other two edges, both incident
in P(G) at the same face (denoted by ls). Denote these edges by ;8 80

that the following holds: 8 is incident at 8,,8g and 83 is incident at 83,8g.
The endpoints of the edge g, (i€{1,3)) will be denoted by L 90 A (Fig.5).



Denote by R2 any u-cut of cardinality 4 containing °5. R2 contains
from Ko another edge: either e, or eg. Without loss of generality we may
assume that l'(2 contains ey

From Theorem 8 it follows that t2 3¢ &a* ra & t 1* g% tl 20 hence
l4xﬁl6¢ 8,; Sg¥ 8., The edge cut Ra containl another od;o from the ciroult.
which bounds s, (denote it by 52) and contains an edge (denote it by 3‘)
belonging to the circuit bounding 8, We evidently have 8¥8 4 hence R2 =
= { e2.04.52.g4} . As t1 2 2 3 are adjacent at e, and ©,.8, belong to R2 it
necessarily follows (see Theorem 8) that f1 oF gzy;r ,3° In a similar way
we get f3'4"‘ 8+ r4.5. Hence the following hold-. no odge of R is incident
at 8,585 and 8y is incident at 8,+8g.

Assertion: The distance of vertices v1,2'Y1 similarly as the
distance of vertices v2 373 (or of the vertices 73 ‘.xs) is 1.Proof: If
there were on the circuit bounding s, between the verticel vy,2'71 8 vertex
Zy, it would mean that (fl 2,31.32} is an edge-cut, duch bnnk of which con-
tains more than one vortex. According to the Theorem 2 it is a u-ocut which
is a contradiction to the assumption that. G is a Y-gr.ph.‘Honoo fl 2 Joins
the vertices vy,2°71° In the same way it can be proved that tz 3 Joins

2 3 and r 4 joinl v3 4°%3° Then, of course, each of the faces 8,,8, is
lncidont lt oxlctly tour edges. This is a contradiction to the ulcu-ption

that G does not contain a quadrangle. This proves the validity of the assertion
that G contains a quadrangle.

(4
in 91"""'~."uu

Fig. 8 Fig. 7



Let therefore K be a quadrangle bounding the face q, of P(G). Denote
the vertices of K dy a,b,c,d and the edges of K by hl.hz,ha.h4 and the faces
adjacent at q, by 97095:93.9, in such a way as shown in Fig. 6.

Lot Ra be a u-cut of cardinality 4 containing hs. This cut contains also
hl and apart from it two other edges ’1 ta. both incident in P(G) at the same
face (denoted by qs). £, is incident at q;,q; and £y is incident at 93,05 and
we have: Qo Q¥ 9 . The endpoints of the edges ’1"3 will be denoted: in the
same way as in Fig. 7.

The edge h2 belongs together with h‘ to the same u-cut of cardinality 4
(denoted by R‘). For reasons mentioned in the proof of the foregoing assertion,
R, contains apart from the edges hz,h‘ also an edge (denoted by tz). which
in P(G) is incident at Sorlge R‘ contains besides only one more edge (denoted
by t‘). which in P(G) is incident at 94495+ Similarly as in the proof 9! the
foregoing assertion we find that the distance botwoon the vertices x,x’

(where x ¢ {a,b,6,d}) is 1. Whence it tollow. that q; é» woll as qq are in-
cident at exactly four edges. If £, were not incident at a’, it would mean
that rl.rz with the edge joining tho vertices a,a, form a u-cut of cardina-
lity 3. This is not possible, as G is a Y-;rnph. Therefore f is incident at
a. For the same reasons 22 is incident at b and I‘ Jjoins. the vorticol c.a’,
In other words: G is isomorphic with the graph of a three-dimensional cube,
q.e.d,

ITheorem 10, Let G be a Y-graph with the following property:
By an 4-reduction of any of its edges we obtain a graph which is not a Y-graph;
then G is isomorphic with the graph of a three-dimensional cube.

Pr oo f, With respect to graph G with the asumed property, evidently
the following holds: any edge of it belongs to the u-cut of cardinality 4.
Such a graph according to the Theorem 9 is isomorphic with the graph of a
three-dimensional cube. This proves the theorem.

Theores 11, Any Y-graph with the minimum number of vertices is
isomorphic with the graph of a three-dimensional cube. Any Y-graph with more
than 8 vertices can be nonstructed from such a graph by repeated H-extensions,
which ar always done on a pair of non-adjacent edges incident at the same
face 0f the P-complex of the graph that is being extended.

Proof, The validity of the first assertion of the theorem is evident.
The validity of the second assertion tbl;owl from the fact that every Y-graph
with more than 8 vertices can be always, with the help of an H-reduction,
reduced to a Y-graph (see Theorem 10).

10



Fig. 8 shows the all possible non-isomorphic Y-graphs with the number
of vertices less than 20. The following table shows how many faces nounded by
an n-gon are contained in a P-complex of this or that Y-graph in Fig.8. Grace's
1list of 3-valent polyhedra without triangles with fewer than 20 vertices is a
little more extensive (there are 55 - Grace does not exclude polyhedra with
a u-cut of cardinality 3 - see [2] ).

Note 3. The table of Y-graphs easily proves the well-known fact
that the number of individual n-gons in polyhedron does not determine the
polyhedron - hence neither the Y-graph - uniquely. Thus, e.g., Y-graphs
37,38,39 and 46 in Fig. 8 agree as regards to these data, but no two of them
are isomorphic.

Note 4. A list of convex 3-valent polyhedrons containing no triangle
(up to 18 vertices) is given in [1]; cyclically 4-connected polyhedrons
(i.e. those containing a non-trivial edge-cut u-cut of cardinality 3)  are
in this list marked by stars. As Grace [2] and Lederberg [1] have noted,
their list may still be incomplete. From our results it follows that it is
not such a case (but in [1] in Tab. 2 at polyhedron Ne. 505 a star has been
omitted, therefore the total number of cyclically 4-connected convex trivalent
polyhedra up to 18 vertices is - in accordance with our results - only 43 and
not 44 as stated in [1] ).

11






Y-graps with fewer than 20 vertices
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Berechnung einer bestimmten Konstante aus der Theorie
der Liirothschen Reihen

A. DAVID

Jede reelle Zahl x€ (04) kann mani in der Form de -Lirothschen Reihe

X = 1 ! . 1 +.... + 1' . i o+ .

d A, dy*1 Ay A g1

eindeutig darstellen,

wo A,=d;(di+1), (=1,2,... d; =d; (x)
natiirliche Zahlen, die sogenanten Liirothschen Ziffern der Zahl sind. Siehe [1]
S. 116-122.

Die Liirothschen Entwicklungen stehen (mit Riicksicht auf ihre Eigen-
schaften) an der Grenze zwischen dekadischen (g-adischen) Entwicklungen und
Kettenbriichen.

A, Chin&in hat das folgende Ergebnis bewiesen:
1
C, + 1
c‘ + -

der Kettenbruch von L€ (C,{]ist, dann gilt fiir fast alle X € (91]

,2?1’!:\/6‘1 (k). Ca(k) -‘ﬁ4 (4'4(‘,,)),“‘ = £,=2,685452.. )

Uber eine detailierte Berechnung von Chinlins Srgebnis ist in der Arbeit
[5] ein anslogisches Ergebnis fiir Lirothsche Reihen bewiesen: Fiir fast alle
X-G{U‘l) gilt die Gloiehheit

'Vd, (%)... dn {x)- i) uME

ket

Wenn x, -

n>o°

In u  bezeichnet den natiirlichen Logaritmus von u.

- 18



Berechnung der Konstante Co

Untersuchen wir das endlicho Produkt

S - f77€ uuuc 1"5 2—5,,N”“4*”’

keg *
Dann ist
N
én k.
(1) bn Sn=) +%
- ‘:1

Da die Reihe

L+

— k (17+%)

| TT AN '

schwach konvergent ist, war 8 notwendig folgendes abzuschidtzen

1. Die Abweichung von

L ¢k
k(1K)

1 27]
2. ln-chinanlbwoichnngen (das lor-aliaieron der Zahl, Ziffernverschie-
bungen u.s.w.). ’
3. Den Rest
f én k
/2 (1+k)
katey
(durch ein bestimmtes Integral) ausendriicken.

1. Abwoiohnnglabcohitzung von (1)

Bezeichnen wir mit E(x) die absolute Abweichung von A *
mit RE(x) die -relative Ab:eichung von X .

Die Borochnung wurde an dem Rochonauto-at .ODRA 1013 durchgofﬁrhrt
Fiir diesen Automat gilt



E(ki1+k1) & 10°, RE (enk)s 10°°
woraus RE (kH*k)) T({W' E/lﬂl}j/ﬂ’lﬂi

Dann ist

RE({5%7) RE(tn k) * RE [k (1+K))5 0% 107 m

—'é’!— %/ 4+ 1 . Lnk - S _4_.&._
E (i) (1 aezr) ity <P 6 ety

denn fiir k = 1 ist In k = O und E/{,, .3’4}-0,
fir k= 2 ist

1 I
1 T k5 "6

“fir k > 2 ist

1 4
4* "(4+k} E 6

Aus (1) bekommen wir

(2)  E(tadu)< p G107 —fekn - F-10%. lu S

2. ﬁuehinonnbvoichnngen

Die Abweichung Qo= 120° nt bei jedem Glied der Reihe (7) (durch das
Normalisieren und die Verschiebungen Akkumulator <> Speicher) entstanden.

Durch die Summierung aller Glieder von (1) bekomt man

[”am =N. 407

k=1

Die Totalabweichung: der Reihe(7 )  ist also nach (2)

Ev 1079+ 5~ 907 Lo Sk

17



3. Abschatzung von Le /@ v
Gy £(1-4)

Untersuchen wir die Funktion

f(x)‘_lL

im Intervall[N, oo/ x(4+,r)
" .l .
Es ist f{x))O fir X>4 ; X-‘:::f (x ):-o 5 f_erner

f,ll’ A*I—(ZX*")/-Q,,\: <o
fir x>e- o (4*") .
Die Funkuon_f ist also im Intervall (t’; } positiv, fallend und
deshalb gilt fiir N 2 3 die Ungleichheit

Ink < b x dx.
kner B (1°%)

X (1+%)
Zn x
f X (1+x) S

kann man nicht durch elementare Funktionen darstellen. Darum schatzen wir
das Integral in (3) nach oben folgendermassen ab:

Es gilt fir X> @

Die Funktion

danx _ lux 1 Lux < 1 Lux
X(4eX)  XE+x+f 4 x(,p,wp!-)x 4 “x3

also

Lrx Lo X 1 _Inx
X(4ex) < Teg)e -t g Toxs

Daraus folgt

(4) J“’X f/(xl"* e dXx+= / —{L— dx=

/\’(407) +-4—}1

L N
s 2 L, _,_‘f_ n N
N+f YWE T N /6‘/Vt

18



Fiir die gesamte Abschatzung der Zahl L Co bekommen wir

I In -En < dwCo< L SW *fﬂ_’[j{f’n ax
und nach (2),(3),(4) haben wir

L2 100 Lo S -N. 4079w Co<lnwSn+ N. 407 + ﬁ?‘

+ -Gl 409 LénSn -

_ N A Lnn 4
2“7&'7:-* d N2 * 16 N2

Die untere und obere Grenze fiir die Zahl Co ist aus der Tabelle I ’
ersichtlich: )
2,19065460 < Co <  2,20016886. L

Daraus Co = 2,19991175 + 0,0002571.

. Die Zahl Co ist also kleiner als die Chintinsche Konstante
Ee = 2,685452 ....

Tabelle I

Total- Untere Obere
X 1n S« abweichung Grenze Grenze

1044 | 0,78092143 0,00761523 2,18348103 2,20017224
2937 | 0,78547226 0,00306479 2,19343611 2,20016888
10193 | 0,78752729 0,00102374 2,19793240 2,20018363
25694 | 0,78809653 0,00048549 » 2,19914981 2,20021771
50000 | 0,78829046 0,00033643 2,19952286 2,20026208
74048 | 0,78836126 0,00031302 2,19962569 2,20031437
102595 | 0,78840294 0,00032740 2,19965460 2,20037488
104099 | 0,78840434 0,00032877 2,19965436 2,200377687
106744 | 0,78840680 0,00033131 2,19965394 2,20038286
118000 | 0,78842198 0,00034461 2,19966039 2,20041883
120000 | 0,78842291 0,00034580 2,19966023 2,20042102

Ich danke Prof.Salét fiir seine wertvollen Bo-orkungoh zum Manuskript
und fir die Hilfe bei dieser Arbeit.
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On sums of the prime powers
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TIBOR SALAT AND STEFAN ZNAM, Bratislava

In the book [1] (see [1] » P. 30) is proved that for each a>

-1 there

exist such constants c,,, ¢;,> O that for any x2 2 it holds
l+a
x

c p [ B

11 < 2 < 12

lo x log x
8 PEX 8
In our article we give a sharpening of this result for the case

a >0,
Let us denote s (x) -Z p® (for arbitrary x> 2).

Psx

heor e m, For arbitrary a > 0

we have
s_ (x) log x

lim —2 1 “ b

X—»oo xua l1+a -

Proof.

For & = 0 our assertion follows immediately from prime
number theorem. Now, let us .uppou that a > 0.

Donoto by the symbol (’k} the incrouing uquonce of all primes.
‘Let © <E<K1. Choose x, 2 2 so that for k>JL (x,) it holds

(1)

(1-6.)klogk<pk<(l*6\) k log k.

(The existence of such x, ensures the equality

lim — = 1 ; wmee [2], p.153).
k+o k log k
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Then @cu write

(2) 8,(x) = X P+ ,___ p* = C, + E P* = C, *+ s;(x).
PéXo K<psx XeSP&X
From (1) it follows

3 -1 J gt S5 si0S
T <AS T (%)

1+ & ) Z n*10g%h .
Rixary<hg T

The funktion f(t) = t'lo;‘t fulfils the assumptions of theorem 4 of [3]
(p.8), from which it follows .

Rix)

Z n®10g%n -[ t%10g% dt + o( X “(x) 10g® T (x)) =
Rixe)<ksTix) o)
Aty)
=1g 0(x®), where I, = t%10g%t at.
(xo)

With help of the integration per partes we get

. T(x) Rix)
+a
e a a, _a-1
I. = [—1'&:—.—- log tL - -r-:-.— t7log” 't dt =
(o) Xo)
L = : 1 : T x) 108* X (x) + c, I;. where I; is the second integral.
+a

Obviously

/1l e T (XY (x) 10871 T .(x)) = ol -—T——-"m ) = of =t ).
. log“x o log x

a2



If we substitute in the inequality (3)

(4) sy(x) § 1+ E )‘[
) l1+a

.

M) s a-g)* L

l1+a
l+a
& + of =X )] c
P log x

., We get

&

—1__ 5T2*"(x) 108® T (x) + c, +

Ta+?(x) log® T (x) + c, +

l+a :
« Divide the inegualities (4°) and (47) by lgx U x —eo .
then we get
S; (x) ) _ ) s :
lim s —t— S a+g)® —1 i (x)1log (x)
x> oo (.2:_) = & 1+a x-».:o 1+a )
log x og x
$° (x) G . jl-
lim inf —fe—— 2 (1 - £ e 1 lim (x(log® J (x)
x-pco(x") “1+a xo>® (xTn)
log x log x
From the prime number theorem it follows that
Tdard a
lim £ ()10 & (x)10 = 1, hence
X->oo 1’. 5

a3



(x)

s s, (x)
(1- €)1 —L—ciinine —2 ' £ lim sup —9—’—_5_

l1+a x-—>oo xl#l ) X —» 00 xnn B
log x log x

S+ 21 __
l+a

Since our estmations are valid for each £ > 0, we have

S. (x) 1log x

(5) 1lim = i_. .,
Xpo 1+a l+a
x X
xl+. .
If x—>»0 | then —l-——--vw »too. Hence from (2) and (5) it follows
og x
that
S_(x) log x
lim —8 - 1 ; q.e.d.

X-> o0 xln l1+a

REFERENCES

l] PRACHAR K., Primzahlverteilung (Russian), Moskva, 1967.
2] SIERPINSKI W., Elementary number theory, Warszawa, 1064.
(8] sPEcHT ¥., Elementary Beweise der Primzanlsitze, Berlin, 1956,

Author’s address: Katedra algebry a teorie &isel, PFUK Bratislava,
Smeralova 2/b

Received September 30,1968



The basic notions of this paper were taken from [1] and [4] . The di-
rected edge from the vertex u to v is denoted as (a,v). T (1) means
the number of edges incoming to the vertex 1. In this paper it is proved
that the maximal number of 3-cycles is in such a tournament in which for each
{ vertex the number of incoming and outcoming edges is oqunl:ao called §-tournament
(see also [2] and [3] ). As a special case of @-tournaments apper S0 called
homogeneous tournaments - i.e. such tounaments in which each of edges is
gituated in an equal number of 3-cycles. It is proved here that in a homoge™
neous tournament every edge is situated in an equal number of 4-cycles and .
also in an equal number of 5-cycles. There were investigated the turnable
tournaments as well ( § «tournaments, see [4] ). This paper is documented
with the table of all homogeneous f -tournaments with less than 100 vertices.
There is shown an example of a homogeneous tournament which is not a g-tour-
nament too. ’

The author would like to show his gratitude to Prof. KOTZIG for his
valuable advices. : :

‘T heorem 1. In the tournament with n vertices tﬁo number of
3-cycles is equal to the number

(n _ T (1)
3 1 2

Proof. All the triangles with number (g)“enn be divided into two
parts:

1) Those ones which are presented by 3-cycles, these triangles let be p.

2) Those ones in which exists such a vertex that both edges are incoming to
n
it, these triangles are ; (xz’(“)
=4

From this follows the statement of the theorem already.
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On homogeneous tournaments

JAN PLESNIK

Corollary 1, Let G bea tournament’ with n vertices and
let p be the number of 3-cycles in G. Then it holds:

a) for n odd: 0< p=< _n(n - 1) (n+ 1)
24

b) fer n even: 0 p< _BLL;_%_(_!‘_*_H_

where for every n there exists such a tournament in which the number of
3-cycles is zero (so called acyclic tournament) and also there exists such
a tournament in which the number of 3-cycles is equal to the mentioned upper

bound.
e T 1) .
Proof, Because p = s = . 2 it is sufficient to investigate

the extrems of this function by the assumption that g(:;{(i))- (;).

Recurrently it is possible to construct l'n acyclic tournament for arbitrary
“ m, by which T (1) =14 - },=1,2,...,n. And also recurrently it is possible

to construct a tournament with 7 (i) = :— -1, i= 1,2....—2— WA (1) -1"— -

1

4 =B ¢ 1,...,n, if n is even; X (i) = -“—-5——. i=1,2,...,n if n is

2

odd ( g-tournmnt). Now it is sufficient to use the formula from the
Theorem 1 and we get the mgntioned bounds.

¢ Theorem 2. "The tournament in which every edge is situated in
an equal number of m-cycles (m 2 3) is g -tournament.

Proo£f, Let every edge be situated in k m-cycles of the tournasent
with n vertices (k > 0). Let x be an arbitrary vertex. Let the number
of edges incoming to x be p and let the number of outcoming ones be gq.
Because each of edges is situsted in k m-cycles the vertex x is situated
in kp = kq w=m-cycles. Then p=q and n= 2p + 1,

 Remark 1. According to the [4] a bomogeneous tournament in which
each of edges is situatdd in k 3-cycles (k > 0) has 4k - 1 vertices.

Iheorem 3, LetA= loql be a vertex incidence matrix of .
~tournament with n vertices (n= 2r + 1), where a =1, if it contains
the edge (i77)) in the opposite case ay = 0. Then it holds : 240 K,



where K = l!ul and k¢ is the number of 3-cycles in which is situated the
edge (1.5) or (J;1) then we put kq = ky end ki =0,

Proof. Let E(G) denote the set of edges of the tournament G and
let (i,J) € E(G). Let us define the following sets:

c, = (= |(TH €E@ A (X1 € E@)

C, = {x 1(TE) € E@G) A (x,1) € EG)
Cg = {x 1(TX) € EG) A (3,0 € EG)}
c = {x (@D € EG) A (X)) € E@)

Because G is @ -tournament it holds: [C,I=k, |C)| + IC‘I = r.|02| +
+legl + 1 =1, e} + ICgl =r, Ic} + ICH + 1 = r. Hence |C)l= kgjiley]=kij,

fcgl = r - Ky Icl =r - ki y- If we denote A" = '-'11' then [C | = 2013.

ICQ = 2311 (see also [1] ) and then 2‘1j k- L 2‘31 = kyy ., then

2

obviously 8, = 0. From that follows the statement of the theorem already.

Remark 2. From the proof of the Theorem 2 follows that in
Q -tournament every edge: is situated in one 3-cycle at least, otherwise
ICJ = -1, what is not possible. §ro- the abovesaid follows as well that
every edge is not situated in more than in r 3-cycles.

Theorenm 4. In the homogeneous tournament G where every edge is
situated in k 3-cycles in 2k(k - j) 4-cycles and in k(4k - 3) (k - 1)
S-cycles.

Pr oo f, According to the Theorem 3 it holds: A2+ a=k- kE, where
A is the vertex incidence matrix of the tournament G, K = k| , and E is
the identity matrix. Then for m 23 is A" = KA™™" - &a™ - a™" .i.e.

4 nt
. = k) ™ -k My - "'"n“. For m = 3 is 3.“-kt a

.1-‘ Anq ‘j IJ Xnq X:’ -
2 3‘-‘_1' 3

k‘ij - a‘j. Because L, L 2k - 1 then I‘J = k(2k - 1) - k'ij -

(k- a;) = 2k(k - 1) - (k- Day; for i#J and %8, = k(2k - 1),

Analogically we will find out that for i ¥ j is ‘.“- k(4k -3) (k - 1) +

+ (2k = )ag; and Ya,, = 2k(k - 1) (2k - 1). Also for 1 # § is

3

"’.“ = 8k% - 18k% + 15k - 4k + (k2 - 3k + Dy and 5‘11_ = x4 - 18k o

‘- .
13x2 - 3k. Because for i # j is 8, ¥a 1 then every edge boloﬁg- to 2k(k - 1)
4-cycles and to 2k(k - 1) (2k - 1) S-cycles. .

Theorem 4. If every edge of the homogeneous tournament G in k 3-cyecles
is situated then also in 2k(k - 1) 4-cycles and in k(4k - 3) (k - 1)
5-cycles is situated.
27



Remark 3 In this homogeneous tournament the number of 3-cycles

[er]
-1 3 1
is equal to s k(2k - 1) (4k -, 1), the number of 4-cycles is
a TL, utET ) ye
equal to
T 1
—— 8, = — 2k(k - 1) (2k - 1) and the number pf 5-cycles is
4 X=q 4
equal to
S, - " "
T,Z: klk - 1) (4k - 3) (2k - 1) (4k - 1),
Remark 4. §-tourn|-ent with 5 vertices can serve as an example

of such a tournament in which every edge belongs to an equal number of 5-cy-
cles but it is not a homogeneous tournament.

§
6 A
B A
8 2
Cc
——
9 ¥ 3 1
Fig.9
Remark 5, The graph (see Fig. 9) as an example of § —-tournament

with 9 vertices in which every edge is situated in 9 4-cycles but it is not
a homogeneous tournament . Whereby following denotation is used:

A = L) xe {1,237y ¢{4.5,6)])

B =( (5} | xe{456}Ay €¢{1,89}}

c ={(x9) xe{1.80)Ay ¢{1,23])]

uﬁ.ﬂ.ﬂl! the grlph is oy-etric it is lnrtielont to verify the statement e.g.
tof the edges (l 2) and (1, 1,4). It is easy to find that the edge (-_5) is
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situated in one 3-cycle an the ecdge (f::) in 3 3-cycles and that each of
them is situated in 9 3-cycles.

Now let us consider a special-tournament so called ﬁ -tournament (turn-
able tournament) i.e. a tournament in which it is possible to donote the
vertices by symbols V1s¥0eee,V, 8O that it includes the edge. (v ,v.) only

if it includes at the same time the edge (v, ¥ ,v, ) for i,j,1i,,J 6 {1 2.....n}
1,73, 191

and 1 - J =i « j (mod n). The notion of g -tourna-ont was introduced
into tho paper [ 4] where the mentioned tournaments were investigated.

Let A = ﬂai | be a vertex incidence matrix ot‘E =tournament with n
vertices. According to the paper [4] every ‘g ~tournament is also §-tourna-

ment and then n = 2r + 1. It is easy to find out that A is a cyclic matrix

of the following form:
o a; a8, ... a a s a, a

a, 0 8) ee0 v B 48 .00 a8, a,
8, a V] a, -

esessccsscecsnsccnse .3

a, 87 cecccctccecsccecsciencee 1] a

a 8y cecessccsssssssaraccecas 8y 0

where a = 1- a;

We define that the edge (v,,v;) is of the lenght d if j -1 =4
(mod n). According to the Theorem 3 is Aa + A+ A2 + A = 2K, where 1A
is the matrix transponed to A, Then kij E (2 a3 + IJ1 +1), i # j. For
-tournament obviously is Za , = 2.1 if i'- =1} - j; (mod n) and
the edge of the length d (1< ds= r) *l situated in k , (briefly k‘)
3-cycles. Then obviously hold the following formulas:
For i =1,2,...,r: '
for i odd:
2
a. =2 (aa ¢ oo +va__.8)+2 (a B+ el + a i1-1 a__ i+3) +
ni 1%i+1 r=-i"r -i+1°r -T r< ==

2 (aja, , + .o tay 0, , " ) +a, ;%;
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for 1 even:

L} - -
a, =2 (8a,,,+...+8

nj ) *

a,)+2 (a 8, + ... +a, i a

Pey

r-i‘o'c p-}.’4
H t a:
2 (a0 4+ 00 + l*__"l_r“) + ‘i

For r<icg¢2r+1=nweput j=n-1and 1< j<r, then holds:
for j odd:

g = 2 (a3 @y ¢ty @) e2(a,,, At ] l,.-ii!)'
2 (@, @_q + oo + Bj-4 :j-q)*l_jq '
% i -
for j even
fay =2 (8 Fjog + oo vy B ) w2 (g, a,+ ...u,_* a,_{‘_ﬁ ) +

2 (& &g + .00+ :'i"') .%_' ) + i‘i‘

Boeauie 21“ = z‘n.n-i holds for 1 = 1,2,...,r then from the above-

mentioned formulas it follows:
rs
for 1 odd:
i = [0, @y s Tagy) ¢ on o @ T ) ¢ (apay 8, ¢ B jer Bp)e
Voo v (B 18, e b Wpoica B, 4o )+ (@A, )¢ Lo+ (B8, ¢
T ¥ g -1 i T
+ ii’ 'lzi.q.,) +1

for 1i even:
ky = ["136.01 +Bgagy) v+ (e Ty + T, 0, )] + (8y_joq 2, ¢

+ B e 8, ) v+ “"'i""f" + L{-'r-}ﬂ ) + (a2, +

+ 8,8, ).+ (ag, T PO i%"":{'"f ) + 1

knnﬂo
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In the formulas for ni in square brackets there exist pairs of the
form: ('j'1¢J + ijc .). The value of each such a pair is obvioully 1 just
then if aj # .1¢j’ It is advantageous by counting k for little i i so e.g.
for i = It ki, =f + 1, where §, = (ul 5 * ‘l p) * ...t (8py 8, + 3g a¢)
is in fact the numpber of the alternations in the sequence (ll.l2.....lr) which
is called the character of the ¥ -tournament. This result is possible to find
in the paper [4] , where this result was inve-tigatod more generally. Because

kni = e‘ni +a; then from the formulars for a ni follows the following theo-

rem.

’ Theorem 5. InE-tournament with 2r + 1 vertices and the charac-
ter (‘1"2' ceerdy ) let mean k the number of 3-cycles in which the edge
of the lenght 4d (lnd then each of the lenght d) is lituatod. Then it holds:

a) for d odd: n,_!-io_l_ol‘- ky, + 1 (mod 2)

b) for d even:

ay + 8, = kg (mod 2)
T o
Corollary 1. In the homogeneous ¥ -tournament with the number
of vertices 4k - 1 and the character (a; »85, ""‘2k-l) let be j,2j,2k -j €&
{1,2, ..., 2k = 1} . Then it holds:

a) for k even: a, = a5 . 8, # Sx-j

b) for k odd: 3 # So5 0 83500 % A

Theorem 6. Let p,q,t,s be integer numbers. If for n one of the
following conditions holds then there does not exist a homogeneous ¥-tour-
nament with n vertices:

a) n

Sp(4t - 1) - 12t + 3 - (p,t = 1)

b) n=8t -1, where t is the solution of equation 4t. = 2° (28 - 1)+s
and p2 0, s 21

8t - 5, where t is the solution of equation 4t = 2"" (28 - 1)+
+3+2 and p20, s21

c) n

d) n=ts, 4  +1=qs (s> 1, p21)
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Proof, a)According to [4] (Theorem 4) if n = s(8p - 3) where p,s
are natural numbers there does not exist a homogeneous E -tournament with n
vertices. From this the statement follows already.

b) According to. the corollary 1la) if for even k exist such i,j,p that
J=21 -1 and 2’) = 2k - i, then the mentioned system of the recurrent
. formulas is contraversial.

¢) This part is proved analogically like the preceding part by using the
corollary 1b).

d) This statement is taken directly from the paper [4] (Theorem 6).

Rempark 6. According to the corollary 1 characters of homogene-
ous f-tournanont- can be constructed. Then it is still necessary to verify
1 these characters by formulas for kni' The corollary 1 is not a sufficent.
condition; this may be seen from the example of E-tournament with 31 vertices
" and with character (11111 10111 01000) which fulfils the condition a) of the
corollary 1 (k = 8), but k= 6 # 8.

Remark 1. According to the Theorem 8 of the paper [4],thore exists
a homogeneous ¢ -tournamnet with 4k - 1 vertices for every prime number
4k - 1. List of all the characters of such tournaments with the number: of the
vertices less than 100 one can find in the following theorem.

Theorem 7. Every homogeneous E -tournament with the number of
vertices n < 100 is isomorfic to one of the following tournaments:

k=1l,n=3: (1)

2, 7 (110)

3, 11 (10111)

5, 19 (10011 1101)

6, 23 (11110 10110 0)

8, 31 (11011 01111 00010)

11, 43 (10010 10011 10111 11000 1)

12, 47 (11110 11110 01010 11100 100)

15, ‘ 59 (10111 01010 01001 11011 11001 1111)

17, 67 (10010 10011 00011 11010 11111 10010 001)
18, 71 (11111 10111 01001 10111 00011 01011 01000)
20, 79 (11011 00111 10100 10111 11101 10000 11000 1010)

21, 83 (10110 01011 11000 11000 10101 11111 10100 11101-1)
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Pr oo f. The abovementioned characters are constructed with the accor~
dance to the remark 6. Fot those k,n which do not appear here there do not
exist homogeneous £ -tournaments. It is possible to eliminate some of them
immediately according to the Theorem 6 and the other ones according to the
formulas for kni’

Remark 8, It is possible to putAtho matrix of every homogeneous
tournament with n = 4k - 1 vertices to the following form (see also [5] ):

Tl L'

0
11..10 0. .00
1

Where T,,T, are € -tournaments and A,B are some matrices. If we choose an
arbitrary vertex w of the homogenecus tournament G, then the set V, ={x|
(W,X) €  E(G)} 1is the vertex set of the tournament T, and V,= {x|(X;%)€
E(G)} 1is the set of vertices of the tournament. Ty If we consider the
fact that every edge (w,x) where x is the vertex of the tournament T, is
situated in k 3-cycles, then from that itvfollows immediately that Tl is
Q -tournament. So if we wish to find a tournament G it is sufficient to
eliminate the search on the matrix A where for Tl. 12 we choose gradually
all the tournaments from the system of nonisomorfic 9 ~tournaments with
2k - 1 vertices,

Remark 9. It is not known whether there exists homogeneous
tournament of n - vertices for each n = 4k - 1 if n is not a prime number.
But there is known a homogeneous tournament with 15 vertices which was in-
vented by A.KOTZIG. The following matrix is a vertex incidence matrix of
such tournament.
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011000101110100
000111001011100
010011001100011
101001000101101
100100101101010
100010100010111
011100000011011
111111100000000
000101110110001
010001110001110
001110010100110
101001011010010
001010111001001
110100011000101
110010010111000

U

REFERENCE

BERGE C., Theorie des graphes et ses applications, Paris 1958.

KOTZIG A., Les cycles dans les tournois, Theorie des graphes, Actes
des Journées Internationales de I I.C.C. Roma 1966.

KOTZIG A., Cycles in a complete graph oriented in equilibrium, Mat.
fyz. asop., 16 (1966) 175-200,

KOTZIG A., gtoeni turnaje s pravidelne rozmiestenymi 3f0ykl;ﬂi. Mat .
: asop.

WAWRUCH A., 0 neizomorfn§ch kompletnjch rovnovéine orientovanych
grafoch, Mat. &asop.

Adresa autora: Katedra matematickej &tatistiky a aplikécii
matematiky PFUK, Bratislava,Smeralova 2/b



ACTA F. R. N. UNIV. COMEN., MATHEMATICA XXI-1968
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O jednom §peciilnom pripade p-sastav

STEFAN PORUBSKY

Sistavu zvyskovych tried

a; (modn; ), 0< aj< n;g, i=1,2...,k

naz§vame presne pokrfvajica sistava (alebo aj p-sistava), ak kaZzdé celé &islo
patri do prive jednej z tychto tried. :

Moduly ng (1=l....;k) nemusia byt rovnaké &isla. Je dokézané [1] , e
v sistave (1) musia vystupovat aspon dve triedy podla najvadsieho z modulov

ni (isg..a k). dalej je znéme, Ze nutné podmienka, aby vztshy (1) udévali

p-sistavu je (n; »Nj ) > 1 pre vietky i, j=1,...,k.

Nech v dalZom. m<m<... < m sivietky navzédjom rozne Eisla, ktoré
vystupujd ako moduly tried p-sistavy (1).

V tejto poznémke si budeme viimat presne pokr§vajiice ststavy, v ktorych
(mi , mj ) =d, kde 1 <d < m, pre kazdé i ¥ j, i,j = 1,...,h. Pre kaidé
prirodzené &fslo h zrejme existuje aspon jedna skupina &isiel m, ,...,m,
8 uvedenou vlastnostou, napr. py d,...p, .d, kde Pi< Py < +:ePy, sd prvolisla.

., Najmendie nezéporné &islo patriace do niektorej z tried (1) nazveme naj-
pendi nezéporn§ zvysok tej triedy. '

Dokédime najprv tieto dve pomocné vety:

Lemma 1. Nech v p-sdstave plati (m_ , m;) = d pre vietky i # 3.
Potom medzi zvydkovymi triedami modulo m; , pre kazdé j =1,...,h sa vy-
skytuje aspon jedna trieda s najmendim nezédpornym zvyikom < d. :
® D3k az. Nech existuje aspon jeden modul m, (1< r < h) v p_sistave
(1) tak, Ze vo vietkych zvydkov§ch triedach podIa tohto modulu je najmend{
nezéporny zvysok > d. Vyberme jednu z tjchto tried, napr.

b (modm,), b2d,1S$rgh
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Nech bmc (mod d), 0% ¢ < d. Cislo ¢ nemdle patrit do Ziadnej z tried
podla modulu m, , pretoie ¢ < d. Nakolko ale (1) je p-sistava, musi byt
&fslo ¢ obsishnute v nejakej triede podla modulu m; , kde my # m, . Potom
ale triedy

¢ (mod n )
b (mod m, _)

maji spoloéné r:lbehnic. &0 je v spore s ty-.' 3e (1) je p-stistava. To plynie
z toho, e (m; ,m, ) = d|(b - ¢) a z toho, 2¢ d wmoino pomocou a4 am, li-
neérne vyjadrit,

Lewmma ¢ 2, Ak v p-piistave 8 h (h 2 1) navzéjom rdéznymi modulmi °
By seee,my jo (my, = ) =da pre kaZdé i # 4, i,j =1,2,...,h, potom
h < 4.

DOkaz, Zdefinfcie p-sistavy vyplyva, Ze 2iadne dve triedy nemdiu
mat rovnak§ najmensi nezéporn§y zvysok. Ak by bol polet rdznych modulov v p-si-
stave > d, potom by existoval taky modul m, , %e vietky triedy podla tohto
modulu by mali najmen&{ nezéporny zvydok > d, &o je v spore s lemmou 2.

Pristdpime teraz k dékazu tychto viet:

Yeta l, FNech d,h, kde 1< h <d & ®m, <n,< ... m, st prirodze-

yné tisla, pritom (my ,m; ) =dpre i # j, 1,j = 1,...,h. Potom existuje
aspon jedna p-stistava, v ktorej &isla m; (1 =1,,...,h) vystupuji ako moduly.

DOKkaz, Priradwe vdetky &fsla 0,1,..., d - 1 k danym modulom
m , ®, ,...,m; tak, aby ku kaZidému modulu bolo priradené asponn jedno z t§ch-
to &{siel a aby &fisla priradené modulu m; tvorili diz junktndé wmnoZinu s mno-
!1n§n &isiel priradenfch modulu m; - pri 1 # j (inak by sa mohlo stat, Ze
by sme v (2) mali a; (mod'm; ) a tieZ &} (mod mi{ ), 1 # j, potom pomocou
(2) ziskané ststava (3) by asi nebola p-sistava). Nech tomuto priradeniu
prisldchajica ststava zvydkov§ch tried mé tvar )

a,; (mod m;)
i (modmj) 4> 22 j,a, eeag< d (2)
id (mod my ) . -



¢

Vytvorme teraz pomocou sistavy (2) nasledujdicu sistavu zvydkovich tried

Ay, a;+d,..... .%'E"f)d_ (smoct. m4)
at,afeel, - -t ( SN, (mo.m 3)
ad,adrd.. -,g&‘fé‘"ﬂd ) {meod-mn)

Lahko nahliadneme, Ze zvydkové triedy modulu mj (pre kazdé j = 1,...,h)
v (3) obsshuji préve vietky &isla zo zvydkovej triedy aj (mod d) pre
£=1,...,d. Obdobne fahko sa d& presvediit, Ze IubovoIné dve triedy z (3)
st navzéjom dizjunitn‘ a nakolko &fsla aj (f = 1,¢00,d) tvoria Gplnid sd-
stavu zvydkov (modulo d), je sistava (3) presne pokrfvajica.

Poznémka. Ak predpoklad 1< h< d nie je splneny, potom na zé-
klade lemmy 2 presne pokrjvajdca sistava s uvedenou vlastnostou neexistuje.

Yeta 2. FNech (1) je p-sistava, v ktorej (n;,n; ) = d pre kaidé
ng #ny; anech my, mg,...,m, s vietky navztjq- rézne moduly zvyikov§ch
tried v tejto p-sistave. Potom v uvedenej p-sistave vystupuje préve r&%i?
zvyskovych tried s modulom m; (i = 1,...,h), prilom &islo r udéva polet
zvydkovych tried (modulo m; ), ktorych najmensi nezédporny zvydSok je < d.

D8 k a z. Na zdklade lemmy 1 v kaidej p-sistave (s vlastnostou
(my , mj) = d)pre i # j musi vystupovat aspon jeden taky systém zvydkov§ch
tried, Ze kaidé z &isiel 0,1,....d - 1 patr{ do préve do jednej z nich, pri-
tom st v nom zastipené vietky rdzne moduly. PodIa ddkazu vety 1 moino ku
kaidému takémuto systému priradit aspon jednu p-sistavu. Ukéime, Ze préve
jednu. '

Aby zo systému zvydkov§ch tried (2) vznikla p-sistava, susia zvydkové
triedy modulo m; (j = 1,...,h) obsahovat vletky &isla triedy a; (mod d).
Keby totii niektoré z tychto &fsiel, napr. c, patrilo do zvyikovej triedy

‘modulo m; , kde m; # mj , potom zvydkové triedy

‘¢ (mod mi )

aj (mod mj )

by mali spolo&ny prvok, &0 je v spore s definfciou p-sistavy. Zpomedzi prvkov
triedy ay (mod d) si nekongruetné (modulo m; ) préve tisla ay ,ay +d,...
ceernf +( -1) d.)] Teda p-sistava obsahujica systém /3/ musi obsahovat aj
systém /3/. Nakolko /3/ ui tvor{ p-sistavu, nie je moiné, aby p-sdstava ob-
sahujlica systém /2/ obsahovala zeydkové triedy iného typu nei triedy uvedené

v /3/. Teda /3/ skuto&ne uréuje préve jednu p-sistavu.
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Vidime, Ze kaZdé zvydkové trieda a} (mod "; ) (f=l.....d;Jf1.....h)
s najmens{m nezdpornym zvydkom <d v (2) viaze celkove préve %? zvydkov§ch
tried v (3) s tym istym modulom m . Ak oznalime r podet zvydkovfch
tried modulo m, ktorych najmen#i nezéporny zvySok je < d, dostévame tvr-
denie vety. ’

Uvedme edte vetu, ktors sivisi zo vieobecne j3im pripadom p-sistav, neZ aké
sme v tomto prispevku sledovali.

Yeta 3. Nechyv p-sistave (1) s m;< ... < m, vietky navzéjom
rézne moduly zvydkovych tried a nech (mi ,my ) =d pre kazdé i # h. Potom
v tejto p-sistave sa vyskytuje préve LY %Eb zvydkov§ch tried (modulo =, ),
kde &islo r, wudéva podet zvydkovich tried (modulo m), ) 8 najmeniim ne-
zépornym zvydkom < d.

Dékaz tejto vety vypljva z ddkazov viet 1 a 2, ak Gvahy redukujeme
len na modul =, . '

. 8. Zném v [2] vyslovil tdto hypotézu:

V kaidej presne pokryvajicej sistave sa vyskytuje aspon p zvysSkovy§ch
tried s rovnakym modulom, kde p . je najmeni{ prvoliselny delitel najva&Sieho
modulu m, tejto p-sistavy.

Z vety 2 prip. 3 vyplyva platnost tejto hypotézy pre p-sistavy,
v ktorfch (m; uj ) = d pre m; # m; resp. (m{ ,mp,) =d pre my # m, .
Skutoéne .

™G 2 B
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On certain classes of graphs of diameter two without
superfluous edges

FERDINAND GLIVJAK

Under a graph we mean here an undirected graph .without loops and mul-
tiplied edges. This paper presents the continuation of the study of the graphs
of diameter two without superfluous edges. In the papers [3], [4] anda [5] we
have investigated only the graphs without triangles and by this way the whole
problem becase more simple.

We investigate here 8 classes of the graphs according to the kind of
k-angles they include (for k = 3,4,5). For the three simplest classes of
these we put necessary and sufficient conditions for G to belong to someone
of them. In the next we solve a problem of the existence of a graph from some
other classes with given numbers of vertices and the minimum degree, given
numbers of vertices an edges respectively. :

At the end it is proved that for an undiroctoé graph G without loops and
multiplied edges there exists a graph R without the superfluous edges of
diameter two and such that the neighbourghoods of each of two vertices of the
graph R differ and the graph G is the section graph of the graph ' R.

I. Definitions and notations

A graph shal be denoted by G = (U,H), where U is the set of vertices
and H is the set of edges of .the graph G, If U = {.z. s By secosZy} o
H= {(z, 2y ) 1 ® 1,2.....k} , then we call G a star. The symbol £
will denote the neighbourghcod of the vertex v. The graph G = (U,H) will
be called 7] -irreducible if for every ‘x,y€ U, x#Yy is Ll (x) # Sl-ﬁy).

efinition 1., The edge (u,v) of the graph G = (U,H) is
superflucus if for the subgraph G, = (U.,H, ) where H, = H - {ta,m} 1t
holds d(G) = d (G ).



Deftinition 2. We -qi that the graph G belongs to the class
B if d(G) = 2 and moreover G does not contain any superfluous edge.
Definitioen 3, Wesay that the graph G contains an exact
s-angle if there exist s vertices u, , u; ,..., uy, € U which formed
a circle K of the lenght s where for every two vertices x,y of K it
holds (G (x,y) = Rix,y).

Remark 1 . If the graph G belongs to the class B, then it
cannot contain any exact s-angle, for s > 5.
Definjition 4. Let be G€& B, Then we say that G belongs

to the class

1) B ,if G does not contain an exact s-angle, for s = 3,4,5.

2) B1 ,if G contains at least one triangle and does not contain any exact
s-angle, for a = 4,5.

'3) 82 «if G contains at least one exact 4-¢nglovand does not contain:
any exact s-angle, for s = 3,5.

4) 83 ,if G contains at least' one exact S-angle and does not contain any
exact s-angle, for s = 3,4.

5) B‘ ,if G contains at least one exact s-angle, for s = 3,4 and does
not contain any exact S-angle.

8) Bs ,if G contains at least one exact s-angle, for s = 3.5 and does
not contain any exact 4-angle.

7) Be ,if G contains at least one exact s-angle, for s = 4,5 and does
not contain any exact 3-angle.

8) B, ,if G contains at least one exact s-angle, for s = 3,4,5.

Remark 2. Let G=(UH be agraph of the diameter 2 ; let
the edge h= (u,v)’ be a superfluous one. Then h is situated in a triangle
.(otherwise after removing the edge h would hold f(u,v) > 2).

1I. Results

We can easy verify two following n-.oriion-.

Assgertion 1, Let G = (0,H) be a graph of diameter two. Then
the edge h = (u,v) is superfluous if and only if



1) for every x¢ .(L (u), x # v there exists in the graph G either
the way (x,z,v), z # u of the lenght 2, or the edge (x,v).

2) for every y eSL (v), y #u there exists in the graph G either
the way (y,z,u), z # v of the lenght 2, or the edge (y,u). ’

3) in the graph G there exists the way (v,z,u), of the lenght 2,

Assertion 2, Let be G = (U,H) € B. Let have G a bridge or
an articulation. Then G is a star.

Theorem 1. Graph G € By if and only if G is a star.

Proof. If G is a star, then obviously G € B . Let be G € B, h € H.
Then according to the remark 1 and to the definition of the set Bo the edge -
h is not situated in s-angle, where s 2 3. E.i. h is a bridge. According
 to the Assertion 2 1’ the graph G a star. '

Theorem 2, Set BISI.

Pr oot {(bycontradiction). Let be G = (U,H) € B,. Let be h=(a,b) € H,
Let us denote M/ =[x lx €eN(a Ax € .ﬂ.(b)}

M ={xlx cx@Ax gAM]| (x40}
, *{xlx fn@az eam| +aol
M, ={x1x dniax ;.n.m}

From the Remark 1, Assertion 2 and from the assumption G € B1 follows
that h is situated in a triangle, e.i. M # 8 .

1) Let be M =M, = @ , then the edge h is obviously superfuous.
2) Let M, # 8, HZ#B. Let be x € M, y € N,.

a) Let be (x,y) € H, then G includes exact 4-angle (a,b,y,x) what
cannot happen.

b) P (x,y) = 2, then there exist the edges (x,z) , (z,y) where either
€M, (and then G includes exact 5-angle (x,z,y,b,a) what cannot
happen), or z € Io. Therefore, for every x € Il. y € l2 theré exists
such z € llo. that (x,z), (z,y) € H. But then the edge h is super-
fluous, what is a contradiction with the assumption.
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3) Let be M o= g, M, £e.

a) Let be My = # . Then for each z € M, the edge (a,z) is a super-
fluous one, what is a contradiction with the assumption.

b,) Let I's # @ and let for every x € M exist such y € M,, that
(x,y) € H. Then the edge h is superfluous, what is impossible.

b2) Let be “3 # ¥ and let exist such u € N,, that for every y € N,
i.lsa (u,y) = 2. Then for every z € M, is Plu,z) = 2. It is clur.
that for every z € M, there exists’ .uch z,€ M, that @(z,z;)=1

¢/ (otherwise would hold §(a,z) 3 2). If it holds $(u,z) = 1 then would

also hold §(u, zl) = 1 (otherwise G include exact 4-angle (u.z,zl,b)

"what is impossible. Let w € M, for which exists v € M; such that Plw,v)=1,

This vertex w exists, else would hold f(a,z) >2 for all z € M,. The de-

composition of tho vertices into the sets '1' i=1,2,3, it is possible to

arrange with tho accordance to an arbitrary edge. Let make such a decompo-
sition of the vertices according to the edge (w,b). Then will be the vertex

u € Iz. v € ll. According to the part 2 of this proof it is impossible.

E.i. the theorem holds.

Theorem 3. Graph G belongs to the class 82 ir und only if G
is bipartite. ’ R

Proof. If G is bipartite, then it obviously belongs to the set Bz. Let
be G = (U,H) € 52 , h= (a,b) € H. Let the symbols llo. Il.'la. la have
the same -unin;’u in theorem 1. It is obvious that Io = @ otherwise G
would include an exact triangle. Also '3 = @, because if there exists
a vertex x € ll3. then there would have to exist such vertices u € Il.
vEN that (x,u) € H, (x,v) € H. Then the graph G would include either
exact 5-angle (a,b,v,x,u) or exact 3-angle (x,u,v) what cannot happen.
It is clear that M, #§ , M, # § holds. Let be x € M;. Then it must hold

of(x,y) =1 for all ye Ia.Lot be y € My. Then obviou-ly for all x € M,
holds Q(x,y) = 1. Hence G is a bipartite graph.

Remark 3. The graphs of the class B were invnti'gntod in the
paper [8] . It was proved that there exist at nost 4 such graphs. There
are, as follows: 5-angular, Peterson’s graph with 50 vertices constructed
in'paper [6] The problem of the fourth graph remsins unsolved.

The graphs of the class By were investigated in papers. (1.0 (3
(4] . (5] . There were already done the estimations for the number of edges,
the maximal degree and there were described the extension and reduction



of these graphs is borders of the same class. Further there were solved some
problems dealing with the existence of the graphs from the class Bs. which
are irreducible, by means of the described -operation.

In the following part we shall describe the construction of certain graphs
of the class B., and the class 84. The set of vertices of these graphs will

be U = PLQUR,S,T.Z,A,, where P = {xl.xz,....xp} .

Q= {yl.yz....,yq} R = Ry R R,, where R, = lw:,w;,....w:} for k = 0,1,2.
S = Sl S2.vhorc Sk = {ut.u;.....u:} for k=1,2; “['1"2"3"4"5"6}
T =(v1. v2.....vt} , 2= {bl, bz,.... bz} . Let assume that t>0, q > O.

The set of the edges H of this graph (by given parameters) we describe
ywith the help of the neighbourghood of separate vertices. Let denote {Ul= n,
|H| = m. The basical decomposition of the sets of vertices is illustrated
by picture No. 10, ’

°

®

z

.

Fig. 10 )

Q(a,;) ={a,.8,, a,, 85} TRUIS.S,
n(.‘ ) ’{.1a‘~}v Q
Q (ay) "[‘u's}v Q
Q () ={a,8,,8,} URRLRZ _
N (a5) -{a, 8,,8,} VRoLRyLZ , sy ( = {a,'.as'} T o Sy
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| Niwg) = {a,.l, ]VTVS,_ UM,VE} for i = 1,2,...,r

Nw]) = l‘z"k } vQ@ for i =1,2,...,r

N (w}) "{'z"s]"" where 1 = 1,2,...,r

£A(xi) ={a,.l,' }vo where i = 1,2,...,p

Ryy) ={a.a ]31'.,9\,&,.,#“ R, fori=1,2,....q

R ={u:,a,} o0 L)) = {ul..,..b}vz.,n, + where 1 =1,2,...8
R ={e,. s} uzuaeRe . 1= L2t

'a(bb.) .{.b..slwrvsz » is= 1.2..-..1.

Directly from the construction of this graph (by known parameters) follows
that it is a graph of the diameter 2. We shall show, that it has no super-
fluous edges. According to the remark 2 it is sufficient to investigate just
the edges situated in a triangle. The following edges are not superfluous,
because after removing the edge °

(ag,84) it would be Plag,a,) > 2

(x¢.8,) it would be Plx .a5)> 2 fori=1,2,...,p
(wi i) it would be Plvj,a5) >2 for § = 1,2,...,r

(z ,a,) where z = a,, x¢, w; it would be f(z , a; ).> 2
(84,80) it wuld be = F(a, a5 > 2

(a, ,wj) it would be '9(.,,.-;) > 2

The superfluousness of other edges can be veryfied analogically therefore
we shall not write about them. The following table gives us a summary of
the degrees of separate vertices.
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vertices number . degree

s 1 ) © 2s+ptted
8,.85.R, R, P, S) 2repea+2 q*2

a, ' 1 2r+p+z+3
ag 1 . 2r+z+3
-.s.z ] z+l t+n+2
R, . . r tesrd
Q q 2r+t+pes+2
S2 ] r+z+3
T t q+z+2

Remark 4. From the above table it is easy to derive a formsula
for the number of vertices and number of edges of this graph.
(1) n = 3r+2s+p+q+2+t+6
(2) n = 2rq+pq+qs+zt+zs+ri+re+qt+4s+2p+2t+6r+2q+22+8 .
Let 4 be the minimum degree of the graph. Then it is easy to tverify,that if

(1) s #0, then d = min ( q+2, t+s+2, r+z+3 )
(2) =0, then d = min ( q+2, t+2, 2r+z+3 ).

Remark 5. If t=0 then also q = 0, otherwise there either would
arise a superfluous edge or d(G) > 2. If q =0 then also r = 0 because
else (w,a) 2. If q=0 (e.i. also r = 0) then the construction
in this way gives us the graphs of the class 34. If q #£ 0 then we graphs
of the class B7.

T hese orem 4. a) For every n > 68 there exists a graph from the
class B‘ of n vertices.

b) For every m > 12 there exists a graph from
the class B, of m edges. :

Proof, a) If we put q=r=p=s=z=0 in the equation (1) of the Remark
4, then n=1t + 6, where t 2 O..

45



b) Put in the equation (2) of the Remark 4 q=r=s=0. Then
m=zZt+2p+2t+22+8.
If2=0,t =2 thenm=12+2p ; if z =1, t =1, then m = 13 + 2p, where
P 2 0. The proof of the theorem is finished: ‘

Theorem 3, Forevery d23, n23d -1 there exists a graph of
the class B7 of n  vertices and the minimum dehree d.

Proof. Choose separate parameters in such a way that the graph constructed
by the described construction will be of the minimum degree d = q + 2, i.e.
q-d-z.t-d-zatl,tlzo;z-d-3+zl.2120:-20:1-,\_0:
- P20 ; Equation (1) of the Remark 4 changes into the shape n = 3d - 1 +
+p ozt ‘1 + 28 + 3r. So n runs over all the values starting from 3d - 1.

Theorem 6, For every d >.3, =m z_ddz + 3 there exists a graph
from the class B7 with m edges and witp the minimum degree d.

Proof. Let us choose the parameters in the described construction in
such a way, that the minimum degree d ='q + 2 ; i.e. Q=D -2, t=d~2+tl.
ﬁzO:z-d-3+zl,ﬁgo:pzo; 820 ; r >0 ; Then the equation
(2) of the Remark 4 changes into the shape :

m=2d%-3d +4+d(3r + pP+2s+z 4+ 2t1)+-(zl+rql) + tl(r+zl-3).
Futher we put r = 1 , tl =0, z, = 1 . Then it will hold

m=d(2d +1+p+28) +8+4, let be p =0 and let s = 0,1,2,..., d = 1,

Then mai (mod d), where i = 4,5,..,d - 1,0,1,2,3,. If be s =d -1, p=0
th;n be m = 4d2 + 3. It is easy to verify that m obtains all numbers than
44° + 3.

Theorem 7. a) For every n)10 there exists a graph from the class
87 with n vertices and minimum degree 2.

b) For every m226 there exists a graph from the
class B7 of m edges and the minimum degrees 2.

Proof. letbe r=0,q#0, 8#0,t#0 in the described con-
struction. Eliminate the edge (yi.na) and the edge (’1"§ ), where i=1,...,q;
J=1,...,8. Analogoysly as in the basic construction we can verify that
the arised graph will be from the class B1. About the number of vertices
the formula (1) of Remark 4 holds. Hence part a) of theorem holds.

The number of edges will be the same as in basic construction for r = 0,

Ifweput q=1,8=1,t =1 thenm=3p + 4z +18, If z = 0 then
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4z + 18=0(mod 3); If z =1 then 4z + 18 1 (mod 3); If z = 2 then 4z+18 2
(mod 3). So the theorem holds for m 2 26.

Finaly we shall prove, that an arbitrary graph without the loops and
multiplied edges can became a section graph from the class B (even of its
subclass B.,).

Lemma 1. Let be G = (U,H) a graph, which is not necessarily
connetcted and finite. Then there exists a graph R of diameter at most 2
and such that G is its section graph.

Proof. It is enough to put R = (V,l-:) whereby V = Uv{u} , where af U
and E = Hy {(n,x)l xGU}.

Theorem 8, Let be G = (U,H) a graph, which is not necessarily
connected and finite. Then there exists an N -irredicible graph G1 without
superfluous edges of the diameter two and such that G is its section graph.

Proof, Let be R= (V,E) , V= {‘l"Z”“"n} a graph constructed
by Lemma 1. The graph Gl we construct from the graph R by adding the set
of vertices B = {"bl""'bn} and the set of edges (w.bi). (bi'.i)'
i=1,2,...,n; and if the edge (li,lj) was not in the graph R, then we add
the edge (bi'bj) for .i #J3, 1,3 =1,2...,n. It is possible to verify that
graph so constructed is of the diameter 2 and moreover for x,y ¢ VuB,
x#y is -ﬂ-dx) £, y). All edges are not superfluous, because after
removing the edge (w,b;) it would be QSw.ai)} 2, fori=1;2,...,n.

(b;,b;) it would be  fola,,dyL> 2, for iAj, i,§,=1,2,...n.
(a;,a) it would be f‘.(ij,bi)> 2, for ifj, 1,J=1,2,0.0,0
(n‘.bi) it would be -Po,(".i.,' 2.. for i = 1,2, 000

So the theorem holds. )

Corollary 1, Let G = (U,H) be a graph (not necessarily con-
nected and finite). Then there exists an ’FL -irreducible graph from thé class
B., and such that G ig its section graph. :

Pro o'f, If G does not contain exact k-angle, for K = 3.4.5,.thon we
extend it by new vertices and edges in such a way that it will contain exact
k-angle for k = 3 and 4 and 5 as well. According to the Theorem 8 from the
arised graph we construct the required graph from the class B.,.

Corollary 2. There exists an infinite number of 7] -irredu-
cible graphs from the class B,. : ’
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On the solutions of the differential cq'uation

by
K. R. YACOUB, Cairo

In a recent paper (1), the lucccutivo approximate solutions y“(nll.z.s...)
of the diferential equation .

g
LY. L (xeax™y = 0

dxz

have been discussed only in the two cases m = 2 and 3.
Expressions connecting the solutions Yn and y were given in these two
cases. ' ?

n+l

It is the object of the present paper to deal with the same b;oblo- when
» takes any positive integral value (m > 2). T

For this purpose we collect together some results -nihl; for subsequent
use, :

1. Preliminary Results

Lemma 1. The complete solution of the differential equation
a2y
ALY o xy = 0
dxz

is y = ¢, Aix+¢c,Bi x=u(x)
1 2
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where Ai x, Bi x are the two Airy’s integrals and c¢,;, ¢, are arbitrary
constants.

Lemma 2, Lot the notation be as in Lemma 1, and let u(") denote
the nth derivate of u with respect to x. Let further Gf‘bo the inverse
operator of the operator 3

W R
dxz
then
@1 ‘n, - u(ﬂ’l’ .

In (1), the following relations have been required:

x ul®) & g(o*2) _ o (0-1)

x2 o0 o y(ned) 2(n+1) ultel) (n-i)2 uln-2)

3 ,(n) = u(n+6)

b ¢ - S(nyg) ""Tlfs)’ w(ll) ‘(n) - (n_z)s u(n—S) .

where W (n) = 3n° + 3n + 2 .

For the present situation, we require a similar expression for =™ n("’

‘in general.

Lemwma 3,
< oM . .:?i glamm) | .:?; pl2men-d)

. ‘:?i o(2m+n=3143)
where n‘fi = 1

(n)

= - m(m+n-1),

(n) (n) (n)
81 " %1 " ‘P’"“”"} 8p-1,4-1 *
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This result is true for m = 1,2,3 and may be established in general by
mathematical induction on = (2).

For the éonvenienco of notation and typing, we introduce the coefticients
ob(m,n,1i) where

ol(m,n,i) = l:'::d

In this notation.
o(l,n,0) =1, 0(1,n,1) = =-n

o(2,n,0) = 1, @(2,n,1) = - 2(nel) = -2(n+1) , OU2,m2) = (n-1),
d(3,n,0) =1, o4(3,n,1) = - 3(n+2) ,
o(3,n,2) = wi(n) , &4(3,n,3) = -(n-z)_a .
Moreover, by means of this notation Lemma 3 will be written
Leama 4.

®u® = gmn,o0 v & g(m,n,1) ul2een-3)

k(m,n)
- Z d(_.n.“-"(anm-si)
i=o
wherepl(m,n,0) =1,
om,n,1) = -m(m+n-1),
ol(m,n,i) = ¢(m-1,n,1i) - (2m+n-3i+1) d(m-1,n,i-1).

and k(m,n) = [(2-+ n)la] X
Lemma 5. For 1 > 2,

' »n
o (mtl,n,i) = =3 (2r+n-31+3) 0t(r,n,i-1).
r=s

“ *Whereever the symbol [r] -appears, it denotes the integral part of the
number r. : h
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'Titc follows directly from the last relation of lemma 4. In fact, we hgn
d(m,n,1) = dim-1,n,1) - (2m+n-31+1) (m-1,n,1-1).

If we replace m by r+l, and rearrange the terms, we obtain
&(r+l,n,4) - obir,n,i) = (2ren - 31+3) gi(r,n,i-1).

Writing this relation for r.- 1,2,...,m, then adding sll tohether, we get
. ] ’ . - ! .

dim+l,n,i) - a(1,n,4i) = ’-Z (2r +n-3i+3) &(r,n,i-1)

r=]1

and the lemma follows at once if we observe that
&(1,n,i) = o for 1> 2,

Lemma 6, With the above notation

- o(m+l,n,l) = (m+l)(m+n) ,

60l (m+1,n,2) = m(m+l) { 3wl (6n - )m + 3 n° - 9n + 4}

- 600(m+1,n,3) = (-3)‘ + (3n+2) (---2)5 + n(3n-1) (--1)4 +

+ n(n-1) (n-2) (l’a

The first of these relations in obvious. The last two relations follow di-
rectly if in Lemma 5 we take i=1,2 in succession.

2. Successive approximations of the differential equation
2

—:;-x— - (x+ax™)y = 0

In this section we apply the method of successive approximations (already
used in the previous paper) for the dittoronupl equation

g
_ﬂ.i._ - (x + u-)y =0 (2.1)
dx



For this purpose we write (2.1) into the form

-._31-‘ — - Xy = .x- y . . (2.2)

If a is small enough, then.for a first approximation, the Ibﬂ. equation may
be written

2
-!-l_-":o.

clx2

The solution of this equation is, by Lemma 1, y = u(x) = u,
This may be regardes as a first -pproxiuuon ¥y

Thus y, = u.

For a second approximation, we put y = yy =u in tho R.H.S. of -qn.uon
(2.2), thus having

2 ;
43 sy =a x_' u - (2.3)
(!x_2
Then by using Lemma 4 (with n = o) for the R.H.S., equation (2.3) will be
written

2 . k(m,0)
43X _xy=a S ot(m,0,1) u‘?""“ v (2.4)
dx? i=o _ .

The complementary function of this oquuuon is ovidonuy 'y = u. while t.ho
particular integral is by Lemma 2,

-1 k(m,o0) .
a @ g E o(m,0,1) “(2-31)
5 . .o
k(m, 0)
= a ol(m,0,1) (2m-31+1)

i=o



Thus the complete primitive of equation (2.4) gives directly the second
approximate solution ¥y, namely
k(m,0)

yp=u+a d-s-.oz ul2m-3i+1)
i=0 2m-3i+l

k(m,o0)

i, yy=y +a’ Z &% (m,0,1 a(28=3141) .
i=o 2m-3i+1 J

For a third lpproxil.guon, we put y =y, in the R.H.S. O0f (2.2), thus
we have

2 . " k(m,0)
-;;i— -xy = ax™u+ a 21.0 dn(- o* = o2m-3i+1) (2.5)
'Then using Lemma 4 twice for the R.H.S. of (2.5), we have
2 k(m,0,1)
—‘i— -xy =a ol(m,0,1) u(2m-31)
dx =
" k(m,0) k(m,2m-3i+1) ( - o
+a o (m,0,1) ! (m,2m=-31+1, §) ul4m-3i-3j+
=0 Za-$141 J=o * : !

The complete solution of this equetion gives the third approximation y;
in the forms. )

k(m, 0
= u+a “ i (2-‘31*1)
Y3 !-!o*, ) u

k(m,0) k(m,2m=-3i+1)

+a? L Y (m,0,4) % (w,0,4 om-3isl, | ulim-31-35+2)
i=0 J=o tﬁ’it*t, ‘Z-—ﬁ-i ]0._5‘
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k(m,0) 2m-3i+k)
i.e. y3=y2+n E ! é 2 l;‘ !=.§§-31+1’12 (4m-31-3 j+2)
=0 :o

Thus we have shown the following lemma.

Lemma 7, The first three approximate solutions of the differentia
equation
2

: -;f!!- - (x+ax™)y = o (a being small enough)
are
'yl-u.
k(m,0)
¥o5y; + & m,0,1) u(z--31+1)
i=o mElsY

k(m,0) k(m,2m-3i+1)
varvgrat Y ) Golnyo i) o (n,2m3isl ), (4n-01-35+2)
i=o J=0 n-31+ =3 1+

In a similar way one can easily obtain the fourth approximation Y This
will be given in the following Lemma.

Lemma 8.

kK, kx, Ky ' | ' ‘ N
3 ﬁ
VY3 e L. L 1_:.) o« m,0,4;)0 (m,20-31+1,1,) & (m,4m-34)-31,42,85
= . = - -, -
1%° "2 T i 173" 17313734

. '(Gl-311-312-31343)‘

where k;, = k(m,0) ,

ky, = t(-.z--311+1).

and kg = i(l,l.-311-312*2) .



3. Simplification of the forms of the npprgﬁuu solutions

Tho approximate solutions .1roldy obtained in the yroviou- article may
be -1-plttiod 1: we introduce the following symbols .

p : ol(m,0,1,)
= - .
1 ‘E‘!‘I‘d‘_‘- T _
oo(m,2m-31 +1,1
pa P T;!Il-ﬂ*zoﬂ .
o (m,4m-31,~31 02.13
Pa =31 ) =31, 4+ :

. In this notation Lemmas 7 , 8 can be simplified.

Lemma g, The tlrlt four .pproxduto -oluuom of tho dittoroutul
equation

2 : ! .
—:—i- ~(x+ax™y=0 (a small enough)
x
may be written
=u,
b4 kx
vaey e J 0 # ulmedpen
11-!)'

kX ‘ :
v " vyt o® i t E_p_l Pz }’a (6m=31,-31,-31,+3)

11-0 _13-0 13-0



4. The approximate solutions Yn* Tnel

In this séction, we express in torn.or Yne For this purpose,

Tnel
we introduce the following
k), = k(m,0) ,
Kgo1 = k(m,20m - 3(11+12+...+1.} +8); 8=1,2,...,0-1.
‘n— 45(-,0.11)
by - Za-31,+T .

p . A(m,20m=-3(1 +d v, .41 )4s,1,)
s+l 2em=-3(1,+1 %...41 )+8

for s = 1,2,...,n~-1

By means of this notation, we state the following
"_th

Theorem 1. Let y and y ,, be the n and (n+l) th
approximate solutions of the differential equation
tl2 ]
-;—i- - (x+ax)y = o (a small enough)
X
Then yy=u.,
Ynel * Yo * a” Fa,n(® n 21,
Where x % " . :
ﬁ ﬁ n n (2sm-3 .-# 1.+l) (w)
Fa,nl® = L. L e,
e ilto 12-0 1n=o s=1

This theorem is true for n=1,2,3 and may be established in general by

mathematical induction on n., The proof is omitted. P

Although F. n(l.l) is written in a compact form, yet such a form depends
1 ]
indeed on n processes of summation. However, F_ l‘(n) consists of a finite
: -
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number of terms involving derivatives of u. Moreover, we observe that the
highest derivative appearing in Fo n(u) is of order

2nm +n = n(2m + 1)

(such a term corresponds to 11=12-...-1n-o).

Furthermore, the derivatives of u diminishes by 3 and its multiples. This
suggests an expression of F- u(u) which consists of terms of the form

u(n(2m+1)-31)

Thus, Theorem 1 may be restated as follows:

Theorem 2. Let y and Ypep De the nt? and (ne1)th

approximate solutions of the differential equation

2

—-g-i- - (x+ax™)y = o
dx
Then Yy =u,
Yool = Yp * 2" Fg,n (W n>1,
P p(n(2me1)-31)

(mx)

where F..n(u) = 2:: (-} ¢

= =01 (2me1)-31

with suitable expressions for Cm,n,i and with p = p(m,n) depending
»
on both m and n.

In fact, .
(i) Ifn=3N, p= (2m+1)N - 1

(1) If n=3N+1, p= (2m+1)N + u
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el ] 1f 2mel g
where P{ =
' 3"1] -1 if omel =
3
(i1i) If n = 3N+2, p = (2m+1(N +
2 [3253-]
it omelyf
where }U =
2[3%?]-1 if omel =

5. On the-cooffieient- e.."'1

We prove the following

Lemma 9.
1
Can.o ——,
L (2m+1)" n!

k(m,Zm+] n-3i)
=] ’ ,

r=o

& (m,2m+] n-3i+3r,r)
(2m+1)n=31 + 3r

Cm,n+l,i

Proof.
paper (see

Yoez = Tner * 070 @'l{x' Fa,n (u)} .

On the other hand

n+l ’
Yneg * Ypsr *t 8 Fo,ner(®)

Comparing (5.1) and (5.2), we get

@-1{,- r..n(n)} S F'“"““"_

(]

(mod 3)

(mod 3)

(mod 3)

(mod 3)

°-;n,1-r

Byusing a process similar to that one used in the prcvioqs
§§4,5; Theorem 1,2), we can easily show that

(5.1)

(5.2)

(5.3)
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- n = <) Cc =
o Mlme < w s V(o) " R .x® y(n(2me1)-31)

i=o

k(m, n(2m+1)-34

)
B ? (=)} c-!g.t g A(m,n(2me1)-31, §) &
=0 nizmt+l)- s

=0
u(2m+n(2mil)-3i-3§)
Operating by ®'1 . we get

P ki(mn(2m+1)-34) '
®'1{x.F-.n(u)} =) ) (-)! &(m,n(2me1)-31,5)
i=o J,o0

ul(2m+1) (n+1)-31-3j) °

] F e eI (5.4)

k(m,n+1)
lo{-oovor 2.0 ul(n+l) (2m+1)-31)

i
r-,nu (u) = -o: (=) ®m,n+l,i (e Gas) oo —— (5.5)

i‘hon if we combine toiethor (5.3), (5.4), (5,5) and compare the coefficients
of u{(n+1) (2m+1)-3 ). we get

k(m,Zu+] n-31)

i : = E ()T % (m,F0?T n-3i+3r,r)
m,n+l,1 ;

r=o (2m+1)n-31 + 3r n Ry d=e

This proves Lemma 9 (ii).

For is0, the above expresion reduces to

°lln¢lo' - 2:0) ®a.n,0
et (2m+1)n . P

but of(m,n,0) =1 for all m,n ., and therefore

v°.'~1.°-. ﬁ!’%l’ﬁ" ®a,n,0




Then by a repeated application of this recurrence formula and remarkong that
Chn 1.0 = 1, we get directly J

1
e = D e
s,n+l,0 t2m+1)™ nt
This completes the proof of the lemma.

6. Special Cases

In this case, we deal with the two special cases m = 2,3 which have been
discussed already [ (1), §§ 4,5].

The case m = 2

In this case,
ot(2,n,0) = 1,- &(2,n,1) = 2(n+l), g(2,n,2) = n(n-1),
&(2,n,i) = o for i 2 2.

Also Lemma 9, will be

®2,n+1,0 ,,1 .
v 5" nl |
°2,n+1,4 * Aiz.30-340 5!::;31 -6 p,4 " Mﬁ%"ﬂl— Comit *
* 5n‘:,;;4-:+6 2 ®2,n,1-2
* Sn-31 2,01 * 2 :—::3%%‘ ®3,n,i-1 * (5n-31+5) ©3,n,1-2 ‘,A

Now if we write
= 62.“1,1 = .Il"'l,i i=o,1,2,...

i-'z'n (u) = P, u(x)



The above results will be written

n_—L——’

‘n+1.o 5" o1 ’

1 n=3i+4
a = = + 2 a + (5n=3i+5) a_-
n+l,i sn-3i Dod 5n-3i+3 n,i-1 n,i-2
2 (5n. '31)
. i u'on”
F (u) = («)" e
2,n g 2,n,1 5n-34
P
i ! (5n-31)
= E (=)" a4
el ’ 5n-31 :
= Fn 'u(x) v — -

[no, (1), § 4 Theorem 1. and Cor. 1.2] .

The case m = 3

In this case

a(3,n,0) = 1 , @(3,n,1) = =3(n+2),
&(3,n,2) = w (n), @&(3,n,3) = -n(n-1)(n-2),
‘@ (3,n,1) = o for 1 > 3.

Then Lemma 9, will be

°3,m+1,0 " Tom o

. X(3,70-31,0) - _ L(3,7n-31+3,1

‘e
3,m41,1 Tac3i 3,n,1 Tacdies  3.mii-1

a(g,vg-gre,gz - 3,7n-31+9,3 L
+ n-31+ °3.n,i-2 n=3i+ & °3,n,i-3



but ax(3,7m-3i,0) = 1,
A4 (3,Tn-31+3,1) = -3(Tn-31+5) ,
a (3,7n-31+6,2) = W(7n-31i+6),

& (3,7n-31+9,3) = - (Tn-3i+9) (Tn-31+7), ,

and therefore if we write

°3.n+1,1 = Pn+1.i for 1 = o0,1,2,.

and Fa.n(u) = G, (u) ,
we have 1
n+l,0 7" ni
1 Tn-31+5
b = —=—— b —nodled oy, +
n+l,1 n-31 n,i Tn-3i+3 n,i-1

w(7n-31+6)
+ = by,i-2

Tn-3i+6

+(7n-31+7)é b

q ;
Fap W =) (2 o, _ulTe-3)

i=o Tn=3

q

i

(Tn=-31)
= . (.)1 b A = G_(
: u.i Tn=341 n

i=o0

[ceo [1), § 5, Theorem 2 and Cor. 1,2 ] o

n,i-3 °*

u)
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On the absolute continuity of product measures

T. NEUBRUNN

1. A condition concerning the absolute continuity of the product measure
Y, =V, with respect to M,x M, for a sufficiently general case will be '
discussed here in the part 4. At first in the part 3. a simple completion of
a well-known result related to the connection of the abselute continuity of
the types \)<<“u and V<<ﬂ is given,

2, Unless otherwise stated notations are as in [3] . (X,9) denotes
a measurable space.

Definition 1, 1f Yy nnd[(« are measures defined on S then ))
is said to be absolutely continuos with respect toﬂ in case, given any

£ >0 , there exists a 0 > O such that the relations FeS and
(u(£)<d' imply V(E)<E Briefly denoted -V<<¢ M.
Definition 2. The measure ) is said to be dominated by l“‘
(triefly V<< ) in case every /M -null set is V -null, that is l{(([}so
implies V(E)+<0 tor every F€§ .

One can immediately verify that U«Eﬂ implies U((/t In general
the converse is not true (See [3] , p. 128 ex 12).

" In case of a finite measure )Y  the two above defined notions coincide
(See [1] , p. 149).

3. We shall give a necessary and a sufficient condition for the connection '
for of the relations V<<, M and Y<< M in case of a nonatomic
measure J end an arbitrary measure M .

Lemma 1.It) is a nonatomic and M an arbitrary measure on S .
then a necessary condition fog ”“5 ﬂ, is: -

(1) V(E) = co implies "“-(E) =00 for every E&S



Proof, Assume that there exists f¢ § such that V(E)soo
and M (f)<c oo . Since V is nonatomic, we may form a sequence of pairwise
disjoint sets [, ¢ § ’ luch‘.t.hat EnckE . qu)' - 1,(n=1,2,3...)

(See "3 ,p.174). Putting £ ,we have
' ’ 4 al!§°

V(R)= 5 V(En)=oo, M(F) <M(E)<0

for k =1,2,3,...

Since .g'/tlfl)_/t{f;)</t{£/<oo'
we have :il’ M(R) =‘1_1’-°- gﬂ[Eu)‘D

Thus lim M) =0 and V{F‘,) = 00 b. for k =1,2,3,...

v oo

So V<< does not hold. This completes the proof.
&

Lemma 2,Let) be a nonatomic measure. Then, under the condition
(1), the implication VY < < ﬂ -_— ) < <¢ M holds.

Pr oo f. The proof uses the same reasoning as the proof of the statement
V<< M implies V<<, M in the case of a finite measure V
(see [3] p. 125).

In fact, let V<<[4« hold and let 1)<<E ﬂ be not true. Then there

exists £> 0 and a sequence {En}"' of £,, such that E, ¢ J‘
nay
Thus 7, 5 = 1 < oo
M (YE) 2 L pE)SL R
’ L)
The last and (1) tmply VY (UF, ) < oo for k= 1,2,3,...
Putting B = :1- sup £ = lim ([/’E,‘)

h—voo mik

and taking in account that vy (.UE) < oo and ul?F, > (75,,.
2 - Ruk st

(as follows from (1) and from the choice of E)), we get

Y (8) = ,{?ﬁ v(,.(:/:E,} E“&fg}»ﬂ/& V(Es)2E
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On the other hand - .
K (8) = Lom M (UE) - Lome & M(E)70

4. In what follows some questions related to product spaces will be dis-
cussed. Two measurable spaces (X,5 ) and (Y,T ) will be considered.
Let #, and M, be measures defined on § and T respectively Further let V),
be a measure absolutely continuous with respect to[ly and V, . a measure abso-
lutely continuous with respect to /l,_ . A question arises:
Is then Y, xV, absolutely continuous with respect to A, + M, 7 The
answer is positive if M, (£ = 1,2) are G -finite and Vi finite. A question
how does the situation lock like for more general cases is posed in [1] ([l] $
p.169 ex *1).

In view of lemma 1 and 2 it is natural to expect that discussing
this question, the relation between the sets Fe $xT for which

YyxV, (E)= o and those for which M,xM,(F) = , will play
more importatnt role than the finitness or 6' -finitness of the measures
themselves. The follbwing notion will be useful. )

Definition 3, If(X,§ is a weasurable space, 4 and )
measures defined on § , then Y is said to be M -attainable on a set FeS

of finite ) -measure, if there exists a sequence [Eh i of sets

such that £» C Fn.y CE . M (E,)<oe .(n=1,2,3,...) and %V(E,.)-V(E)
Ir V is ’- -attainable on each set £ of finite J -measure, then V is
said to be/(« -attainable. :

Obviously if V) 1is arbitrary and A finite, then Y is M -attainable.
It is easy to give an example of two measures YV and /t such that V is
A -attainable and M is not O -finite. It suffices to put ¥ =AM  where
is semifinite but not & -finite. (For the notion of semifiniteness see [1]
p.87). '

Now we explain briefly how the product measure ML x V(M,V are arbi-
trary measures on § and T respectively) will be defined. When AC , ) are
finite, the product is defined in the usual way ([1]:p.143, [3] p.145). In
case of arbitrary measures we shall use the method developed in [2] (see also
(1) , p.127), where the product [‘xD ie defined as £ xV = { 1. J ?’P"Q
where PxQ  runs over the measurable rectangles such that M (P)< oo, M(Q)=>>
and ‘?"Q is the product, taken in the usual sense, of finite measures

+ VY which are derined as AYE) = M{P E), VY(E)=V(QnE)
on§ and T respectively. .
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The proof of the following known lemma will be omitted. (See e.g. (€]
ppP. 178,179). The fact that the measures appearing in [4] are probabilities
is not subgtantial for the proof.

Lemma 3. Let (X,§), (Y,V) be measurable spaée-. {\)1‘.} and

{”‘} ‘1". 1,2) finite measures defined on § and T respectively,
Let Vi<<pMi . Then Vyx Vi<<p aM,
Teorewm 1. Let (X, 5),(Y,T) ve measurable spaces. Let ¥; and
‘u,' be measures (not necessary finite) defined on § and T respecti~
vely and such that V¢ is M -attainable and Vi << M (¢=12) .
Proeof . Let M denote the set of all measurable rectangles PI,Q
such that M, (P)<oce, m, (Q)< oo . Put W for the set of all
those A Q for which Vi(P)coo , V,(Q)<o0 . Since VY (i~142)
are M. -attainable, we can construct for each 2 x Qoe N a sequence
of rectangles (Pq.xQ.‘}" ‘" such that P, x Qa € M, N, Pnx @n
et
CPisaxQned’'CPoxQoy(n =4,2,3.....) and

holds. (Pn end Qw are chosen such that Yy (P -E?,;) =

o d
* N (Q-Un)=0, 2 ch . ,ch, dnc@nuc Qo
Owing to the fact that { P x Qn}:_l is an increasing sequence and also
to the fact that is a restriction of Y, x V, to the rectangle Pn x Qn
(see [2] ), we get for each FE S xT

bm 32 x 0" (E) = lim Vx V, (P x@)aE)
() = Yx ¥ (L (Pux @) E) =Y, xY, (TPu x T Q) A E)

4 o d
Putting 4= yﬂ. ; 8= U @n and taking into account that
AxB8clox Qe , we have =t

(40 PoxQa= (AxB), (Po-A)xQouvA x(Qo-8)

Since Y, (Po=A) = Y (Qo-B)=0, we get trom (4)
(5) Vyx¥, (Rx@)= ¥ x% (4x8) = ¥ya¥, (TPux U Q)
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(5)

From the fact 4 x B¢ Pox Qo and from (3) one see that A x Qo and

g”.‘ x '“”"Q{ ’ are equal in measure. Hence for every Fe Sx7T
(8) Y xY (Ea(Rx@)= Y x Y (Er(UPx UQL)

T‘hlll (3) and (8) give )
@ lm BN (E) = Y %V, (TP x T,8n)~E) - % x v (k)

Since V,"'<< /t,“' and Jie"<< /t"" tor ov‘ory v and since Pu y Qn

€MAN we get, using Lemma 3
() Yra Yt << /t"x/,“'

Now, if Ze¢ §$x7T and ¢, x M, (z)=0 we have /(:!/l“(z)‘O

for each Px Qe M It PxQeMalN then according to (8) also

¥x v: (z)=0 . Hence according to (8) and (7) ¥, x Q’(z')-.o
for Pox Q@ € N .Thus X x ¥, (zi-mwx’{.(l)-(

The proof is complete.

The preceding theorem generalizes the known fact that if ", and VL are
finite and 4, ., &, O -finite then under the assusption Y, << My,
Y <<4L,  the affirmation ¥, X N < < p¢, Y M, holds.

Iheorem 2, Let (X,8),(Y,7) he measurable -ucu[v;}
and {/t;} (€= 42) measures defined on § and T resmctively. Let the
following conditions hold: '



(§3) Vi <<, M

(II)  Y; is Mi -attainable

(III) At least one of the measures )i is nonatomic. Then a
necessary and sufficient condition for ¥, xV, <<é¢¢£, XM

18: Y xV,(E)=cosmply M, p,(€)=e tor every FefxT
The proof immediately follows from lemma 1, theorem 1 and the following

Lemma 4..1f (X, 5 m) (Y Ty) are measure spaces and
at least one of the measures 4 , / is nonatomic, then . /‘IV is a non-

atomic measure on J' x 7 .

Proof . Supposes to be nonatomic. Since the product A = M X v

l y2 LA | ' .
is defined as A ”.»:«- L-‘ux v where £ is the set of all the measurable
1Q¢€ : .

rectangles with finite sides and since the measure ‘M’ is evidently nonatomic,

it suffices to prove these two statements:

a) If a measure L\ is l.u.b. of a system of finite nonatomic measures

then A is nonatomic.
b) Lemma 4 is valid for the case of finite measures.

As to the a), let A< (<€ J) be a system of finite nonatomic
measures and A = l.u.b.Ai a measure. If Felf and A(F)>0 then
there exists £o € ¥ such that A4, (E)>0 . Since A, is non-
atomic, the existence of a set FeJ' follows such that 0<Ad, (F)<AL,(E)
Hence also A4, (F-F) >0 Consequently A (F)>0 Jana A(F-E)>0
since A (F)+ A (E-F) = A(E) we have 0 < A(F)=< A{E) and a) is proved.

Vet Ee FxT , A(E)>0, (A=pmxV, M, p are
finite). We have to prove the existence of & ( O0<t¢ <J‘(E]) and Fe £ xT
Fc E' such that A (F.) =t + . If £ 1is a measurable rectangle £=A4 x8
then such F exists for each ¢ (0<t <A (E)) It. suffices to choose

F=4,x8 where' 4, CA , A, S is such that £ (A= j(g)
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Then 0 <M (A1) < M(A) and ¢t = M(4) V(B)<M(A)V(8)

Now, let £Fe fSx7T be an arbitrary set. Since, as it is well known
(cf.e.g. [3] p. 145) '

N(E) =i { £ M(An) V(Bn) :EcUhm 5B, A € 8, Bme T}
there exists ~, such that A (£n(AmyxBm, )>o 1t A (EA(An, xBa, )< AE)

then it suffices to put F=Ena (Aq xBn.' and the proof is finished.
It A (Ea (.4.° x B.. )= ACE) , we may suppose without loss of gene-
rality that £¢ An. x Ba, . Then £ 1is equal in measure to 4,,. XB,..
Choost ([ CAn.an. . ,such that L € #x ¥ 0< -l(t)<.l(l,,.‘-B..)
and put F=F£,L . Evidently A (F) >0, A(F)=< A (F)
This completes ihe proof.

Note that is general under tl;e assumptions (I) (II) (IYI) the state-
ment: Y, xV,(£)=e impies M, X My (E)=== for every
£e JxT, may be false. Hence Wy <<¢ M, , V, <<glnl may be true and
Yy <<, M x M, may be false.

Example. Put X={423..... }, J‘-l', Y = <0,45Fathe system
of all Lebesgue measurable sets contained in< Q7> . Define ¥, on F

such that Y, ({4‘}) =2™  for arbitrary one point set { 4!}’(41, is any
positive integer. Further, let 4, on f be defined such that for every one
point set [ m ], M4 ({m]})=1 . Evidently ) <<, M, Let ¥
and g%, be defined on 7 as )) = #, =  the Lebesgue measure on 7
We have ), <<, M -Take E-q(:/:f,.._ xFr vwhere Fa = [ }Ecer
such that Y (£,)= 3 . Then VY, x B(E)==, pyxp, (E)=4
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