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ACTA FACULTATIS RERUM NATURALIUM UNIVERSITATIS COMENIANAE
MATHEMATICA XVII — 1967

PROBLEMS OF OPTIMIZATION OF NUMERICAL MATHEMATICS.

1. BABUSKA, Praha

1. Modern computational techniques are putting forward new problems in
numerical analysis. At present numerical mathematics can be considered as
a set od constructive mathematical methods transforming given information
into desired ones (see e.g. BABUSKA [1966], HENRICI [1964], BABUSKA, SOBO-
LEV [1965], BABUSKA, PRAGER, VITASEK [1966]). The classic concepts as for
example that of method are beginning to have new meaning. The first place
is being occupied by algorithms and the methods are rather comprehend as
a class of algorithms of certain kind. Concerning algorithms the following
requiram=nts arise: -

a) sufficient generality of algorithms

this requires the algorithm to be applicable to a sufficiently wide class of
problems. For example the algorithm of integration by Cotes’ formulae of
highest order is not sufficiently general as it is applicable only to the narrow
class of analytic functions.

b) Sufficient universal efficiency;

this means that the algorithm should treat the given informations
»approximately” as well as the optimal algorithm (see below).

c) sufficiently good realizability

By realizability we mean, that the fact, that the computer does not work
in the field of real numbers (the rounding off) should not have a great effect
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on the result. Especially this is the problem of numerical stability (see
BaBUSKkA, PRAGER, VITASEK [1966]).

In this paper we will study some aspects concerning the universal efficiency.
In order to illustrate this problem we will restrict us here only to very special
cases.

2. Let a Banach space B be given and let ¢ € B*. Our task will be to calculate
the value ¢(f) for a given fe B. The principal idea of (linear) numerical
methods of calculation of the value of the functional ¢ is the following.
A matrix of functionals @ = {pP}i=1, ...,m,n=1,2, ..., o7 € B*,
is given (these functionals will be called calculable functionals). Now it is

n
necessary to construct the functionals ¢, = > CPe@ in such a way that

i=1
#n(f) = @(f) for n > co. In practical cases we take gj( f) = @(f) for sufficiently
great n. There is a number of problems connected with this task.

1) Problem of the estimate for the upper hound of error.

Here the upper bound of the quantity en(g, gn, B) = ||p — gnl|5* is to be
estimated.

This problem bears in fact a classic character and is intensively investigated
at present (especially it concerns not only the estimate of order, but also of
the corresponding constants); in the case of integration of periodic functions
see e.g. SOBOLEV [1965], [1967], JAGERMAN [1966], AcaHANOV [1965], EHLICH
[1966], BABUSKA [1965], CARUSNIKOV [1966] and others.

2) Problem of the estimate for the lower bound of error.

Here the lower bound of the quantity

n
Na(p, D, B) = inf llp — > o] g
a®,k=1,...,n k=1

is to be estimated. Also this question is intensively studied at present. See
e.g. SOBOLEV'[1965], [1967], BABUSKA, SOBOLEV [1965], BACHVALOV [1963]
and many others. The quantity gives the maximal accuracy at obtainable
on the ground of given information.
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3) Problem of the optimal formula.

The task is to construct the functionals ¢, in such a way that

Gn((}’, Pn, B) = 7771(¢’ ¢’ B)

See e.g. BABUSKA, SoBOLEV [1965], SoBOLEV [1965], [1967], GoLoMB, WEIN-
BERGER [1959] etc. The concrete construction of optimal formulae is very
difficult and is known only in special cases. In connection with these
difficulties formulae are studied, which are asymptotically optimal or optimal
by order. See e.g. BABUSKA, SoBOLEV [1965], SoBOLEV [1965]. From the
point of view of numerical practice the problem of optimal formulae encounters
soms difficulties. Beyond the difficulties connected with the construction of
optimal formulas there is also the problem of how to choose the space B
in a concrete case. We will now illustrate the practical importance of this
problem by a simple example.
1

Let o) = [ f@) do
0

Let @ be a matrix of the functional,such that @, (f) = LZa,‘,”{f (%)

n

. -
holds. If ||f||3 = f2(0) + [ (f')? dx, then the optimal formula will be the
0

trapezoid-rule. At the same time it is known, that the trapezoid-rule is
scarcely used in practice.

The question of how to lower the risk of choosing the space B in a concrete
case is the question of universality of the formula.

4) Problem of universal optimality by order.

Let A be a given system of Banach spaces B embedded in a Banach space
B,. Let us have a matrix of calculable functionals () € BY and a matrix

of coefficients ¥ = P}, i=1, ..., m;n=1,2, ..... We will use the
following notation:
n
llg —> CPeP||pe
ALe = E[Be ¥, i=1 < C(B)]

ﬂn(‘Pa d}, B )
[where C(B) depends on B, ¢, @, ¥ but not on n]. We will say that the formula

n ,
on = > CPe{ is universally optimal by order with respect to AL?. Further
j=1 i

2 Equadiff II. 17



let us have two formulae given by the matrices ¥; — {fIC®™}, =12 ...

[i.e. Ppyt = Zn i0Me(M]. We will say that the formula given by with the

i=1 -
matrix ¥ is comparable or better or not worse respect to 2 than the formula
given by the matrix ¥,, if 913’1"’ é 913;;? or QIZ‘;:’ > QI‘,f;:’ or ‘l[‘g;l'f’ = ‘.’[‘,f;:’,
respectively. The problem of universal optimality lies in

a) characterization of A%:¢ for a given formula,

b) characterization of 2 in such a that the best formula exist,

c) construction of an algorithm leading to this best formula and an estimate
of the quantities #, and C(B) as functions of B.

3. In.this part we will give some illustrative assertions concerning the universal
optimality. Let us have the task to calculate a functional over the Hilbert space
of periodic functions and let us ask, what is (in the intuitive sense) understood
the concept of this space. Its intuitive meaning can be perhaps expressed
in the following manner.

Definition 1. We will say that a Hilbert space H of 2m-periodic complex:
functions has the property P, if the following properties are Sullfiled.

P,: H is dense in C,,. _

P,: if fe H then also g(x) = f(x + c) e H for every real ¢ and f1l = ligll-

Pgy: His imbedded in Cl,.,.

Now the following theorem holds.

Theorem 1.1

Let H have the property P. Then

l)ekzeH, k= ..., —1,0,1, ...;
2) (etkz, ellzy = 22 for k =1
=0 fork#1
3) TZ %2 < . '
m= —w

It is easy to prove also the inverse theorem.

Theorem 2. :
Let K be the set of all sequences A, A= {..., Ay, Ao, A, ...} for which
A>0,k=...,—1,0,1, ... and 2 ;2% < 0.

Let M be a linear space of all trigonometric polynomials with the scalar product
(etkz, eliz) — 22 for kb =1
=0 fork #1.
Let H ; denote the complete envelope of M in the given norm; then H, has the
property P.

1) It was M. PRAGER who has drawn my attention to this theorem.

18



Now we will introduce various systems of spaces with the property P.
Let U be the system of all Hilbert spaces with the property P.

Let A, be of all H, A € K, = K, such that if A € K,, then

Dik=242% k=0,1,2,... ‘

2) k=AM k>0

0

73 an] -
# E/l?[a.n] Tien L =D =<4
t=0 ;

D does not depend on » (but depends on A.)
Let A, be the system of all H,, A € K, © K, satisfying.

M<CH+k?, B>0.
Nowlet &= {¢@P}, j=1,2 ...,2n4+1, n=12, ...

27 ;
ePS) =f ( = 1—19)

be a matrix of calculable functionals and let us turn to the problem of
computation of the functional

W) = 5o | @) @) d, L@ e Ly

Then the formula becomes?
2njl .
Palf) = S OWOEC) W
j=1
Now the question is how to choose the coefficients CM(Z). The following
theorem holds.

Theorem 3.

A necessary and sufficient condition that there should exist such CP(C) that

the formula :
2n +1

ea(f) = 3 CPE) P
i=1

should be universally optimal by order with respect to U, is that :(x ) should
be a trigonometric polynomial. The coefficients are uniquelly determined except
Jor a finite number of indices n and are given by

1 2n
*O(1) — — ¢ =—
¢4 2n+1$(2n+1’)
If {(x) is a more general function, then it follows from theorem 3 that

?) To simplify formally the following assertions we have restricted us to an odd number
of points used. '
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a formula, which would be universally optimal by order with respect to A
does not exist. In connection with what has been said above the question
arises whether it is possible to restrict the system of spaces 2 in such a way
that universally optimal — by — order formula should exist. This is solved
by the following theorem.

Theorem 4.
If {(x) € Ly, then *CP(C) exist so that the formula
2n+1
ea(f) = > *CPE) P
i=1

18 universally optimal by order with respect to Ay. Ezxcept for a finite number
of indices m, the coefficients are uniquelly determined and we have

1 2n
*Om) — ;
o5 2n+lSn(2n—}—l‘7)

4 +oo
where Sp = anke“‘x and ((x) = Z dyetkz |

k=—n k= —oco

By theorem 3 and 4 the universally optimal — by — order formula is
uniquelly determined. It is clear that should we further restrict the system
of spaces U, then the formula can be determined non uniquelly. In this
connection the following theorem holds.

Theorem 5.

Let {(x) € Ly, Then the formula given by theorem 4 is not the only formula
universally optimal by order with respect to U,.

Returning once more to the formula given by theorem 4 we see that it is
not optimal in any H € %, but is universally optimal by order. It is also
easy to see that in fact this formula is obtainable by means of the classic
(interpolation) method using trigonometric polynomials. From this point of
view the connection between the classic (interpolation) theory of quadrature
formulae and the theory based on optimization of formulae is well visible.
But we will not go further in the study of this problem.

Using the simplest examples, I have given some typical theorems concerning
the form of the universal optimality by order. This problem can of course
be substantionally extended to include the problem of calculation of functionals
as well as operators. '

4. In the conclusion let us give some numerical results. Let us compute

n
*3

I = f e*8in z cog x da
n

for different values of «. )
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As the integrand is obviously a 2z-periodic function, I can be written in
the form '

+n
I = f e% 8in zC(x) dz
where ((z) = cos z for |z| < %

f{(x)=0 for%gxgn, —ngxg-——’;—

(here we make use of the symetry of f = e*inz with respect to the point

x= -4 %) Now the integrand has the form studied in theorem 4. In the

following Table together with various formulae the quadrature error is given
in dependence on the number of vaules of the function e®inz (for « = 1, 5, 7)
used in the calculation. Besides the trapezoid-rule and the Simpson formula
also the Romberg formula (sse BAUER, RUTISHAUSER, ST(EFL [1963]) according
to BaumaN algorithm [1961] is given under the notation Romberg. Two
other modified methods are given as Romberg 1 and Romberg 2. The formula
Romberg 1 is that of Bulirsch—Romberg (see BurLirscH [1964]) and the
formula Romberg 2 is that of Bulirsch—Stoer (see BUuLIRSCH, STOER [1965]).
The last one is given for comparison although it is not a linearone.

The computation has been carried out on ths ICT 1900 with a double
precission of word.
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S

-g ;g 1 2 3 4 5 6

S8

<
4 0.17 0 -0.40 -1 0.76 -3 019 -2 | -0.12 0 ; -0.11 -1
6 0.72 -1 -0.62 -2 0.26 -5 0.12 -1 | -0.11 -1
8 0.40 -1 -0.16 -2 063 -8 | -0.85 -5 0.57 -3 093 -3
10 0.26 —1 -0.61 -3 0.11 -10

12 0.18 -1 -0.28 -3 0.15 -13 -0.15 -3 | -0.53 -4
14 0.13 -1 -0.15 -3 0.15 -16

16 0.99 —2 -0.87 —4 -0.54 -19 | -0.38 -7 0.71 -5 | -0.44 -6
18 0.79 -2 =0.54 —4 0.60 —-18

20 0.64 —2 -0.35 -4 0.16 -18

22 0.53 —2 -0.24 —4 -0.16 —18

24 0.44 —2 -0.17 —4 -0.54 -19 -0.12 -6 0.27 -7
26 0.38 -2 -0.12 —4 -0.49 -18

I 28 0.32 -2 -0.90 -5 -0.27 —18
[ 30 0.28 -2 —0.69 -5 | -0.27 —18

32 0.25 -2 —0.563 -5 —0.54 —19 012 -9 ~-0.70 -10 | -0.19 -9
34 0.22 -2 —-0.41 -5 -0.16 -18

36 0.20 —2 -0.33 -5 0.564 —19

38 0.18 —2 -0.27 -5 0.564 -19

40 0.16 —2 -0.22 -5 0.16 —18

42 0.14 -2 -0.18 -5 0.16 —18

44 0.13 -2 -0.15 -5 0.38 -18

46 0.12 -2 -0.12 -5 0.38 -18

48 0.11 -2 -0.10 -5 0.16 —18 0.17 -10 | —0.76 -12
50 0.10 -2 -0.88 —6 0.38 -18

52 0.94 -3 -0.75 —6 0.38 18

54 0.87 -3 -0.65 -6 0.38 -18

56 0.81 -3 -0.56 -6 0.38 -18

58 0.76 -3 -0.49 -6 0.38 -18

60 0.71 -3 -0.42 -6 0.38 —18

62 0.66 -3 -0.37 -6 0.38 —18

64 0.62 -3 -0.33 -6 0.60 —-18 | —-0.62 -13 | —0.13 -12 0.12 -14

Table 1. The calculation of I for o = 1 according to various formulae. 1) trapezoid-rule,

2) Simpson formula, 3) universal formula, 4) Romberg formula, 5) Romberg formula 1,

6) Romberg formula 2.
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&

-g 3 1 2 3 4 5 6
'S

2 &
4 0.08 1 037 1 020 1| —095 0 088 1 | —0.21 2
6 0.37 1 -0.12 1 011 o -065 1 | —021 2
8 0.20 1 -0.61 0 0.51 -2 035 -1 | —0.39 0 0.15 1
10 0.13 1 -0.21 0 019 -3

12 0.86 0 | —0.84 -1 0.57 -5 0.39 0 0.24 0
14 063 0 | —0.41 -1 013 -6

16 048 0 | -0.23 -1 025 -8 | -0.26 -3 | -0.35 -1 | —0.48 -1
18" | 038 0 | -0.14 -1 0.39 -10

20 031 0 | —0.88 —2 0.51 —12

22 025 0 | —0.59 —2 0.55 -14

24 021 0 | -0.41 -2 0.49 -16 052 -3 | —0.56 -3
26 018 0 | —0.30 -2 | —-0.26 -17

28 016 0 | -0.22 -2 | —0.30 -17

30 014 0 | —0.17 -2 | -0.26 -17

32 012 0 | -0.13 -2 0.00 0 0.22 -6 0.50 —4 0.44 —4
34 011 0 | —-0.99 -3 | —0.13 -17

36 094 -1 | —0.79 -3 | —0.43 -18

38 0.85 -1 -0.63 -3 0.87 -18

40 0.76 -1 -0.51 -3 0.87 -18

42 0.69 -1 -0.42 -3 0.87 -18

44 0.63 -1 -0.35 -3 0.22 -17

46 0.58 -1 -0.29 -3 0.87 -18

48 0.53 -1 -0.25 -3 0.17 -17 -0.20 -5 0.65 -8
50 0.49 -1 -0.21 -3 0.22 17

52 0.45 -1 -0.18 -3 0.13 -17

54 0.42 -1 -0.15 -3 0.22 -17

56 0.39 -1 -0.13 -3 0.26 —17

58 0.36 -1 -0.12 -3 | 0.26 -17

60 0.34 -1 -0.10 -3 0.30 17

62 0.32 -1 -0.88 —4 0.87 -18

64 0.30 -1 -0.77 -4 0.35 -17 0.45 -9 0.23 -7 | —0.64 -9

Table 2. The calculation of I for o = 5 according to various formulae. 1) trapezoid-rule,
2) Simpson formula, 3) universal formula, 4) Romberg formula, 5) Romberg formula 1,
6) Romberg formula 2.
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S .

-§ 2 1 2 3 4 5 6

5§

Z &
4 0.77 2 0.52 2 0.21 2 -0.11 2 0.98 2 0.567 3
6 0.29 2 -0.39 1 0.21 1 -0.23 2 0.57 3
8 0.15 2 -0.58 1 015 0 032 0 -0.19 2 0.22 2
10 094 1 -0.25 1 097 -2

12 0.64 1 -0.99 0 0.52 -3 049 1 036 1
14 0.47 1 —0.46 0 0.22 -4

16 0.36 1 -0.25 0 0.79 -6 -0.80 -3 -0.79 -1 -0.52 0
18 0.28 1 -0.15 0 0.23 -7

20 023 1 -0.92 -1 0.56 -9

22 0.19 1 -0.62 -1 0.12 -10

24 0.16 1 -0.43 -1 0.21 -12 -0.40 -1 -0.25 -1
26 013 1 -0.31 -1 0.32 -14

28 012 1 -0.23 -1 0.24 -16

30 0.10 1 -0.17 -1 -0.12 -16

32 0.88 0 -0.13 -1 0.52 —-17 -0.12 —4 0.26 -2 0.15 -1
34 0.78 0 -0.10 -1 0.87 —18

36 0.70 0 -0.81 -2 0.35 -17

38 0.63 0 —0.65 —2 0.11 -16

40 0.57 0 -0.53 -2 0.95 —-17

42 0.51 0 -0.43 -2 0.61 —17

44 0.47 0 -0.36 —2 0.19 -16

46 0.43 0 -0.30 —2 0.69 -17

48 0.39 0 -0.25 -2 0.15 -16 -0.60 —4 041 -5
50 0.36 0 -0.21 -2 0.21 -16

52 0.33 0 —-0.18 -2 0.16 -16

54 0.31 0 -0.16 —2 0.17 -16

56 0.29 0 -0.14 -2 0.23 -16

58 0.27 0 -0.12 -2 0.21 -16

60 0.25 0 -0.10 -2 0.26 —-16

62 0.24 0 -0.89 -3 0.87 -17

64 0.22 0 -0.79 -3 0.30 —16 0.29 -7 0.36 -6 -0.37 -7

Table 3. The calculation of I for « = T according to various formulae. 1) trapezoid-rule,

2) Simpson formula, 3) universal formula, 4) Romberg formula, 5) Romberg formula 1,

6) Romberg formula 2.
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ACTA FACULTATIS RERUM NATURALIUM UNIVERSITATIS COMENIANAE
MATHEMATICA XVII — 1967

ALGEBRAIC ELEMENTS IN THE TRANSFORMATION THEORY OF
2nd ORDER LINEAR OSCILLATORY DIFFERENTIAL EQUATIONS

0. Bortvka, Brno

1. In the last fifteen years, I have developed a transformation theory of
ordinary 2nd order linear homogeneous differential equations in the real
domain. It is a qualitative theory of global character. This theory deals
with the effect of processes connected with the transformations of the
variables on the integrals of the mentioned differential equations.

The origin of the transformation theory of 2nd order linear differential
equations is due to E. E. KuMMER, who was the first to find the 3rd order
non-linear differential equation which forms the basis of the transformation
theory (1834). This equation is:

(Qq) —{X, t} + Q(X) X2 = q(t);
@ and ¢ are given functions of a variable, X the unknown function and the
symbol {X, ¢} denotes the Schwarz derivative of X at the point ¢:

1 X" 3 X"t
2 X't 4 X'1)

Kummer’s ideas have prepared the way for more extensive investigations
into the transformations of linear differential equations of the nth order in
connection with the equivalence problem. The most important results in this
field are due to E. LAcUuERrRE, F. BrioscHi, G. H. HALPHEN, A. R. FORSYTH,
S. Lie and P. AppPELL, in whose works we occasionally also find information
about transformations of 2nd order differential equations in the complex
domain.

The transformation theory in the real domain which I have developed may
perhaps at first sight. appear only as a special case of the linear differential
equations of the nth order (» > 2). One is, nevertheless, necessarily led to
a systematic treatment of this case n = 2. This is due to the fact that the

*linear differential equations of the 2n¢ order not only occupy a special position
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among those of the n (> 2)th order, since only in case of n = 2 two differential
equations are always equivalent, but the results concerning transformations
of 2nd order differential equations are most useful even for a general n.
A systematic investigation of this special case leads, moreover, to a consider-
able enrichment of the classical theory of the 2nd order differential equations,
both as to the formation of new notions and as to the development of the
method.

2. The kernel of the mentioned transformation theory of 20d order differen-
tial equations consists in investigating the connections between the solutions
of the 2nd order linear differential equations

(@ v ' =qt)y, Y=QI)Y Q)

and Kummer’s non-linear 3rd order differential equations (Qq), (qQ). The
functions ¢, @, which I shall occasionally call carriers of the differential

equations (q), (Q), are generally only supposed to be continuous in their
(open) intervals of definition j = (a,8),J — (4, B). A fundamental piece
of information about the mentioned connections, which was already known
to Kummer, is that the solutions X(t), #(T') of the differential equations (Qq),
(qQ) transform all the integrals Y, y of the linear differential equations (Q),
(q), in the sens of the following formulas:

YIXOL  pop _ 9L6(D)]

1) 1) = 7==-2 = T2l

Vixer Vi#(T)]

3. Let us now first introduce some basic notions essetial to any further
research into the transformation theory in question.

Consider a differential equation (q) in an (open) interval j = (a, b). The
carrier ¢ is only assumed to be continuous. The integral space r of the differen-
tial equation (q) is understood to be the set of all the integrals of (q). The
basis (u, v) of the differential equation (q) stands for a sequence of two linearly
independent integrals u, » of (q). The basis of the integral space r is a basis
of the differential equation (q). '

One of the most important notions of the transformation theory is the
notion of a phase, about which I shall now say a few words.

We discern phases of a basis (u,v) of the differential equation (q) and
phases of the differential equation (q).

By a phase of the basis (u, v) of the differential equation (q) we mean any
function « continuous in the interval j and satisfying in the latter, except
for the zeros of the integral v, the equation tg «(t) = w(t) : v(t).

It is easily understood that the phases of the basis (4, v) form a countable
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system, the so called phase-system of the basis (u,v) and that the singular
phases of the system differ by integer multiples of the number z.

A phase of the differential equation (q) is understood to be a phase of any
basis of the differential equation (q). '

Every phase a of the differential equation (q) has, in the interval J, the
following properties:

1. aeCs, 2. o« #0.

By means of a phase « of the differential equation (q), the carrier q of the
latter is uniquely defined, in the s2nse of the formula
@) q(t) = —{a, t} — a’%(t).

The notion of a phase is closzly connected with that of a phase function:

A phase function in the interval j is understood to be a function with the
above properties 1., 2. A phase function a is a phase of the differential equation
(q) with the carrier ¢ defined in the sense of the formula, (2).

A phasz function « is called elementary if its values at any two points ¢,
t + mwej are connected in the following way: a(t + n) = a(t) + = . sgn a'.

The phases I have spoken about are the so called first phases of the basis
(u, v) or the differential equation (q). Besides these, one analogously defines
the second phases, namely by means of the equation tg B(f) = u'(t) : v'(¢).
Since we shall, in what follows, not deal with the latter, we shall simply
always refer to phases instead of first phases.

4. Let us now restrict our consideration to oscillatory differential equations
(q). The term ‘“oscillatory” means that the integrals of the differential
equation (q) vanish, infinitely many times, in both directions towards the
endpoints a, b of the interval j = (a, b).

We shall start our considerations with the theorem that the differential
equation (q) is oscillatory if, and only if, its phases are unbounded on both
sides, from above and from below.

The phases « of an oscillatory differential equation (q) have, therefore,
besides the properties 1. and 2., even the following one:

3. lim«(t) = —o0 .sgn o, lim a(t) = oo . sgn o,
t>a+ t->b—

We see that a phase function unbounded on both sides is a phase of an
oscillatory differential equation (q), i.e. the one with the carrier q defined in
the sens of formula (2).

Oscillatory differential equations (q) have, furthermore, the characteristic
property that they allow, in their intervals of definition, certain privileged
functions, i.e. the so called central dispersions . . ., P—(t), p—1(t), @olt), @y(2),
®a(t), .... The central dispersion with the index v = 0, -1, +2, ... of the
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differential equation (q) is understood to be the function @,(t) defined in the
interval j as follows:

The value @u(t) or ¢_,(t) of the central dispersion @, or p_, (n =1, 2, .. )
is, at every point ¢ € j, the nth number conjugated with # on the right or on
the left with regard to the differential equation (q). In other words: If one
considers an integral y of the differential equation (q), vanishing at the point
¢, then @,(t) or ¢_,(t) is the nth zero of y on the right or on the left of ¢. o(t)
stands for the function ¢. The function @, is also called the fundamental
dispersion of the differential equation (q) and is briefly denoted by ¢.

‘Every central dispersion ¢, has, in the interval J» the following properties:

1. Po(t) > pv(t), 2, ¢» e C3, 3. @ (t) > 0, 4. lim @u(t) = —o0, liin en(t) = oo
tsa+ {—>b—

We see that every central dispersion ®v is an increasing phase function,
unbounded on both sides.
Moreover, we can show that:
~Every central dispersion ¢, and every phasz « of the differential equation
(q) are connected, at every point ¢ € j by the so called Abelian relation

(3) ' a@,(t) = a(t) + v . sgn o',
Instead of a[@r(t)] we simply write ag,(t).

Forming, in (3), on both sides the Schwarz derivative, one receives, with
regard to (2), the relation

— e 1} + glpy) 9" = q00).
We see that every central dispersion v satisfies Kummer’s diff_rential equation
(qq) and, consequently, transforms every integral ¥ of the differential equation
(q) into an integral y of the same differential equation (q) in the sense of
formula (1).

The central dispersion g, are the so called central dispersions of the first
kind of the differential equation (q). Besides these, one also definies central
dispersions of the 2nd, 3rd and 4th kind of the differential equation (q). In
what follows we shall, however, not meet with the latter and will therefore
simply refer only to central dispersions instead of to central dispersions of
the 1st kind.

5. Let us now make g closer study of the transformation theory of oscillatory
differential equations and, for this purpose, first briefly describe a constructive
integration theory of Kummer’s differential equation (Qq): One first defines,
constructively, certain functions continuously dependent on three parameters,
i.e. the so called general dispersions of the differential equations (Q), (q), and
then shows that the latter are exactly the integrals of Kummer’s differential
equation (Qq).
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Let, then, (q), (Q) be arbitrary oscillatory differential equations in the
intervals j = (a,b), J = (4, B). Their integral spaces will be denoted by r
or R. i

Let tyej, TyeJ be arbitrary numbers. Choose in the integral space r
a basis (u, v) and in the integral space R a basis (U, V) such that

(4) u(ty) V(T'y) — v(ty) U(T,) = 0.

It is easily understood that the choice of the latter depends on two arbitrary
parameters. Let us now define, by means of the bases (u, v), (U, V), a linear
representation p of the integral space r on the integral space R by making
correspond, to every integral y er of (q), y = Au + uv, the integral py =
=Y = AU + uV of (Q), formed with the same constants 1, u. The quotient
xp = w : W of the wronskians w or W of the basis (u, ») or (U, V) is allcalled
the characteristic of the linear representation p. The latter has, with regard
to the relation (4), the following property: Every integral y € r of (q), vanishing
at f,, is in the linear representation p represented on an integral Y € R of
(Q), vanishing at 7,. In other words: Y(ty) = 0 always yields py(T,) ='0
With regard to this property, we call the linear representation p normalized
with respect to the numbers ty, T,.

Let us, moreover, consider the numbers conjugated, both on the left and
on the right, with ¢, with respect to the differential equation (q): ..., t_, =
= @-albo); t—1 = @—1(t); to = Polto), ty = @1(to), t; = @alty), .. ., and, similarly,
the analogous numbers with respect to the differential equation (Q): ...,
Ty =0 4(Ty), T, = D(Ty), Ty = Dy(T,), Ty =®(Ty), T, = Dy(To), - - -
Every interval jy = [ty, ty+1) Or §, = (fp_1, ty] forv =0, 1, 42, ... is called
the »th right or left-hand side basic interval of the differential equation (q)
with respect to the number #,; the intervals J, — [Ty, Tysa) or J| = (Ty—1, T},
are called analogously. We see: every number ¢ € j lies in a determined basic
interval j, or j, and, vice versa, every basic interval j, or J» contains exactly
one zero of every integral of (q). An analogous statement holds, of course,
for every number 7' e J and for every integral ¥ of Q).

Now we shall define, in the interval j, a function X as follows:

Let t € j be an arbitrary number and y an integral of the differential equation
(q) vanishing at the point . The number ¢ lies in a determined right-hand
side »th basic interval Jv-

The value X(f) of the function X at the point ¢ is, according to whether
2P >0 or yp < 0, given as follows:

In case yp > 0, X(t) is a zero of the integral py of (Q), namely the one
lying in the right-hand side ¥t basic interval J,.

In case of yp < 0, X(t) is a zero of the integral py of (Q), namely the one:
lying in the left-hand side — »th basic interval J.’.
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The function X is called general dispersion of the differential equations (q),
(Q) with respect to the numbers t), T, and the linear representation p. At the
point #, it obviously takes on the value 7, : X () = T,. '

It is obvious that the general dispersions we have just defined continuously
depend on three arbitrary parameters: one is the arbitrarily chosen initial
value T and the two others are the parameters of the corresponding normalized
linear representation p.

From the properties of the general dispersions, which can be deduced from
the above construction, we shall only mention the following:

Let X be a general dispersion of the differential equations (q), (Q) and p
the corresponding linear representation of the integral space r on the integral
spacz R.

1. The s2t of values of the function X is the interval J : X (9)=J.

2. The function X is a phase function.

3. There holds sgn X' = sgn yp. Conszquently, the function X increases
or decreases according to whether yp > 0 or p < 0.

4. The function X may be expressed by means of two phascs a(t), A(T)
of the differential equations (q) or (Q) in the following way:

X(t) = A-1a(t).

Vice versa, the function 4-1«(t) formed by means of arbitrary phases «, 4
of the differential equations (q) or (Q) is a general dispersion of the differential
equations (q), (Q).

Moreover, there holds the following theorem:

5. The general dispersions of the differential equations (q), (Q) are exactly
the integrals of Kummer’s differential equation (Qq).

6. The above considerations, and especially the constructive integration
theory we have just outlined, hold for differential equations (q), (Q) in arbitrary
(open) intervals j, J. Let us now restrict our considerations to the case j =
=J = (—o0,0) and, consequently, deal only with oscillatory differential
equations (q), (Q) in the interval j = (—o0,0). That is exactly the case
when algebraic elements enter the transformation theory and algebraic
theorems, particularly those from the group theory, allow us to learn new
facts about the integrals of Kummer’s differential equation (Qq).

The prototype of the differential equations to be considered is the differential
equation (—1), i.e. ¥’ = —y in the interval j = (—o0, ). The integrals of
this differential equation obviously have, in both directions, an infinite number
of n-equidistantly displaced zeros, i.e. arranged so that the difference between
any two neighbouring zeros of every integral is always the same, namely 7.
Hence it follows that the fundamental dispersion g of the differential equation
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(—1) is linear, @(f) = ¢ 4 #, and more generally, that the following formula
holds for the central dispersion g,:

pu(t) =t 4 v (v=0, +1, 42, ...).

If, furthermore, « is a phase of the differential equation (—1), then the

Abelian relation (3) yields ’
ot + ) = a(t) + 7 .sgn .

We see that all the phases of the differential equation (—1) are elementary.

7. Let us now consider the st ® formed of all the phase functions-unbounded
on both sides, i.e. both from above and from below- in the interval j =
= (—o0,00). We sce, first, that the function «f(t) composed of two arbitrary
elements «, # € ®, is again an element of &. With regard to this, we shal
now introducs, in the set ®, a multiplication consisting in composing functions.
For any two phase functions «, § € ®, the product «f is therefore understood
to be the composed function «[A(t)]. The set ® is obviously, with regard to
this multiplication, a semi-group. The latter evidently contains the unit
element 1, i.e. the phase function &(f) = ¢; furthermore, there exists, to every
element «(f) € ®, the inverse element «~'(f), namely the function a«—1(t)
inverse to the function «(f). Thus we have shown that the set ®, together
with the considered multiplication, forms a group. Let us call it the phase
group ®.

The phase group & consists, according to its definition, exactly of the
phases of all the oscillatory differential equations (q) in the interval j =
= (—00,00). To discern the phases of the singular differential equations
(q), we shall now introduce, in the phase group ®, a relation # in the
following way: the relation « # f expresses that the phase function g is
a phase of the same differential equation (q) as the phase function «. It is
easily verified that this relation % is reflexive, symmetrical and transitive
and therefore forms an equivalence relation. Consequently, there exists, on
the phase group ®, a decomposition B such that any two elements «, € ®
are phases of the same differential equation (q) if, and only if, they lie in
the same element G € R.

Let now € be that element of R in which the unit element &(t) = ¢ of G is
contained. The formula (2) shows that the phase function &(f) is a phase
of the above differential equation (—1). Consequently, the element € ¢ R
consists of all the phases of the differential equation (—1) and can be shown
to be an undergroup of & :€& < G. This undergroup will be called the
Sundamental undergroup of ®. Furthermore, there holds the following theorem:
The decomposition R coincides with the right-hand side class decomposition of the
phase group ® with regard to €:

: R = 6/,C.

3 Equadiff II.
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The set of all the oscillatory differential equations (q) in the interval j =
= (—00,0) therefore admits an one-one representation on the right-hand
side class decomposition ®/,E, namely the one that makes correspond, to
every differential equation (q), the element g € 6/,€ consisting of the phases
of (q).

We shall now consider the undergroup of & consisting of all the elementary,
phase functions; let us denote it by $. Since, as we know, all the phases of
the differential equation (—1) are elementary and form the fundamental
undergroup €, we see, first, that § is an overset of €. A further investigation
which I cannot describe here in detail, shows that the elementary phase
functions generally depend on arbitrary periodic functions with period =
whereas the elements of € depend only on three parameters. Tt follows that
9 is a proper overset of €. It can, moreover, be shown that § is a subgroup
of . Hence there hold, between the groups ®, 9. €, the relations:

(3) 6> 9H> E,

the overgroups as well as the subgroups in question being proper.
Let us now consider the righ-hand side class decomposition H of the phase
group & with respect to the subgroup $ : H = 6/,$.
First, the relations (5) yield the formula:

(f_I :) G/r$ = 6/1'(E (: [?)’

by which the decomposition H is a covering of 7, in other words, each element
of H is the set-sum of some elements of & ([1]). Furthermore, the following
theorem applies:

The elements of R, contained in an arbitrary element $ax e H (x e ®),
consist of phases of all the differential equations (q) whosz fundamental
dispersion ¢ is the same. .

Finally, let us note that cardinal number of the set of the elements of
contained in an arbitrary element $a € H is always the same and equal to
that of the continuum. Consequently: the cardinal number of the set of all
the differential equations (q) whose fundamental dispersion ¢ is the same
does not depend on the latter and is always equal to the cardinal number N
of the continuum ([2]).

8. We shall now return to the general dispersions of two differential equations
(@), (Q), namely to the integrals of Kummer’s differential equation (Qq).
As we have said above, every general dispersion X of the differential equations
(q), (Q) transforms all the integrals Y of the differential equation (Q) to
integrals y of the differential equations (q), the transformation being expressed
by the first formula (1).

It can, first, be easily seen that the general dispersions of the differential
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equations (q), (Q) form elements of the phase group ®. Indeed, every general
dispersion X of (q), (Q) is, as we know, a phase function, whose set of values
coincides with the interval of definition J of (Q). But since J = (—o0, ®),
the general dispersion X is a phase function unbounded on both sides and
hence an element of the phasz group ®. It is, besides, easy to show that the
general dispersion X is a phase of the differential equation (gx), the relation
between the functions ¢y, ¢, @ being as follows:

ax(t) = q(t) — [1 + Q(X)] X"%(2).
We shall now determine the general dispersions of the differential equations
(q), (Q) in the phase group ® by means of the following theorem:
Let o be a phase of the differential equation (q) and A be one of (Q). The integral
space (X)@q of Kummer’s differential equation (Qq), t.e. the set of all general
dispersions of the differential equations (q), (Q) ts given by the following formula:

(6) (X)@q) = A€o

€ naturally stands for the fundamental subgroup of ©®.

This theorem yields a number of results of which I shall only mention
a few, so as not to spoil the general outline by too many details.

It may first be shown [by means of (6)], that the integral spaces X(qg),
(X)@,q) of two arbitrary Kummer’s differential equations (Qq), (¢1q;) have
the samz cardinal numbers and can be one-one represented on each other
in the s2nse of formula:

X, =2Z21Xz .
In this formula: X € (X)@q), X; € (X)@,qy, Z standing for a fixed integral
of (QQ,) and z for one of (qqy)-

Let us next consider the casz of two coinciding differential equations (Q),
(q) and Kummer’s corresponding differential equation (qq). Every integral
of this differential equation transforms, in the sense of formula (1), every
integral Y of the differential equation (q) into an integral y of the same
differential equation (q). From the above theorem it follows that:

The integral space (X)qq of Kummer’s differential equation (qq) is the
subgroup of ® conjugated with €:

(7) (X)) = o~ 'Co;
« naturally denotes an arbitrary phase of the differential equation (q).
Consequently:

The integral spaces (X)(qq), (X)(q,qyp of two arbitrary differential equations
(99), (q,9,) are isomorphous, the isomorphism being given by the following
formula:

(8) X, =2z-1Xz;
z denotes a fixed integral of the differential equation (qq,).
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A further consideration now permits to investigate, more closely, the al-
gebraic structure of the integral space (X)(qq) of every differential equation
(9qq). One proceeds by first finding out the structure of the integral space of
the differential equation (—1, —1), i.e. of the group «~1Gqy (x € €) and then,
by means by formula (8), passing to the differential equation (qq). One finds,
particularly, that the increasing integrals contained in the integral space
(X)(aq) of (qq) form a normal subgroup U of index 2, the center of this subgroup
coinciding with the infinite cyclic group formed by all the central dispersions
@» of the differential equation (q).

Herewith I have arrived at the conclusion of my lecture. Let me only
add the remark, addressed particularly to those who take a special interest
in the above considerations, that the latter form part of my book “Lineare
Differentialtransformationen 2. Ordnung”. This book will be published by
the Deutscher Verlag der Wissenschaften, Berlin (DDR), in 1967.
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ACTA FACULTATIS RERUM NATURALIUM UNIVERSITATIS COMENIANAE
MATHEMATICA XVII — 1967

ON THE CONVERGENCE OF DIFFERENCE SCHEMES FOR
CLASSICAL AND WEAK SOLUTIONS OF THE DIRICHLET
PROBLEMY

J. H. BRAMBLE, Itlaca, New York
I. Introduction

In the past much work has been done on convergence of sequences of
solutions of difference analogs of the Dirichlet problem for second order
uniformly elliptic equations and in particular Laplace’s equation and Poisson’s
equation (c.f. ForsyTHE and Wasow [4], HuBBARD [5] and literature cited
therein). Usually some rather restrictive conditions concerning smoothness
of the solution of the continuous problem have been imposed in order to
obtain the results. There have been, however, several studies of convergence
properties under less stringent assumptions. Interesting results along these
lines have been obtained for rectangular domains by Wasow [10], WALSH
and Youna [9], and NirscHE and NrrscHE [7] and for piecewise analytic
boundaries with corners by LaasoNEN [6]. Other important work has been
done by Cea [3] who studied self-adjoint equations with bounded and
measurable coefficients and obtained theorems on convergence of difference
approximations to weak solutions in L,.

In this paper some recent results of the author, the author and HusBARD,
and the author, HuBBARD and ZLAMAL will be presented. Only indications
of the proofs will be given since all of this work will be published elsewhere
in complete detail. All the results share the common property that the
smoothness conditions are much weaker than thoge classically assumed.

Although many of the results have been extended to equations with variable

1) This research was supported in part by the National Science Foundation under
Grant NSF GP-3666. Some of this research was completed and the manuscript prepared
while the author was an NSF Senior Postdoctoral Fellow, visiting the Chalmers Institute
of Technology, Goteborg, Sweden. ’
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coefficients and various difference approximations, in order to minimzs
detail, I will consider only the Laplace operator and one of its simplest differen-
ce analogs. .

II. Continuous and diserete problems.

Let R be a bounded region in N-dimensional Euclidean space with boundary
0R. We shall, in the usual manner, consider the space as having been covered
by hypercubes of side 4 and call the corners mesh points. Those mesh points
in R shall be called Rj, and the intersection of 8R with the edges of the cubes
will be called dRj.

We.shall denote the Laplace operator by A and the difference analog by
Ap.  The operator A, will be defined for functions on Bj = R, U O0R; as
follows. When a point x € Ry, has its 2N nearest neighbors also in Rh then
Apis the usual 2N + 1 point approximation to A. We consider, at the remaining
points of Rj, Ay to be defined as a locally O(1) operator (bounded incependent
of h for smooth functions) and such that the matrix arrising from A, operating
on functions vanishing on 0R, is symmetric and of positive type. This is
just one of the standard formulations which is globally second order for
problems with smooth solutions.

We shall concern ourselves with approximating solutions to two problems.
First, the solution w of the classical Dirichlet problem, which satisfies

(2.1) Au =0 in R
u=_f on OR

where f is a given continuous function on 8R. That is, u is to be continuous
on the closure, satisfy Au = 0 in R and its restriction to OR should be equal
to f. Conditions on &R in order for this problem to be solvable are, of course,
well known.

The other problem to be discussed is a weak formulation of the problem
for the inhomogeneous. equation with homogeneous boundary values. More
precisely we define the class

T = {glpe C*+*(R) N O%R); ¢(x) = 0, z € OR; Ag e C4(R); for some «}.
In words, each member must have Holder continuous second partial derivatives
in R, be continuous on R (the closure of R), vanish on 6R and its Laplacian

must have compact support in B. Note that 7T contains the standard “test
functions”. We then want to consider the solution u, belonging to the real

Banach space L, 1 < p < 5 of the equation

N —
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(2.2) [ulg de = [ ¢F du, peT,
E R

for a given F e L,. (If F and 0R are sufficiently regular then the “weak
solution”” u will be the classical one, having zero boundary values.)

We shall consider the following approximating problems as analogs of (2.1)
and (2.2) respectively:

(2.1h) Apup(x) = 0, x € Rp
up(x) = f(x), x € 0Ry
and
(2.2h) Apup(x) = Fp(), x € Ry
up(x) = 0, x € 6Rp,.
In (2.2h) F} is defined as
1
Fa@) = 55 [ F(y)dy
Salz)

where Sp(z) is the (normally oriented) hypercube of side & and center , and
F is extended to be zero outside E.

We shall in the sequel use the notation m) to mean the extension of
a function V(z) defined on Ry, as constant over Sp(x) N R and zero outside
R nu Su@)]

IER}.

11I. Some results on econvergence.

We call a domain R which has no “unstable” boundary points a regular
domain (c.f. Breror [1]). [This condition admits quite general domains and
in particular problem (2.1) is always solvable for such regions.]

Theorem 1. Let R be a regular domain and w the solution of (2.1). Then if
up, is the solution of (2.1h), d@p — u uniformly on R as h — 0.

Although there are several theorems on convergence of difference approxi-
mations in the literature, it is not clear what the most general known result
is for the classical Dirichlet problem. In any case this theorem gives a quite
general result. The proof is quite simple and relies on an approximation
theorem of the type studied by WaLsH [8]. The appropriate theorem is given
in BRELOT [1]. To extend this theorem to more general second order operators
an approximation theorem of BROWDER [2] is used. More restrictions must
be placed on the domain in this case (he calls the resulting domains “firmly
regular’’) but the result is still quite general.

The following existence and uniqueness theorem is easily proved.
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Theorem 2. Let R be a regular domain and let F € L,. Then there exists
aunique we Ly, 1 <p< N—N 5 such that (2.2) holds.

Such a theorem can also be proved for operators with variable coeﬁ'lclents
for “firmly regular” domains provided the coefficients and those of the formal
adjoint satisfy some smoothness conditions.

From our point of view here, an interesting method of proof makes use
of the difference approximations. We obtain the following convergence
theorem as a byproduct.

Theorem 3. Let R be a regular domain and w € Ly, 1 < p < %, be the

solution of (2.2). If up is the solution of (2.2h) then in — u, strongly in Ly,

1<p< Nz,ash—>0

N
The proof involves showing that the functions %, are uniformly bounded

Nl_\_f- 5 - By the weak compactness of bounded sets in
Ly, 1 < p < o0, we obtain a weak limit point which is then shown to satisfy
(2.2). The uniqueness tells us that @, - u, weakly in L, as » - 0. An ad-
ditional argument can then be employed to show the strong convergence.
The extension of this theorem to operators with variable coefficients, though
true, is not a triviality.

It is interesting to note here that even in two dimensions there are problems
of the form (2.2) whose solutions are not continuous. This is true only for
FeL, and F¢ Ly, p>1. If FeLy p>1 and N =2 then u will be
continuous.

in L, forall 1 < p <

IV. Some results on rates of convergence.

In this section we shall consider regions B whose boundaries are no worse
than of class C? (or piecewise C'?). We have the following:

Theorem 4. Let 4R € C* and suppose that the solution w of (2.1) is of class
Cm+3(R), m =0, 1, ..., 0 <A< 1. Then if uy is the solution of (2.1h) it
follows that

mti-e 4 p2-e;, m=0,1,2
(4.1) max |up(x) — u(x)] < K(e)
xeRy hz; m > 3

where ¢ is an arbitrary positive number and K (&) depends on & and w but not on h.
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The proof of this theorem is based on some delicate estimates of the behavior
of the discrete Green’s function.

It should be pointed out here that an order A2 estimate is essentially achieved
when w e O2+%(R). Previous results required that u e C4+°(R) in order to
obtain a second order error estimate. The present theorem yields a great
deal more information than other theorems on this subject. The author has
subsequently become aware of a paper of Bahualov (Vestnik Moskov. Univ.
Meh. Astronom. Fiz. Chem. (1959) pp. 171—195) which essentially contains
this result.

In the important case N = 2 the results are better, in that piecewise (2
boundaries are treated. We have

Theorem 5. Let N = 2 and OR € C? piecewise with no reentrant cusps, i.e,
R is composed of a finite number of C* arcs meeting at (interior) angles m/a;,
t=1, ..., k, ag > 1/2. Then (4.1) holds.

We now consider the case of problem (2.2). It is possible to obtain rate of
convergence estimates even assuming no more than that F e L,. In this
case we obtain only interior L, estimates.

Theorem 6. Let R € C* and w and up be solutions of (2.2) and (2.2h) for
a given F e L;. Then if ¥ e CP(R) the following estimate holds for N = 2.

N
h; 1£1@<N_1
4.2 in —u) Y|, < K(p, P)||F ! ) _ N
(4.2) [[(@n — u) Plle, = K(p, ¥) [|F|L hnhl;  p= g
2
P2 <p<oo

where K(p, V) is a constant depending on p and ¥ but not on h. The notation
I|.llz, @8 just the usual Ly-norm, 1 < p < co.

This result is obtained from a careful estimation of the difference between
the discrete and continuous Green’s functions. Theorem 4 is used in the
derivation of this estimate. Since the analysis is based on the knowledge of
the discrete and continuous fundamental solutions, the result only has been
obtained for the Laplace operator. A similar result should be true in the
more general case.

Other results of this type have been obtained. For example, when F is
Hélder continuous with exponent « the estimates go up to hl+* on compact
subsets. Also if F' is smooth on an open subset 2 of R, local maximum norm
estimates can be obtained on compact subsets of 2. This type of result shows
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that the local properties of elliptic operators are carried over to local conver-
gence properties of corresponding difference approximations.

Finally, we consider the case where more precise knowledge of F is given.
In particular we suppose that F is smooth, except at the origin O, (an arbitrary
point of R) and for simplicity that R is smooth. For convenience we suppose
that O lies at the center of a mesh hypercube for every h. We also prefer
here to state the hypotheses on the solution u itself, rather than as conditions
on F.

Theorem 7. Let u be the solution of (2.2) and F be such that
u e C4+%R — 0)

1; E<m.
(4.3) | DFu(x)| < K
||m 4=k, m+1<k<4
k=0,1, ..., 4, where x| is the distance from x to 0 and DF stands for an arbitrary

partial derivative of order k. In (4.3) m is an integer (not necessarily positive)
less than or equal to 3, 0 < A <1 and m + 4> 2 — N. Then if up is the
solution of (2.2h) we have the estimates, for x € Rp,

hm+l+N—2-e|x|;+2—N 2 _ N < m + A <= 4 — N
(4.4) |up(@) — u(x)| < K(e) { h2ajm+-2, 4—N<m+i<?2
h2, 2<m+ A

where ¢ is an arbitrary positive number and K(e) depends on & but mot on h.
If N > 3 then the last inequality is valid for 2 <m + 4.

The proof of this result is again based on the Green’s function method.
It involves the construction of certain majorants and the development of

some new discrete inequalities suggested by known continuous ones.

" Again it should be pointed out that this type of result displays the local
effect of singularities on the convergence rate of difference analogs of elliptic
problems. Note that we still get convergence away from the origin for any
function whose singularity is not as bad as that of the fundamental solution
and quadratic convergence even allowing bad behavior at the origin.
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NONLINEAR FUNCTIONAL ANALYSIS AND NONLINEAR PARTIAL
DIFFERENTIAL EQUATIONS.D

E. BRowDER, Chicago

Introduection: The two basic approaches to fundamentally nonlinear
problems in partial differential equations are on the one hand, variational
methods (the direct method of the calculus of variations, the Morse theory,
and the LUSTERNIK—SCHNIRELMAN theory) and on the other hand, the
theory of nonlinear operators in Banach spaces (the ScHAUDER fixed point
theorem, the LERAY—ScHAUDER theory of the degree for compact dis-
placements). In the past few years, we have seen a merging of these two lines
of ideas in their applications to partial differential equations through the theory
of monotone operators from a Banach space X to its conjugate space X*,
i.e. operators 7' such that for all » and v in the domain of 7', we have

(Tu — Tv, w —v)= 0,

(where (w, v) denotes the pairing between the functional w and the element v).
On the one hand, every operator 7' which is the derivative (or subderivative)
of a convex functional on X is monotone, and on the other hand, the con-
sideration of monotone (or quasi-monotone, or semi-monotone) operator
equations falls within the framework of nonlinear functional analysis, i.e. the
study of nonlinear operators and nonlinear operator equations in Banach
spaces.

It is our object in the present paper to give a survey of some recent work
by the writer on this type of functional analysis and its applications to various
types of abstract differential equations in Hilbert and Banach spaces. We
refer the reader to an earlier survey ([6]) for a development of the basic ideas
in the application of monotone operators to such topics as:

(1) The existence of solutions for variational boundary problems for non-
linear elliptic Jifferential operators of the form

1) The preparation of this paper was partially supported by a Guggenheim Fellowship
and by N. S. F. Grant GP-5862. ‘
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Aw) =3 Dx(A,(x, u, ..., Dmu)).
Jaj=m -
(2)_ The corresponding existence theorems for parabolic operators of the

form:

ou

(3) Nonlinear equations of evolution in Hilbert and Banach spaces arising
from initial-boundary value problems of various types.

Section 1 below presents the results of [14] on nonlinear equations. of
evolution in Hilbert space and the generalized method of steepest descent
for monotone operators in Hilbert space. Section 2 develops the results of
the extension of this theory as carried through in [16] to Banach spaces. both
for monotone operators 7' from a Banach space X to its dual space X* and
for J-monotone operators T from a Banach space X to X. Section 3 discusses
the general method developed in [15] for proving the existence of periodic
solutions for classes of nonlinear equations of evolution in infinite dimensional
spaces comparable to the classes of differential equations treated in Sections
1 and 2.

We remark that the method of steepest descent and its generalizations
have close links with the ideas of the calculus of variations, and the results
presented below are connected with extensions of the results given in BROWDER
[7] on the application of the Lusternik —Schnirelman principle to the proof
of the existence of infinitely many eigenfunctions for nonlinear elliptic eigen-
value problems.

Section 1: Let H be a real Hilbert space, T an operator (generally non-
linear) with domain and range in H. We consider three inter-related problems
concerning such operators T': )

(I) The existence for a given w in H of solutions u of the equation Tu = w.

(IT) The existence for a given u, of solutions of the nonlinear equation of
evolution

%’% — —T(w), t=0,
with %(0) = wu,.

(III) For a suitably chosen perturbation term R(t, ) which converges to
zero as t - o0, the convergence as ¢ > oo of solutions of the equation

du
dat
to solutions v, of the stationary equation Tv, = 0.
We denote this last problem as that of the generalized method of steepest
descent for the operator 7T'.

= —T(u) + R(t, u)
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We recall that an operator 7 is said to be hemicontinuous if it is continuous
from each line segment in D(T') to the weak topology of H. '

Theorem 1.1: Let T be a monotone operator in the Hilbert space H such that
either: (1) D(T) = H, and T maps H hemicontinuously into H; or (it) T =
= L + T, where L is @« maximal accretive closed linear operator in H and T,
is @& hemicontinuous monotone mapping of H into H which maps bounded subsets
into bounded subsets.

Suppose that there exists R > 0 such that for w in D(T) with ||lu|| = R,
(Tu, u) > 0. :

Then the set of solutions w of the equation Tu = 0 is a nonempty closed convex
subset K of H.

Theorem 1.2: Let T be a hemicontinuous locally bounded operator from H
to H such that for a fixed constant ¢ in R and all w and v of H,

(Tu — Tv, w — v) < c||lu — v||2

Then there exists one and only one strongly continuous, veakly once-differentiable
function w from R+ = {t|te R, t >0} to H such that u is a solution of the
differential equation

%@?‘ — Tu, >0,
with the initial condition w(0) = wu,, for a given u, in H.
In addition, if T is continuous, then w is strongly C1.

Theorem 1.3: Let H be a Hilbert space, f a mapping of R+ X H into H such
that the following three conditions are satisfied:

(1) f is locally bounded (i.e. bounded on some neighborhood of each point of
R+ X H). For each fixed t in R*, f(t, -) is a hemicontinuous mapping of H
into H. For each fized w in H, f(-, ) is continuous from R+ to the weak topology
of H. "

(2) There exists a continuous function ¢ from R+ to R such that for all t in
R+ and all w and v in H:

(ft, ) — f(t, v), w — ) < ot) [lu — v]|2.

(3) For each w in H, f(t, u) is weakly once differentiable from R+ to H, and
there exists @ continuous function q from R+ x R+ to R+ such that for all u
and t:

N/ o i

=) f@ :

i1(3,)“,u)”sq(t,nun) |
Then for any wu, tn H, there exists one and only one function w from R+ to H
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which i8 weakly continuously once-differentiable and which satisfies the differential
equation
du
-
and the initial condition u(0) = u,.

Theorems (1.2) and (1.3) are sharpenings (under more restrictive hypotheses
on the dependence of f on ¢) of an existence theorem given in BROWDER [3]
with the additional assumption that f(f, u) is bounded for ¢ and ranging
through a bounded set of R* X H. The interest of this strenghthening lies
primarily in ‘the fact that it is obtained through a new a priori estimate for
solutions of these equations of evolution from which one obtains much stronger
control over the solutions of these equations. This is brought out more clearly
in the following theorems on mnonlinear evolution equations containing an
unbounded linear operator L.

Detinition: Let H be a Hilbert space, {L(t)| t € R*} a family of closed, densely
defined linear operators in H, T, a mapping of R+ x H into H. If we set Teu) =
— L(t) u + To(t, w), then by a sharp solution w on R+ of the equation of evolution

du '
- = T(u), t >0,
we mean a strongly continuous function w from R* to H with w weakly once
continuously differentiable from R+ to H, u(t) in the domain of L(t) for each
t in R+ and with L(t) u(t) weakly continuous from R* to H, and such that for
all t in R,

= f(t, u), t >0,

% ) = L(t) u(t) + Tolt, u(®)).

Theorem 1.4: Let H be a Hilbert space, L a maximal dissipative linear
operator in H, T, a mapping of R+ X H into H which maps bounded sets into
bounded sets. Suppose that T, satisfies the following three conditions:

(1) For each fixed t in R+, f(¢, *) 13 @ hemicontinuous mapping of H into H.
For each fived u in H, f(*, u) i8 continuous from R+ to the wealk topology of H.

(2) There exists a continuous function ¢ from R+ to R such that for all t in R+
and all u and v in H: ‘

(Toft, w) — Tolt, ©), # — v) < ot) ||lw — oII*

(3) For each fixed w in H, f(t, u) is weakly once-differentiable on R* in t,
and there exists a continuous function g from R+ X R+ to R* such that for all

" tin Rt and all w in H, _
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Then for each uy in D(L), there exists one and only sharp solution u on R+ of
the equation of evolution
du

E = Lu + To(t, u), t 2 0)

with u(0) = u,.
As an illustration of the basic a priori bounds from which these results
are derived, we have the following: '

Theorem 1.5: Let L and T, satisfy the conditions of Theorem 1.4 and let u
be a sharp solution of the differential equation
du

5= Lu + Tt, »).
t

Let C(t) = fc(s) ds. Then:

0

(I) For all t in R+,
¢
|lu()|| < exp (C(t)) [[(0)I| + [ exp (C(t) — C(s)) |[To(s, 0)|| ds.
0

(IX) If q(t, r) is nondecreasing in r (as we may always assume) and if ||u(s)|| <
<< M(3) for all s in R+, then

t
” %;i (t)H < exp (C()) [|T4(0, u(0)) + Lu(0)|| + 0[ exp (C(t) — C(s)) q(s, M(s)) ds.

Combining these apriori estimates with the corresponding existence theorems,
we obtain the following general result on the generalized method of steepest
descent for monotone operators in Hilbert spaces:

Theorem 1.6: Let H be a Hilbert space, T a monotone operator with domain
in H and values in H which lies in one of the two following classes:

(@) T 1s a locally bounded hemicontinuous mapping of H into H.

() T = L + T,, where L is a maximal accretive linear operator in H, and
T, is a hemicontinuous monotone mapping of H into H which carries bounded
subsets into bounded subsets.

Suppose that there exists R > 0 such that (T, w) > 0 for all w in D(T) with
|lul| = R.

Let ¢ be a C! function from R+ to R+ which is non-increasing and such that
c(t) >0ast - +oo, fmc(s) ds = +o0.

0,

Let vy be any element of H with ||vy|| < R, u, any element of D(L) with
[luol| < R.

Then:
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(1) The equation of evolution

du
dt
has one and only one sharp solution w on R+ with u(0) = wu,.
(2) As t > +o0, this solution converges strongly in H [to a solution w, of
the equation Tw = 0. This limit is characterized as that solution of Tw = 0
in the ball Bp = {u| ||u|| << R} closest to the given element v,,.

= —-T(u) — c(t) {u — v}, t >0,

Section 2: We now turn to the generalizations and extensions of the
results of Section 1 to more general Banach spaces than Hilbert space, as
given by the writer in BROWDER [16]. These extensions are of two kinds:

(1) The consideration of monotone operators 7' from X to X*.

(2) The consideration of J-monotone operators 7' from X to X, for
a duality mapping J of X into X*.

We shall consider case (1) first.

Definition: Let X be a Banach space, with X < H < X* for a Hilbert space
H, in the sense that we are given continuous linear injections of each space on
a dense subset of its successor and the pairing between two elements w and w of
H with w in X and u in X* cotncides with the H inner product.

Let f be @ mapping of R+ X X into X*.

Then a function w from R+ to X s said to be a sharp solution on R+ of the
equation of evolution

du,
dt

if w satisfies the following three conditions:

= f(¢, u), t>0

- (1) u 18 continuous from R+ to the weak topology of X.
(2) As a function from R+ to H, u is continuous to the strong topology of H
and satisfies a Lipschitz condition in H on each finite interval. w is strongly
| |
once-differentiable in H a.e. on. R+ and ]' de:_ (t)(

18 essentially bounded on each
H

finite interval.
(3) The differential equation
du
T O = ft u®)

holds a.e. on R™.

To abbreviate these hypotheses, we use the following notation: If Y is
a Banach space, C%(R*, Y) and CY(R™, Y) denote the functions from R+ to
Y continuous to the strong and weak topologies of Y, respectively; C}(R*, Y)
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and CL(R+, Y) denote the continuously once-differentiable functions from
R+ to the strong and weak topologies of Y, respectively; Lj,(R+, Y) is the
family of strongly measurable functions from R+ to ¥ whose norm is bounded

on each finite interval; g:“) denotes the distribution derivative. Then the

assumptions of the above definition may be rewritten:

du

T € Liso(R*, H).

(1) u e CYR+, X); (2) we CYR*, H), and

3) % = f(¢, u(t)), on R+

Theorem 2.1: Let X be a reflexive separable Banach space with X < H < X*
for @ given Hilbert space H. Let T be a hemicontinuous monotone mapping of X
into X* which carries bounded sets of X into bounded sets in. X*. Suppose that
(Tw, u) > +o0 as ||u||x — o0.

Then for each w, in X such that T(u,) lies in H, there exists one and only
sharp solution of the differential equation :

du
'a‘t—:f(t,u), tZO,

on R+ such that u(0) = u,.
We omit the detailed statement of the corresponding time-dependent
result, and pass directly to the generalized method of steepest descent:

Theorem 2.2: Let X be a reflexive separable Banach space with X < H < X*
for a given Hilbert space H. Let T be a hemicontinuous monotone mapping of
X into X* such that T maps bounded subsets of X into bounded subsets of X*
while (Tu, ) > 400 as ||ul|x - 4o0.

Let ¢ be a C non-increasing function from R+ to R+ such that c(t) -0 as
t > +o0, }oc(s) ds = +oo. Let vy be an arbitrary element of H, uy any element

0
of X such that T (u,) lies in H.

Then:
(@) The differential equation
% = —T(u) —c@t) {u — vo}, <t =0,

lhas one and only one sharp solution w on R+ with u(0) = u,.

(b) As t > +o0, u(t) converges weakly in X to a solution w, of the equation
Tw = 0. Moreover, u(t) converges strongly in H to w, The limit element wy 18
uniquely characterized as the solution of the equation Tw = 0 closest to vy in H.
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The existence theorems, Theorem 2.1 and its time-dependent generalization
which we have not stated, apply directly to the treatment of initial boundary
value problems of parabolic type ([3]) and (especially for the time-independent
case) give a significant strengthening of the parabolic existence theorems under
hypotheses on 7' which are essentially weaker than those considered in the
treatment of variational rather than sharp solutions. The previous hypotheses
(though they can be put in a much more general-looking and untransparent
form) have the same force essentially as the following simple assumption:

There exists an exponent p with 1 < p < o0 such that for suitable positive
constants ¢ and c,

[|Tullxe < o{||ull&™* + 1};
(Tu, u) = cqf|ul/g — c.

In Theorem (2.1), however, we need only assume that 7' maps bounded sets
of X into bounded sets in X* and that (T'u, u) > +0 as ||u||x > +o0.

Similar considerations apply to the existence theorem which we derive for
the abstract wave equation of the form

uy = —Au — T(ug) — S(u)

where T' and S are mappings of X into X*, and u;, us denote the first and
second derivatives of u with respect to £. We introduce a class of sharp
solutions as follows:

Definition: Let X be a Banach space, H a Hilbert space with X < H < X*,
Let A be a non-negative closed self-adjoint operator in H, A% its nmon-negative
square root. Let T and S be mappings of X into X*.

Then a function u from R+ to X is said to be a sharp solution on R+ of the
differential equation _

Uy = —Au — T(us) — S(u)
if w satisfies the following five conditions:

(1) u lies in CL(Rt, X) and in CY{R*, H).

(2) ugs lies in L2(R+, H).

(3) For each t in R*, u(t) and uyt) lie in the demain of A, and Aiu lies in
CL(R+, H), Atu; lies in C°Q(R+, H).

(4) For eack t in R+, Au(t) lies in X*, i.c. there exists y(t) in X* which we
denote by Au(t) such that for all w in D(AY) N X, we have

(Abu(t), A}w) = (y(), w).

Furthermore Au lies in Co(R+, X*).
(8) For almost all t in R,

ug(t) = —Au(t) — T(ut)) — S(u(t)).
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Theorem 2.3: Let X be a reflexive separable Banach space, H a Hilbert space
with X € H < X*. Let A be a non-negative closed self-adjoint linear operator
in H such that D(A*) N X is dense both in X and D(A%), where the latter is
given the graph norm. Let T be a hemicontinuous mapping of X into X* which
maps bounded sets into bounded sets, S a Lipschitz mapping of H into H, (where
both T and S may be nonlinear). Suppose that (Tu, u) > +oo as ||u||x - 40
and that T is monotone.

Then for each u, in D(AY) N X and for each u, in D(AY) N X such that
T(u,) lies in H, there exists onc and only one sharp solution w on R+ of the
differential equation

Ut — —Au — T(u,) = S(u)
which satisfies the initial conditions
u(0) = u, u(0) = u,.

Abstract wave equations of the above form with S linear but with time-
dependent tarms were studied by Lions and Strauss [24] who obtained
variational solutions for similar initial value problems but under growth
conditions for T like those disccused above in connection with the first order
case.

We now turn from operators 7' mapping X into X* to the consideration
of J-monotone operators 7' from X to X. These ar2 defined as follows:

Definition: Let X be a Banach space, q a continuous strictly increasing function
from R+ to R+ such that q(0) = 0 and q(r) - +00 as r — +oo. Then a mapping
J of X into X* is said to be a duality mapping with gauge function q if the
following conditions hold for all u in X:

Ju, ) = [[uf| . [[Jull;  [[Jul] = gq(lul]).

Definition: Let X be a Banach space, J a duality mapping of X into X*.
If T is a mapping with domain D(T) in X and with range in X, then T is said
to be J-monotone if for all w and v in D(T),

(T(w) — T(w), J(u — v)) = 0.

The definition of J-monotone mapping was first given and applied in
BrowDER [10] and results on J-monotone mappings have been established
in BROWDER [15] and BROWDER— FIGUEIREDO [19]. The concept of J-mono-
tonicity is intimately linked to that of non-expansiveness of a mapping from
X to X, where U is said to be non-expansive if for all » and v of X,

1U(u) — U)l] < |l — o]

For every non-expansive mapping U, T =1 — U is J-monotone for any
duality mapping J of X into X*. On the other hand, if the differential equation
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T —T(u), t >0,
has .a solution % on R+ with %(0) = u, for every %, in D(T') and if we set
U(t) uy = u(t), then the non-expansiveness of all the operators U(t) is equivalent
to the J-monotonicity of 7. In particular, if L is a closed densely defined
linear operator in X, then L is the generator of a 'y semigroup of nonexpansive
linear operators U(¢), (i.e. ||U(t)|| < 1, t > 0) if and only if L satisfies both
of the following conditions:

(1) (—L) is J-monotone for any duality mapping J of X into X*.

(2) (—L +-I) has all of X as its range.

We present results on J-mounotone operators 7' of two types. First, with
mild regularity assumptions on 7' and very weak assumptions on the space X.
Second, with weak assumptions on the operator 7' (comparable to those in
the Hilbert space case) but with fairly drastic restrictions on the Banach
space X.

Definition: A mapping T of X into X is said to be weakly once-differentiable
at uy in X if there exists a bounded linear operator B such that for all x in X
and all y in X*, _

(T(uy + h), y) = (T(uo), y) + k(Bx, y) + By y(h)
where for each fixed y in X*,
h—'R; y(h) - O, as h -0,
uniformly in x on the unit ball of X.

Theorem 2.4: Let X be a Banach space with a continuous-duality mapping
J of X into X*. Let T be a nonlinear mapping of X into X which is weakly
once differentiable and locally Lipschitzian at each point of X. Suppose that
there exists a constant ¢ in R such that for all w and v in X:

(T(w) — T(0), J(w — v) < cl|u — ol| . [T — o).

Then for each uy, in X, there exists one and only one strongly C' function u

Jrom R+ to X which satisfies the differential equation

du
'H{ == T(u), ¢ 2 0,

with u(0) = w,.

Theorem 2.5: Let X be a Banach space with a continuous duality mapping
J of X into X*. Let L be a closed densely defined linear operator in L which
18 the infinitesimal generator of a C, semigroup of nonexpansive linear operators
in X. Let T, be a nonlinear mapping of X into X which is weakly once-different-
iable and locally Lipschitzian in a neighborhood of each point of D(L), and such



that Ty maps bounded subsets of X into bounded subsets of X. Suppose also that
there exists a constant ¢ in R such that for all w and v in X,

(To(w) — To(v), J(u — ) <Cllu — vf| . ||J(u — v)||.

Then for each wy in D(L), there exists one and only one strongly C! function
u from R+ to X with u(t) in D(L) for all tvin R+ such that u satisfies the different-
1al equation
du

E = Lu + To(u)y t >0,

and the initial condition u(0) = u,.

Theorem 2.6: Let X be a Banach space with a continuous duality mapping
J of X into X*. Let L be a closed linear operator in X which 13 the infinitesimal
generator of a C, semigroup of nonexpansive operators in X. Let Ty be a mapping
of R+ X X tnto X which maps bounded subsets of R+ X X into bounded subsets
of X. Suppose that for each fixed t in R+, T (t, u) is weakly once-differentiable
and locally Lipschitzian on a neighborhood of each point of D(L). Suppose
Sfurther that both of the following conditions are satisfied:

(@) There exists a continuous function ¢ from R+ to R such that for all w and
v in D(L) and all t in R+,

(To(t, w) — Tolt, v), J(u — v)) < ¢(t) [l — || . ||J(w — 0)||.

(b) For each fixed w in D(L), T(t, u) is weakly once differentiable int on R+.
There exist two continuous functions k: R+ — Rt and q: R+ X Rt — R+ such
that for all w in D(L) and all t in R+,

0

Then for each uy in D(L), there exists one and only one strongly C' function
u from R+ to X with u(t) lying tn D(L) for all ¢ in R+ such that u is a solution
of the differential equation -

du
3 = L+ Tolt,w), >0,
and the initial condition u(0) = u, holds.

For this case, we obtain the following variant of the method of steepest
descent:

< k() [[Lul| + q(, [|ul])-

Theorem 2.7: Let X be a Banach space with a continuous duality mapping
J of X into X*. Let T be a mapping with domain and range in X which lies in
one of the following two classes:

(1) T @s a J-monotone mapping of X into X which is weakly once-differentiable
and locally Lipschitzian at each point of X.
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(@) T = —L + T,, where L is a closed linear operator in X which is the
infinitesimal generator of a Cy semigroup of nonexpansive operators in X, Ty is
a nonlinear J-monotone mapping of X into X which carries bounded sets into
bounded sets and such that T, is weakly once-differentiable and locally Lipschitzian
on a neighborhood of each point of D(L).

Suppose that there exists R > 0 such that for w in D(T) with |lu|| = R,
(Tu, Ju) = 0.

Let ¢ be a nonincreasing C* function from R+ to R+ with c(t) - 0 as t > 40,

fwc(s) ds = —4-00. Let ug be any element of D(T) with ||lug|| < R, and let v, be
0
any element of X with |lv|| < R.

Then:
(a) The differential equation
‘ du
T = —Tw — () {u — )

has one and only one solution w on R+ with w(0) = %,.
(b) For each such solution w on R+, we have
T (w(®))l] -0
as t - —+00.
(c) Suppose that in addition to the preceding hypotheses, T satisfies the following
condition:
(C) For each M > 0, there exists a compact mapping C of X into X and

a continuous strictly increasing function p from R+ to R+ with p(0) =0 such
that for all w and v of D(T) with ||u|| < M, ||v|| < M,

|T(u) — T()|| = p(llw— v|}) — [|C(x) — C)II.

Then u(t) converges strongly in X as t - 400 to a solution v, of the equation
Tv, = 0.

As a consequence of Theorem 2.7, we have the following existence theorem
for solution of.the equation Tv = w.

Theorem 2.8: Let X be a Banach space with a continuous duality mapping
J of X into X*, and let T be a J-monotone mapping which is in one the two
classes (1) or (2) of Theorem (2.7). Then:

(1) Let Bg be the closed ball of radius R > 0 about the origin in X, Sg its
boundary. If for some R >0, (Tu, Ju) >0 for all u in D(T) N Sg, then O
lies in the strong closure of T(Bg N D(T')). In particular, if T(Br N D(T)) is
closed in X, then the equation Tv = 0 has a solution v, with ||vy|| < R.
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(2) Suppose that T is J-coercive, i.e.
(Tw, Ju)[||Ju|| > o0,  (||u]| > +o0).

Then the range of T' is dense in X.

(8) If T is J-coercive and satisfies condition (C) of part (c) of Theorem 2.7,
then the range of T is the whole of X.
_4) If X is reflexive and T is J-coercive as well as demiclosed (i.e. for any
weakly convergent sequence u; — u with T'u; converging strongly to w, u lies in
D(T) and Tu = w), then the range of T is all of X.

(5) If X is strictly convex and T is J-coercive, the set

Ky = {vjve D(T), Tv = w}

, for a fixed w in X, is a closed convex subset of X.

We now restrict the class of Banach spaces X, and thereby can eliminate
the regularity conditions impossd upon 7' in the preceding results. Our basic
hypothesis upon X is the following:

Definition: X is said to satisfy the conditions (P) if the following two conditions
hold :

(1) There exists a duality mapping J of X into X* which is continuous and al-
so weakly continuous (i.e. continuous in the weak topology of X and X*).

(2) There exists an increasing sequence {F;} of finite dimensional subspaces
of X whose union ts dense in X, and a corresponding sequence {P;} of projections
of X such that the range of each Py is the corresponding F; and for each j, || Py|| = 1.

The properties (P) were applied in BROWDER—FIGUEIREDO [19] to obtain
an existzncz theorem for nonlinear functional equations involving J-monotons
operators. Asid> from Hilbert spaces, th> most important class of concretzly
defined Banach spaces which satisfy th> conditions (P) arz th> sequencs
spaces [? for 1 < p < 00, as was shown in [10]. The restrictive condition in
the pair of conditions (P) is th> first which does not hold for any L? space
with p # 2 on the line. Property (2) sez2ms to hold for all examples of separable
Banach spaces familiar to th> writer.

Theorem 2.9: Let X be a reflexive Banach space which is strictly convex and
satisfies the conditions (P). Let J be any duality mapping of X into X*. Let T
be a mapping of X into X which is hemicontinuous and locally bounded, and for
which there exists a constant ¢ in R such that for all w and v of X

(T(w) — T(@), J(u — v)) <cllu — o] . [|J(w — v)|.

Then for each u, in X, there exists one and only weakly C* function u from.
R+ to X which satisfies the differential equation '
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du
*d? = T(u), t >0,

and the initial condition u(0) = u,.

Theorem 2.10: Let X be a reflevive strictly convex Banach space which
satisfies the conditions (P), J o duality mapping of X into X*. Let L be a closed
linear operator in X which is the infinitesimal generator of a Cy semigroup of
nonexpansive operators in X. Let T, be a mapping of X into X which is hemi-
continuous, maps bounded subsets of X into bounded subsets of X, and for which
there exists a constant ¢ in R such that for all w and v of X,

N (To(w) — To(v), J(u — v)) < cllu — [ . [[J(u — )]|.
\Then for each uy in D(L), there exists one and only one sharp solution u on R*
of the differential equation

a4 = Lu + Ty(u), t >0,
dt
with u(0) = u,.

By a sharp solution, we mean a function w from R+ to X which lies in
CL(R*, X) with () in D(L) for all ¢ in R+ and with Lu in C3(R*, X).

A time dependent generalization of Theorem 2.10 is the following:

Theorem 2.11: Let X be a reflexive strictly convex Banach space which satisfies
the conditions (P) and let J be a duality mapping of X into X*. Let L be a closed
linear operator in X which is the infinitesimal gemerator of a C, semigroup of
nonexpansive linear operators in X. Let T, be a mapping of Rt X X into X
which carries bounded sets into bounded sets and satisfies the following three
conditions:

" (1) For each fized t in B+, T(t, *) is a hemicontinuous mapping of X into X.
For each fized u in X, To(", w) s a continuous mapping from R+ to the weak
topology of X.

(2) There exists a contintious function ¢ from R+ to R* such that for all w and v
in X and all t in R*:

(Tolt, w) — Tolt, v), J(w — v)) < o(f) |lu — o[ . [|J(w — 2)I[.

(8) For each fixed u in D(L), To(t, w) 18 weakly once differentiable in t from
R+ to X, and its derivative satisfies the inequality

\(% To) (t; u)

for all u in D(L) and a continuous function q from R+ X R+ to R+,

.ol

< q(t, [[ull)
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Then for each uy vn D(L), there exists one and only one sharp solution u on
R+ of the differential equation

du

T Lu + Ty, u), t >0,

with w(0) = u,.
The variant of the generalized method of steepest descent which holds for
this case is the following:

Theorem 2.12: Let X be a reflexive strictly convex Banach space which satisfies
the conditions (P), and let J be any duality mapping of X into X*. Let B'be
a closed linear operator in X which is the infinitestmal generator of a C, semigroup
of monexpansive operators in X. Let T, be a mapping of X into X which is
hemicontinuous and locally bounded. If L is unbounded, we suppose in addition
that T, maps bounded sets of X into bounded sets of X. |

Suppose that T, is J-monotone, and that there exists R > 0, such that
(Tu, Ju) > 0 for all w in D(T') with ||u|| =

Let ¢ be a continuous nonincreasing C* functwn from R+ to R+ such that

0

c(t) >0 as t > 400, f (8)ds = +oo. Let u, be any element of D(L):wzth
[lugl| < R, and let vy be any element of X with ||vy|| < R. '

Then:
(@) There exists exactly one sharp solution w on R+ of the differential equation
% = Lu — Ty(u) — c(t) {u — vy}, t >0,
with w(0) = wu,. 8

(b) For each such solution,
|| —Lu(t) + To(u(t))|| >0
as t > +o0.
(c) For each such solution, u(t) converges strongly in X to a solution v, of
the equation Tvy = 0, as t - +-oc0.

A consequence of Theorem (2.12) is the following existence theorem for
solutions of nonlinear functional equations involving J-monotone operators.

Theorem 2.13: Let X be a reflexive strictly convex Banach space which satisfies
the conditions (P), J a duality mapping of X into X*. Let T be a mapping
with domain and range in X which lies in one of the following two classes:

(@) T is a hemicontinuous locally bounded J-monotone mapping of X into X

(0) T = —L + Ty, where L 18 a closed linear operator in X which is the
infinitesimal generator of a C, semigroup of nonéxpansive operators in X, and
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T, is a hemicontinuous J-monotone mapping of X into X which carries bounded
sets into bounded sets.

Then:
(1) If for a given R > 0 and for all u in D(T) with ||u|| = R, (T, Ju) =0,
then the set
K = {vlpe D(L), To = 0, ||v]| <R}

is @ nonempty closed convex subset of X.

(2) If T is J-coercive, then the range of T' is all of X.

The existence of a solution %, of the equation Tue = 0 in case (a) was
previously established in BrowDER— F1GUEIREDO [19].

Let us turn finally to nonlinear equations of evolution involving J-monotone
operators without a differantiability assumption on the dspendence of f on ¢.

First, we have the following thsorsm which ext>nds the similar rzsult in
Hilbert space proved in BROWDER [4]:

Theorem 2.14: Let X be a reflexive strictly convex Banach space which satisfies
the conditions (P), and let J be a duality mapping of X into X*. Suppose that
f is @ mapping of R+ x X into X which carries bounded subsets of R+ X X
into bounded sets in X. Suppose that f satisfies the following two conditions:

(1) For each fixed t in R, f(t, ") is a hemicontinuous mapping of X into X.
For each fived w in X, f(*,u) is a continuous mapping of R+ into the weak
topology of X.

(2) There exists a continuous function c from R+ to R such that for all t in R+
and all u and v of X,

(ft, w) — fit, v), J(u — v)) < e(t) [|lu — of| . [|J(w — )Il.

Then for each u, in X, there exists one and only one solution u in CL(R*, X)
of the differential equation

L few, =0,
which satisfies the initial condition u(0) = u,.

A corresponding extension ‘of the existence theorems for mild solutions
of nonlinear equations of evolution in Hilbert space involving unbounded
linear operators, as proved in BRowDER [4] and KaTo [21], is based upon the
following natural extznsion of the definition of mild solution:

Definition: Let X be a Banach space, {L(t) | t € R+} a family of closed linear
operators in X, f a mapping of R+ X X into X. Suppose that the time-dependent
linear problem
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0= Loyue,  t=s,

u(8) = u,
has one and only one strongly continuous solution u(t) = U(t, 8) u, for each
8 > 0 and each u, in D(L(3)), where U(t, 8) 18 & bounded linear operator in X
for each s and t in R+ with s <t.

Then a function u from R+ to X 1s said to be a mild solution of the nonlinear
differential equation

%=Lmu+mmL t >0,

if u s a strongly continuous function from R+ to X which is a solution of the
nonlinear integral equation:

u(t) = U(t, 0) ug + f U, s) f(s, u(s)) ds, t>0.
0

Theorem 2.15: Let X be a reflexive strictly convex Banach space which satisfies
the conditions (P), J a duality mapping of X into X*. Let {L(t)|te R+} be
a family of closed linear operators in X, with each L(t) the infinitesimal generator
of a C, semigroup of nonexpansive operators in X. Suppose also that for each
8 > 0 and each uy tn D(L(s)), the time-dependent linear problem

‘31_’: ) = L) u(t), ¢ >s,

u(8) =
has one and only one solution u in CL((s, 0); X).

Let f be @ mapping of R+ X X into X which maps bounded subsets of R+ x X
into bounded subsets of X and satisfies the two conditions (1) and (2) of Theorem
(2.14).

Then there exists for each uy in X, one and only one mild solution v on R+
of the nonlinear equation of evolution

du
r i L(t) u + f(t, u), t >0,

with u(0) = wu,,.

Section 3: We now turn to the problem of the existence of periodic
solutions of equations of the form

d
3.1) T =ftw
where f(t, u) is periodic in ¢ of period p, i.e. f(t + p, u) = f(¢, w) for all ¢ in R+.

We seek to find periodic solutions of period p. We shall present here some
of the simpler results given in BROWDER [15].
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Definition: A function V from the Banach space X to R+ is said to be
a Lyapounov function for the equation (3.1), where f is a mapping of R+ X X
into X, if the following conditions are valid:

(1) V is a convex function on X, with V(0) = 0, V(u) > 0 for u # 0, and the
level sets of V are bounded and uniformly convex, i.e. given R > 0, d > 0 there
exists R, < R such that if V(uy) < R, V(u) < R, with |[ug — u,|| >d, then:

V((wo + u)/2) < R,.
(2) There exists a continuous mapping S of X into X* which is a subderivative
of ¥, i.e. for all w and v in X
V(u) — V(v) = (8(v), v — v).
(3) For each pair w and v in X and all t in R+,
(ft, w) — f(t, v) S (u — v)) < 0.
(4) There exists Ry > 0 such that for all tin R+ and all win X with ||u|| > R,,
(f(t, u), S(u)) < 0.

Theorem 3.1: Let X be a reflexive Banach space, f a mapping of Rt X XA

into X such that for all uy in X, the differential equation

du
W—f(tu t >0,

has exactly one solution with w(0) = u,.
Suppose that f(t, u) is periodic in t of period p > 0, and suppose that there
exists a Lyapounov function for this equation in the sense of the above definition.
Then the equation (3.1) has a periodic solution of period p.
As an application of this result, we have the following:

Theorem 3.2: Let X be a uniformly convex Banach space, J a duality mapping
of X into X*. Let f be a mapping of R+ X X into X such that the equation

———ftu)

has one and only one solution on R+ with u(0) = uy, for any given u, in X.
Suppose further that for each t in R+,

(fit, w) — £(t, 0), J(u — 0)) <0,
and that there exists R > 0 such that for all t in R+ and all w in X with ||u|| > R,
(fit, w), Ju) < 0.

"When if f(t, u) is periodic in t of period p > 0, there exists a solution of the
differential equation which is periodic of period p.
Extensions are given in [ ] to more general nonlinear equations of evolution
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of the types considered in Sections 1 and 2 above. The proofs are all based
upon the following simple fixed point theorem:

Theorem 3.3: Let X be a reflexive Banach space, V a convex continuous
function from X to R+ such that V(0) = 0, V(u) > 0 for u = 0. Suppose that
the level sets of V are bounded and uniformly convex. Let U be a mapping of
a closed convex subset C of X into C such that for all w and v of C,

V(U@) — Uw)) < V(s — v).

Then U has a fixed point in C.

The proof of Theorem 3.3 uses an argument of BRopskr and MiLmaN [1],
which was applied in the case in which V is a function of the norm in an
uniformly convex space by BRowpEr [9] and Kirk [22]. Similar fixed point
theorems with weakened hypotheses can be established in Hilbert spaces and
Banach spaces having weakly continuous duality mappings J by using the
fact that for every nonexpansive mapping U, T'=1 — U is J-monotone,
(cf [10], [17]).

Theorem 3.2 is an extension of a result in Hilbert space given by the writer
in [8].

We remark in conclusion that the most general form of aplication of Theorem
(3.3) to initial value problems can be put in the following abstract form:

Theorem 3.4: Let X be a reflexive Banach space, C a closed convex bounded
subset of X. Let {U(t,s)|t > s} be a family of transition operators on C, i.e.
for r < s <t, Ut,r) = Ult, s) U(s, r), where each U(t, s) is a (possibly) non-
linear nonexpansive mapping of C into itself. Suppose further that there exists
a convex function V from X to R+ such that V(0) =0, V(u) > 0 for u # 0,
and with the level surfaces of V uniformly convex, such that for all t and s, (s < t)
and all v and v n C,

VU¢, s)u — U, s)v) < V(e — v).

Suppose that the transition operators U(t, s) are periodic of period p > 0, in
the sense that for every s <t in R+, U(t 4+ p, s + p) = U(t, s).

Then there exists uy in C such that for every t in R+, U(t, 0) u, 78 periodic
in t of period p. ' 1
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ACTA FACULTATIS RERUM NATURALIUM UNIVERSITATIS COMENIANAE
MATHEMATICA XVII — 1967

FORMALLY NORMAL ORDINARY DIFFERENTIAL OPERATORSY

E. A. CoppiNGgTON, Los Angeles

1. Introduction. We shall present some results concerning the spectral
theory of ordinary differential operators which commute in a formal way
with their formal adjoints. Let L denote the ordinary linear differential
expression given by

L= S D,
k=0

where D represents the operation id/dx, the pi are complexvalued functions
of class C= on an open interval ¢ < z < b of the real axis, and pn(x) # 0
for @ < x < b. The formal adjoint L+ of L is given by

L+= S Dtp.
k=0

We say that L commutes formally with L+, and write LL*+ = L*L,if LL*u =
— L+Lu for all u € C*(a, b); such an L is said to be formally normal. If L
is formally normal we can ask whether it determines, in some natural way,
a normal operator in the Hilbert space Ly(a, b), or perhaps in a Hilbert space
containing Ly(a, b) as a subspace. We shall indicate below that, in general,
this occurs only in rather special cases, and for these cases the spectral theory
is easy. We exhibit a large class of formally normal L which determine no
normal operators in Ly(a, b), or in any larger Hilbert space. Some details
concerning the spectra of these operators are presented. First, we present
some abstract results on formally normal operators, which form the basis
for the work on ordinary differential operators.

The work reported on here is due to R. E. Barsam [1], G. Biriuk and E. A.
CoppiNeTox [2], and E. A. CoppingToN [3], [4], [5].

2. Formally normal operators in a Hilbert space. A formally

1) This work was supported in part by the National Science Foundation.
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normal operator in a Hilbert space $ is a linear, closed operator with domain
D(N) dense in $ such that D(N) = D(N*) and

INfIl = |IN*f1l,  feD@).

A normal operator in $ is a formally normal operator N such that D(N) =
= D(N*). For N formally normal define N to be the restriction of N* to
D(N); thus N = N*D(N). Then N = N*, in the sense that the graph G(N)
of N is contained in the graph G(N*) of N*, and similarly N = N*. (We note
that a symmetric operator in $ is a formally normal N having the {property
that. N = N, and a self-adjoint operator is a normal operator such that
N = N*)
If N is formally normal in $ it can be shown that

DEN*) =DN)+ M, M=l + N*N¥),
DN*) = DWNV) + M, M=l + N*N*),

where »(A) represents the null space of 4, and both sums above are direct
ones. The following result tells precisely when N has a normal extensinn
in . (See [2] and [3]).

Theorem 1. A formally normal operator N in a Hilbert space $ has a normal
extension N, in $ if and only if

(1) M = M, + M,, a direct sum,

(2) GAVM,) 1 GN*{My),

(3) N*, = M,

4) |[N*gl] = [|N*¢ll, @ € My,
and

D(N,) = DN)+ M, NcN,<N*

. The first two conditions imply that N, is a closed operator such that Nc
c N, © N*, and the last two guarantee that N, is normal. It follows from
(3), and the fact that N It = M, that M, =« M N Wi, and moreover dim M, =
= dim M,. Thus a necessary condition for N to have a normal extension
is that dim MM be even. ’ '

It is not true that every formally normal N in $ has a normal extension
in $; in fact, this is not even' true if N is symmetric. However, every sym-
metric N has a self-adjoint (and hence normal) extension in the larger Hilbert.
space $ @ H. We ask whether a similar result is valid for formally normal N.

We shall now alter our notation slightly in order to deal with the several
Hilbert spaces in what follows. Let us assume N, is now a maximal formally
normal operator in a Hilbert space $, (N, has no proper formally normal
extensions in $,), and suppose that

D(N;*) = DNy + W,



where dim ! is finite. It is this case which vccurs for ordinary diﬁ'eréntialope-
rators. In the following we shall refer to two such formally normal operators,
N, in §,, and N, in H,, with
D(N,*) = D(N,) + M2,
and it will be true that M1 = D2; and M2 = W2, We let
M, = N,*|Mm1, M, = N,*|M2;
thus M; maps M into M¢, ¢ = 1, 2. Also, we use the abbreviations
a(Mi) = My + M*,
B(My) = M*My — My*— 1M~

In these notations, the following result characterizes when a maximal formally
normal operator has a normal extension in a larger Hilbert space (See [2]).

Theorem 2. A maximal formally normal operator N, in a Hilbert space 9,
has a normal extension Ay in H = 9, ® 9, if and only if

(1) ML = M1,

(2) there exists a formally normal operator N, in the Hilbert space 9, such that

mz = Me, dim M2 = dim M,

and a one-to-one map C of M onto M? satisfying

(3) a(M,) + C*a(M,) C = 0,

4) B(M,) + C*B(M,) C = 0.

If /=N, ®N,, then

DAY =DAN)+ T +O)M, NN SN

A necessary condition for N, to have a normal extension in $ is [given by
condition (1), but it is not known whether this is sufficient. An N, and C
satisfying (2), (3), (4) exist if M M* = M,*M,, if M,® = ul, |u| = 1, and
in almost all cases if dim M! = 2. Such an N, can be defined in terms of
a conjugation operator J, which is an operator on $, satisfying J? = I,

and (Jf, Jg) = (g,f) for all f,ge$,. Then Ny=JNJ on 9, =9, will
work in the above cases (See [2]).

3. Formally normal ordinary differential operators. Let us now
return to the differential expression

L= S mD*:, D= idjds,
k=0

which we considered in the Introduction. For our Hilbert space we take
$, = Ly(a, b). We suppose that :

|Lul| = [|IL*ull,  ueCPa,b),
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where C®(a, b) denotes the szt of all complex-valued functions of class C*
on ¢ < 2 < b which vanish outside compact subsets of this interval. This
restriction on L is equivalent to the condition LL+ = L+L. Let us define
N, to be the operator in $, which is the closure of L defined on CP(a, b),
in the sense that G(N,) is the closure of G(L|C®(a, b)) in H; @ H;. This
operator N, is formally normal in $, and is called the minimal operator in
$, associated with L. The operator N * is just L on D(N,*), which is the
set of all f e H, such that fe Cr—1(a, b), f®-1) is absolutely coutinuous, and
Lf € ;. The operator N,* is described in the same way with L replaced by
L+*. Hence N, is L+ on D(N,;). We have

D(V,*) = DNy + WM,  DWV,*) = DWV,) + MY,
yhere
M = {pe9, (LL* +I)p =0, Ly e $,},

M= {pe$, [(LL+ + I)p = 0, Ly e $,}.

Thus we see that M and M consist of solutions to a homogeneous differen-
tial equation of order 27, and from this it follows that 0 < dim IM! =
= dim M < 2n.

The simplest example occurs when all the - coefficients px are constants.
Here there are three cases:

(1) a, b both finite,
(ii) only one of a, b finite,
(ili) @ = —o0, b = +-00.

In all cases M! = M1, and dim M! is 2n, n, and O in cases (i), (ii), (iii)
respectively. The N, for case (iii) as a normal extension. If n is odd, the
N, of case (ii) is thus normal, and the N for the other cases have the N of
oase (iii) as a normal eptension. If n is odd, the N, of case (ii) has no normal
eptension in $,; see the remarks just after the statement of Theorem 1.

We now interpret Theorem 1 for our differential operator N,. The conditions
of that theorem can be given a more conventional form by means of two
bracketed expressions:

(uv) = (Lu, v) — (u, L*v), w e D(N,*), v € D(N,*),
[uv] = (Lu, Lv) — (L+tu, L+v), u, v e D(N,*) N D(N,*).
It can be shown that these expressions depend only on %, %/, ..., u®-1 and
v, v, ..., v®1 in the vicinity of @ and b, and they are limiting values of
certain semi-bilinear forms in these quantities. Theorem 1 can be rephrased

in these terms so as to display the domain of a normal extension of N, described
by certain boundary conditiens.
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Theorem 3. The minimal operator N, associated with L has a normal extension

7\7 in H; = Ly(a, b) if and only if dim M! = 2p, and there exist linearly
independent ay, ..., ape ML N M satisfying

(ogaxy = [ayox] =0, (G, k=1, ..., p)
Then N, < N, < N,* and
D) = {we DN | uad =0,j =1, ..., p}.
There is an obvious choice of L whose corresponding N, has a good chance

of having a normal extension in $,, namely those L which can be represented
as polynomials in some formally symmetric differential expression A:

n
L=3 a4, A=4"
k=0

where the ci are complex numbers, some of which may be zero. If the minimal
operator for A has a self-adjoint extension § in ,, then clearly

A n
Nl = z cxSk
k=0

will be a normal extension of N; in $,. In any case, if L is a polynomial in
A = A+, it will be true that N, has a normal extension A", in = $H; @ H;.
This is dus to the fact that the minimal operator 8, for A is symmetric and
always has a self-adjoint extension § in $, and then

n
./Vl = Z cF ik
k=0

is a normal extension of N, in $.

We now might ask: can every L be represented as a polynomial in a formally
symmetric 4, and does every formally normal differential operator N, have
a normal extension in a larger space? For L of order one or two the answer
is yes, but for L of order n 2 3 the answer is no. The simplest example which
shows this is the L deﬁned by

Lu =" + 4" — 3z~ + (323 — 22~%) u,

with $, = L,(0, ). This d>tarnines a formally normal N, with dim M! = 1,
but with dim (! A M) = 0. It is maximal formally normal, but not
normal, and has no normal extensions in any Hilbert space $ > $,. Recall
the necessary condition (1) of Theorem 2.

In spite of the fact that not every L, such that LL+ = L+L, is a polynomial
in a formally symmetric A, the following interesting result is valid (see [1]).
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Theorem 4. For L of orders 1, 2 or 3 the formally normal operator Ny Fkes
a normal extension by 1 9, if and only if
L = ¢A3 + ¢342 4 ¢, 4 + ¢y, A =4+,
where the cx are constants (some of which may be 0), and
‘ 1/\\71=6383+0282—|—CIS-{—001,
for some self-adjoint extension S of the minimal operator for A.

We remark that the example mentioned above is typical for a third order
L which is.not a polynomial in a formally symmetric A. Any N,, for such
an L on a maximal interval of definition, is such that it has no normal extension
in any Hilbert space $ > $;. Examples of higher order operators, to be
given in the next section, further support the conjecture that N, has a normal
extension in some $H > H, if and only if L is a polynomial in some A = A+.
Also, one might conjecture that an analogue of Theorem 4 is valid for L of
arbitrary order.

The spectral theory of normal operators A7y in $ > 9, which have the
form

N y= i cp Lk,
k=0

where & is self-adjoint in $, is completely determined by the spectral theory
for &. If & has the spectral resolution

¥ — [ 1dE(0),

oo n
then A= f p(4) dE(A), p(d) = > crlk.
—oo k=0
Because of Theorem 4, and the remarks following it, we see that results
concerning the spectra of self-adjoint extensions of symmetric ordinary
differential operators assume added importance.

4. Some special formally normal differential operators. We have
investigated in detail a large class of L, for which LL* = L+L, but which
can not be expressed as polynomials in a formally symmetric 4. Let m, n
be relatively prime positivel integers with m >n 2 2, and let g = (m — 1)
" (n — 1)/2. We define the differential expressions Ly, and Ly by

m—1

m =™ J[ (6 — kn +9),

k=0

n—1
Ly =2 [[(8—km + ),

k=0



where 6 = ad, and d stands for d/dx. These operators have the form
m = dm + @z~ dm=1 4 ... + apx ™, '
Ln — d" + blx_ld”_l + I + bn.’l}—”,

where the a; and by are real constants. Let L = Ly + L, if one of m, n is
even; otherwise let L = iLy, + L. Then it is true that LL+ = L+L. If N,
is the minimal operator in $; = L,(0, o) for L, then N, is formally normal,
but not normal; moreover it has no normal extension in $, or in any Hilbert
space § > 9, (see [5]). The example in Section 4 is the case m = 3, n = 2.

The specific nature of the spectrum of N, has been determined for each
pair of integers m, n. Recall that the resolvent set of N, is the set o(V;) of
all 1 € C (the complex numbers) such that (N; — AI)~! exists as a bounded
operator on all of $,, and the spectrum o(N,) = € — ¢(N;). The point
spectrum op(N;) is the set of all 1€ C such that dim »(N;, — AI) > 0; the
continuous spectrum o¢(N,) is the set of all 1€ o(N,) such that N; — il
is one-to-one, the range of N, — A1 is dense in $;, but is not all of H.; the
residual spectrum oy(N,) is the set of all i€ o(N,) such that N, — Al is
one-to-one, and the range of N, — Al is not dense. The essential spectrum
oe(N,) is the set of all 1€ C such that the range of N; — Al is not closed.

There are three cases according as

(¢) m odd, n even,

(b) m odd, n» odd,

(¢) m even, n odd.
For cases (a) and (c) let p(r) = r™ + r#, and for case (b) let p(r) = r™ + 1™,
The curve C in C, defined by

C={leC|l=p(t), —0 <t <o},

plays an essential role; in fact ge(N,) = C. In all cases the point spectrum
is empty. If m > 2n in cases (a) and (b), and m > 3n in case (c), we have
6(N;) = or(N;) = C. In the remaining situations the spectrum is more
interesting, and depends on certain arithmetic relationships between m and =.
The set € — C consists of two components, which we may call T and II,
letting I denote that component which contains the positive real axis. In
case (@), for example, if n <m <2n+ 1, o(N})=CUI if m =2k +1
with k even, whereas o(N,;) = C u IIL if k is odd. The distribution of o(N,)
between o.(N,) and o(XN,) is further complicated., As an example, if m = 3,
n = 2, we have o(N;) = C U II, 0¢(N,) = 0¢(N,;) = C, or(INy) = II (see [5]).

71



REFERENCES

[1] R. E. Batsam, Normal ordinary differential operators, Dissertation, University of '
California, Los Angeles (1965).

[2] G. Birivxk and E. A. CopDINGTON, Normal extensions of unbounded formally normal
operators, J. Math. Mech., 13 (1964), 617—638.

(3] E. A. CoppINGTON, Normal extensions of formally normal operators, Pacific J. Math.,
10 (1960), 1203—1209.

[4] E. A. CoppiNaToN, Formally normal operators having no normal extensions, Can. J.
Math., 17 (1965), 1030— 1040.

[6] E. A. CoppiNgTON, The spectra of some formally normal ordinary differential operators,
to appear.

2



ACTA FACULTATIS RERUM NATURALIUM UNIVERSITATIS COMENIANAE
MATHEMATICA XVII — 1967

PROBLEMS IN LINEAR CONTROL THEORY

R. ConTi, Firenze

1.

Given a Banach space X and a real 7' > 0 let 4: ¢ - A(¢) be a function
of t € [0, T'] with values in the space of linear (possibly unbounded) operators
in X,

We shall assume the existence of the Green’s function (evolution operator)
associated with A. By this we mean a function @ : ¢, s > G(¢, 8) defined for
0 < s <t < T, with values in the space Z(X, X) of linear bounded operators
in X, strongly continuous in the two variables jointly and satisfying the
conditions:

G(t, s) G(s, r) = G(t, 1), I<r<s<t<T,
G(s,8) =1 (the identity in X)

LT _ 4@y, s)2, v eD(A®)

_OG(tT’:)ﬁ = —G(t,s) A(s)x, xeD(A(s))
where ¢/ét, 9/0s denote strong derivatives and D(A(s)) = X is the domain
of A(s).

There are various known sufficient conditions for the existence of Green’s
function (T. Karo [9], J. Kisynski [10], E. T. PouLsEeN [14]).

Let 1 <p <oo. Given a Banach space £ we denote by L?(0, T'; E) the
Banach space of all E-valued, strongly measurable functions f defined in
[0, 7], such that

T
Iflp = (Of If) Zd)p <0 if p<oo

[flo =esssup {|f(t))g: 0 <t < T} <0, if p=occ.
If ¢ : t - c(t) belongs to L(0, T'; X) then
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t
[at,s)c(s)dse X, o0<t<T
0

the integral understood in the sense of Bochnuer.

Beside X we shall, consider another Banach space U and the space £ (U,X),
of linear bounded operators from U into X.

Let B:t— B(t) belong to Lr'(0,T; £ (U, X)) with p’ = p(p — 1)~ for
l<p<oo, p=1for p=c0, p’=00 for p=1. ‘

If u:t—>wu(t) belongs to L?(0,T; U) then ¢t — B(t) u(tf) will belong to
LY0,T; X) and

¢ .
i[Gf(t, 8) B(s) u(s)ds e X, 0o<t<T.

Summing up, if G exists and if v e X, w e L?(0, T; U), B € L?'(0, T}
ZL(U,X)), ce L¥0, T; X), we may define

t t
(1.1) x(t, u,v) = G(t, 0)v + [ G(t, s) B(s)u(s)ds + [ G(t,s)c(s)ds, 0 <t < T.
0 0

We shall denote by V, W, and % three convex, bounded, closed subsets of
X, X and L?(0, T'; U) respectively and consider the following:

Problem P.Given X, U, p, T, A (or rather G),B,c, V, W, %, determine whether
there are ve V, u € % such that (T, u,v) e W.

A few comments before we go further.

Equation (1.1) can be considered as the Bochner integral version of the
linear differential equation
(1.2) dx/dt — A(t) x = B(t) u(t) + c(?)
with initial condition

(1.3) (0, 4, v) = v.

Sufficient conditions in order that (1.1) yield (1.2) are known (T. Kato
[9], J. Kisy~skir [10], E. T. PouLseN [14]).

The problem we are dealing with is a typical one in linear control theory
where 2 represents the state of some physical system, u, v are controls,
permanent and initial, respectively, and it is required to determine such controls
from given sets %, V which transfer x from V into W in a given time interval
[0, 7] along a trajectory of (1.2).

If dim X < oo then (1.1) is in fact equivalent to the ordinary differential
equation (1.2) and G(t, ) = D(t) D~1(s) where D(¢) is any fundamental matrix
associated with 4. However control problems involving partial differential
equations (distributed parameter controls) require that also infinite dimensional
spaces X be ¢onsidered (A. G. Burkovskit [3], P. K. C. Wawe [16]).
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2.
The linear operator
I'p:x—>G(T,0)x

from X into itself is bounded, therefore the image I'vV of V is a bounded
convex subset of X.
Also the linear operator

T
Ap:u —>6f G(T, s) B(s) u(s) ds

from L?(0, T'; U) into X is bounded and the image A7% of % is a bounded
convex subset of X.’

Therefore W — I'pV — Ap% is a bounded convex subset of X.

By virtue of (1.1) Problem P reduces then to establish whether

T
(2.1) — [ AT, s)c(s)dse —W + I'pV + Ar%.
0

Let us first consider the weaker relation

T
(2.2) — f G(T,s)c(s)dse —W + I'rV + A%,
0

the closure of — W 4+ I'tV 4 ApU.
Recall that for any bounded subset C < X a supporting function A¢(z’) is
defined in the dual space X' by °

ho(x') = sup <{z,a') -
x eC

We need the following lemmas.

Lemma 1.
(2.3) hg(x') = he(2'), ' eX’

Proof Since € < C it follows h¢(2') < hg(x’) by definition. Conversely,
for a fixed 2’ € X' let 2y €C be such that limy (xx, ') = sup (z, ') =

x €Q

1

= hg(z’). Now choose yr € C, |yx — xx|x < k1.
Then <zg, 2") = gk, &' + {¥r — xx, ') < he(x') + k~Y2'|x’, and letting
k —oo we have hg(z') < ho(2').
Lemma 2. If C is a bounded convex set = X, then-
(2.4) a"y < he(2), v’ eX < yeC.
Proof. y € C means (g, 2'> < sup {z, ') = hg(x') = he(') by lemma 1.

LR LS P

Let y ¢C, ie. let {3} N C be v01d Smce {7}, C are convex, closed sets and
{x} is compact the ‘‘strict separation’ theorem holds, i.e. there are two real
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numbers ¢ > 0, ¢ and some ' € X’ such that (x, 3> <c—e<c< {y ¥

x €0, hence ha(y') < (%, x> and ke(y') < {x, x> by lemma 1.
By applying (2.4) to (2.2) we have

Theorem 1. The inequality
T
(2'5) <_ fG(T’ 8) 6(8) dS, x’> < k-W+IrV+A:rU(z,)9 v eX'
0

is equivalent to (2.2), therefore it is equivalent to (2.1) iff the set — W + I'rV +
+ Ap% is closed.

3.

We are now going to indicate some criteria for the validity of

(3.1) —W +TI'nV +Ar% = —W + I'tV + Ap%.
This can be insured by

(3.2) W= W, I'pV =IrV, ArU = A1,

plus an additional assumption namely that
(3.3) X is a reflexive Banach space.

We recall in fact that in a Banach space X: i) all bounded weakly closed
_ subset are weakly compact iff X is reflexive; i) convex sets are weakly closed
iff they are closed; #i7) any finite sum of weakly compact sets is weakly closed.
The implication (3.2) + (3.3) = (3.1) then follows from the fact that all
gets involved are convex and bounded.

Now W=W by assumption. Also I'tV = I'rV since I'r, as a linear
operator continuous in the norm topology of X is also weakly continuous
and V is, by assumption, weakly compact. On the contrary the validity of
Ar# = Ap% requires some further assumption on #%. In particular the case
p=1 has to be put aside since there are examples of Ar% +* Ar% in
LY(0, T'; U) even for U = R, the real number system.

Therefore we shall consider, from now on, only the case 1 < p < oo and
make a further assumption, namely

U = o%
with given ¢ >0 and %, = {u :|u|, < 1}, the unit ball of L2(0,T; U).
What we have to show is then that Ar%, is (weakly) closed, or, equivalently,
weakly compact.
Since A7 is continuous (in the norm hence) in the weak topologies of L?(0,

T; U); X, we have weak compactness of Ar%,; when also %, is weakly
compact, which is equivalent to the assumption that

76



(3.4) L?(0, T; U) 13 a reflexive Banach space®,
We thus have

Theorem 2. Let X be a reflexive Banach space and let V, W be convex, bounded,
closed subsets of X. '

Then Problem P has solutions if, U = o#,, o >0, %, the unit ball of
Lr0,T;U), 1 <p <o and U is such that L?(0, T; U) be reflexive.

Let us now turn to the case p = co.

We have (P. L. FALB [6]).

Lemma 3. If U is such that L?(0, T'; U) is reflexive, 1 << p < o0, then the unit
ball %, of L*(0,T; U) is a weakly compact subset of L?(0, T; U).

Proof. Clearly %, is a bounded subset of L?(0, T'; U). Further if a sequence
ui € U, converges in L?(0, T'; U) towards some v € L?(0, T'; U) then v e %,,
ie. %, is a closed subset of L»(0, T; U). In fact ux — v in measure, hence
ug,—> v a.e. in [0, T'] for some subsequence wug,. Since |uly <1 is closed,
|v(f)ly < 1 a.e. in [0, T'], i.e. v € #,. Since %, is also convex it is also weakly
closed in L?(0, T'; U), hence is weakly compact in L?(0, T'; U) as L»(0, T; U)
is reflexive.

From this follows

Theorem 2'. Let X, V, W be as in Theorem 2.

Then Problem P has solutions if % = 9%y, 0 >0, ¥, the unit ball of
L=(0,T; U), provided that L?(0,T; U), 1 < p < oo be reflexive, and
(3.5) Be L'***0, T; Z(U, X)), for some « > 0.

Proof. In fact (3.5) allows to consider A7 as a mapping of L1+1/%(0, T'; U)
into X, continuous (in the norm, hence) in the weak topologies and by lemma 3
(p = 1 4 1/a) it follows, again, that Ap%, is a weakly compact subset of X.

Assumption (3.5) is actually stronger than B e L(0,T; £ (U, X)) which
would be the natural one in the case w e L*(0, T; U). It can be avoided,
however, at the expense of heavier assumptions on U, X, by using a particular
case of the well-known Alaoglu’s theorem, namely

Lemma 4. If L=(0, T; U) = (L0, T; U'))’, then the unit ball %, of L>(0,
T; U) 18 weakly * compact.

Let ux be any sequence in %,. We may assume that u; converges weakly *
towards some u € %,, i.e. '

T T :
(3.6) [ (v, ugd>dt > [ (w,uydt  for all v e LY(0, T; U").
0 0
This will imply Azux - Aru strongly in X in some cases, for instance when
(1) Recall that the reflexivity of L#(0, T; U) depends on U, but not on p, 1 < p < oo.
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U, X are both finite dimensional: dim U = m, dim X =«. In fact Arug,
Aru are n-vectors with components, respectively

T P
i <oy, ug) dt, [ <y, wp dt, j=12,...,n
0 0

where v; denotes the j. th row of the n by m matrix G(T, t) B(¢).
We thus have (H. A. ANTOSIEWICZ [1]).

Theorem 2”'. Let V, W, be convex, bounded, closed subsets of X, dim X = n.
Then Problem P has solutions if % = o%,, 0 > 0, U, the unit ball of L*(0,
T;¥), dim U = m.

4.

We shall now write the right hand side of (2.5) under the assumption
% = 9%, in a more explicit form. We have

h-W+1'rV+oAT%1(x’) = k—W(x,) + h]'TV(x,) e Qh.lrul(xl)

with

' hpw(x') = sup v, 2T, 0)>

vE

and-

r
hyauy(@') = (of ' G(T, ) B(s)|B.ds) /7",

Therefore (2.5) becomes

T
(4.1) <—6[G(T’ 8)c(s)ds, x") < su[I)V dw, ") + .Sul,), v, 2’G(T, 0)) +

T
+ o ([1#'®(T, ) B)| B ds)'f?, o' e X",

This inequality already appeared in the literature in many particular
instances, both finite (H. A. Antosiewicz [1], R. CoxTI [4], R. GABASOV—
F. M. Kirizrova [8], W. T. Reip [15]) and infinite dimensional (W. MIRANKER
[11], G. MocHI [12]).

b.

Some existence theorems for certain typical optimum control problems can
be drawn from (4.1) along the lines followed by H. A. ANrosiewicz [1] in the
finite dimensional case.

a) Let g, be the infimum of g’s such that (4.1) holds and let gx | oo be
a sequence of such g’s. Then (4.1) must hold also with ¢ = g, and we have

Theorem 3. Under the assumptions of Theorems 2,2, 2" if Problem P has
a solution; then it also has a solution v, u with minimum |u|p.
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Sometimes |u|p is called the ‘“‘effort” associated with the control system
and Theorem 3 states that under the assumptions of Theorems 2, 2’, 2"’ there
is a solution of the minimum effort control problem (W. A. PorTEr—J. P.
WirLLiams [13]) as soon as the corresponding control problem has solutions.

b) Another typical problem in optimum control theory is the so-called
“final value” problem (A. V. BALAKRISHNAN [2]). For instance it is required
to minimize (7', u, v) — w°|x for a given w®e X. To this purpose we may
assume the set W to be a closed ball of radius ¢ > 0 with center at w9, i.e.
W = {w°} + eX,, X, the unit ball of X. Then —W = {—w°} + ¢X,, and
how(z') = —<w® x') 4 ela’|x’. Substituting into (4.1), the same argument
we used for g, applied to the infimum of &’'s for which (4.1) holds leads to

Theorem 4. Under the assumptions of Theorems 2.2°, 2'' if Problem P with
W = {w°} + eX, has a solution, then it also has a solution v, w such that
|2(T', u, v) — w0 x ts mintmum.

c) In a similar way we could consider an “initial value’” problem by taking
V= {v}+ 0X;, 0 >0. Then hpy(z') = % a'G(T, 0)> + olz'Q(T, 0)|x’,
ete.

d) The best known problem in optimum control theory is perhaps: the
“minimum time’’ problem: to find solutions yielding the minimum time 7
of transfer from V to W.

Since both sides of (4.1) are continuous functions of 7', denoting by T, the
infimum of 7"s for which (4.1) holds and by T | T a sequence of such 7T's
we obtain

Theorem 5. Under the assumptions of Theorems 2,2°, 2" if Problem P has
a solution, then it also has o solution such that T is minimum.

For an infinite dimensional X particular cases of this Theorem were obtained
by Y. V. Ecorov [5], H. O. FATTORINI [7], A. V. BALAKRISHNAN [2].
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ACTA FACULTATIS RERUM NATURALIUM UNIVERSITATIS COMENIANAE
MATHEMATICA XVII — 1967

ON LINEAR DIFFERENTIAL EQUATIONS OF HIGHER ODD ORDER

M. GrEGUS, Bratislava

In my paper I will consider a differential equation of the n-th order, where
n is odd of the following form:

(@) y™ + 24(x) y' + [A'(x) + bx)]y = 0.

Suppose that 4’(z) and b(x) are continuous functions of x € (—o0, ).
The adjoint differential equation to the equation (a) is of the form

) 2™ 4 24(z) 2 + [4A'(x) — b(x)]z = 0.

Between the solutions of the differential equations (#) and (b) hold some
relations, for instance:

If y5, Y3, --., Yn— are linearly independent solutions of the equation (a)
then
Y1 Y2 cee Ynm
Y1 Y2 - Yam
o Sk O
y(n-—z) y(zn 2) . nn_—ls)

is the solution of the equation (b).
If y(x) is the solution of the differential equation (@) with the property

y@)=y'@) = ... =y®Na)=0, y*rNa)#0,
a € (—oo, ) and y(z) = 0, z #a,
then the solution z(x) of the differential equation (b) with the property
2@) = @) = ... =20-DGF) =0, 2-DF) £0
has also the property z(a) = 0.
We can deduce more of such relations.

The solutions of the differential equation (w), respectively (b) fulfil the
following integral identities:
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(1) y®-1 4 24y + J(b — A’)y dt = const.
a

2) yy=D + Ay? + [[by? — y'y®*~D] dt = const.
respectively

') 2= 4 94z — [ (A’ + b)z dt = const.
2" _ 220D 4 422 — [ [b2® + 2'2»-D] dt = const.

In the following I will introduce the results concerning the solutions without
zeros of the differential equations (@) and (b) and the criterion of the divergence
of the solutions without zeros of the differential equation (b). In the special
case for n = 3 I will quote further results concerning this problems.

At the end I will deal with the existence of solutions of certain boundary
problems chiefly of the third order.

I. First I will introduce two lemmas.

Lemma 1. Let A(x) £ 0, b(x) = 0 for x € (—o0,0). Let y(x) be the solution

of the differential equation (a) with properties y®(a) =0,1=10,1, ..., k—1,
E+1, ...,n—1, y®(a)#0, 1 <k<n—1. Then neither y(x) nor its
derivatives y®(x), i = 1, 2, ..., n — 1 have no zeros to the left side of a. -

Lemma 2. Let the assumptions of Lemma 1 be satisfied and let z(x) be the
®

solution of the differential equation (b) unth the properties z(a) = 0, 1 = 0,

, .., k—1Lk+1,...,n—1, 20)(a) £~ 0. Then2®(x),i=0,1,....n — 1
have no zeros to the right of a and at the same time z®(xr) - 4-oco for a — o0,
i=0,1, ..., n — 3. Here z0(x)— 400 if 20(a) > 0 and 2D (x) > —0 if
*)

z(a) < 0.

The proof of Lemma 1 follows from the identity (2) and that of Lemma 2
from the identity (2').

Remark 1. Similarly as Lemma 2 it can be proved that every non-trivial
solution z(x) of the differential equation (b) with properties

z(@) = 0, z2®(a) 2 0, i1=1,2 ...,n—1 —c <a<< -0,
has no zero point to the right, and no point of zero of the derivatives up to
the order n — 1.
Theorem 1. Let A(x) = 0, b(z) 2 0 for x € (—,00). Then the differential
equation (a) [(b)] has at least one solution u(x) [v(x)] without zero in the interval
(—o0, ) for which holds
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sgn u(r) = sgn '’ (x) = ... = sgn u®~N(x) # sgn w'(x) = sgn u'"’(x) =
= ... = sgn u(®-2A(x) ;

[sgn v(x) = sgn v'(z) = sgn v'’(x) = ... = sgn v(*~N(x)]
for all x € (—0,0) at the same time u'(x) >0, v"(x) >0, ..., u®=2(z) - 0
for x >0 [v(x) > Fo0, ..., ¥®=I(x) > J00 for z - o0].

The solution u(x) without zero-points of the properties mentioned in Theor. 1
can be obtained as the limit of the sequence of the solutions {ux(x)}p_y
with w@(@r) = 0, uP V(@) >0, i =0, 1, ..., n — 2, where {wx}p, is
a suitable sequence of numbers which diverges to infinity. The integral
identity (2) for the solution wuy is of the form

Tn

wul™ Y + Auf = [ [bu} — wiu-2] dt.
x
It can be shown that the solution u(x) fulfils the analogical identity:

(3) w4+ Au? = f [bu? — w'u™ D] dt.

Theorem 2. Let A(x) < 0, b(x) = 0 for x € (—o0,0) and let fb dt diverge,

—o0 < a < 0o. Let z(x) be the solution of the differential equatign (b) with the
properties z0(a) =0,i=0,1, ..., n — 2, 28=V(a) > 0. Then the followmg
holds: zn=1(x) + 24(x) 2(x) - © for x — 00.

The statement follows from Lemma 2 and from the identity (1').

Lemma 3. Let the assumtions of Lemma 2 hold and in additicn let A’ +
+b 20 and [n-1[A'(t) + b(t)] dt diverge, —0 < a < o0.

Let 2(z) be the solution of the differential equation (b) with the properties
20(@)=0,5=0,1, ..., n — 2, 28=(a) > 0. Then it holds: 2»=V(z) +
+ 2A4(x) 2(x) > oo for x — 0.

The statement follows from Lemma 2 and from the identity (1°).

Theorem 3. Let the assumptions of Lemma 3 be satisfied. Then there exists
at least one solution of the differential -equation (@) y(x) # 0 for x € (—o0, ®©)
which has the following properties: y, y', ..., y®=1) are monotonous function of
xe(—w,0),sgny =sgny’ = ... =sgny® D £Leggny' =sgny’’ = ... =
= sgn y®-? for x € (—o0,0) and y >0, y' >0, ..., y®= >0 for z - 0.

Let n = 3. Then the statement of Theorem 2 and Theorem 3 can be
sharpened in the following way:

Theorem 4. Let the assumptions of Theorem 2 and Remark 2 respectweli}
Theorem 3 for n = 3 be fulfilled and let b(z) = 0 do not hold in any interval.
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Then there exists just one solution of the differential equation (a) with the following
properties: y, y', y'' are monotonous functions of x € (—0, ), sgny = sgny"’ #*
# sgn y’ for x € (—o0,0) and y >0, y' -0, y"" — 0 for x —>oc0. '

Theorem b. Let n =3. Let A(x) <0, bx) 2 0, A'(z) + b(x) 2 0 for
z € (—o0, 00) and let b(x) = 0 do not hold in any interval.

If the differential equation (a) has one oscillatory solution in the interval
(@,00), —00 < @ < + 0 (i.e. the solution has an infinite number of zero-points
there) then all solutions of the differential equation (a) are oscillatory in the
interval (a,00) with one exception of the solution y (up to the linear dependence)
which has the following properties: y(x) # 0, sgn y(x) = sgn y''(z) #* sgn y'(x)
for x € (—o0,0), y, y', y'' are monotonous functions of x € (—, ) and y' - 0,
y" - 0 for x - co0. [1].

The question is about the solution without zeros in the case 4(z) 2 0. For
n = 3 hold the following results [2]:

Theorem 6. Let n = 3. Let b(x) = 0 for x € (—o0, ) and b(x) = 0 do not
hold in any interval. Then the solution of the differential equation (a) ha: at
least one solution without zero points in (—o0, 0).

Theorem 7. Let the \assumptions of Theorem 6 be fulfilled and let [ badt

diverge. Then the differential equation (a) has at least ome solution ;;itho'at
zero-points for which holds lim inf y(x) = 0.
¢

: Zg,0) .
If b(x) = m > 0 for z € (x,, ) then y(x) belongs to the class L>.
M. ZrAMAL [3] proved the following theorem:
Let n = 3. Let A(x) =2 m >0, A'(z) + b(x) >=m and b(x) — A'(x) 2 0
for z € (x4, ).
Then every solution of the differential equation (a) is either oscillatory in
(%o, ) or non oscillatory and then limy = limy’ = 0 and y(z) is of the

T —>oo & —>oo
class L2 ,

In the paper [2] is shown that under given assumptions all solutions of the
differential equation (a) are oscillatory in (x,, o) with the exception of one
(up to the linear dependence) which has the mentioned properties.

Now we shall devote our attention to the differential equation (b). According
to Theorem 1, the equation (b) has at least one solution without zero points
and every solution of the differential equation (b) of the properties given in
Lemma 2 and in the Remark 1 has not on the right side of a zero and there
are no zeros of the derivatives up to the order n — 1. In the following we

give the criteria for the rate of divergence of these solutions to the infinity.

.- Theorem 8. Let A(z) £ 0, b(x) = 0 for x € (—0,0) and let b(x) = 0 do not
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hold in any interval. Let f(x) be a non-negative function with the continuous
n-th derivative of propertiesf®™ + 2Af" 4+ [A’' — b]f £ 0 for x € (xy; ©), —0 <
< x4 < 0.

Then there exists for every non-trivial solution z(x) of the differential equation
(b) of the properties z(a) =0, z2W(@) 20, it =1, ..., n — 1, a = x, such
a o = a and such a constant k > 0 that for x > o holds z(x) — kf(x) > 0.

Corollary 1. Let f(z) = e®. Then the non-trivial solution of the differential
equation (b) of the properties z(a) = 0, 2®)(a) = 0 diverges to +-co faster
then e if A(x) <0, b(x) 20,1 +24+ A" —b = 0 for z € (v, ), 7, < a
and at the same time b(x) = 0 does not hold in any interval.

For n = 3 and the case A(z) 2 0 hold the following criteria:

M. ZLAMAL [3] proved:

Let A(x) = 0, A'(x) and b(z) 2 0 be continuous functions of z for
0 <z < 2. Futher let on (z5,0) M = limsup A]/(f) <, m=

z
= lim sup V; [A’(x) — b(z)] < 0. Then every non-trivial solution y(x) fo
the differential equation (b) is either oscillatory or diverges into +oco faster
then a certain positive power z,. The solution y(x) is oscillatory then, and

only then when for every x € (x,,00) holds yy”’ — —%— y'2 4+ Ay?2 < 0.

If b(x) = d > 0, then every scillatory solution of the differential equation
(b) belongs to the class L2

Theorem 9. Let n = 3 and let A(x) = 0, b(x) = 0, A'(x) — b(zx) £ 0 a,t‘ the

same time b(x) = 0 do not hold, in any interval and let [ b dt diverge. Further

let f(x) be a non-negative function with continuous th?rd derivative on (x,, )
for which holds on (x,,0) the inequality f" 4 24f" + (A’ —b)f £ 0. Then
for every solution z(x) of the differential equation (b) without zeropoints on the
interval («,00), & 2 x, holds: |z| — kf > 0 for x € (a, 00), k is a sustable constant.

The proof is given in the paper [2].

II. We devide this section in two parts. In the first section we shall deal
with certain non—homogenous boundary value problems chiefly of the 34
order, and in the second section we shall show some results of the so called
Sturm boundary problems of the 3¢ order.

Let the boundary problem

(4) L(y) = 0.

(6) Uily) =0,%=1,2, ..., n, be given where L(y) is a linear differential
operator of the nth order, » 2 2, with continuous coefficients p, # 0 (coef-
ficient of the highest derivative) p;, ..., pn on the interval (a,, am), Ui,
i=1,2, ..., n are linearly independent forms of y(a,), ..., y®*V(ay), ...,
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y@m), ..., YO V(Am), 8y <8 < ... < Gm, M 2 2. Suppose that the problem
(4), (5) is unsolvable, i.e. its only solution is trivial. Then the following
theorem [4] holds.

Theorem 10. For an arbitrary point & € (ak, ax+1) the function y = G(x, &)
may be constructed (the particular Green’s function) which has the following
properties:

axn—2

1. Gilz, &), —:L Gz, &), ..., Gr(x, &) are continuous functions of x €
w

€<ay, apm).
T i
2. The function
oxn—1
exception of the point &, where it has a discontinuity of the first order with a jump

Gr(x, &) is on {ay, an) everywhere continuous with the

of the discontinuity , 1.e.
Po(£)
P GE 40,8 — (e —0, ¢
e ’)_&cn—l k(§ — ’)_Po(‘f).

3. The function Gi(x, &) is the solution of the equation (4) on the intervals
{ay, &), (&, am> and satisfies the boundary conditions (5).
4. The function Gi(x, &) is by the properties 1., 2., 3., uniquely defined.

Theorem 11. Let Gi(x, &), k=1, 2, ..., m — 1, be the particular Green’s
functions belonging to the problem (4), (5). Then the solution of the problem
(4) Ly) = r(=).
(58) Ui(y) = 0, 8 =1,2; .05 M
where r(x) is the continuous function on {a,, am) is given by the formula

m—1

O =3 | G @ e

k=1 ax

Lemma 4. Let n — 3. Let A(x) £ 0, A'(x), b(x) = 0 be such continuous
functions of x € (—o0, 0) that b(x) — A'(x) = 0 and b(x) = 0 does not hold in
any interval. Then every solution of the differential equation (a) has at most
two zero points or one double zero-point [2]. '
" Lemma 5. Let n = 3. Let A(Ec) 20, 4A'(z), bx) 2 0 be such continuous
functions of x e (—o0,00) that A'(x) + b(x) = 0 and b(z)= 0 does not hold
in any interval. Then every solution of the differential equation (a) has only
two zero points or one double zero point [2].
_ Theorem 12. Let n = 3. Let the coefficients of the differentigl equation (a)
fulfil the assumptions of Lemma 4, resp. 5. Then the boundary problem o
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y" + 24(@) ¥ + [4'@) + b)]y = r(),
y(a,) = y(a,) = ylas) = 0,  a; <y < a3€(—00,0) .

has only one solution given by the formula for m = 3.
The proof follows from Lemma 4 and 5 and from Theorem 11.

Lemma 6. Let n = 3. Let the assumption of Lemma 5 be satisfied. Then
every solution of the differential equation (a) has at most three zero points of the
first derivative. If the solution y(x) has exactly three zero points of the first
derivative, then y(x) has exactly two zeros.

Theorem 13. Let n = 3. Let the coefficients of the differential equation (a)
Sfulfill the assumptions of Lemma 5.
Then the boundary problem

Yy + 24@)y + [A'(@) + b(@)]y = r(z),
yD(a) =y®@), =012 a<b

with periodical boundary conditions has just one solution of the form (6) for
m = 2,

Remark 3. M. GEra of Bratislava in his dissertation devotes his attention
to the problems of the higher orders of periodic boundary conditions.

Now let us consider the differential equation (@) for » = 3 in case that
the coefficients are continuous functions of the parameter 4 e (4,,4,) i.e.
in the form

(@) y" + 24, )y + [A'(x, 4) + bz, )]y = O.
The following oscillatory theorem [2] holds:

Theorem 14. Let the coefficients of the equation (@) A = A(x, 1), A" =
0

i A(x, A), b =Db(x, A) > 0 be continuous functions of x e (—o0,00) and
x
2 € (45, 4y). . .
Further let |A(x, A)| < k, |A'(x, )| £ k, k>0, for all xe(—o0,00) and

Ae (4, 4,) and let lim b (x, 1) = 40 uniformly for all x € (—c0, 00).
A=A,

Let a < be(—ow,0) be given numbers and let y(x, 2) be a solution of the
differential equation (@) with the property y(a, 2) = 0. Then with the increasing
A — A, increases also the number of zero points of the solution y in (a, b) to the
infinity and at the same time the distance of every two neighbouring zero points
converges to zero. ‘ ;

Remark 4. G. SamMsoNE [5] proved also the oscillatory theorem which
can bz formulated for the equation (@) as follows:

Let A = A(z, 4), A’ = —:— A(x, ), b = b(x, ) 2 0 be continuous functions
z .
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of xe(—o,0) and A€ (4,,4;) and lim A(z, 1) = +oo hold uniformly
A4,

for all = € (—o0, 0).

Let b(x, }) = 0 do not hold in any interval. Then the statement of the
previous theorem holds.

With the help of the oscillatory theorems the existence of eigenvalues and
of eigenfunctions of the following boundary problem can be proved:

Theorem 15. Let the coefficients of the differential equation (@) fulfil the
assumptions of oscillatory theorems. Let a < b < ¢ € (—o0, 00) be given numbers.
Further let a(d), a;(A4), B(A), Bi(A) be continuous functions of the parameter
A€ (A, Ay) for which holds |a| + |&y| # 0, |B| 4 |B1] # O, at the same time
either B(A) = 0, or B(A) 5~ O for all the A € (A, A,).

Then there exists such a natural number v and such & sequence of the parameter
A (eigenvalues):

Av, 2-1{+1, o e ey Z.v-;.p, “ee

to which belongs the functional sequence (eigenfunctions)

Yvs Yv41s - - s Yv4py - -

of such property that yvp = y(x, Avip) ts the solution of the differential equation
which fulfils the following boundary conditions

Y(@, Avip) = 0,
0y (A +p) Y(b, Avip) — (Av4p) ¥' (b, Avip) = O,
Br(Av4p) Y(c, Avip) — B(Av+p) ¥' (¢, Avip) = 0O

and y(x, Ay 1+p) has in (a, ¢) exvactly v + p points of zero.
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ACTA FACULTATIS RERUM NATURALIUM UNIVERSITATIS COMENIANAE
MATHEMATICA XVII — 1967

INVARIANT MANIFOLDS FOR FLOWS

J. KurzwEgiL, Praha

The purpose of this paper is to present a geometric approach to the theory
of invariant manifolds of differential systems. Let the concept of an invariant
manifold of a differential system be illustrated by the following simple and
rather typical example (which is frequently met in applications to electrical
systems).

) ¢ = Az, ¢=0,
(2) &= Az + fi(z, ¢, 1), @ =f2(x’ @, t).

Here «z, f, are n-vectors, 4 is an » X n-matrix, ¢ is a coordinate vector on
an m-dimensional torus @. Assume that the real parts of the characteristic
numbers of 4 are different from zero. The subset of B, X @ X E,, which
consists of all points (0, ¢, {), ¢ €D, t € E,, is obviously invariant with respect
to (1), i.e. if () = 0, then x(t) = 0 for a solution (z, ¢) of (1). If f,, f, are
sufficiently small, then a similar situation holds for (2), more precisely there
exists a map p from @ x E, to E, such that if # = p(@, {), then there exists
a solution (z, @) of (2) defined on E,, z(f) = &, ¢(f) = ¢ and z(t) = p(p(t), t)
for t € E,. The map p is unique and the set P of all (%, ¢, {), Z = p(, £) is the
invariant manifold of (2). The behaviour of the solutions of (2) near P is
similar to the behaviour of solutions of (1) near the plane & = 0.

Usually it is assumed that the perturbation f;, 4 = 1, 2 is small in that
sens2 that it fulfils one of the following conditions

@) fi0, @, t) =0,  [Ifi(xy, @, 8) — fe(@y, @, 8)|| S L ||my — )|, d=1,2

L being small (which is usually fulfilled in the way that f; contains higher
powers in x only), "

(II) fl(x: @, t 8) = Egt(x, P, t); P = 1, 27

- gi fulfilling some boundedness conditions, ¢ being a parameter, which is at
our disposal and which may be chosen sufficiently small,

(111) filz, @, t, €) = hi(z, @, tle), -1=1,2,



hi(x, @, ) being periodic or almost periodic in 7, the average of k; with respect
to 7 being zero and & being again the small parameter.

Or it may be assumed that fi is a sum of three terms, each of which fulfils-
one of conditions (I), (IT), (III). Theorems of the above type were proved
for a large number of various situations, for example the matrix 4 need not
be constant, there may appear a small parameter ¢ on the right hand side
of some rows of (2) or on the left hand sides of some rows (i.e. at derivatives
of some components of « or ¢) and recently similar theorems were proved for
equations with time-lags or for functional differential equations.

The unifying theory may be obtained by a geometric approach. The basic
concept is the one of a flow, which is more general then the concept of a dy-
namical system. It differs from the concept of a dynamical system in the
following way: the solution y(¢, 7, t) which passes through # in the moment
7 need not exist on the whole real axis but on some interval <, t,), t, >
and uniqueness of solutions is required with ¢ increasing only. The values
of the solutions y are from a metric space or from a Banach space. By a flow
¥ we shall mean a set of functions fulfilling some axioms and in special cases
Y may be the set of all solutions of a differential equation or of a functional
differential equation. The elements y of a flow Y will be called solutions.

The conditions which guarrantee the existence and uniqueness of an in-
variant manifold for a flow, cannot be stated in detail here. They may be
described roughly as follows: the space Y, where the solutions y of the flow
Y take their values from, may be represented as a product of two spaces X
and @ and the 2- and g-components of the solutions y satisfy some inequalities.

General Theorem: If the above conditions are satisfied, then there exists
a unique map p from @ X E, to X such that if &= (@, £), then there exists
a solution y = (x, @) from the flow, which is defined on the whole real axis x(f) =
=&, p(f) = ¢ and x(t) = p(p(t), t) for t € Ey. Again the set P of all (T, §, 1),
& = p(, 1) is an invariant subset of the flow Y and it is possible to describe the
behaviour of solutions from Y near P.

Let several features of the General Theorem be emphasized.
(i) If the flow Y fulfils the conditions from the General Theorem, then every
flow Z, which is sufficiently close to Y, fulfils conditions of the same type and
therefore thére exists an invariant subset of Z. The fact that flows Y and Z are
close is deseribed by two numbers ¢ > 0, T > 0, { being small and 7T being large
and it is required that the following inequalities hold

A
ot
+

@) . lly@, &, &) — 2, 4,8 s ¢ for Est T,

@y, 85—y, 5,8 — 2, 6,5 + 2,7, 8| = CllE— 7]
for tstst+T.
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Assume that flows Y and Z are the sets of all solutions of
(5) 9 =fy,1),
(6) £ = g(Z, t)’

the space Y where the solutions y and z take their values from being a Banach
space.

Crg)

Theorem CDP (Continuous Dependence on a Parameter): If f and g fulfil
some boundedness conditions, then flows Y and Z are close in the above sense if
t+4

Il f [f(y, 0) — g(y, 0)]1do is sufficiently small for all y, t and 0 < A <='~’1

Theorem CDP may be applied in the special case that

(7) y= h(y’ t/e);
(8) 2 = hy(2),

ho(z) = lim — f h(z, o) do the limit being uniform with respect to z and ¢.

T -ce

This way the averaging principle is includ=d into the above theory w1thout
any transformation of coordinates. "
(ii) The theory of invariant manifolds (or subsets) may be developed for
metric spaces. It is clear that the norm of the difference of y and z in (3)
is to be replaced by the distance; (4) in the case of metric spaces is formulated
in a more complicated way. Usually the invariant subset is a product of
a torus with an Euclidian space, but in the above theory the invariant subset
may be a general complete metric space @. The theory simplifies considzrably,
if @ has the following property:

(A) if ¥is a continuous map from @ to @, if ¥-1 exists and fulfils a Lipschitz
condition, then ¥(®@) = @. It is very easy to prove that every finite-dimensional
manifold has the property (A) and there exist spaces having property (A)
which are not manifolds.

(ili) There are no periodicity or almostperiodicity conditions in General
Theorem. If it happens that the flow Y is periodic [i.e. if f is periodic in ¢
in the case that Y is the set of solutions of (5)], it is verified easily that the
invariant subset remains an invariant subset, if it is shifted in the time by
the period of the flow; as the invariant manifold ig unique, it is necessarily
periodic. In a similar way almostperiodicity may be treated.

(iv) General Theorem may be applied if the behaviour of solutions near the
invariant subset is like the behaviour of solutions of a differential system

near a saddle point; the case that the invariant subset is exponentially stable
is the most simple one.

91



(v) Systems with discrete time — i.e. transformations — are included in
General Theorem.
(vi) General Theorem may be applied in case of singular perturbations.

As one of the applications of the above theory the following result may be
mentioned: It is well known that solutions of differential equations with
time lags or of functional differential equations cannot be prolonged with ¢
decreasing in general. It may be deduced from the above theory that the
golutions of a functionally perturbed ordinary differential equation, which
are defined on E,, fill up an (n + 1)-dimensional manifold, if the unperturbed
equation is a (nonlinear) ordinary differential equation in E, or in an n-
dimensional manifold the right hand side of which fulfils some boundedness
conditions. The reason is in the very simple structure of the flow which
corresponds to the unperturbed equation considered as a functional equation:
the z-component of any solution from this flow tends to zero extremely rapilly.
Of course the necessary boundedness conditions are not fulfilled by equation
#(t) = Awx(t) + eBz(t — 1) — it is well known that there exist solutions
@y = elt,j =1,2,3, ... — but the above result always applies, if a functional
perturbation term is added to the right hand side of ¢ = g(¢), ¢ being a co-
ordinate vector on a compact-manifold (and some smoothness conditions
being fulfilled).

Finally let soms results on the Van der Pol Perturbation of a Vibrating

String be described. Consider the problem
(9) U — Ugy = eh(u) Uy, 0z, u(t, 0) = u(¢t, 1) = 0,
h having similar properties as 1 — w® This problem may be transformed
to an ordinary differential equation in a function space of the type (7). There
are no time-indepandesnt solutions of the averaged equation (8), which are
continuous (in the space variable), but there exists an infinity of discontinuous
- ones. Some of them are exponentially stable, other ones are unstable so that
"the picture rendered by the averaged equation is rather complicated. For the
unperturbed equation it may be proved that there exist smooth solutions,
tending with ¢ > to periodic ones, which are discontinuous. Thus it is
shown that there exist discontinuous periodic solutions of (9) and that
discontinuous solutions appear in a natural way, if (9) is examined.
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ACTA FACULTATIS RERUM NATURALIUM UNIVERSITATIS COMENIANAE
MATHEMATICA XVII — 1967

VECTORS OF GEVREY CLASSES AND APPLICATIONS

J. L. Lions, Paris
Introduction.

In several problems in partial differential equations one is led to study the
space of functions % defined in a domain £ of R* with smooth boundary I
and which satisfy conditions of the following type (we take here the simplest
possible case):

1) ([|A*u2da)'t < cLAMy M-k,
2

(2) Afu =0 on r Mk,

where ¢ and L are suitable constants (which depend on u) and M} is a given
sequence — For example, if

(3) My = (2k)!

then (1) (2) imply that % is analytic in 2 = Q U I" (assuming I" to be real-
analytic). A much more general result of this type will be reported in Section
4 below.

Once one is led to study classes of functions satisfying conditions of type
(1) (2), it is natural to put this question in a more general framework and. to
replace in (1) (2) A by an unbounded operator 4 in a Banach space E, condition
(2) being then replaced by &

(§) u € domain of 4, Au € domain of 4, and so on, and condition (1) being
replaced by

(A) |l4bul| < cL*My M- F, .
(where || || denotes the norm in ). :
In Sections 1,2 we give some (simple) remarks on the spaces deﬁned by

(1) Expositery lecture. All details and other results are contained in the book [4] by
E. Magenes and the A.
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(~1) (~2) (the so — called “vectors of Gevrey class” when {My} is a Gevrey
sequence) when (—A) is the infinitesimal generator of a semi-group. [This
contains (1) (2) by taking E = L), A = —A, the domain of 4 consisting
of those functions % which are zero on I'].
The plan is as follows:
. Domains D(A>°; My).
. A criterion of non triviality.
. The semi group on D(A%®; My).
. The case when 4 is an elliptic operator.
. Transposition.
. Cauchy problem.
. Some examples.

G D Ol 00

Bibliography

1. Domains D(A®; My).

Let E be a reflexive Banach space, norm || ||; let 4 be an unbounded
operator given in E; we assume (for semi-group theory we refer to [2], [10]):
(1.1) (—A) is the infinitesimal generator of a continuous semi-group G(t)
in E. Let D(A) be the domain of 4. We set

D(A4®) = {u| AueD(4) ¥ k};
it is well known [2], [10] that D(4*) is dense in K.

Let now {M;} be a given sequence of positive numbers.
We define :

D(A®; M) = {u|u e D(A®); there exist constants ¢ and L (de-
1.2). pending on u) such that ||A%u|| < cL¥M;  k}.

Example 1.1.
If My = (k!)*, « > 1, the coresponding D(A=; My)space is called: the space
of vectors of Gevrey class «.

Example 1.2.
If My = k!, the coresponding D(A>; M) is the space of analytic vectors.
{See {8]) :

"Remark 1.1
_.Definition 1.2 is purely algebraic. There is a “natural” locally convex
topology on D(A®; My): firstly, fix L in (1.2) (but not C) and call DL(A~; My)
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the coresponding space; provided with the norm sup ||A¥*u||, it is
P g Lk My

a Banach space; then D(A*; M}) = inductive hmlt of DL”(A s M), L‘
— 4-00. For details see [4].

Remark 1.2.

Hypothesis (1.1) is perfectly useless in Definition (1.2). But it will be useful
in the proofs below.

The “natural questions’ are now:
(i) when is D(4®; My) # {O}?
(ii) what is the “abstract’ interest of D(A>; My)?
(ili) how can one characterice, in ‘“‘concrete” situations, the spaces D{A®;

My) in “concrete’ terms?

Partial answers to these questions are respectively given in Sections 2, 3, 4

below — some applications being given in Sections 5, 6, 7.

2. A criterion of non triviality.
i
Theorem 2.1. Let {M;} be a non quasi-analytic sequence™ [1] [7]. Then
D(A*; My) is dense in E.

Proof. 1) If {M;} is non quasi-analytic, one can find a sequence g, of
functions with the following properties [7] [9]

oneDMk, on() =0if t <O orif t >ep, &0 if n >0,
9
(2.1) {Qn\O font)dt_ 1.
2) Define next G(on) € L(EZE) by
(22) Glow)e = [ Gt)e. oult)dt, e B
0
One checks easily that G(g,) e € D(A®) and that
(2.3) A%G(on) ¢ = G(ol}) € ¥ k.
Thanks to the fact that g, € Dy, it follows that G(g,) e € D(A®; My).

3) Let now e be arbitrarely given in E; by (2.1) G(gs) ¢ —.¢ in E, and by
2), G(on) e € D(A®; My), hence the result follows.

Remark 2.1. It can happen that D(A®; My)y is dense in E even with
My = 1 ¥ k example: assume that 4 has a complete set in E of eigenvectors
oy then Aw, = Apwp hence ||A¥w,|| < ||wy|| A, ie. belongs to D(A‘f’; 1).

() This means: let Dy, be the space of C» scalar functions ¢ on R with compact su‘pport
and satisfying |... | < |p®)! < cLkMy xtk then Dy, 5= {O}.
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But in can happen that D(A®; My) = {0} if M is quasi — analytic;
d

example: E = L?(0, c0), A= Y D(A) = {f|f, —g% e L?(0, ), f(0) = 0} .

3. The semi-group on D(4>; My).

Theorem 3.1. The necessary and sufficient condition for weE to be in

D(A®; My) is that the function

(3.1) G(.)u = “t > G(t)u”

18 of class M, with values in E, i.e.v
for every finite T there exist constants Cy and L, (depending on T and
w) such that :

32 | s
I

Remark 3.1. This property justifies the terminology introduced in Examples
1.1 and 1.2.

Proof of Theorem 3.1.

1) (3.2) implies (1.2) (with C = C,, L = L;). Obvious, take t = 0 in (3.2)

d*G(t)
dee

and use

% g = (—1)cAku.

k
2) (1.2) implies (3.2). Obvious too. Indeed%k—G(t)uz (—1)*G(t) A*n
hence, for ¢t € [0, T']
dxG(t)
di*
hence 3.2 follows.
It follows easily from Theorem 3.1 that (see [4] for details).

u

< sup [|G®)] LE:p ||A¥ull,
! te[o, T']

Theorem 3.2. For every t, G(t) is a continuous linear mapping from D(A>;
My) indo itself; the semi group G(t) in D(A=; My) is C° (and of infinitesinal
generator — A ). )

One can also show [4] that if for a suitable constant d
(3.3) Mysy < At MMy ¥ k, j
then for every u € D(4°; My) the function ¢ > G(t) u is of class My in ¢ >0
with values in D(A®; My) (i.e., for every finite 7', there exists a bounded

i . 1 dk
set B in D(A=; My) and a constant L such that T, aF G(t)u e B M-k,

te[0,T)).
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4. The case when A is an elliptic operator.

Let us recall first a classical definition: a complex-valued function ¢ defined
on a compact set of R is said of Gevrey order § > 1 (resp. real analytic) if
for suitable constants ¢ and L one has

|Dop(@)] < vt 49x(py! py! ... pal)? (resp. f = 1)
Mp=1{pPy, ..., Pn}, ¥ « € compact set of definition of ¢.
Let Q be a bounded open set of R”, of boundary I'; we assume
I' is a (n — 1) dimensional variety, of Gevrey order S (resp. real
(4.1) {analytic)

Let A be a differential operator in 2; we assume that
(4.2) A is an elliptic operator of order 2m (and properly elliptic if n = 2)
and that
(4.3) the coefficienits of A are of Gevrey order B (resp. real analytic) in 0.

We are going to characterize D(A%; My), taking
(4.4) E = L*Q). ,

(4.5) D(A) = {u|uweH*mQ) N H}MQ)} (that is: DrPue L* Q) & p, |p| <
< 2m, DPy = 0 on I' ¥, |p| <m — 1),

and when we choose

(4.8) My = [(2km)!]5.

One can prove (see [5], [6], [4]):

Theorem 4.1. We assume the hypotheses (4.1), (4.2), (4.3) to hold choosing
D(A) and My by (4.5) (4.6) one has

D(A=; My) =  functions of Gevrey order B in 2 (resp. real analytic)
(4.7) {which satisfy the boundary conditions “A¥u e Hy'(Q2) M k.

Remark 4.1. Under the hypothesis (4.2), — A4 is the infinitesimal generator
of a semi-group in £ and even of an analytical semi-group. [2], [10].

One can replace £ = L*(2) by L?(2), 1 < p < 00, p 7 2, without changing
D(A®; My).

Remark 4.2. The same result holds true for other boundary conditions
than the Dirichlet boundary conditions considered above. — See [4].

Remark 4.3. If u satisfies ||A%u|| < cL¥((2km)!) *+ k and no boundary
conditions, then one can conclude that u is real analytic on every compact
subset of £2; see [3]; this result in contained in Theorem 4.1.

Remark 4.4. A more general result is proved in [4] when we also consider
“non-zero boundary conditions”. ‘ ’ '

7 Equadiff II.
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5. Transposition

Since E is assumed to be a reflexive Banach Space (actually “reflexive” is
used here for the first time — and.in a non essential manner!) all what we
said in Sections 1, 2, 3 is valid after replacing

E by E' = dual of E

G(t) by G*(t) = adjoint of G(t) _

A by A*, A* being the adjoint of 4 in the sense of unbounded operators
in E or the (opposite to the) infinitesimal generator of the adjoint semi-group
G*(t).

Consequently:

(5.1) G*(t) is a semi-group in D(A*<; My)'.
If we make the hypothesis (see Theorem 1.1):
(5.2) D(A*=; M) is dense in E’
then we can identify. E to a sub-space of the dual D(A**; My) of D(A*®; My);
summing up, we have
(5.3) D(A°; Mx) = E = D(A*<; My)!
Taking the adjoint of (5.1) we obtain: .
(5.4) [G*(t)]* is & semi-group in D(A4*~; Mk)'.

But one easily checks that (G*(f))* is an extension of G(t), that we can
still denote by G(t). Therefore:

@(t) is a semi-group in D(4**; My)', which is C* and whose infinite-
(6.5) {sima.l generators is —A4.
For more details, see [4].

Remark 5.1. In the applications, D(A*<; M)’ is not a space of distributions
but a space of functionals (analytic functionals of Gervey’s functionals).
- Structure theorems for the elements of D(A*®; My)' are given in [4].

6. Canehy problem. .

If —A is the infinitesimal generator of a semi-group G(t), then the unique
golution of the Cauchy problem

(6.1 Au +u' =0 (u’ = -((11—':) "
u(t) e D(4),

i {u(o) = %y

is given by

(6.3) u(t) = G(¢) %,

See [2], [10].
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Thanks to Theorem 3.2 and its ‘“‘transposed’ version (5.5) we obtain:

Theorem 6.1. We assume that (5.2) holds true — For u, given in D(A®; My)
(resp. in D(A*=; My)') the Cauchy problem (6.1), (6.2) admits a unique solution,
given by (6.3), which is C° from t 20> D(A®; My) (resp. D(A**; My)').
Moreover, in case (3.3) holds true, the solution u(t) is of class M.

Remark 6.1. In case G(t) is analytic (see Remark 4.1) then, even starting
with u, € D(A*®; M)’ (i.e. with an extremely general Cauchy data), one has
u(t) e D(A®; Mg) - t > 0.
See [4].

7. Some examples.

We take the two as simple as possible cases.
7.1. Heat equation.

Combining results of Sections 4 and 6 we obtain the following result: let
u, be given in Q, satisfying

'\ k.
Then the solution of

(1.1 {uo is of Gevrey order f (resp. real analytic) in O, and A¥yy, = 0 on

(7.2) —Au + %‘ti —0in 2 x 10,0,

(7.3) u(x,t)=0if zel, t >0,
(7.4) u(x, 0) = uy(x), x € 2
is of Gevrey order f§ in x (resp. real analytic if § = 1) and of Gevrey order
28 in t. :

We have just to take: My = [(2k)!)’ in the general theory.

Moreover in this case Remark 6.1 applies —

7.2. Wave equation.

- We consider now

A 0%y . NE
(7.5) - u—I—W—:Om.QX]O,OO[,

(7.6) u(x,t) =0if xel', t > 0,
u(xa 0) = '“oo(x)a TE Q"
TDN2 (2, 0) = vy(a), z € 2.
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Writing (7.5) as a first order system in ¢ one can apply semi-group theory.
One obtains:

if ug, and wu,, satisfy conditions analogous to (7.1) for u, then u(z, t)
(778 {is of Gevrey order f in z and in ¢.
See [4] Vol 3 for technical details.

BIBLIOGRAPHY

[1] T. CARLEMAN: Les fonctions quasi analytiques-Gauthies-Villars, Paris, 1926.

(2] E. Hmie—R. S. PHILIPS: Functional Analysis and semi-groups. Collog. Pub. Amer.
Math. Soc. 1957.

[3] T. KoTARE—M. S. NARASIMHAN: Fractional powers of a linear elliptic operator —
Bull. Soc. Math. France, t. 90 (1962), p. 449—471.

[4] J. L. Lions—E. MaGENEs: Problemes aux limites non homogénes et applications —
Vol. 1 and 2, Dunad, 1968. Vol. 3, to appear

[56] J. L. LioNns—E. MaGENES: Espaces de functions et distributions du type de Geirey
et problemes aux limites paraboliques. Annali di Mat. Pura ed Appl. Vol. LXVIII,
(1965), p. 341—418.

[6]J. L. Lions—E. MacENEs: Espaces du type Gevrey et problemés aux limites pour
diverses classes d’équations d’évolution. Annali di Mat. Pura ed Appl. Vol. LXIX
(1966).

(7] S. MANDELBROJT: Séries adhérentes, régularisation des suites, applications. Gauthier —
Villars, Paris, 1952.

(8] E. NELsox: Analytic vectors. Annals of Maths. 70 (1959), p. 572—615.

(9] C. RouMIEU. Sur quelques extensions de la notion de distributions. Ann. Sc. E. N. S.
77 (1960), p. 47—121.

[10] K. YosIiDA: tFunctional Analysis. Springer. t. 123. 1965.

100



ACTA FACULTATIS RERUM NATURALIUM UNIVERSITATIS COMENIANAE
MATHEMATICA XVII — 1967 '

ON THE EXISTENCE AND REGULARITY OF SOLUTIONS
OF NON-LINEAR ELLIPTIC EQUATIONS

J. Ned&as, Praha
4
Introduction. We shall consider boundary value problems for elliptic
equations of order 2k in the divergent form
S (—1)4Diaa, Diu)] = fiz)
lilsk
where D¢ is the well-known symbol for derivatives in Euclidean space
Ey:Dt = o'tljoahh ... oxiv. We shall deal with the problem of existence
of weak solutions using direct variational methods and for them the regularity
theorems will be derived. In the conclusion the converse process will be used
for investigation of existence of regular solution.
Contents: §1 Weak solution of the boundary value problem. Its determinig
by the variational method.
§2 Regularity of the solution; application of differences method.
§3 Regularity of the solution; on the Hélder continuity of k-th
derivatives.
§4 The existence of regular solution. Application of the first
differential.

§1. Weak solution of the boundary value problem. Its deter-
mining by the variational method.

Let 2 be a bounded domain in Ex with Lipschitzian boundary 2. Let us
denote by E(2) the space of such real-valued infinitelly differentiable functions
on 2 that can be continuously extended (with all their derivatives) to the
closure of Q: 2. D(R) is a subspace of E(2) which contains all functions
with compact support. -

Let ¥ > 1 be an integer, 1 < m < 0. Let W¥)(2) be a normed space of all
real-valued functions which are integrable with m-th power over £ and so
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do all thelr derivatives (in the sense of distributions) up to the k- th order.
The O of w is ||u||wik = ( f Z | D*u(x)/m dz)Ym. Let us denote W"‘)(.Q)

= D(Q).

Let C®)(2) be a space of all real-valued functions which are continuous
with all their derivatives up to k-th order on © with usual norm and let
C®),#(2) be subspace of C*)(2) of these functions whose k-th derivatives are
u-Holder continuous.

We shall define functions ay(z, {j), |i| <k forz e, —0 < {3 <, [jl <k
continuous in variables {; for almost every x and measurable as functions
of x for {; being fixed. Each positive constant will be denoted by C. To
distinguished the constants, if it is necessary we shall use indices. Let us
assume

(L1) e, O <O+ > 1GImY), 1<m<o
lilsk

1 k— i

91 m N

or less: we set if(k—]i])m<N,—q—1—=0if(k—|i|)m>

111

|| >0if(k— |¢])m=N. For1 <q<oletq =-é%l—, Rt =

q[; L and let C(s) be continuous non-negative function for 0 << s < co. Let
i

g eL, 1), g11/(x) = 0. Let us suppose
(L2) e, O <C( 3 |Gl) (9@ + > |GPwm).

, ()<k=Nim k—Nm=(j|<k
The following assertion is valid: the operator ay(x, D/u) is continuous from
WE(Q) into Lg';1,(R2). Its proof is based upon imbedding theorems for W{)(Q)
spaces. (See, for instance, E. CAGLIA};DO [10] and also M. M. VAINBERG [28].)
"Letnowbe D(2) < 9 < E(Q), V =9 in WH(Q) and let Q be such Banach
space that D(22) = @ and that I‘%",,’?(Q) < @ algebraically and topologically.
Let upe W(Q) (stable boundary condition), g € V' such functional that
A .
gv = 0 for v e W¥(2) (unstable boundary condition), and fe@’ (the right-
hand side) be given. Let us denote gv = v, g)aq, fv = (v, f)q.

Definition of the boundary value problem and of weak solution: We are
" looking for such u € W¥(2) that =~~~

(13) = uy e WH(Q),
(1.4) for each ve V: [ 5 Diay(z, Dlu)dz = (v,fdq + (v, 9.

R Klsk
- Thus, boundary value problem (1.3), (1.4), we shall transfer to the problem
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of finding a minimum of certain functional @(v). There are many other
aspects the problem can be approached. Thus, many authors have dealt with
the existence of the solution of boundary value problem using the concept
of ““monotone operators’ which we shall use further. (See, e. g. F. E. BROWDER
[2], [3], M. I. Vi¥ik [30], J. LERrAY, J. L. Lions [17]...) We shall obtain
similar results; the difference is that we shall suppose certain additional
condition concerning symmetry of the operator. But we shall know that
certain functional has minimum in our solution. If the functional is a priori
known then further considerations are analogic to those in papers: F. E.
BROWDER [6], M. M. VAJNBERG, R. I. Kadurovskiy [29]. See also the book
by S. G. MIcHLIN [18].

The condition of symmetry: Let d be the number of indices with lenght
|i| < k, p € D(Ez). Then (1.5) holds almost ewerywhere in Q:

44 o
N | = = (=1l [ ==
15) (=D [Zo e L) Al = (=M [ ag(a £) 2.
There is proved in author’s paper [20] (using the formula for integration
of differential, see M. M. VAINBERG [28]):
Theorem 1.1. Let the conditions (1.2) and (1.5) be safisfied. - Then

(1.6) @) = fldt [ > Diway(x, Dlug + tDWv) dx — (v, fHo — v, 90
0

Q2 lilsk

18 continuous functional on V; its Gateaux’ differential is

(1.7) D®(@,v)= lin; P + n;) — 90) =b[ > Divay(x, Diuy + Div) dz —

. a lilsk
— 0, [P0 — v, 9>0.

To prove the existence of minimum @(v) on V, we shall investigate the
conditions under which the following relations hold: :
(1.8) lim @&@w) =

o Al koo

(1.9)  &(v) is weakly lower-semicontinuous.

If v is the point of minimum of @(v), then DP(v, v) = 0, which is (1.4).
Differential (1.7) is said to be totally monotone (strictly totally monotone)
ifforallv, weV, v # w, o
(110) [ S DY(w — v) [ai(x, Dy + Diw) — au(a, Diug + Div)] dw = 0, (> 0)

2 ik
holds. '
We shall say that the differential (1.7) is coercitive if for all ve V
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(1.11) h[ Iilzk Divay(x, Diug 4 Div) dz > A(||v|]| wik))  holds

R
where A(s)/s € L,(0, R) for every R > 0 and }eim —11-5; [ }"—f:}lds == 100
->00 0

There is proved in author’s paper [20].

Theorem 1.2. Let (1.2), (1.5), (1.10), (1.11) be satisfied. Then there exists
min O(v) (D(v) is defined by (1.6)), namely, in the point v. Function v + u,
18 the solution of problem. If the condition (1.10) of the strict monotony is satisfied,
the solution is unique. In this case D(vy) > P(v) = vy, — v (weak convergence).

Let us remark that (1.11) is satisfied, e.g. if 4, = 0 and

S L, &) = C 5 18d™ 4 C . [L(gs0e-0 ™

lilsk lil =k
If

I‘gk (6e — mi) - [aa(=, &) — ailw, 77)] =0
then (1.10) is satisfied e.t.c. See author’s paper [20].

Let us write the operators ai(x, D/u) in the form a;(x, D*u, Dfu) where
the symbol D*u denotes a vector of derivatives with |x| = k and Dfu a vector
with 8] < k.

We say that the main part of the differential (1.7) is monotone if for v,
w,weV

(112) [ > Diw — v) [ai(x, D*uy + D*w, D’uy + D) —
@ 1=k
— ai(x, D*uy + D*v, DPuy + Diw)]dx >0

holds.
 Let us investigate the conditions under which the functional (1.6) is weakly
lower-semicontinuous. For this we need monotony of the highest derivatives
[see condition (1.12)] and strengthened continuity which is to be locally
uniform regardig the derivatives D>u.

Sufficient conditions for this are following:

Let ¢(s), d(s) be continuous functions for 0 < 8 < 00, non-negative, d(0) = 0
and assume

(1.'13) li] =k : |au®, Lo §5) — i@, Loy mp)l <
=¢(max( 3 lfﬁl’m 2 / ) -[4( 2 165 — mgl) -

‘ . |Bl<k—N/m |<k—NJ |Bl<k—Njm~
B £ S (i B > 1al* 165 — mal# 18],
laj =% la| =k,k—N/ms|8l<k
: L
where 0 <[.¢|’3; < 9|g[‘ﬂ——r& . Let
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(1.14) ai(m, Ca’ Cﬂ) =| z Cq,aia(xs C,’;‘) + a’i(x, Cﬂ)

al=k

hold for |i| < k. Let ai;, %0 at most when g, > Wrg—l . Let us suppose

(1.15)  lag(e, &)l <e( > 1&l)- (1 + > IZ51%131)

18l <k—Nm k—N/m<|Bl<k
(m—1)qy —m
m . qi|

where 0 < 5 < .q15 and

(1.18) e, )l <c (> 18]) - (gal®) + > |E x5 10131),
|Bl<k—=N/m k—N/m<|Bl<k
where gi(x) =0, gi € Lg%, and g¢ffy >¢'lil if b — Njm <|4l; ¢fj =1 if |¢)] <
< k — NJ/m . Further afj, 5 < %H—ll .
11

We can prove (see again [20]).

Theorem 1.3. Let the conditions (1.2), (1.5), (1.11), (1.12), (1.13), (1L.14),
(1.15), (1.18) be satisfied. Then there exists a minimum of (1.6); let us denote
it v. Function v + u, is the solution of problem.

Let us remark, that

(1.17) S (& — i) - [@u(@, &6s E5) — @il Mo {31 =0

lil| =k

is sufficient for the validity of (1.12).

§2. Regularity of the solution; application of differences method.

E. Hoer in his article [14] and many other authors have used this method
to prove the regularity of solution of non-linear second order elliptic equations.
Thus it is possible to obtain properties of k + 1-st derivatives. Author doesn’t
know how to apply this method, if it is possible, when investigating regularity
of the derivatives of k& -+ 2-nd and higher orders (as for the nonlinear elliptic
equations in general form). :

We shall assume, that functions a(x, ;) are continuously differentiable for

x e, —o0 < ¢ < oo and we denote ay(@, L) = % (2, £7). Assuming m > 2,

we restrict ourselves to the following conditions (see [20]):
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(2.1)

‘ 8—1:1 (.’IU, Ca)

o, Sl < cled® L1, il = Ll = K,
jauta el < ol 14 S 0T, i<k =

la[<k
analogically for |¢| =k, |j| <k,
lay@, L)l <c.(L+ 3 [GI™2), il <k, [jl <k
lal <k

ay(@, {o) &8y =c¢ 3 (L™,

¢l =i =Fk li]| =k

%‘x’ el <o te? 1+ 2, E®) for |i] = k,
' |ai <k

<ol+ S |LIm-Y)
k

ALTES

oag

or to the conditions

(2.2)

c

lay(z, L)l <@+ 3 BT, lil =1l =k d =0,
k

la] =

1
loy(z, L <@+ 3 T .1+ 3 &)

el =k lal <k
and analogically for [i| < k, |j| = k,

oy, L) <c(l+ 3 )T for il <k [j| <k

w3

m_
1

1
L=k Pl <k

lal<k
ed+ 3 Cg)?—llﬂz < > ey l) &y <cy(d + 3 Cz)?_l 1§12,
la| =& lil=li|=k o] =K
Wl g s T, i <k
oy | ( lagk «) ’ ’
'_3%301_*_ ce%—% i+ cz%—% li| = &
oxy ( I¢|Z=:k 2) ( Ialzs:k a) ’ =%

Let us denote by o() an infinitely differentiable function which is equivalent
with dist (v, Q) and which satisfies |Dis| < ¢.ol-lil. (Existence of such
funotion is proved by author in [22].)

We shall consider smoothness of the solution in 2, not in 2. We shall
assume that the right-hand side satisfies an inequality

(23) i L sy <

1=1

where W{*)(Q) is the dual space to ﬁ’g")(!)).
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Applying the standard differences method (see e.g. J. NEGas [21]) we
obtain

Theorem 2.1. Let uw € W{(Q), m > 2 be the solution of problem (1.3), (1.4).
(Generally we do not suppose (1.5).) Let (2.1), (2.3) also be satisfied. Then

¥ a m\ 2
2k D2
/o ZZ(M | Dl ) dz < ¢

1=1 il =k
and thus (N > 3):
2kN mN
(24) [ 3 o¥2 . | Dy|¥-2dx <c¢ < oo,
L i<k
(25) [ > o*P|Dlyfpda <Op < 0, 1<p<o, N=2.
2 |i[<k

Similarly the next theorem is valid:

Theorem 2.2. Let u € W(2), m > 2 be the solution of problem (1.3), (1.4)
(Generally we do not suppose (1.5).) Let (2.2), (2.3) also be satisfied. Then the
inequalities

N 2 my 2
ok, (— d -+ D’u24) der <c¢ < oo,
gf IZI oy [ |¢|Z=k( /]

Jo¥.[d+ S D=y . S (Durde<e<owo
2 lal =k li| =K +1
and (2.4), (2.5) hold.
Analogical assertion is valid if we set > (} instead of > (7 in (2.2).
la| <k lof =k
If £ = 1 (the equation of second order) we can weaken our requirements.
Let us denote functions a;(x, {;) by symbols: a;(z, %, p), 1t =1, 2, ..., N)

ou

a(x, u, p), where p = (py, ..., Pn), Pi = ¢ and let v(s), u(s), u,(s) be non-

N
negative functions for 0 << s < co. Let us denote [p| = ( Z P12, Let us
i=1
assume :

W) L+ 2. S e S 2, p) gy <
TR ‘

i=1 RT™

< ullul) . (1 + lpnm—*ﬁ &,
=1

N .
= ("’“‘ +|az!)-(1+lpl)+ S

A S
| =p(u). L+ p)m, 1<m <o

(2.6) |
3a;
ox;
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ol 3 |0
2 @ u,p)! AP+ 3w p) (1 i) +
N
@7 1 4 %(x, u, P)’ +~;Zl % (@, u, p)’ < y(lul) . (1 + |p|)m,
1<m<co.

Let u e W(2) be a weak solution satisfying the next condition: for each
@ € D(Q) the equation

N i
(2.8) f ( Z ai(x, u, p)—a—‘?;i + a(z, u, p) p)dx =0
2 i=1 i

holds. Theh the next assertion holds (see O. A. LapyZensgaga, N. N. UraL-
CEVA [16]):

Theorem 2.3. Let ue WP(Q), 1 < m < oo be the weak solution satisfying
(2.8), let sup |u(x)| < co. Let (2.6) and (2.7) be valid. Then for @' c Q
z €N

, 2 S Y ,
(2.8) ‘!(1 + |p|ym 2“2::1 (W) dz < ¢(2') < o holds.

If k=1, uye C¥Q) and if we consider the Dirichlet problem we can
substitute 2 for 2’ in Theorem 2.3 when 2Q in sufficiently smooth. (See
(16].)

Analogical results concerning the solution of the variational problem for
the functional [ f(x, u, p) dz (as Theorem 2.3 and following) proved C. B.

e

MorEy [19]. Let f(z, u, p) be a function which has two Hélder continuous
derivatives according to each variable and let the inequality

m
(29) (1 4w + [p|?)? — Cs < f(&, u, p) < Cy (1 + u2 + |p|?)
be satisfied for 1 < m < o0. .
Furthermore, let u, € W1 (2). Let us look for such

m
2

0
(2.10) uwe WR(Q), u— use WH(Q),
that

(2.11) aff (a:u -23;—) dz s mjninfa}l".l
The solution u satisfies Euler equation in the weak form: for ¢ € D(Q):

y @ b 0
(2.12) bf (izl —a%-@":—‘ (@, u, p) + q;—a;::.— (x, u, p)) dz = 0.

' o _ of _
Let us denotew = ai(z, u, p), oy (x, u, p) = a(z, u, p).
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Let

18 2 |
N L e L

m 1
< C(1 + 2 + [p|?)? 2,
a 8 m_
(2.13) % + a—a <O+ w? + [p*)? 1,

m 4N
Gl +ut+ [py? > E< z Ty @ WD) by <

=1 =
-1

N
<O +ut 4T 3 &

IS‘@

be satisfied. (Comp. with (2.2).) Then (see C. B. MorEY [19]):

Theorem 2.4. If u € W(Q), m > 2, u satisfies (2.12) and if the conditions
(2.13) are satisfied then (2.8)" holds. If 1 < m < 2 then there exists w satisfying
(2.12) such that (2.8)" holds again.

See also E. R. BuLEY [6].

§3. Regularity of the solution; on the Hdolder continuity of
k—th derivatives.

Under the assumptions of the Theorems 2.1 or 2.2 we have (3.1) for the
weak solution and ¢ € D(Q)

31 [ S ay D) quoD,a—“dx:

Q [illil<k

el e, aat & i < > = :
= 2 (xDu)Dcpdx—}— P oy F==1,9: o0y N

11,|<k

Thus if we denote w = %— then o is a weak solution of linear differential
1

equation. The investigation of regularity of higher derivatives is based upon
(3.1) and upon regularity theorems for the linear equations. In this section
we restrict ourselves to the assumptions (2.2) with.d = 1. Simple example
can be given to exhibit that conditions (2.1) do not guarantee continuity of
k - 1-st derivatives in 2 in spite of the analyticity of functions a(z, {j), f().
(See J. Nudas [20].)

If k = 1 then (3.1) yields further information if ‘we set ¢ = —Z—u—b‘ v 9 e
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€D(Q), 8 20, by(x) = min (|p|%,n), n=1, 2, ... (p — the comparison
function). See e.g. 0. A. LADY?ENSKAJA, N. N. UraLcEva [16]. The com-
parison function ‘

32) ¢= d:.g—z v, peD@), s >0,
dpn = min {(1 + 2 4 |p|?),n}, n=1,2, ...

has been used in E. R. BULEY’s paper [6] under assumptions (2.9), (2.13)
and m > 2. The same function has been used by C. B. Morey [19] but with
8 < 0. From this the boundedness of the first derivatives on every Q' <
< £ © Q can be obtained when s >oo. (See E. R. BuLey [6], J. NEGAS
[21].) If

(3.3) : sup |p(z)] < C(Q) <o

is proved and if (2.8)" holds then —g—;—l'l— = wis a weak solution of linear equation

with bounded and measurable coefficients on £’ according to (2.1). When

k=1 we can use DE Giorar’s result (if %— = 0 see [12]) or more general
1

result of G. STAMPACCHIA (if g}-% 0) [27]:

Theorem 3.1. Let u € W}(R2) be a weak solution of the equation: for ¢ € D(Q),

N N
op ou _ op
[ 2 o o= [ttt [ > ot
2 ij=1 Q € i=1

' N
where f € Lp(Q), fi€ Lp(Q), p > 5, i€ La(Q), > aykils = C|4[2, then

t,7=1

there exists such 0 < pu <1 that
, . |

[lulled@ @y < C@') (I “L”("’—*—,-Zl Ifillzeper + llullwiPw), @' < 2
holds. 4

- The proof of Holder continuity for higher derivatives and (for ¥ = 1 of
the analyticity of solution) follows e.g. by the result of A. DoveLis, L. NIREN-
BERG [9] (or by results of E. Hopr [14]). We shall formulate the results:
~ E. R. BuLzy [6]: ‘

Theorem 3.2. Let k = 1, m > 2, let u be the solution of (2.10), (2.11) and leb
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the assumptions (2.9), (2.13) be satisfied. Then (3.3) holds and there exists
0<p <1 that

(3.4) ||ulleH(Q) < O(RQ) < holds.

Applying C. B. MorrEY’s result the Theorem 3.2 can be obtained for such
u which satisfies the condition (2.12). Furthermore, this author obtained:

Theorem 3.3. Let k=1, 1 < m < 2 and otherwise let all assumptions of the
preceding theorem be satisfied. Then there exists such solution of the problem
(2.10), (2.11), that (3.1), (3.4) hold.

0. A. LApYZENSKAJA, N. N. URALCEVA:

Theorem 3.4. Let u € W{(2), 1 < m < oo be a weak solution which satisfies
the condition (2.8). Let sup |u(x)| < oo and let (2.6), (2.7) hold. Then (3.3),
r €

(3.4) hold.

The inequality (3.3) was essential in proof of regularity of the solution for
k = 1. The inequality (3.1) (k= 1) has been considered by many authors
that generalized the result of T. Rapo [26] under essentially weaken assump-
tions (supposing that Q = &', 2Q is smooth and  is strictly convex). (See
e.g. P. HARTMAN, G. STAMPACCHIA [13], D. GiLBARG [11].)

Now let us consider & > 2. The use of the comparison function of the
type (3.2) does not lead to any result and the information
(3.5) sup > | Diu(z)| < C(Q') < ©

x e i<k .
is not available. Accordingly, we shall consider the case m = 2 or we shall
suppose that (3.5) holds. Thus we transfer the problem of regularity of k-th
derivatives to the linear problem.:

Let A;; be a real matrix of bounded measurable functions in a domain O,

li| = |j| = k. We shall use the following assumptions:

(3.6) CilEP< S Aulily < Calll?

[tl=lil=k
(3.7 Ay=Au

Function w € W{(0) is a weak solution of the equation > Di(AyDiw) =

[l =1fl =k
= > Dify with f; € Ly(0), if for each ¢ € D(2)
lif=k .
(3.7) f z AyDioDiw dx = 0[ z Digf; dz.
O li|=lil=k lil =k

Further let us denote 0 d = {z c O, dist (z, 90) = d}, B(zo, 1) = {#, |z —
— 2y <r}. For 0< 1< N let Z&H(0) be such subspace of Ly(0) that
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sup (¢, [ f@)de)li=||f|£EN(0) < co.

zo €0,0>0 B(zy, @) N O
For the properties of these spaces see, e.g. S. CaMpPANATO [7].
Applying S. CaMPANATO’s method [7] whose generalization for the equation

of higher order has been given in the paper [15] of J. KaprLec and J. NE&as,
we obtain the following:

Theorem 3.5. Let w be a weak solution satisfying (3.7)'. If (3.6), (3.7) and if

—o 5
' N .log G
3.8 1= : >N — 2,
1 §_1
240, 4 C,
log o + log G,
Cy

(3.9) fie L@Y0y), d >0
are satisfied then we obtain
) . i+2—N -
IC &-24Da) < 0@ 3 1l 2 oma, w= 5=

(3.8) ts always satisfied for N = 2. For N > 3 it holds when the positively-

definite matrix o Ay 18 sufficiently mear (uniformly on O) to the unit matriz
2

in the sense of (3.8). The constant A is absoMute.

The Theorem 3.5 is — in certain sense — an analogy of the Theorem 3.1
for k > 2.

If
(3.10) [|Aylled <C <o
holds, then (see [15]):

Theorem 3.6. Let w be a weak solution satisfying (3.7) and let the assumptions
(3.6), (3.10), (3.9) with A > N — 2 be satisfied. Then

2_._—1—_2;1\7 holds.

[|w]|c-vim@a) < C(d) mzﬂk IIfill @0 0 arp), = 2

Replace <¢¢,g-> Q in (3.1) by the expression [ lilz Diy i dx where
<2 lif=k

oxy
312) [ 3 2( )o*"dw<oo

8 =k 1=1
Furbher let, us suppose that (2.2) is valid and (for techniaal reason)
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(3.13) a;=0 for |i| <k, ———O for |j| < k, ay = ay.
According to Theorems 2.2, 3 5 3.6 we obtain (see J. NE&AS [23])

Theorem 3.7. Let w € W¥)(Q2), m > 2 be a solution of the problem (1.3), (1.4)
and let the assumptions (2.2), (3.12), (3.13) be satisfied (the comstants C,, Cy
have the same meaning as before). Then we have
(@) ¢f m =N =2 and
G

<Cd* d>0
oxy

li=k 1=1 Erdll (Da)
A
then ||u||c® %(Ba) < Cd—*—3, (Ais taken of (3.8))
(®) if m >2, N =2, (3.5) has the form sup Z | Diu(z)|2 = Ag < Cid—2

x € Qq li|=

(3.14)

and if (3.14) with

1— %%(1 + Cdyt-T
2.1o 2
® -1 _(,‘1—2
1— C, (1 + Cyd—) "2

1—%ﬁu+ow¢2

log 2A (1 Lo d—«)‘“? + log
— Ul 1+ Csd—a)l-?
2

is valid then |jul|c®wa(g) < < d—k-va,
ud

(¢) isf m=2, N >3, g%i = 0, (3.8) is valid with the constants Cy, Cy from
(2.2) and if (3.14) with A from (3. 8) 18 3atwﬁed then
A—
] T (@) < 08

(d) f m >2, N > 3 and (3.5)in theform sup 2, 1D°‘u(:t:)l2 < C,is satwﬁed
z e

la| =&
Sfurther if (3.8), (3.14) with

. 3C 1-Z
11— Tﬁl(l + Cy)
Nlog

C‘(1+0,,) T

l ==
30, 1-2
1 ——5;(1 + Cy)

A ]

log2A (1 + C’a) -3 + log
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A-N+2 2
is valid then ||u||c™® 2 (84 < Cd™* %
) ifm =>2,N >2,|ul|c® () < Cyandif (3.14) with A > N — 2 is valid then

Ao NS S
lJullc® ~2 (2) <Cd™ "7 7.

§4. The existence of the regular solution. Application of the
first differential.

Let 2 be a bounded domain with infinitely differentiable boundary o0.
Let ay(z, j,t) be real functions with the same meaning as in section §1, defined
for |¢] < k continuous on 2 x(—o0 < {; <) x(0 <t < 1) and continuously
differentiable in {;, ¢t and let ay(x, 0,0) = 0. Using the same notation as
above i.e. ay; = o we suppose

oLy
lail(x’ Ca’ t) - “u(y, Na> t)l <
<C( 2 (Ll + 1) (& —gl* + 2 1Ca— nal)
la| <k la| <k

and the same for %oy ,
(4.1) ot
|a:ij(.’17, Cm tl) S ai](?/’ Nas tl) + ai]'(y, Nas t2) — a’ij(x9 G tz)l <

<0, (Iugk|c.,| + 7)) @(lty — &) & — gl + <Zk e — %al)s

and the same for %’

where 'Cg(s) is a non-negative continuous function for 0 <<s <0, 0 <p <1
and w(s) is continuous function for 0 < s < o0, w(0) = 0.
Let us assume further

4.2) (2 i< 2 i nt)ids

Y . ® a| < i| =|j| =k
where C,(s) is a continuous positive function for 0 <s < oo. Further let
fi € CORD), |i| < k, ug e C®).#(2). Let us denote by G®.u(Q) the subspace

n

!
of C®).+(Q) whose elements are functions for which % =0on 02,1 =0,

1, ..k — 1. (The derivation in the direction of exterior normal.) We look
for such weak solution of the Dirichlet problem u e C®).«(Q) that

4.3)  u— upe CE@)
(4.4) for each pe D) [ I IZ Digay(x, Diu, 1) dz = [ l IZk Digf; dz.
S g <k g i<

Let the functions b,(z, Diu, t), |i| < k, |j| < k be continuous on Q X —o0 <
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<f <o xX0<t S 1 continuously differentiable in (;, ¢, bg(x 0,0) = 0:
ob;

3C ! and assume that by, — vy
Roughly speaking, we shall solve the problem (4.3), (4.4) as follows: We
shall look for such curve wu(t), 0 <t <1 with its values in C®.#() that
u(t) satisfies the problem (4.3), (4.4) with tu,, ¢f;. For this curve we shall

Let us denote by = satisfy the condmons (4.1).

obtain a differential equation %;—b = N[t, u(t)] and we shall look for such

solution that (0) = 0. See J. NECAs [24] see also F. E. BROWDER [4]. Thus
instead of solving the problem (4.3), (4.4) we look for a mapping u(t, v) with
adomain t=10,0<t<1,¢t=1,0<17<1and a range in O®).%(22) which

is continuous with its derivative 2—:‘ (¢, 0) from 0 <t <1 to C®.»(Q) for

T = 0. (The case when ay(z, ;, t) does not depend on ¢ is of great importance.)
Further we require

(4.5)  ult, ) — tuy € C®1(D),
(4.6) @eD@): [ > Digayx, Diu,tyds+ (1 —1) [ > Dighi(x, Dlu, t)

Q i<k Q2 i<k

de=t [ > Digfida.

2 i<k

Further let us assume that for ||u|/ctmug) < R < co the following holds:

if we W (Q2) and (4.7) holds for every ¢ € D(Q):

@7 [ MZ ayy(x, D*u, t) DigDhw dx + [ > by(w, D*u, t) DigDiwdz = 0
Q liljil<k Q il lil<k

then w= 0. This assumption implies the existence of only one element (for

[lu|[c®s) < R, if R < o) we C®u(Q) for which

(48) w—1uyye (OJ(’”»"(D)

(4.9) for p e D(Q2 f] " aij(z, D*u, t) DioDiw dz +
Q |illil<k

Z bij(x, D*u, t) DiDiw da = — f z ( (x, D“u, t) +

Q2 liLlil <k 2 |il<k

abi (a:, Dy, t)) Dip dzx -+ f Z fiDlp dz is valid.

Q i<k

It follows e.g. from the article by S. AgmonN, A. DOUGLIS L. NIRENBERG
[1] or from J. KaDpLEC, J. NECAS [15].

Let us denote by w = N(u, ¢, fi, u,) the mapping that assigns to a functxon
u € C®.»(2) from the sphere ||u||c®:") < R, to the parameter ¢ from (0, 1),
to the elements f;, |i| << & and to the element u, the function w. Now, we
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have for a function w e 6‘("):"(?)'), which is a weak solution of the equation

[ S aylx, Do, t) Dig Dwdx + [ > by(x, D*u, t) D'gDhw dw =

a2 |il.lil<k 2 lillil <k

=/ 2 GDlpdx

2 i<k
that there holds:

(4.10) ||o|| c®#@m) < Cyl||ullc®*G), 1) sz [1Gillc@-*(@)

where Cy(7,, ;) is continuous and positive function for 0 < 7, <0, 0 <
< n3 < 1. According to this it follows:

[ (a) The mapping N(u, t, fi, 1) is locally Lipschitzian: for |ju| lc®m) <
<R <o =12 R <R, 0<t<1, |[fillc®"@m) < B, <,

(4.11) | 2ollc®@ =< B, thereis|fu, —wy||c®h#(@) < O(Ro, By) || — g c®(@),

(b) N is continuous as the mapping u, ¢ - w,
(¢) N is coutinuous in f;, u, uniformly with respect to ||| c®@) <
. <R,0<t<]l

For 7 = 0 we have: if u(¢, 0) is a solution of the problem (4.5), (4.6) for
0<t<eandif 0 <e<l, |ud0)||c®#g < R then

'(4.12) %"E (t, 0) = N(u(t), t, fi, wp), 0 <t < & u(0,0) =0
holds and thus
t
(4.13)  u(t, 0) = [ N(u(s), 8, fi, up) ds, 0 <t <e.
0

- Now, using the standart method -based upon the theorem of contraction,
owing to the validity of (4.11) we obtain the existence of the solution of
(4.13) for some interval 0, e), ¢ > 0; if there is such solution for some interval
{0, &), ¢ < 1 then it also exists for the interval

<0, el>, 1>¢ >e
We assume that u(f, 0). is such solution on the interval <0, &) and that
(4.14) ||IN(u(t), t, fi, uo)llc®#(@) < F(||u®)llc®*@)

holds for ¢ € 0, &), where F(s) is continuous and non-decreasing function for
8 €0, ), F(0) > 0. Let y(t) be the solution of Cauchy problem y(0) = 0,
y'(t) = F(y(t)). Evidently the following holds:

(4.15)  ||u(®)llc®#E) < y(t).
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But (4.15) implies the existence of the solution of (4.13) wherever y(t) is
defined, i.e. for 0 < ¢ < ¢, where

T dz
(4.16) e<0f 4o

According to this we have

Theorem 4.1. Let the assumptions (4.1), (4.2), (4.7) with R = co be sadisfied
and let by(x, C5, t) = 0. Then there exists a solution of the problem (4.3), (4.4) if
F odz
[

) > 1. Otherwise there exists a solution of the problem (4.5), (4.6) for &fy,

I(,i( y- If an a priori estimate ||u(t)||c®*(a) S-‘g< 0 18
known (u is a solutzon of (4.5), (4.6)), where R is from (4.11) then there exists
a solution of the problem because it is possible to set F(z) = const.

eu, where & < f

If there exists a function from (4.14) with 6[ > 1 uniformly with respect

dz
F2)
to some neighbourhood of fi, u, then the solution u(1,0) is continuous in fi, uy in
this neighbourhood.

Theorem 4.2. Let the assumptions (4.1), (4.2) and the following condition (4.17)
be satisfied:

If > llgillc® @) < O, u, being fized, u(t, 0) is an eventual solution for

i<k
(4.17) tug, tgi, then there exists such continuous mom-negative function R(a)

that ||u(t, 0)!c®:#(G) < R(a) and (4.7) holds with 2R(a).

Furthermore let the “a priori” estimate ||u(1, 7)||c®#5) < o hold for wy, f; being
fized. Then there exists a solution of the problem (4.3), (4.4).

Actually, according to the preceding theorem, our problem has a solution
if v = 0 (for considered u, and arbitrary g;) constructed above. (It is possible
to guarantee the existence of this solution also under different assumptions,
see the preceding theorem.) Let A(gi) be this solution. Let us consider the
mapping A(fi — tbi(x, Dfu, 1)) from <0, 1) X C® Q) to CW4D) for 0 <
< 1< 1. This mapping represents homotopy of compact transformations
and the mapping A — w is different from zero on the boundary of the sphere
B,, = ||u||c®)4(m) < 20. Now, for the degree of ma.ppmg with respect to O
and to the sphere in question we have

d[A(fi = bi(x’ Dju, 1)) -, 0, B?o] = d[A(ff) —u,0, Bz,o] =
Hence there exists the solution of our problem.. See J. CroNIN [8].
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ACTA FACULTATIS RERUM NATURALIUM UNIVERSITATIS COMENIANAE
MATHEMATICA XVII — 1967

SOME BOUNDARY PROBLEMS FOR THE EQUATIONS WITH
STRONG DEGENERATION

S. Nixorsk1s, Moskva

Let 2 be a bounded open set of the n-dimentional space R of the points
& = (2, ..., %) With enough smooth boundary I.

We shall consider two cases:

1) ¢ = o(x) is the distance from x to I,

2) o = p(x) is the distance from x to y, where y is a part of ry+y,=1T,
Y71 =0.

Here are two characteristic plots for the case 2)

%

>

> 7
Plot 1. Plot 2.

But I must warn that in different problems under consideration it’s necessary
to propose some conditions on disposition y to y,, as it will be seen below.
We shall use the following notation _
fllso = ([ 1f@)iw dz)'/? (1<p<oo, e< R).

By definition W, () is the class of the functions defined on 2, which
have finite norm

‘ &)
1 fllwhat@ = |IfllLote) +|x12= fF

Lp(Q) '
Here 2 extends on all derivatives of the order 7. "At first we shall mean that

1
T —_—>0
+« »
and 8—1—[1:‘—}-!1—-1-] ‘
P. |
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is its entier. Thus s is an integer depending on 7, «, p and satisfying ine-
qualities
1<s <.
It is well known (see [1] theorem 38) that every function fe Wp (Q) has
traces on I'.
They are in the case 1)

okf
5;;’—('1'—(;)}( (K—O,l,...,s—].)
and in the case 2)
okf
Wy—‘(p}( (K—O,l,...,s—l),
oKf
__3hK r1_¢K (K—O, l, v o« T—l).

If

1
T + o — _IT < 0
well let ¢ = 0. It is natural because in this case function f of the class Wy, o(£2)
generally speaking has no traces on
1) I"'or 2) y.
But in the case 2) f has still traces on y,, corresponding K =0, 1, ..., 7 — L
If s — 7 we shall say that the weak degeneration takes place and if s < 7 —

— the strong one.
With the class W;,,(2) (p = 2) we relate a differential equation

(1) Lu= 2 (=1)120QqU®)=f ref, Qu = Qi ()

|KLjl[<*
ZQK;EKE:> fo,

~ with conditions
Kl <t K|=7

M
lQKl(z)l < ZGKl ’ okt = T + o — max (lK|’ Ill)’
aky < %

Here Qx; are functions of x and vector parameters K, ©; & are variables
related with considered vectors K and x, M don’t depend on z, &k, &i.

As asualy to consider questions of the smootniss of the classical solution
it is necessary to propose in addition the usual conditions on differentiability
of Qm.'

Such restrietions on the coefficients are necessary in our considerations
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too, because we consider not only generalised solutions but classical ones
(belonging to W; ,(2)). '

We consider here the problem:

To find solution of the equality (1) belonging to the class W;,(£2) with
boundary conditions 1) or 2).

This problem includes at « = 0 the usual. Dirichlet problem for differential
equation of the elliptic type.

If s = = we shall call our problem ‘“‘the weak problem’ and if s < 7 — “‘the
strong one’’. '

The series of investigations has been devoted to different problems with
degeneration; see [16] §6, [18] where are given the lists of literature and also
[1—15], [19—23].

Now we are interested only in the mentioned formulated strong (boundary!)
problem (s < 7).

First investigations on this problem referred to the case 2) for the equation
of the second order when therefore boundary values are given only on a part
y of ', (because s = 0 in this case).

M. B. Keagum [10] has considered (in metric C) such a problem for the
equations, which includes in particular the following one

2 2
(2) Lu=%+2—;‘§ym+cu=0
on a two dimentional domain of such a kind (Plot 3). M. B. Kempum has
discovered in particular that for m > 1

7 >
Plot 3.

the Dirichlet problem for the equation (1) is not correct, but it is perfectly
correct if to give boundary values only on ;.

It is possible to show that in the case 2) of the strong problem for the
equations of the high order there exists the unique solution.

But the cass 1) is quite different. In general in this case uniquess breaks
for the strong problem. .

For instance uniquess breaks for the equation (2), where ¢ = 0, because
every constant then satisfies corresponding homogeneous equation.

Recently (1964 [18]) II. M. Jusopxuun and I have proved that the strong
‘problem in cas2 1) has always the unique solution if 2s >, and in case 28 < 1
it is mnot right, generally speaking. :
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From the point of view of the variational method these questions may be
explained as follows.

Uniquess of the generalised solution of the boundary problem depends
essentialy on answer to the question: does the inequality of the Poincare

type (for p = q):
Lp(:z))

(3) Ifllp@ < ¢ (Z |lpxllr + ? ’
. Pl
|K|=7

hold or not?

Here the norms ||pk||p are taken in corresponding metric W,(I").

As for the uniquess of the classical solution this question in strong problem,
to compare it with the weak one, has not principal differences.

Let A be an open set, which is cut out from a circular cilinder by two not
intersecting
smooth surfaces 8; = S§,(4), 8; = Sy(4). It is important that every line
belonging to our closed cilinder intersects S;, as well as S, only at one point
being not tangent to 8, (S,) at this point. Such a domain A we shall name
a regular one. We propose also that ¢ = ¢(A) is the side surface of A without
points belonging to §,, S, and name the a X e of the considered cilinder the
a X e of our regular domain.

Let now as above 2 be an open bounded set with smooth boundary I

By definition A is a regular ‘“‘bridge” of @ if it satisfies the following con-
ditions:

f(K)I
Qa

SN

6IA)

Si(N) .
Plot 4. Plot 5.

1) A is a regular domain belonging to 2,

2) 8,(4), Sy(4) C T,

3)o(A) ¢ I.

We proved [17] the following

Lemma. It is possible to cover 2 by a finite number of the regular bridges A.

For istance, a two dimentional circle we can cover by two regular bridges,
as on this plot ’
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The proof of the Poincare inequality in the case 1) for 2s > 7 may be
obtained by following steps.

At first we prove (II. 1. JIusopkur and C. M. Hurombcruit [18]) this ine-
quality for the functions given on a one-dimentional segment [a, bl:

*|iLp(a, b)]
It is right for 2s > 7, but it’s not right for 2s < 7. Here C} is a constant
continuosly depending on I =56 —a > 0.

The next step is the generalising of this inequality for regular bridges A:

(4) |Ifllzo@n < Ci { 2 (FEB + IFE9) + f

S—1 %
(5) HfHLp(n < 0{ Z (HexllLaesy + H‘PK“LP(S-)) + 352 ’
9c Lp(q)
_ S
PE = 38K s

Here o, is the distance from x to I" in direction of the axe & of the bridge.
To obtain (5) we introduce the new coordinates (&, ) = (& 71, -« s Mm+1)-
The coordinate axe & is directed as the axe of the considered bridge and the
other coordinate axes 7, ..., jn—, are for instance ortogonal to it.

First we use the inequality (4) for f = f(&, ), when 7 is fixed, then take
(4) in power p and integrate on 7. It leads to () if to take in account that the
constant in (4) is bounded for 0 < I, <1 <1, ‘

Lastly we substitute o(z) instead of g.(x) in (5). It is possible because
0; and ¢ have the same order (c,o(%) < g;(%) < cy0(z)) for all 2 belonging
to a regular bridge A.

It is also possible to substitute normes ||gx||p instead of the normes

|l@xllLpesy (¢ =1, 2), where already @g = ET’}: and || || are understood

in the corresponding metric Wi(I") (instead Ly(I")). Finaly using the mentioned
cover lemma we obtain the Poincare inequality (3).

To prove the inequality (3) in the case 2) one can begin from the following
one dimentional inequality

f®

(@ — a)

Lp(a.,b) } ;

Here degeneration takes place only at one boondary point of [a, b], namely
at a. But there is no at all degeneration at other boundary point b.

Let’s now consider the same domain as on the plot 1. We propose also that
our domain may be covered by bridges which connect either y, with y, or

£—1
(6) 1fllzpaty < ce{ % &1 +
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y, with y,. For the bridges of the first kind we use the inequality which
generalises (6) and for the ones of the second kind the inequality (5) for
=0, :

Pay attention that (6) differs from (4). In (4) C;; is continuous only for
1> 0, and in (6) for I > 0. The last gives possibility to generalise (6) for
domains, more general than on the plot 4.

S
O >
S S
Plot 7. Plot 8.

Now surfaces §; and S, can have common points.

Some remarks.

1) The mentioned method of the covering 2 by regular bridges may be
used for transfer many other inequalities from one dimentional segment to
the domains with enough smooth boundary, for instance, inequalities in the
approximation theory by polinomials.

2) It is possible to extend the method on the domains with Lipshitz boundary.

3) 10. Canmanos received some development of the results. Namely he
has obtained the corresponding inequality in the case of the strong degene-
ration on a domain with pricked out a point.
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ACTA FACULTATIS RERUM NATURALIUM UNIVERSITATIS COMENIANAE
MATHEMATICA XVII — 1967

THE #7.* SPACES AND APPLICATIONS TO THE THEORY
OF PARTIAL DIFFERENTIAL EQUATIONS

GUIDO STAMPACCHIA, Pisa

§ 1. The ¥».* gpaces.

In this lecture I propose to expose some results about the spaces #7-*and
some of their applications to the theory of differential equations of elliptic
type.

The theory of the #7-* spaces permits us to unify in a single family the
spaces of Holder continuous functions and the spaces L?.

For some particular values of A these spaces were already introduced some
time ago by C. B. MorreY [16] and were used in the theory of differential
equations of elliptic type both linear and non — linear.

Let f(x) be a function defined, for simplicity on a cube @, of R and belonging
to LP(Q,) (p = 1). The function f(x) is said to belong to the space of Morrey
L».* if there exists a constant K such that

(1.1) [Ifz)? do < K|Q| I
Q

for every subcube @ of @, whose sides are parallel to those of ¢,.
We denote by |@| the n-dimensional measure of Q.
If 2 > 0 one obtains a Banach space defining the norm as follows

|Ifl22 = sup Q41 [|f(x)? da .
Q<Q, Q

The condition that A >0 is essential because if 4 < 0 then one would
find that the only function belonging to L?»* is the function 0. For 4 =n
evidently we have L?:» = L? and for A = 0 we have L?.= L= for all p > 1.

More recently [13], [14], [1], [21] the spaces P-4 were introduced in the
following manner: a function of L?(Q,) is said to belong to #2,* if there exists
a constant K.such that

(1.2) f If(@) — fol? dz < K|Q|'~#/n,

9 Equadift IT. 129



for every subcube @ of ¢, with sides parallel to those of Q,, where fo denotes
the (integral) mean value of f on Q. Let us set

(1.3) (Y = 5up Q1" [ If@) — fol? da
and
(1.4) 11l gop,a = Ifllez + [f] g -

In this manner ||f]|| P will be a norm of the Banach space .#?.* while
[f] i is on the other hand a norm if we identify two functions which differ

by a constant.

We observe that a function f belongs to #7.% if and only if there exists
a constant K and for each subcube @ = @, a constant fg such that

(1.5) f If(x) — Fol? de < K»|Q|1-4/n

for any subcube @ of Q0 with sides parallel to those of Q,. We obtam a semi-
norm equivalent to [f] | o, if we take

sup inf |QI*/*~1f | f(x) — fol? d
Q<Q, Q
where the infinum is taken over all the constants fq associated to f and Q.
If ¢ >»p and —‘;‘— g% then £+ < ¥p.2,

If 2 > 0 the two spaces #?.* and L?.* coincide and hence one can assume -
f@ = 0 in (1.5). But the spaces L?.% and .#?.0 are different. In fact, while
the first coincides with the space of all (essentially) bounded functions the
second coincides with a space studied by F. Jou~ and L. NIRENBERG [13]
which consists of functions of bounded mean oscillation and we denote this
space by &,.

The space &, consists of functions f(x) for which there are two constants
H and B such that

meas {x;|f(z) — fol > o} < He=(Q)
for every subcube @ of @,
This is equivalent to say that there exist two constants ¢ and K such that

f e?f@ 1o do < K|Q),

“for every cube @ cont.ained in Q,.
For p < A < 0 the space #».* coincides with the space of Holder continuous

functions C,,, where the exponent « is giveri by &« = — —;'7 . In fact, setting
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floa= sup [MZ) =)

- -
%' €Qp 1-’17' — x"ll

the two norms [f],,, and [f] wp after identifying two functions which differ

by a constant, are equivalent. This result was proved (independently) by S.
CampaNaTo [1] and N. MEYERS [14].

It is important to observe that the role played by the cubes @ in the previous
definitions can be substituted by any family of sets {E} which are “regular”
in the sense that for each set E of the family there exists two cubes @' < Q"
such that

, - Q'
c Ecq@Q”, —1
Q vl @l <

where » is a constant independent of the particular set E considered.

Thus one can remark that the property that a function f belongs to a space
&% is not altered by a change of variables which is bilipschitzian.

In a manner analogous to what one does in the case of the L? spaces one
can introduce also the weak .#7.* spaces. A function f(x) is said to belong
to the space .#?:* — weak if there exists a constant K such that for each cube
Q < @, with sides parallel to those of @, we have

p
meas {x €Q; |f(@) — fol > 6} < (%) - |@—Aim.

The introduction of the spaces #?,* permits us to rediscover and to generalize
a classical result of C. B. MORREY.
Let u(x) € H-?(Q,)™ and suppose that for each subcube @ of @ we have

[ |uz|P dx < KP|Q2—2Im, 0< A<,
Q

with a constant K independent of Q; that is to say uz € L?*. Then, if p < 4
the function u belongs to #?.* — weak where '

and

meas {x €Q; |u — ug| > o} < (%)P |Q[1—2In,

1) We denote by H1.»(2) the completion of the functions » which together with their
first derivatives are continuous in 2 with respect to the norm ]

Hull,,l,»( y = ||““;,’(1) + 3 ""‘ﬂﬂt,'(.?)
: 1

/

while H}-»(Q2) denotes the closure in H%?(Q) of the functions with compaot suppoi't.
We will write, in the following, H! and H} instead of H!.? and H}:2.
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If, instead, p = 2, then u e £1.0= &, and

[u]‘_g’m’0 < K.

Finally if p > 4 then u e #L" with u = % — 1; that is u e C,, ; where
A

por i

These results for A = n take a weak form of the well known Sobolev ine-
quality.

§ 2. Interpolation in the spaces #».%,
The pi‘oblem of interpolation in the spaces #7.% presents itself in an
nteresting manner. To this end we shall introduce the following 'definitions:

Definition (2.1) — A linear operation T on functions f defined over Qo s
said to be of strong type L[p, (¢, u)] if there exists a constant K, indepedent
of f, such that

(2.1) [Zf] o, < Kl 1122

the smallest of the constants K in (2.1) is called the strong L[p, (g, )] morm of T.

We now introduce the following expression:

D, (u, o) = 3\:8 [1Q#/»—1 meas {x € Q; |u(x) — ug| > a}l.

Definition (2.2) — A linear operation T on functions defined over Qo s said
to be of weak type L[p, (¢, )] if there exists a constant K, independent of f, such
- that ‘ ' '

\

(2.2) © @(Tf, 0) < (KLi”Ef)q;

the smallest of the constants K in (1.6) is called the weak L[p, (g, u)] norm of T.
Theorem (2.1) [21] — Let [py, i, ui] be real numbers satisfying the conditions
Pz, pi<q (t=12); p,#p, and ¢, # g,
For 0 < t < 11let [p(t), q(t), u(t)] be defined by the relations
A bl SrabL gl N Sl PO
B roPE S e T gy g
ARy e Y
q 1 qs

(2.3)
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If T is a linear operation which is simultaneously of weak types L[pi, (gi, ui)]
with respective norms K; (1 = 1,2) then T is of strong type Z[p, (¢, u)] for
0<t<1land

[Tflep@wn < A KG9 Ki||fl|L2Qy)

where A is a constant, independent of f, but depending on t, py, qi, pi and it is
bounded for t away from 0 and 1.
An useful corollary of theorem (2.1) is the following.

Corollary (2.1) — Any time a linear operation T maps LP, into a space of
_Holder continuous functions and LP: into a (weak) L% — space, then exist there
a special P such that T maps LP into the space &,.

For generalizations of this theorem see [8], [9], [18].

Theorem (2.2) [5] — Let [pi, (qs 1)) be real numbers such that p;, gz > 1
(1 =1, 2). If T is a linear operation (in general on complex valued function
on Q,) which is simultaneously of strong types L[pi, (qi, pi)] with respective
norms K; (1 = 1, 2) then T is of strong type ZL[p, (¢, n)] where p, q, u are defined
for 0 <t <1 by (1.6) and further the following estimate holds

[w] pan < K §0 Kil|u||ze .

The previous theorems generalize respectively the theorems of interpolation
of MarciNkIEWICZ and of Riesz—THORIN.

Another theorem of interpolation is found to be very useful; it completes
the theorems above. For this purpose we shall introduce the spaces N?.

We shall denote by S the family of systems S of a finite number of subcubes
Q: no two of which have an interior point in common and having their sides
parallel to those of @, (U @i = @)

1

For any (real or complex valued) function w e L(@,) and for any 1 <
< p < +oo we consider the expressions of the form

5,-3 | (f_} lu — ug,| da|P |Q:|*-P

where Q; runs through a system S e S.
For 1 < p < +o0 set

[ulve = sup_ {2 | [ lu— uq( da|? [@-»}'?
(Q)=8e8 t &
and the following.

Definition (2.3) — A function u is said to belong to N? 1 <p < +o if
[uly® < +o00. We observe that [u]y® defines a sem;-norm in NP dmi we obtain
a Banach space by taking : ,
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[lu||n? = |jul|zr + [u]ne
as the norm in NP,

If ¢ > p, then N2 < Np»,
If u e LYQ,) then we have

lim = =&,
g o [u]N" [u]gl,o 0

ie. we may set N° = L0 = &,
In connection with these spaces N? the following result due to F. JOoHN
and L. NIRENBERG holds [13].

If w e N? with p > 1 then there exwts a constant C such that, for any cube
Q < Q,, we have

meas {x eQ; lu(x) —ug| >0} < C ([ﬂm)p
Conversely, one can show that if u is a measurable function satisfying the
condition
meas {x €Q; |u(x) — ug| > o} < C (K(Q))
for each cube @ < @, where K(Q) are constants with the following property:

for any system {@;}= S e S, introduced above, and for some r < P we
have

2 IKQ)r < [KQ)I",
then w € N?» and we have

2
[u]N” S} __—_(P — 1)1“; K
In fact, we have

f [u(x) - ug| dz 3@2_1{% |Q|2-1/»

from which it follows that for {Q;} = S e S,
: Y4
> 100121 [ 1u(e) — uad dalr < 2~ (K QoI K@) < 2 1K)
Qs 4 r—1

- Admitting this result we have the following theorem of interpolation.

: Theorem (2.8) [22] — Let T be a linear operation defined on the class F of
( real valued) simple functions on Q, such that
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[Tu].g(l.o) < K],““HL"I ’
[Tuln® < K,||u|[L?
where Py, Pg, @z > L with g > p,. If p, ¢ > 1 are defined by

(2.4) 1_0a-8,¢ 1_¢

p y 21 y 2 q 92

then
[|[Tu — (Tu)g,llee < KK GOK||uller for ueF

where X is a constant which is bounded if ¢t is away from 0 and 1.
The theorem is valid also for p, = + .

Before giving some applications of this theorem we observe that if fe L? —
weak and

meas {z €Q; |f(x)| > 0} < (K(Q))

and if there exists an r < p such that >, |[K(Qy)|" < |K(Q)|", then

[f]n» < const |K(Q)|.
In fact, then there exists a constant C(p) such that

K
meas {z <Q; [f(@) — fol > a}som( K@y
In particular, the assumption is satisfied provided fe L? with K(Q) =
= Jfi» d=.
We deduce from theorem (2.3) the following results:

Theorem (2.4) — Let T be a linear operation defined on the class F of simple
Sfunctions on Q, such that

[Tu] g0 < Killl|z7; | Tullze < K |ul|zos

where py, pg, ga > 1 with gy = p,. Then
1Tul|ze < X KG9 KY||ul|z?,

where X i3 a constant which is bounded if t ts away from 0 and 1 and p and g
are given by (2.4).

The theorem 18 valid also for p, = + oo.
Theorem (2.4) can be extended in the followmg way

Theorem (2.5) — Let T be a linear operation defined on the class F of etmple
functions on @, such that

[T“]gl’o = Kl“““l)”l Y3
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meas {|7u| > o} < (%)“

where p, > 1, p, > 1, g, > 1. Then
1Tullze < o Ki=t . K| |ul|z»

where A" is a constant which is bounded if ¢ is away from 0 and 1 and p and q
are given by (2.3).

The theorem holds also for p, = + co.

We are going to sketch the proof of this theorem making use of a trick
introduced by CAMPANATO in giving a new proof of theorem (2.4) [4].

Let 8 a fixed system of a finite number of subcubes @i no two of which have
an interior point in common and having their sides parallel to those of @,.
Set

T (u) =I—$—l[éf [Tu — (Tu)g, da.: in Q.
The map .7 () is sub-linear and satisfy
I (w)llze < K| [u]|z2,
meas {|7 (u)] > o} < ({Q’HZI&) qz.

The first inequality is obvious; the second one can be proved easily. In fact
if we denote by Q; the cubes of S for which one has

ST — (Tl dw > oy,

it follows
, 1 . 1"1/42
o D =2 4 Tujdz <2 (1 — ) Kl (Zw) ,
and then

' q
meas {\7°(u) > o} = > 0} < {2(1 ~ q%)Kznuan/o} "
. _ 2
'Applying the theorem of MarcINKIEWICZ it follows that

17 (w)llee < " K}t Kb||u||Le

where p and ¢ are given by (2.3) and ¥ is a constant which is bounded if ¢
stay away from 0 and 1.

But, from the definition of F (), we have
S| [ e — (Twal dafe Qu-<ie < o Ki~+ . Kyjjull,



and thus, since § is arbitrary
[Tulve < A K1~ Kj|u||L»

therefore, applying the lemma of F. Joux and L. NIRENBERG,
A'Kit K%llullm)“
= .

meas {|Tu — (Tu)g| > o} < (

Then making use again of the theorem of MARCINKIEWICZ one has

|Tu — (Tu)ellze < ™ . K}~ . Ki||u||r»
and from this the conclusion of the theorem follows easily.
It would be interesting to know whether the theorem (2.5) holds for g, = I.
Theorem (2.5) can be considered as a generalization of the theorem of
MarcINKIEWICZ where the space &, replaces usefully the space L=,

From the corollary (2.1) and theorem (2.5) the theorem of interpolation
follows:

Theorem (2.6) — Let T be a linear mapping such that, continuously
T : L, - 0%
T : Lpy, > L3, (weak), g, > 1, p, < ¢,

1 —
then,foriz t+—t,0<t<1,setﬁ=a/(m+ﬁ)
D P P2 92

%, for  0<t<®, ﬂ:(l———t)a—g‘t
2
T:Lr—>{ &, for t =19
1

La, for 9 <t<l, %=_{(1+@)t—°iq—=}

92 n n;

The previous results on interpolation show that the #?.* spaces form
a family of spaces of interpolation with respect to special families of spaces,
the L?» — spaces. There might be more general families of spaces than the
L? spaces with respect to which the spaces #?.* are spaces of interpolation
(see [19]), but, on the other side, the spaces #2.* are not spaces of interpolation
with respect to the family of the spaces #7.* themselves. E. M. STeIN and
A. ZyeMUND [24] have indeed proved this fact adapting an example given by
HarpY and LirtoEwoob [11]. They have proved that there exists a linear
mapping 7' which maps continuously C%% into 0%¢%, L? into L? but it does
not map &, into &,,.

Thus, it is interesting to find families of operations which leave the spaces
Z2,* invariant. One of these families of operators has been found by J. PErt-
RE [17]. :
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This family includes the singular integral transform of CALDERON—Zya-
MUND.

A consequence of theorem (2.4) is the following.

Theorem (2.6) — If the operator T leaves the spaces £P+ invariant Jor a fixed
P and for 0 < ). < m, then T leaves invariant the spaces L9 for all q =>p.
In fact, one has ¢

T: L&,
T:Lv »Lp
and, thus, from theorem (2.4), follows

T: Le—> Le for q =>p.

Making use of the interpolation theorem (2.4) it is possible to give an easy
proof of a theorem by HORMANDER [12], (see [23], [19]).
Consider the translation invariant mapping

Tf=J K@ — y) f(y) dy
and assume that the Fourier transform ﬁ of K, as distribution, satisfies:
II/E' ()l < A. Moreover assume that
[ 1K@ —y)— K(z)| dz < A.

|l =2[yl

Then Tf maps L? into L? because of the first assumption. It can be proved
that 7' maps L*® into &, [23], [19].

It follows, from theorem (2.4) that Tf maps L? into L? for p > 2.

By a duality argument the same conclusion holds for p>1

The proof that T maps L® into &, is easy and we are going to sketch it
here. :
. Let f be a bounded function (|f(x)| < 1) and write u(x) = Tf. Fix a cube

Q, which we may assume centered at the origin. Let us split f=f, + f;
where f,(x) = f(x) in the sphere S’ of diameter twice that of @ and having
the same center that Q; f,(z) = 0 outside this sphere. Werite ui(x) = T(fi)
(6 = 1,2); u(x) = uy(x) + y(2).

Now :
éf [uy(x)2 do < 42 g lfi(@)|2dz < A2¢|Q|.
Next
uy(2) = [ K(z — y) foly) dy.
Let
AR uQ = [ K(y) faly) dy.
'Therefom : i

lus(@) — ugl < [ |K(x — y) — K(y)] < 4.
yveSs
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Combining the informations above we get
g | 8o — welrdz < ax1 1)
Q

ie.: u €&,

§ 3. Application to the theory of ditferential equations.

C. B. MorrEY has extensively used the spaces #2.4 for 0 < A < n in the
theory of differential equations of elliptic type linear and non-linear [16].
Some of his results can be extended making use of the spaces #2.4 either
for positive or negative values of 4. We mention the following theorem which

generalizes a theorem by MORREY [15]. It can be proved essentially in the
same way.

Let ay(x) (4,5 = 1, 2, ..., n) be bounded measurable functions in an open
set 2, satisfying

L...n

> ay(@) &d; = »(§)? v=const >0, EeRn

)

and let f; be n functions of L2(2). Let u be a function of H(Q) which, with
the usual convention on the sum, satisfies

(3.1) Jau(x) UgiVg; dx = [ fivg, do for all v e H}(R2).
2
The following theorem holds

Theorem (3.1) — There exists a constant Ay, 0 < Ay < 2 such that, for f; €
€ P24 with Ay < A<, one has, in any Q2 with Q' < Q, uy e L3 and,
conséquently u € LA < L11—2 where %=%——% for A > 2, and u € L24-2
for A < 2.

In [15] this theorem is proved assuming 4, < A < 2; with such a limitation
the function % is Holder continuous.

From theorem (3.1) and wusing the intérpolation theorem (2.4) it is
possible to deduce some estimates found in [20]:
If fieIp, p > 2, then (i) uwe Lp* where 1%:-;7—-:? jor p< m (i)

u € &, for p = n, (i112) u 18 Holder continuous for p > n.

When in (3.1) the coefficients ai(x) are assumed to be Holder continuous
more informations can be obtained for u.

CamPANATO [2] has proved the following theorem.
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Theorem (3.2) — Let fi be in £2%, with — 2 < A < n, and let Q' be a open
set such that Q' < Q.

(2) If the coefficients ay; are continuous and 0 << A <n, then, uzy € L% in Q.
(1) If ay are Holder continuous in 2 and A = 0 then, in ', uz € &,.

(#38) If ayy € CO%*2 and —2 < A < O then Uy € £ = 00—2/2,

If Q is “smooth” and u € HY(RQ), then the same conclusions hold in Q.

This theorem unifies CACCIOPPOLI—SCHAUDER estimates with MORREY’S
estimates. ’

The proof of this theorem does not make use of the potential theory.

From +theorem (3.2) and the interpolation theorem (2.4) it follows that
when f; € LP(Q), p > 1 one has uz; € L?(2). This method has been used in [6].

It should be mentioned that a generalization of the spaces #7-%, with respect
to a different norm in R”, has been considered. This generalization turns out
to be useful in dealing with parabolic and quasi elliptic differential equations.
See [7], [3], [10].
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ACTA FACULTATIS RERUM NATURALIUM UNIVERSITATIS COMENIANAE
' MATHEMATICA XVII — 1967

INVESTIGATION OF THE SOLUTIONS OF DIFFERENTIAL
EQUATIONS ON AN INFINITE INTERVAL AND THE FIXED
POINT THEOREMS

M. Svec, Bratislava

The fundamental question which is to solve in the theory of the differential
equations is the question of existence. It can be solved by various methods,
chosen following the made assumptions and the expected properties of the
solution. In the last time the methods based on the theorems of the fixed
points seem to very efficient. Those theorems serve as a very important
and convenient way, and we can state that they are the mdst elegant, for
the proof of the existence of the solution determined for instance by the
initial conditions (not only for the proof of the local existence, but also of
the existence in large). Then there are boundary-value problems, the linear
problems, the problems of the existence of the periodic or almost periodic
solutions, the existence of bounded solutions, of monotone solutions or of the
solutions having other required properties. In all this problems the theorems
of the fixed point have been used with a great succes. I could quote a very
long list of the works concerning with those problems (to begin with the
works of G. D. BirkuoFF, O. D. KELLOG, R. CAcCIOPOLI, SCHAUDER, LERAY
to the last works of KRASNOSELSKI, BROWDER, CESARI, HALE, URABE,
Kx~oBrocH, ConTi, KaRUTANI, LAsora, OpiaL, HammMovicr, BieLecki, Cor-
DUNEANU and others).

I will consider the theorem of ScHAUDER. and indicate some of the variants
which are very convenient especially in the case when the existence of solu-
tions is to be proved with the required properties in an infinite interval.

We find the theorem of SCHAUDER quoted in the literature essentially in
two forms of what the following form seems to be more ¢onvenient for
application: ,

Let M be a convex and closed set of a Banach space. Let T be a continuous
operator on M such that 7M < M and T M is (relatively) compact. Then T
has at least one fixed point in M.

In utilizing this theorem one takes for M generally the closed sphere which
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is evidently a convex set. Then there are three things to prove: The continuity
of T on M, the transformation of M by 7 in itself and the compactness of
TM. 1t is chiefly the compactness which gives many difficulties. It can be
proved often by use of the theorem of Arzela, but this theorem requires that
the domain of the definition of the functions of 77M be bounded. If this
domain is not bounded, it is possible to use the theorem of Hausporr of the
existence of the e-net.

In the following lines I will consider the cases where the interval of the
definition of the functions of 7'M is not bounded and I will show, in using
the notion of the quasiconvergence, how to evade the difficulties which can
arise. In the first place I shall try to explain the ideas on a concrete Banach
space and to prepare everything in order to their application in the dofferential
equations of the n-th order.

Let An—, be the set of all functions which have, on the interval J, the
continuous derivatives till the order » — 1 inclusively.

I must give some definitions.

D,. Let fi(x), k = 1,2, ..., be the functions of Apn—,. We will say thet the
sequence {fy(x)} converges quasi-uniformly (or shortly q-converges) to the function
f@).on J, if for every xedJ and i =0,1, ..., n — 1, klim JeD(z) = fO(x).

We write fi -> f.

It is evident that every subsequence of a sequence which g-converges to
f(zx), g-converges to f(x).

D,. Let Sy—, be the Banach space of all functions of An—,, which have the
bounded derivatives till the order n — 1 inclusively. The norm is given by the
Jormula

If@)ll = max {sup|f@®(z)}.
: 0sisn—1 J

It is easily to shown that the convergence in this norm implicates the
g-convergence, and that is essential for us.

- Dy. The infinite set M < Sy, 18 said to be g-compact in Sy—, if every sequence
extracted from M contains a subsequence g-convergent to a function of Bais =

It is to be noted that the limit of a g-convergence sequence of S,_, ought
no to be of 8,—;. '

D,. We will say that the set M < Sy, ts q-closed if the following implication
holds: {fee M, fx -> f} > {fe M}.

D;. We will say that the functions of the set M < Sy,_, are uniformly bounded
on J by a number K, if |[f®(z)| £ K for every xeJ,i=0,1, ..., n—1 and
Jor every f(x) e M. We will say that the functions of M are equicontinuous on
J if holds: for every e > O there gxists 8(c) > O such, that for every f(zx) € M, for
4=0,L ..., n — 1 and for |# — 2’| < 8(e) holds: |f®(z)— fO(2')] < e.
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1t is easy to prove [2]:

Lemma 1. If the functions of an infinite set M < Sp—, are untformly bounded
and equicontinuous on J, then M is g-compact in Sp—1-

With the help of the g-convergence we can define the g-continuity of an
operator T on Sy, (or on a set M < Sp—y).

D,. An operator T on Sp—y into S8p—y (on M into Sp—y) i3 g-continuous on.
Su—y (on M) iff the following implication holds: {fi Lot fro, €804} =
= {ITfe — Tfll >0 for k >0}, ({fi >f, fru fe M} = (IITfi — Tfil >0 for
k —o}). : . 5

The ¢-continuous operator has the following (for us very important) pro-
perty):

The q-continuous operator is also continuous.

Lemma 2. If M < S,_, is g-compact in Sp_, and if T is q-continwous
operator on M into Sp—y, then TM <= Sp—, is compact in Sp—. (See [2]).

From this property follows immediately the first variant of the theorem of
SCHAUDER [2].

Theorem 1. Let T be an operator q-continuous on M < Sy—,, let M be convex,
closed and q-compact, and let TM < M. Then T has at least one fizwed point
on M. '

The assumption of the theorem of SCHAUDER mentioned above that T M is
compact, is substitued here by the assumption that T is g-continuous on M
and that M is g-compact. For which follows the following lemmas are very
important. '

Lemma 3. Let the functions of M < Sp—, be uniformly bounded and equi-
continuous on J. Then the functions of the convewe hull M of M and also the
functions of the closure M of M are uniformly bounded and equicontinuous
on J [2]. : :

Lemma 4. If M < Sy, is convex, then the closure M of M is also convexe.

Now we are able to prove the

Theorem 2. Let T be an operator q-continuous on Sp—,. Let M < Sp_, be
o convex and closed set. Let TM < M and let the functions of TM be uniformly
bounded and equicontinuous on J. Then T has at least one fized point on M [2].

The proof of this theorem is based on the fact that, following the lemmas 3

and 4, the closure of the convex hull TM — N of TM is a set of the functions
which are uniformly bounded and equicontinuous on J. Following the lemma
1 N is g-compact. But this set is convexe and closed and N < M. From here

we have: TN « TM < TM — N. The application of the theorem: 1 finishés
the proof. P . A el
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For the applications the following theorems are more convenient [2].

Theorem 3. Let T' be an operator on Sy, such that the following nnphcatwn
takes place:

{fe, f € Snrs f = f, {anll} bounded} = {||Tfi — Tf|| - 0 for k > o0 }.
Futher, let M < S,_, be a convex and bounded set and TM < M. Let the
Sfunctions of TM be uniformly bounded and equicontinuous on J. Then T has
at least one fized point in M.

Theorem 4. Let M < S,_, be a convex and bounded set, let T be an operator
q-continuous on M such that TM < M. Let the functions of TM be uniformly
bounded and equicontinuous on J. Then T has at least one fived point in M.

The proof of those two theorems is not different from the proof of the
theorem 2.

We shall now proceed to the application of those theorems on the differential
equations.

First of all we need the followmg lemma.

Lemma 5. ([1] and [2]). Let Q(x) be a function, which is, on the i:terval
(8,0), —00 < @, continuous and non-negative in such a way that it is not
identically zero on mome of the subintervals of the interval (@,c0). Then the
differential equation
Q) u® 4 (—1)+1Q(x) u = 0

has a solutum u(:v) having the following properties:

(=1)ku®(@) >0 or (—1F+lu®(zx) >0, k=01,...,n—1,
li *®) () = O =1,2 ... —1
(V) | empu®@) =G =,

- lim u(z)  exists and is finite.
1t holds yet that tim u(z) = 0 iff [ 28-1Qx) dz — 0. If [ an-1Q(x) dz < oo,

there is exactly one solution. (excepted the linear dependence) having the properties
(V1). . In this caee lim u(z) # 0, and we will say that u(x) has the properties (V).

T —>o0
Let us now consider the differential equation
(B) o, P (o 1)"“3(93, Y,y D)y =0

Has ﬂus equatlon & eolution having the properties (V) when the function B
has similar properties as those of. Q(a:)i The followmg theorem gives an
" affirmative answer [2].

Theorem 5. Let be the following condstions fulﬁlled
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1. The function B(x, u), u = (ug, %, ..., Un—;) (U betng a vector with the

terms ug, Uy, ..., Un—y) 18 in the domain
Q:a<z <00, —00 < g < 00, 1=0,1,...,n—1,
continuous in (z, u) and non-negative such that for every point ¢ = (cy, ¢y, - . .,

tn—) 7 (0,0, ..., 0) the function B(x, c) equals identicaly to zero in none of
the subintervals of the interval (a, o). ‘

2. B(x, u) is monoton in every one of his variables u;, i = 0,1, ..., n — 1,
for wy = 0 as well as for ug < 0 (the monotony for us = 0 can be dzﬁerent from
that for u; < 0).

3. For every point € = (Cg, €15 - - ., Cn—y) 18

[ a"-1B(z, c) dx < co.
4. lim % fx"—zB(x, c)dz = 0 for |c| = Z les] £ &k
e . i1o : _

Then through every point (%, Y,), % € (@, 0), Yo 7 0, passes at least one
solution z(x) of the equation (B) having the properties (V) on the interval of his
existence (which is not smaller then (x4, 00)).

We draw a sketch of the proof. Let be J = (z,, ), x, > a. We are looking
for the solution z(z) of (B) in the space S,—,. Let be Gy = {f(x) € Sn—y| ||f(@)|| <

< k} (the sphere closed). Then from the monotony of B(z, u) in u; follows
that for every f(x) € Gy

B(z, f(), f'(x), ..., f®D(x)) = B(z, f(z)) < B(x, 8, %1, - .., On—y) = B(x, 0)
where {¢ means one of the numbers 0, k, —k according to the monotony of B
in ;. B(z, ) is a majorante integrable.

In view of 3. we have

1) fx" 1B(z, f(x)) dz < fa:” 1B(:t: 0) dx <oo

Then for the equation

@) y® + (=1)**HB(x, f(z)) y = 0

holds the lemme 5. There exists just one solution u(x) of this equation which
passes through the point (z,, y,) having the properties (V) on J. With the
help of this we can define an operator T' on Gi in this way: If f(z) € Gy, then
Tf(z) = u(x) is the unique solution of (2) having the properties (V) on J and
which passes through the point (xo, yo) This solution is also a solution Qf
the integral equation = o e Ay : :
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o) = o — (—1p f o = L Bt fl) wty di +

— {)n-1
4 (=1 f %:% B(t, f(t)) u(t) dt.

With the help of 3° we can prove that TGy < S,_, and with the help of 40
we can prove the existence of such a number &, that 7Gx, = G4,. The sphere
Gy, is evidently closed and convexe. It is easy to prove that it is also g-closed.
From 3°, (1) and from the Lebesgue’s theorem follows the g-continuity of 7'
on Gy,. Then we prove that the functions of 7'Gy, are uniformly bounded and
equicontinuous on J. The application of the theorem 4 gives the existence
of a solution of (B) having the properties (V) on J. Next it can be easily proved
that this solution can be extended to an interval (b,), @ < b < x, and this
extended solution has the properties (V) on (b, ).

Let us now return a little to the equation (A). If we suppose that [ zn—:Q(x)
dr < oo, then there exists just one solution u(x) of (A) having the properties

(V) and such that lim u(x) m, # 0, m, beeing a real number choosen arbit-
Z—»oo

rary. On the basis of this we can prove the

Theorem 6. Let the conditions 1°, 2° and 3° of the theorem 5 be fulfilled. Let
my be an arbitrary real number different from zero. Then there exists at least
one solution 2(x) of (B) which has, on the interval of his existence, the propertiets
(V) and for which lim z(z) = m,.

r—>oc

The proof is similar to that of the theorem 5. We define the operator 7'
on the sphere Gy : if f(z) € Gy, then Tf(:c) = u(x), where u(x) is the solution
- of the equation

y(*) + (—1)"“3(&', f@)y =0
having the properties (V) and such that lim w(z) = m, This solution is

X —»>oo

unique and it satisfies also the integral equation

) = my + (—1pa f Ll)—, B, f() u(t) dt.

‘The existence of a number ko > m, such that T'Gy, < Gy, is assured by a con-
“viniént choioé ‘of #;. The rest of the proof is nearly the same as in 'the proof
“of the theorem 5.

Also the proof of the following theorem is analogous {2].

‘148



Theorem 7. 1° Let P(x, u) be a function defined and continwous on Q and
non-negative in such a way that for every point € = (g, ¢y, ..., Cn—) # (0,
0, ...,0) the function P(z,c) is tdentically zero on mome of the subintervals
of the interval (@, 00).

20 Let be P(x,u) < B(x, u) for every point (z,u)ec Q2 and let the function
B(z, u) fulfil all the conditions of the theorem & respectively 6.

Then for the equation

(P) y® + (=1)**P@, g,y ...,y D)y =0
hold all the statements of the theorem 5 respectively 6.

Let us return now to the theorems 1—4 which have established in the case
of space S;—,. But we can prove the validity of those theorems also in the
case of other Banach spaces then S,_, [2]:

Let X © Ay, be a Banach space with the norm || ||x such that the convergence
occording to this norm implies also the q-convergence. Then the theorem 1 holds
if we substitute Sp—, by X. If the q-compactness of the set M < X follows from
the properties that the functions of M are uniformly bounded and equicontinuous,
the theorem 2 and 4 hold for X. If yet from the fact that the functions of the set
M are uniformly bounded and equicontinuous follows that they are also bounded
in the sense of the norm || ||x, the theorem 3 holds if we substitute Sp—, by X.

We are giving now some examples in which the above exposed ideas find
their application.

Theorem 8. [7] Let B(x, u), F(z, u), u = (ug, %y, ..., Un—), n = 1, be the
functions mon-decreasing in every of his variables ui, + = 0,1, ..., n — 1 and
such that
(3) |B(z, u)| £ F(x, u) on 0.

Let K be a positive number, x, >a and 0 < k < n — 1 an integer. Let

@) #(z) = K Z ook,

(5) Jan—k-1F(z, p(x), ¢'(2), ..., p®(x), K, K, ..., K)do < ©

for every K < 0, *

(6) lim & f (@ — 7 + VP 4-1F(z, g(@), ..., p®(@), K, ..., K)dz = 0
K oo

Let be finaly co, Cys ..., Ck real arbztrary numbers. Then the dzﬁerentml equa-
tion

(E) y(") + B(z, Y, y 3 Ve y(”‘-l)) =0
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has at least one solution defined on J = {xy,0) and satisfaying the conditions

(7) yO(@x)=¢, 1=0,1,..,k—1
lim y®(x) = c,
X oo
lim y® (@) =0, i=k+1,...,—1.
X >

I am going to scatch the proof. By a simple calculus we can see that the
solution of the integral equation

k
® vor= D o B Z L= (% o I Bl y(0) Mt +
© 8=0
n—1 ;
(x — z4)8 (x — t)n—8-1
+4—-I s! ° (no_ ___1)'B(t1 Y(t)) dt .
8=k .z

is also the solution of the equation (E) and fulfils the conditions (7).

We are looking for this solution in the Banach space Cp_;,x = Ay, of all
functions which have the bounded. derivatives of the orders k, k + 1, ...,
n — 1 on the interval J = (w3, 0). Let the norm in C,_, ; be

k-1
If@)| = max {sup |f@(z)} + 2 [fO(x,).
ksisn-1 J 1=0

It can be easily shown that the convergence according this norm implies the
g-convergence. ' ' '

Let be Gx = {f(x) € Cp—y,| ]]f(x)]l K}. Then for every f(x) € Gk holds
fO@) < ¢B), , i=01,...,k
fO@) <K, i+1=k+1,...,n—1.

- If we respeot (3), (5) and the monotony of F(x, u) we have

(9) |B(@, f(x))| < F(z, @), K),
where F(z,¢(z), K) = F(z, q)(x), o'(x), ..., p®(2), K, ..., K)) and

(10) ‘ | E;‘—E:—)_— B, () dt' j O Pt (t), K &t <oo

A s=kk + 1, ...,n—1.
Thls allows us to deﬁne the operator 7' on Gk by the formula .

an Tf(x)—v(x) Dalzm_
8=0
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. k=1 ,
(x — zo)* (zo — t)

B(t f(t)) dt +

s! (n — )
8=0 . T
n—1 £ .
+y e Ef;'“ o B f)at.
g=k x ;

We can see immediately that 7Gx < Cp—y,x. From the condition (6) follows
the existence a certain number K, such that TGg, = Gk, The g-continuity"
of T on Gk, follows from the conditions (3), (5), from the monotony of F(z, u)
and from the theorem of Lebesgue.

Note TGx, = H. Let H®,i = 0,1, ..., n — 1 be the set of the derivatives
of the order i of all the functions of H. It can be proved that the functions
of H®, i =k, k + 1, ..., n — 1 are uniformly bounded and equicontinuous

on J. Le us make the closure of the convexe hull = M of H. We can prove
that the functions of M®, i =k, k+ 1, ..., n — 1 are uniformly bounded
and equicontinuous on J. From this we can prove that M is g-compact.
Then we now that M is convexe, closed, g-compact and M < Gg,. From this

last relation we obtain that TM < TGk, = H < H= M. The application of

the theorem 1 finishes the proof. ‘
If we take for F(x, u) a linear expression,

n—1 ,
F(z, u) = a(x) + iZO an—i() |uql,

we obtain from the theorem 8 the

n—1 i’

Theorem 9. Let be |B(x, u)| < a(x) + z tn—i(®) |ui| = F(z,u) for every

(x, u) € 2 and let be a(x) 2 0, an—i(x) 2 0, o st
J an—*-lg(x) dx < oo, f x”_k;lan—i(“;) dv <00, i =k + Lk+2 ...,n—1,

\

[an—t-la, (@) de <0, =01, ...,k
Then for z, sufficiently large the afflrmatlons of the theorem 8 hold.

The theorem 8 gives the results 'which 'are a generalization of the results
of M. P. WaLTMAN [4] for the equation y™ + f(x, y) = Q,  He proves, by
a different way, the existence of a_solution y(z) for which hm y(x)[xn 1 =

= B # 0 under the conditions: |f(z, y)| £ @(z) y* « > 0and f a:“("‘l)a(x) dr <
< o0.
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By the same method as above we can prove the following theorems (in the
space Cn—y,n—): [3]:
Theorem 10. Let B(z, u), F(z, u) be the continuous functions in the domain 9.

Let F(x, u) be non-decreasing in every of the variables s, i = 0,1, ..., n — 1,
Let K >0, o> a and

<1
pa) =K D o (e,
’ ‘8=0

(12) fx”“F(z,cp(x)) dr <o  for every K > 0,
(13) lim — f z”—lF(x @(x)) de = 0,

K —>o0 K
(14) |B(z, u)| < F(z,u) ~ for every (v, u)e Q.
Finaly, let ¢y, ¢y, ..., cn—y be arbitrary real numbers.

Then the equation (E) has at least one solution w(x), which exists on J =
= (%, ©) and for which hold the formulae:

n—1
; ¢ s . — .)e—4

Note. If we substitute the condition (12) by

[ an—1+ F(z, (x)) dz < 0, &> 0,
then in the formulae (15) it is possible to substitute o(1) by o(z—¢). And if we

n—1
take for F(z, u) = a(x) + z @n—t (%) |us|, theorem 10 gives a generalization

. of the results of M. ZLAMAL [5] found for the linear differential equations.

Theorem 11. [6] Let fulfil all the conditions of the theorem 10 with the exception
of the conditions (12) and (13), whwh will be substitued by

(12') f F(z, tp(x))dx < 0 for every K > 0,

as) Jim 2 f Flz, @(2)) do = 0.

Then by the initial conditions (xy; Cg, Cy, - - ., Cn—y), where c; are real arbitrary
numbers, is determined at least one solution u(x) of (E) which exists on J =
= <xo, CD).

~If morover the condition"(12) is satisfied, then for this solution u(z) hold
the formulae:
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n—1

(16) u®(z) = S‘ cs (-"-—_——”"0” 4+01), i=01,...,n—1
Ly (#—1)!
8=1

Those are some exemples where I profit with success of the variants of the
theorem of SCHAUDER mentioned above.

I wish yet to remark that one can utilise this method in many other cases,
chiefly in the cases where the theorem of Arzela has been applied and that’s
why it has been limited on a finite interval. In the first place that are the
problems of the global existence, the linear problems and the boundary-value
problems.

The notions and the theorems of which I spoke, have been prepared in to
their application to the problems of the differential equations of n-th order.
There is no difficulty to adapt those for the systems of differential equations.
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ACTA FACULTATIS RERUM NATURALIUM UNIVERSITATIS (‘OMENTANAE
MATHEMATICA XVII — 1967 '

i

ARZELA — LIKE THEOREM WITH APPLICATIONS
TO DIFFERENTIAL EQUATIONS AND CONTROL THEORY

T. Wazewskr, Krakéw

§ 1. In numereous problems concerning given differential equations or
control systems the sequences of functions

(1.1) y = gi(x), =12 ...)
approximating solutions of respective equations for instance one equation
(1.2) Yy =fy)

play an important role.

Usually one starts with equation (1.2) and then determine suitable sequences
(1.1). ,

Our paper deals with the following opposite:

Problem Z. Given the sequence (1.1), such an equation (1.2) called
“asymptotically inducted by sequence (1.1)” is to.be found, that the limits of all
convergent subsequences y = ki(x) of (1.1) satisfy (1.2). It is evident that the
required function f(x, y) can be determined exclusively on the accumulation
set L for sequence of curves (1.1). It can happen that L reduces to a single
are.

Problem Z is considered globally.

We shall give conditions for subsequences k; to converge towards an

“extensive solution” of (1.1) i.e. solution: tendmg to the boundary' of open
set W (containing L) at both ends.

Such conditions are given in Theorem A which proved to be very convenient
for didactic purposes because of many applications (for instance global existence
theorems, continuous dependence on and dlﬂ'erentla.blhty in respect to initial
values, constructing of. approximate solutions), . X pee 34 ;

The curves (1.1) occuring in Theorem A are arcs. v b

In some applications of the classical 'Arzela’s theorem on eqmoontmubua
sequences (1.1) is of no use because one.is obliged to use functions (1.1) with
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graphs consisting of finite number of points. In this case we replace the
notion of equicontinuity by notion of asymptotic smoothness and extensivity
(Theorem B). :

Theorem C gives a construction of a control system ‘‘asymptotically in-
duced” by the sequence (1.1).

§ 2. Theorem A. Let W € R? be an open non-empty set. Consider a sequence
of real functions gi(x) defined, continuous and having the right-hand (finite)
derivative D .g; on open intervals J;, (1 = 1,2, ...).

Denote by g; the graph of gi(x) and put
21 L={=y9:(@xyeW, .lim inf r((z, y), g;) = 0}
where r((x, y), B) denotes the distance of point (x, y) from set B.

Suppose the following implication:
if for any subsequence g1
(2.2) @6 gewy (@) > (@, y) e W,
then two following conditions (2.3), (2.4) hold:

(2.3)  there exist a neighbourhood of x contained for large i in Jyu),
(2.4) lim D, gguy(xi) exists and is finite.

Under above assumptions:

the limit (2.4) depends on (z, y) only and is independent of the particular choice

of the subsequence g). !
This limit denoted by F(x, y) is defined and continuous on L [see (2.1)].

(2.5)  For any point (xy, y,) € L there exists such a subsequence gm(i that
lim gm@i)(*) = h(z),
where h(z) i8 an “‘extensive’ solution of the equation
(2-6) .’/’ = F(:l” y)’
i.e. h(z) is an open arc “‘tending” at both ends to the boundary of W.
Moreover if through each point of L passes a unique solution of (2.6) and
lim r((xm .’/o):. g‘) =0
then the original sequence g; 13 convergent to the extensive solution passing through
(%os Yo)-
§ 3. Remark 1. The sequence g; satisfying the implication (2.2) = (2.3)
will be called expansive on W.
- »+The differential equation (2.8) will be called to be “induced by sequence g;”.
This notions will be generalized in the following.
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Remark 2. The proof of this theorem can be based on the classical Arzela’s
Lemma and on the theorem on differentiability of the limit.

Theorem A can serve as the starting point for generalizations. For this
purpose we introduce some definitions.

§ 4. Limits restreint, complete and exact in Hausdorff-like sense.

Let A = {A;} be a sequence of sets 4; C P = R?. We define
(4.1)  {(A) = limrestr 4; = {z:2€ P, lim r(z, 4¢) = 0},
(4.2) n(A) = lim compl 4 = {z:z € P, lim inf r(z, Ay = 0}.
If £(4) = n(A) we say that A is H-convergent and we define
(4.3) AA) = lim exact 4; = {(4) = n(4).

(4.4) Proposition. For 4; # 0 there exists H- convergent subsequence
of {A{}

§ 5. Univalent sets and smooth functions.

For B < P we define by
B! = projection of B on z-axis,
B — projection of B on y-axis.
We say that set B is univalent if
peB, qeB, pl=¢ =>p=gq
The univalent sets will be considered as functions of variable . The whole
of such functions (or sets) will be denoted by Unival.
Let f € Unival and put g =f N W.
f is called extensive if g is continuous, ¢! is open and (x g(x)) tends to the
boundary of W, as z tends to the boundary of gt.
f is called smooth if g is continuous and closed in W.

§ 6. Suppose that

1) g = {g.}, gi € Unival,
2) (%4, Yo) is an arbitrary point of W,
3) k = {k;} is an arbitrary H-convergent subgequence of g for which
(%> Yo) € Alk).
(6.1) g 'is called asymptotically smooth in W if
[ € k], i —> o] = [Ke(2e) > o). ' e
(6.2) - g is called asymptotically extensive in W if a:o is-an mtenor pomt of
[n(k)IL. .
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(6.3)  p is called asymptotically.lipschitzian in W if
[z € kY, 8y ek, ®i — my, 85 > 2y, ki(xs) > yo] =
= [lim sup |(ki(s¢) — ki(xi))/(8¢ — 21)] < +o0].

(6.4)  Obviously if g is asymptotically lipschitzian it is asymptotically
smooth.

Theorem B. If g; € Unival, g = {g;} is asymptotically smooth and asymptoti-
cally extensive (in W), (2o, yo) € 7(g) then there exists such an H-convergent
subsequence k of g that (z,, y,) € A(k) and A(k) is univalent, extensive and smooth
in W.

Remark 3. If moreover g is asymptotically lipschitzian then A(k) is
locally lipschitzian.

Remark 4. The theorem B generalizes the classical lemma of Arzela on
equicontinuous sequences of functions. It is used in the following.

§ 7. For G = P we define
Convex G = closed convex hull of G.
Forae P, be P, al + bl we put
slope (a, b) = (b1 — aII)/(bI — al).
If f € Unival, Q is open, @ < P, we define
slope (f, Q) = ub slope (@, ), for aefN'Q, bef N Q.
For g = {g:}, where g; € Unival, g asymptotically lipschitzian in W, o = Q
open, we put '

B, @) = U slope (95, Q).
For (x,y)el(g) N W we define
(7.1) C(z,y) = Convex [ lim exact B(i, Q)].

1,Q > (o0,2,y)

The relation (7.1) means that for any such sequence of open non-empty
- sets @ that (z, y) € Q;, diameter @Q; — 0, we have:

Clz, y) = Convex [lim exact B(z, Q)]

1—>00

(7.2) Definition. The contingent condition
(1.3)  D*y(z) e O(x, y(2)),

where D* denotes the contingent derivative is called contingent equatum asymptohc-
ally induced by sequence g.

Theorem €. Suppose that ¢ is asymptotically hpaehwzum and asymptotwally
extensive in W.
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Then C(x, y) ts upper semicontinuous (in respect to inclusion) in n(g) N W.
If (%o, Yo) € (g) N W then there exists such a H-convergent subsequence k of
g, that A(k) N W is an extensive solution of contingent equation (7.3) passing
through (%, Yo)- -
(7.4) Remark 5. In our case the classical assumption of Zaremba—
Marchaud theory on contingent and paratingent equations are satisfied.
(7.5) Remark 6. The condition (7.3) can be considered as a control

system with eliminated control variables.
§ 8. Remark 7. Theorem B of § 6 can be easily reformulated for the case

P = Rm x R», where m, n are arbitrary positive integers. It can be even
generalized for the case P = H X V, H and V being suitable topological
spaces.
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ACTA FACULTATIS RERUM NATURALIUM UNIVERSITATIS COMENIANAE
MATHEMATICA XVII — 1967 »

1. Ordinary Differential Equations
AXIOMATIZATION OF DIFFERENTIAL EQUATION THEORY

0. HAJEK, Praha

This lecture is an attempt to motivate, describe and justify an axiomatic
treatment of several basic portions of differential equation theory, or more
precisely, of the initial value problem for ordinary differential equations.

1. It seems that a situation in mathematics is judged ripe for axiomatization
(non-categorial, i.e. possessing non-isomorphic realizations) if, in loose terms,
there is a number of independent subjects which exhibit common or similar
properties; and second, if it is also recognized, explicitly or not, that significant
portions of the development of these subjects stem from these common
properties rather than from the individual specific nature of the subjects
themselves. _

I claim that such a situation has evolved in connection with differential
equations. The basic subject there is the theory of ordinary differential
equations in the classical sense,

(1) g—j; = f(x, 9) with z € R», & € R,

and with f: R®»+! > Rn continuous. However, one frequently meets with
similar equations in which the right-hand term f exhibits various types of
discontinuity (e.g. a discontinuous forcing term or feed-back or coefficients);
and also with the less closely related concepts of difference- and functional-
differential equations, differential inequalities and equations in contingents.
Next, significant generalizations are obtained by rglaxing the requirement on
the euclidean structure of the phase space in which the equations are to act;
e.g., on replacing euclidean n-space R” in (1) by a differential manifold {cf.
differential equations on the torus, etc.), or even by various abstract spaces
familiar from functional analysis (cf. ordinary differential equations in function
spaces, to treat some partial differential equations). As slightly less important
11*
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members of this family, one may mention the implicit differential equations,
some integro-differential equations, and the finite difference equations.

Separately, each of these theories is, of course, perfectly adequate to its
own professed main problem; however, they are intimately but informally
related, using a similar terminology and arsenal of primitive notions. Thus
in each case, a fundamental concept is that of an appropriately defined solution
to an initial value problem; and in each case it is felt necessary to carry out,

- to some extent at least, a programme of development on the lines of classical
ordinary differential equation theory in R®. As a trivial example, in the case
of difference-differential equations one is not surprised at finding an existence
theorem proved via the Banach contraction mapping theorem; indeed, rather
the opposite situation would be surprising.

To proceed one step further, I believe that hypothetical further theories
would be held to belong to differential equation theory only if they conform
in a similar sense as do those listed above, i.e. if they exhibit a reasonable -
recurrence of the fundamental properties and results. To express this even
more strongly, I wish to suggest that most differential equationists actually
possess an informal — and possibly unrecognized — concept of a general
theory of differential equations, of which the theories mentioned previously
are special cases. ‘

The advantages to be gained from an axiomatic approach are then exactly
those which apply to the axiomatic treatment of any informal theory: generali-
ty, perspicuity and economy of results and methods, and, as a secondary
effect, in a number of cases even significant simplification or extension.

All this is, in my opinion, sufficient motive to attempt the explicit formula-
tion of a general theory. .

2, The first task then is to select a suitable general concept, capable of
representing all the objects studied in differential equation theory; the term
chosen was that of a process, [3]. As is often the case, this concept was not
arrived at in a single stage, but represents the final step of what now appear
to be partial axiomatizations of the notion of a differential equation. These
include the dynamical systems (A. A. Marxov, 1931; [4, chap. V]), the
flows (origin unknown), the “general systems” of Zusov (1957; [6, chap.

IV]), and the local dynamical systems (HAJEx, 1964; [1]). These correspond

to, or rather generalize, differential equations under various combinations
of requirements on autonomness, unicity and prolongability of solutions; and
in this sense, the processes correspond to differential equations, without any
extraneous assumptions.

To introduce the concept of a process, first econsider the basic model, viz.

a eclassical ordinary differential equation (1). Explicitly, the assumptions are
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that f is a continuous partial map R#+! - R® with D = domain f open in
Rr+1; and the solutions of (1) are defined as those partial maps s :R! - R»
with domain s an interval, which satisfy (1) in the sense that

ad—.? s(®) = f(s(9), 9) for all 9 € domain s.

Of course, all this is easily carried over to differential equation on differentiable
n-manifolds. With this differential equation we shall associate a process p.
This is the relation in R#+1 d:termined as follows: (z, «) € R* X R!is to be in
the relation p to an (y, f) € R* x R, and this is written as (z, «) p(y, B),
if and only if « > # and there exists a solution s of (1) with

z=s(), y=s(p)
(this includes the requirement that the interval domain of s contains both
o, fB).

It can be shown rather easily that the relation p describes the originally
given équation (1) completely. This established a general method of assigning
a process — to be called a differential process — to a differential equation.
Similarly, there is a canonic method of assigning processes to discontinuous dif-
ferential equations, to functional-differential equations, ete. (two further cases
are discussed below). The processes obtained in this manner are all special cases
of a single general concept which will now be described explicitly.

It will be said that p is a process in P over R iff P is a st (the phase space),
R is a subset of R! (the set of admissible time instants), and p is a relation
in P x R with the following three properties:

0° If (x,«)p (y, B) then a > .
1° If (z, ) p (y, ) and o = B then also = y (the inital value property).
20 p is a transitive relation, i.e. '

(2) (@,a)p(y,p) and (4 B)p(27)
imply (z, a)p (2, p); also, in partial converse, whenever (z, «) p(z, y) and
x >'B > y in R, there exists an y e P with (2) (the compositivity property).
Occasionally a minor modification of this notation is more useful. Given
objects p, P, R with property 0° as above, for each « > B in R define a relation
«pz on P by letting
(3) zpsy I (@ 2)p(y, A
Evidently p is completely determined by the indexed system of relations
{aPs| @ = pin R}. Then 1° and 2° may be formulated more concisely:
10 p, < 1 (the identity relation on P) for all « € R. '
20 p;0,p, =P, for alla > >y in R. .

186



Both these descriptions, using p and the ,p,, will be used, always invoking
definition (3) automatically.

Returning to the (differential) processes associated with differential equati-
ons as described above, it is easily seen that 0° and 1° are satisfied automatica-
lly; and 2° follows from obvious properties of solutions of (1), namely from the
fact that any interval-partialization of a solution is again a solution, and that
the concatenation of (concatenable) solutions is a solution. Thus p is a process
in R® over R ‘

As a less immediate interpretation, consider a difference-differential equation
with constant time lag ’

@ 2 — fa(d — ), 2(9), 9),

given continuous f : R? > R! and 7 > 0. For definiteness, the solutions of (4)
are continuous maps s : [ — 7, «] > R! for given —o0 << B < a << +c0 such
that

%3(0) =f(s(® —7),8(9),9) for p<P<a

(with obvious modifications for the case of non-closed domains). It will be
convenient to write z; for the A-translate of a partial map « :R! - R!, so
that x,(9) = 2(? + A) whenever defined. The inital value problem for (4)
is to find, to given f e R! and continuous y :[—7, 0] - R1, a solution s of
(4) as above, and satisfying y < s4, i. e. such that s(9) = y(9 — p) for
f— 1< ¥ < p. This situation may be usefully described by a process p
in the function space C[—=, 0] over R!: For z, y in CY{—7,0] and « > f
in R! let (z, «) p(y, B) iff # < s,, y < s, for some solution s of (4). Again it
is easily verified that this relation p satisfies axioms 0° to 2° and hence defines
a process Cl[—7, 0] over R!; and that this process characterizes the original
equation completely. Very similar constructions may be carried out more
generally for functional-differential equations; not necessarily of retarded
type, in n-space. o

. The final example concerns a one-dimensional partial differential equation

‘3 0 02
(5) %:f(u, '%, 8_51;15, 19)

with continuous f : R® - R!; consider the corresponding homogeneous boun-
dary value problem in the strip {(£, #) e R?: |§| < 1,9 > 0}. The associated
process p will act in the set P of all continuous functions on [—1, 1] with zero
end values. For z, ye P and « > f# in R! one defines that (z, x)p(y, B) iff
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B >0 and there exists a solution u of (5) with zero boundary values and
such that

w(E @) =€), wp=y@ for [f<L

Again, a similar construction may be carried out for higher orders, for more
complicated domains and boundary conditions, and for systems of such
equations. '

3. It is now appropriate to show how several fundamental concepts may be
carried over from differential equations to processes. Thus, assume given
a process p in P over R. (In the envisaged applications, the set R of admissible
time instants is either the real axis R, or the set C! of integers for processes
with discrete time; the present formulation was designed to cover both
situations.) A solution of p is defined as any partial map s : R — P with
domain s an interval in R and such that (s(x), «) p(s(B), B) for all « > in
domain s. For differential processes these are precisely the solutions of the
equation in the usual sense.

The set of all pairs (2, «) € P X R such that (z, «) p(x, «) will be denoted
by D and termed the domain of p. Directly from the axioms, (z, «) p(¥, B)
implies that both (%, «), (y, B) are in D; thus essentially p concerns only the
elements of D < P x R. For the differential process associated with (1)
this set D coincides with domain f.

The process p is said to have wnicity iff usp.x and wyp,x always imply
u' = u. The process p is termed global or said to have global existence (or
indefinite prolongability) iff to any (#,«) €D and & >« in R there exists
an u e P with uyp,x. Slightly more generally, to any (z, «) € D one may

assign a numerical characteristic e(x, «), the extent of existence of p at (z, ),
defined as

e(x, «) = sup {# € R : uyp,x for some u e P}.

Easily, « < &(x, o) < +o00. If a < g(x, «) one says that local existence obtains
at (z, «) and in the opposite case (z, «) is called an end-pair. If e(z, ) = +0
one says that global existence obtains at (z,«), and in the opposite case
(®, «) is said to have ﬁmte escape time.

The process p will be termed stationary (or autonomous) iff R is an additive
subgroup of R! and, for all « > p and @ in R, ,p; = +sPs+s- 1n this case
a point x € P is called critical iff zyp,x for all # >a in R. In the obvious
manner one may define cycles with given primitive period, invariant sets, etc.

A real-valued function A on P x R is called a Liapuxov function for p if
(%, ®) p(y, B) implies 0 < A(z, ) << Ay, B). (This definition can be generahzed
extensively.)

For differential processes, all these oonoepts assume t.hen' classical. meamng,
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thus they are the corresponding generalizations. Having determined the
appropriate formulations of these concepts in the general situation, one may
apply them automatically in the various special cases. Thus one has, e. g.
the concept of critical points for stationary difference-differential and func-
tional-differential equations. As a matter of fact, in the former case these had
already been introduced, and agree with the present; to my knowledge, in
the latter case these have not been studied.

There is one exception to this rule, concerning the concept of solutions.
Thus a solution of the partial differential equation (5) in the customary sense
is a real-valued function u of two real variables £, ¢; and a solution of the
associated’ process is a function-valued map s with the variable . However,
one has an obvious one-to-one correspondence determined by

u(é, 9) = (s(9)) (£).

In the case of the difference-differential equation (4) the divergence is even
more marked, but once again there is a one-to-one correspondence between
the corresponding solutions. :

This illustrates the assertion that the fundamental concepts from differential
equation theory find adequate and natural generalizations within process
theory. As concerns the methods, I have space only for an elementary example.
It .is well known that every differential equation (1) in R® may be ‘“‘made
stationary” by passing to a different equation in R?*1, namely the system

(6) % = f(=, A), 3—;: 1.

The relation between these is that the first n coordinates of any solution of
(8) constitute a solution of (1), and conversely. This stationarization procedure
_ appears in process theory also. Thus, let p be a process in P over R = R,
say. Define a new process ¢ in @ = P X R over R by setting, for (z, £), (¥, ) €
€@ and « > f in R,

@ & agsly,m) f axpy and E—a=9—4

It is then easily verified that ¢ is indeed a stationary process in ¢ over R,
and that it has %0 p a relation corresponding precisely to that obtaining
between (6) and (1). .

In this example, to carry over the method from differential equations to
processes, it was not necessary to assume anything concerning the nature
of the phase space P; indeed, it could be any abstract set. However, in other
cases one must introduce further requirements. Thus, e.g. in attempting
to introduce the concept of limit points or of orbital stability for processes,
it is necessary to employ notions describing the nearness of a set to a point;
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slightly more precisely, to assume that some structure such as a topology
for P has been given in advance. Then it may (but need not) be necessary
to require that the process p itself be compatible in some sense with the given
structure on the phase space (that p be a “‘continuous’ process). As reasonable
candidates for interesting structures, the following seem to present themselves:

structure for P compatible p

topology (or continuous
uniformity, metric,
differential, etc.)

group " additive
linear space linear
differential differential

(combinations of these are also interesting; e.g. BANACH spaces and continuous
linear processes).

As an example of this group of definitions, a process p in a linear space L
over R is termed linear iff

zpy,  @.py, AeR' imply  (x+ &) .ps(y + AY).
Two linear processes p and p’ in a HILBERT space H over R are called adjoint iff

TPy,  xupyy’  imply  (z,2) = (3, 9)
with (z, ') denoting the scalar product.

The definition of continuity of a process (in a topological space) is consider-
ably more involved. However, in the not too special case of processes with
global existence and unicity, this is quite straightforward. Assume given such
a process p in a topological space T over R (the latter is to inherit the natural
topology from B! > R). Unicity then yields that in any relation (x, «) p(y, B),
the point « € T is uniquely determined by («, y, §), thereby defining a partial
map '

t:RXTxR->T, x = o, Y, ) iff (x, ) p(y, B).
(This map ¢ is called the global flow associated with p.) Then the process p
is called continuous, or compatible with the given topology for 7', iff the

corresponding partial map ¢ is continuous in the customary sense. In greater
detail, the requirement is that '

(%5, a4) P (ys, Be), (o4, ys, ﬂt) — (&, Y, B) in R x-T x R, (, a) » v h)
imply &; >« in 7.
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To define stability or recursive motions, a topology on the phase space is
insufficient, since one must treat the nearness of two sets rather than that
of a set to a point; and it is necessary to assume that the phase space is
endowed with some structure such as a proximity or uniformity or metric.
As concerns the process studied, in the differential case it is not necessary
to assume that it be uniformly continuous (or distance preserving, etc.), but
only continuous. Therefore one does not require compatibility between the
process and e.g. the metric structure, but it still may be useful to impose
compatibility with the topology induced by the metric. Thus one studies
continuous processes on uniform spaces, on differential manifolds, etc.

This concept of continuity of processes is surprisingly versatile, allowing
many classical results to be carried over to the more general situation. Thus
e.g. MAssERA’s first theorem on periodic solutions in R! [5, p. 445] can be
transferred bodily, including its proof. To illustrate a more complicated case
with a definitely non-trivial transfer to processes, the PoINCARE— BENDIXSON
theory of limit points and cycles for autonomous differential equations in the
plane can be extended to stationary processes with unicity and local ex‘stence
(the dynamical systems) on a large class of 2-manifolds [2].

Perhaps it is not surprising that the axioms 0° to 2° still permit somé rather
pathological objects as processes. Thus, consider the following very reasonable
property: a process p is called solution-complete if all p-related pairs can be
joined by a solution, i.e. iff (z, «) p(y, #) implies that there is a solution s
of p with x = s(x), y = s(f). Evidently the differential processes, etc., are
a.ll solution-complete. However, there do exist otherwise reasonable processes
which are not solution-complete. Indeed, let P be the set of all real rationals,
and for (z, «), (y, f) e P X R! with a > f let

(@, a)ply,f) f O<zr—y<a—p incase a>p,

: Crx=y in case o = f.
Then p is a process in P over R! (in verifying the second part of requirement
20%use the fact that P is dense in R!) indeet, p is closely related to the differential
inequality 0 < dz/d#< 1. Second, all solutions of p are continuous, since they
have LipscHrTz constant 1; thus they are rational-valued continuous functions
with interval domains, and hence all solutions are constant. But evidently
the process has no (non degenerate) constant solutions at all. Therefore no
distinct p-related pairs (z, «), (y, B) can be joined by any solution, i.e. p is
not solution-complete.

4. The preceding section suggests that much of differential equation theory
can be adequately represented within the wider setting of process theory.
However, to justify the introduction and further study of processes, there are
two further questions which should be answered satisfactorily. First, is
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process theory capable of an autonomous development, of obtaining interesting
results within itself, or is it merely an arid generalization or medium of re-
formulation, in which all the impetus is due to the classical underlying theories.
And second, does process theory yield new results outside itself, i.e. can one
obtain, via the processes, hereto unknown results formulatable in terms of
only, e.g., differential equations.

Naturally, a decisive answer will not be available until much later; but
even at this early stage of development, I have the impression that the answer
to both these questions is affirmative. As examples to the first, consider the
following two results (the formulations are somewhat loose):

Theorem. Every solution-complete process can be represented, in a certain
minimal and canonic fashion, as having been obtained from a process with
unicity by identifying some elements in its domain; indeed, this representability
characterizes solution-complete processes.

Incidentally, the construction of the corresponding process with unicity
seems closely related to that for difference-differential equations described
earlier.

Differentiable representation theorem. Every continuous process on a dif-
ferentiable manifold P over R* with unicity and local existence and with domain
open in P X R!' can be homeomorphically represented as corresponding to
a differential equation.

This shows, in particular, that at least for the indicated type of process, the
axioms 0° to 20 exactly adequate, that no further independent axioms can be
added. As concerns the second question, of the direct effect of process theory
on differential equation theory, the results obtained are far less decisive and
spectacular. However, one has the following

Proposition. Let p and q be adjoint linear processes (in a HILBERT space).
If p has global existence, then q has unicity in the negative direction ; in particular,
if p has global existence in both directions, then q has unicity in both directions.

This has some interesting applications. Some time ago Dr. KaARTAK studied
linear homogeneous equations in n-space,

(7) ' g—:‘; = A®) =z

with continuity of the matrix 4 weakened to, NEwTON-integrability (i.e.
A(F) = a% B(9) pointwise for some matrix B). Recently, he solved positively

the general existence problem. Since change of orientation and passage to
the adjoint equation in (7) yield equations which again have NEWTON-
integrable coefficients (to which this existence theorem applies), the proposition
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above answers the general unicity problem positively. Obviously one even
has a more general assertion: For every class of linear equations closed with
respect to orientation change and formation of adjoints, global existence
implies unicity.
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ACTA FACULTATIS RERUM NATURALIUM UNIVERSITATIS COMENIANAE
MATHEMATICA XVII — 1967 '

INVARIANT MANIFOLDS FOR DISCRETE SYSTEMS

A. HaraNay, Bucharest

In this paper a general theorem on the existence of invariant manifolds
for discrete systems is obtained using the general method of J. KurzwEIL
[1]. As this theorem is true for discrete systems in a Banach space it may be
applied to prove the existence of invariant manifolds for some systems with
time lag.

I. General theory

Consider a discrete system x,+; = fu(®n); fa : Gn = X — X, % is an integer,
X is a Banach space and G, is a domain in X. If & € G; we may define the
solution w,(#, ¥) for n > @ such that z4(%, ) = &; if fux(#, T)) € Gu+, this
solution is defined for all » > #%. Suppose this is the case; then obviously
Zn(ny, Tn (%, T)) = x4(7%, Z) for all » >n, > #&.

The general theorem we shall prove concerns discrete systems in a product
space X = C' X €; these systems will be described by two functions ¢a(#, ¢, 7)
and v,(%, ¢, ) defined for n > #, ¢ € C, y €€, c4(#, ¢, y) € c, ya(#i, ¢, ) € G,
and such that cy(n,, cn, (7, , ), ya,(#, ¢, ¥)) = ca(fi, ¢, ),

Yn(ny, Cn (R, €, §), vn, (&, T, 7)) = yal(f, ¢, P).

Theorem 1. Consider a discrete system in the product space C X €. Suppose
there exist positive constants I, L, N, a, a9, 0 < o, < 1, 0 < g < 1, &y, K&y
such that: 1° [[¢|| <1 imply that cu(#,C,y) 18 defined for all n ># and
llea(®, &, P)| <1 for n =@ + N. ;

20 |Gl <1, Il <1, & + N <n < @ + 2N imply
llea(®, €, §) — en(®, T P)| + L l|ya(@, &, ) — va(f, &, P)| < oy (€ — Gyl

.Gl <L @&l <1, [[é — &l < L|1F; — Pl imply

a) |lyn(#, 1, P1) — ya(f,; Tq, Fa) — 1 + Fall < g |17 — 4l

for i <n<A+ 2N
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b) |lea(R, &, 71) — en(i, &, Fo)ll < (1 — &) L ||y — Pl
for 4+ N<n<#+ 2N
4°. |lea(, Ty, 1) — cn(fl, &, Po)|| + lya(#, Cy, $1) — al(#, G Po)l] <
< kEvR(|[6, — &l + |17 — Pall) for all n > for which the functions are
defined. Then for each integer n there exist a function p,: € — C and positive
constants K, 0 < o < 1 such that

a) [lpa(V)l < §;

b) [[2a(y1) — Pa(p2)ll < L llyy — 7l

c) |[6]] < I implies |len(#, €, ) — Pa(yn(#i, T, 7)) < Ka® ™ || — pa()|;

d) ¢ = pa(y) implies ca(fi, €, ) = pu(yn(#i, ¢, 7)) for all n;

€) Pn 18 uniquely determined by the above properties;

£) 1° If cns (@ + 9, , §) = ca(#i, 8, ), yn+( + v, C, §) = ya(ii, ¢, ) forgall

n, fi, ¢, ¥ for which the functions are defined, then py+,(y) = pa(y).
20, If cn(ﬁ, a’ 57 + w) i cn(ﬁ” E’ 77)’ Vﬂ(ﬁ’! 5’ ; + (l)) = 7n(ﬁ‘9 E’ ;) + w fOf
all n, #i, G, 3 for which the functions are defined, then pp(y -+ w) = pa(y).

g) If each sequence ny — o contains a subsequence ny, such that ¢y, (% +

+ Mk, 6, P)s Vntnr(® + 0y, €, §) are convergent for | — oo, uniformly on
each finite set of values n > i and uniformly with respect to 7, ¢, 7, then the
sequence py 13 almost periodic uniformly with respect to v.

Proof. A. Denote by Q(l, L) the set of functions ¢q: € — C' such that
119(71) — a(va)ll < L [lyy — wall, llg(y)ll < 1. Let 944 :€— € be defined by
97,4(p) = va(#, ¢(7), $). From condition 3° a) follows for # <<n < # + 2N
that ||97a(%,) — 9%,4(F2) — 71 + Vall < g (|9, — 75ll hence (1 — ay) |7y —
— 7l < 19%,4(71) — Fa@)ll < (1 + ap) (|71 — Fall-

It is proved then by a lemma of Kurzweil that for # <n <% + 2N
94,4 18 a one-to-one mapping of € onto €; let 02 ;: € - € be the inverse
mapping.

B. Define the mapping P, 4g: Ci —C by

[Pnaq] (7) = cn(®, glo7,a(P)], oRa(¥), i <n <@+ 2N.

Forii + N <n < # + 2N we have ||[Pn,ag] (§)|| <! from condition 1° and
I[Pnag) (71) — [Pragl Gl < (1 — 09) L ||6%,a(51) — o,a(5) || < L |7, — 7l
from conditions 3° a) and b).

It follows that for i + N <<n <<# + 2N we have P, ;g eQ(l L), hence

Prs:QU, L) > Q(, L).

C. Let @i + N <4, <#i+ 2N, @,+ N <<, + 2N, ¢ = Psaq.
We have 93.4,(¥) = va,(f,, ca, (7, q[0F,,4(7)], 0&.4(P)), §) =
= ya,(fiy, ay (R, g[0f, 4(P)], 0F,,4(P)), OF,,al0%,,a(7)]) =
= ya(fi, ql0F,,a(P)], 0F,4(7)) = 9%,.al0f, ()]

From here we deduce 9§,4,[9% 4(%)] = 9%.4(y). The mapping 94 4 is the

-
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product of two mappings which are one-to-one and onto hence 9§ 4 has an
inverse o2, 4 defined on €. It follows that & s has an inverse defined on €
for all # < m < % -+ 4N ; the reasoning may be repeated and we deduce that
92 ; has for all n > @ an inverse defined on €. In our proof we used the fact
that ¢, = P, agq belongs to Q(I, L); hence we must prove that Pnaq €Q(l, L)
for all » > # + N.

We have [Pg,ag] (7) = ca,(#, glof,a()], 07,.4(7)) =
= a7y, e, (7, q[0%,08(P)], 088 (P))s v, (R, ql0f, 4(P)], 0F,a()))-
But 0% 4 = 0%,a(0%n,), hence cs (i, g[of, a(¥)], 0f,4(¥)) =
= ca,(7, q[0%,a(0%,a,(P)]; ofua(ofa () =
= [Pa,q] (62%.4,(%)) = qlof.(7)] and
iy, q[0%, (D], 0%,4() = 9%, a(0 1,.4()) = 0B a,(¥):
It follows that
[P, 9] () = ca,(fy, 080, 08a D) = [Pa,adi] (7)
hence Pﬁl,ﬁq € Q(l, L) and Pﬁ!,ﬁ q= Pﬁl.nIPﬁbﬂq.
The reasoning may be repeated and we deduce that Pyaq € @(l, L) for all
n > 7t + N and that Pﬂ’,ﬁ = Pﬁbi{IPﬂpﬁ fOI‘ all ’ﬁlz > ';i’l > # + N.
Let us remark the most important relation
[Po.ig] (ya(#, (), 7)) = [Puagl (9%4(7)) =
= cn(#, g[oL a9 a(P)], of aPLa(P)) = cn(ii, (), 7) for all n > .
D. We have |/ca(#, &, 5) — [Pusg] (va(i, & D) <
< |lealii, &, 7) — ea(d, 4, P +
'+ lPaaq] (va (5, 43), 7)) — [Puad) (va (%5 )| <
< ch(ﬁ‘, 6’ )7) i Cn(’ﬁ, Q(?)’ }7)“ + L ”'yﬂ(ﬁ’ Q(?), '}7) - 7”("7'7 E’ 5")” <
< allg(p) — €| for |[¢]| <1, i + N <n <1 + 2N.
From here follows that
[ Pngs] (7u(iis 4a5)s 7)) — [Prsds] (ralii, ) F)I| < o1 1ga5) — @,
hence

[Puaga] 3) — [Praga] D) < oallgalofiea)] — aulaRa@)]lls
i+ N<n<#+ 2N.
Let now ¢, €Q(l, L), lim g4(7) = ¢(») uniformly with respect to y € €. Let

5 €€, 5 = o%a(7), hence ¥ = yu(, qi(#1), 71). We have |lqi(¥:) — qu(7)ll <
< L ||$+ — 7| hence from condition 3° a) we deduce
(1 — ) 1P — il < |lynl®, @), $o) — valf, qulFp), P <

= H)’n('ﬁ" éh(%), ;’i) = 71!('7"» qf(&.‘l)’ ;’1)“ -

+ |lyn(#, a5(¥1); ¥1) — yal#, q4(¥1)s Ml =

= |lyn(@, @), 71) — alii, qu(F), P < ka3 ="|1gs(F5) — qu(pa)ll-
For ¢ > 0 let N, > 0 be such that n > N, implies ||gn+p(y) — @(¥)| < ¢
for all y € €; then |lgn+p(Fn) — aaFa)ll <& for m > N, and {ifj+p — 1l <
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kik3 =g — @+l < 1 _e = k,k3—" hence 9; is a Cauchy

=

1 - aa
sequence. Let y, =flim 7;. We have }im (7)) = (o), im eq(@, q4(7y), 5) =

->00 ->00 ] >oo

= On(‘ﬁ, Q(f"o), 70), jlim yﬂ(ﬁ’v qj(;f)’ ‘}71) = }’n(ﬁ, Q(;O)i 7‘70): hence
yaldi, ¢Fo), 7o) = 7, lim [Prags] (7) = L [Prags] (7n(@, 95(79), 7)) =

= lim cx(, g5(31), 71) = en(@, §(%y), Fo) = [Puaq] (ya(@, (7o), 7)) =

7 —>oo

= [Paag] (),
the convergence being uniform with respect to § € €.

We have thus proved that for all » > # from ¢; % ¢ follows that P, aq; %
i o n,ng. :

E. We have lim P, = pn, pne@(, L), P, 5,Pn, = pn, for n, >n,.

fl>—oo
Let @, =mn, @ — 2N <#ljyy <@ — N, j>i>1; we have P,;9—=
= Pmu‘(Pg"ﬁ,q) and
[I[Pnag] (7) — [Pusgl D) =
= ||[Pasy, - - -, Panq] ¥) — [Paa,,- - - Priri(Paa)] P <
< ai~'sup [[[Pa,ag] () — ¢P)| < af~1.2l, hence

lim [P,ag] (7) exists, uniformly with respect to 7 e €.
i->00

Moreover

[[[Pange]l () — [Pnagi] P)| < aisup [1¢,(7) — ¢5(9)], hence
11_1}1; [Pnng2] (¥) = 11_1)1:0 [Pnaqi] () and p, does not depend on q. From
P, nPn,,ag = Pn,,aq it follows for #i - —co that Py npn, = pa, (ny =>n,).
Let indeed #%; - —oc0; then Pn,,ﬁ.q % Da, hence Pn,_.,n,Pnl,ﬂ‘q % Pn.,nlpn, and
Pﬂa.ﬁ«q = Pn;- '

F. The functions p, have all properties stated in theorem 1. It is obvious
that p, € Q(I, L) hence a), b) are verified. We have further

[Prag] (ya(fi, 9(7.) P) = ealfi, 9(7), 7) and Poaps = pa
for all n > 4. Let in the first relation ¢ = pj; we get

Cn(R, Pa(7),7) = [Paapal (¥a(ft, pa(F), 7)) = palynldi, pa(7).7))
for n > #i. We shall prove that the relation holds for all n. We have
Pa(y) = [Paa—pa—] (¥) = cal(t — i, pa—ilof54(7)], oB%74())
yalfi — i, Pa~[oRT{P)], oRiEP) = RhiokhiP) =7
hence
en(Ry Pa(P), 7) = ca(fi — 3, pa—d oR5 %)), o5H4F)) =
= Palya(t — 3, Pai[oR54(P)]), oB%57)))
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and this relation is true for n > # — 7. We get from here

calfi — i, Pr—i), $) = Pulyn(® — i, Dasi(F), 7))
and relation d) is proved for all n.

To establish c¢) we start from |[[cu(#, C, ¥) — [Paag] yu (@, ¢, P))|| <
< o|lg(p) —¢|| for @ + N <n <@+ 2N, ||| <I; let in this relation
g =pr. We get |lca(ii, &, 7) — [Puapal (7a(®, & 7)I| < au[pa(F) — 7|, hénce
llea(#, €, ) — Palya(#, &, ‘y) ll < oyl|pa(y) — €| for 4 + N <n <@ + 2N.
By induction it is then proved that

llon(®s & 7) — Palya(®, & P < abllpa?) — 2| for @4+ kN<n<#+
+ (k+ 1)N.
For # <mn <# + N we have
llen(@i, €, §) — ca(®, Pa(®), DI + |lya(#, & §) — ya(®, pa(?), P <
=k kNIIC — pa(p)l|
||Pn(?n(ﬁ’ pfl(f’)7 77)) - Pn(?n(ﬁ, E’ ?7))” < L H'yﬂ('ﬁ” Pﬂ(f’)’ ?7) - Yﬂ(ﬁ’ 59 77)” <
< Lkk||¢ — pa(¥)|l, hence

llen(®, €, 7) — Pa(yal(f, ¢ )|| = @1+ L) kik'|[€ — pa@)Il.
Let K= 1+ L)k (—2 , o= ac,N, we have

4

llen(#, &, ) — Palya(@, &, 7))|| < Ka¥|[E — paP)|| < Ka*~"|[E — pa(P)l],
n<<n<n-+ N

llen(®, &, 7) — pa(ya (7, &, )| < o*N[[E — pa(P)|| < ;llv =T — pa(P)l| <
< Ko=) — pa(7)|| e
for # + kN <n <% + (k+ 1) N, hence for all » > #, and property c) is
established. Let us prove property e). Let p, with properties a), b), ¢), d),
ye€ @' =0 — N, ¥ = of3(7); we have pa(y) = pa(ya(®', pw(¥), 7)) =
= ca(®’, pw(¥#), #) (by d)) and |[ea(®’, pi(¥'), ¥') — Palya(®, pa (@), ¥ )| <
< Ko™ #¥||ppe(7’) — pa(¥)I| (by ¢)). It follows that ||pa(y) — pa(?)ll <
< Ka¥||pa(y') — pw(¥')ll and by induction lPa() — PaP)ll <
< KadV||payn(3V) — pa-in(79)|| < 21K’V and for j >c0 we get pa() =
= pa(y).
G. To obtain property f) 1° we remark that

[Pn.ag] (va(fi, ¢(7), ¥)) = ca(f, ¢(¥), ) = Ca+(f + v, q(7), ¥) =
= [Pp+,a09] (Yn+s(f + 9, (), 7)) = [Paty,5481 (a(®, (), 7))
hence P, 49 = Pn4,n+9 and for i - —c0 we get py = Puiy.
Let then in the conditions of f) 2% ¢ be periodic of period w; we have
[Paaq] (vn(#, 47 + @),  + @) = cu(fi, ¢(F + @), 7 + @) =
= en(fi, ¢(¥), ¥) = [Pn,uq] (va(#i, 9(7),¥)) ‘
hence [Pnaq] (08a(7) + @) = [Pnsg] (9%4(7) -and for 7 = ofa(y) we M

12 Equadift II.
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[Pnag] (y + @) = [Pnagl (y).  For @ > —co we get pu(y + )= pa(y).
We shall now prove g).
Let ilim ch(#, G, ) = cX(#, ¢, 7), lim yi(#, &, ) = yA(#, ¢, ) the conver-

gence being for n = #i + N uniform with respect to #, ¢, . We have
Ch +N(7, Q(')N’): 77) [ +N,i£q] (?’m N(n q()’)s 7’))
ch+n(f, 4(7), 7) = [P naq] (v n(Rs 9(7), 7))
gince if systems ci(#, ¢, 7), y4(%, ¢, ) have all the properties 1°, 20, 39, 49,
the same is true for the limit system cX(#, ¢, y), yx(%, ¢, ).

We deduce '
I[P~ .aq) (VR +n (7, 9(7), 7)) — [PF+5,29] (¥ %4n(%, q(7), P <

< |lck+n (R, 4(7), 7) — [PPn.aq] (v5+0(f, ¢(7), DI +

+ |lck+n (@, g(3), §) — chen(R, 9(3), P)| <

<L HYIH'N("" Q()’), 7) - 7ﬂ+N(n, 9(7), 7)” +

+ lich+n(#@, 9(7), ) — ch+n (R, ¢(7), V)| < K'es, ‘lingo & =0,

NP )N .aq) (¥) — [Phnaq] ()] < k'es. We have further

I[P2 w.201] (P) — [Ph+nva22] D) < |I[PE.Naga] (7)) — [Phnvagi] P +
+ ||[[PR+n5.491] (P) — [Phinaga] D) < K'eg + o S‘;P l1g1(%) — (Pl

It follows that ‘ [P—ing] (?7) — [Prn-ing] @) =
= ||[[PE-NPE N . - PP (i) Nn—ivg] (F) —
— [Pha-n.. . Pr-g-oNa-ngl P < Kesl + oy +oaf 4 ... +of) <
k'eq '
S 1 — al
and for j - c© we get

k'e;
1 — oy

IpRF) — pr@) <
hence lim pi(y) = p¥(P) uniformly with respect to n and 7 € €.
t->00

- Let now ny -0, ni; the subsequence from the statement of g); denote
Ch(#, C, ) = Cninu(n + ks &, 9), VYh(#,C %) = Yning, (B + nk, G 7). The
systems ck(#, G, ¥), y4(#, ¢, 7) have all properties 1°, 29, 39, 4° from the
statément since these properties depend uniquely on the difference n — .
Hence lllm p®)(¥) = pX(y), the convergence being uniform with respect to

n and 5. But PPs = Pying,a+nr, hence for # > —c0  we get p4) = ppins,
and Pp.in:, converges to p¥ uniformly with respect to » and y. The almost
periodicity of pj, is thus proved.

Remarks. 1°. If the system has the property of periodicity from f) 1° we .
can get p, by proving that the mapping P,q: Q(, L) - Q(l, L) has a unique
fixed-point, We may organize Q(/, L) as a metric space in the usual way with
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the distance o(g,, ;) = sup ||g;(¥) — ¢a(»)||- Let k be such that N <k
’ :

<2N. We have [|[Ph,eq:](7) — [Pho,og] (V)] < 0 sup l91(?) — 6Pl =

= 210(¢1, ¢2) hence o(Ph,,091, Pp,,of2) < %10(¢1; 92) and Pp,,q is & contraction
in @, L). It follows that Py, , admits a unique fixed point g,. But Pp,,, =
= th,(h—l)vP(h—l)v.o = Pv,op(h—l)v.o and by induction th.o = (P,,o)" which
shows that ¢, is a fixed point for P, ,.

For this proof to be complete we must show that P, n,Pn,n, = Pn,n,
holds for all n, << n, < n,; (and not only for ny, > n, + N).

From the fact that the fundamental relation [P, aq] (ya(#, ¢(¥), 7)) =
= cn(#, q(p), 7) holds for all n > # we deduce

[P"ar”H] (vay(ny, q(7), 7)) = Cny(Ny, q7), 9) =

= Cny(Rg, Cn,(y, ¢ (P), ), Yn,(ne, 4(7), 7)) =

= Cny(Ng; [Pr,,ng] (Yn,(01, 4(7), P)); vn,(ny, (), 7)) =

— [Pn:nnzP'”rz:’IHQ] [y”a(n2! Cny(My, 9(7), #), Va1, 97), P)] =

= [Pn,,n,Prny,n,9] [Yn,(n1, (), 9)]; if we set in this relation % = 62 ., (¥)
we get [Pn,n,g] (y) = [Pny,n,LPnyn4q] (V)~

Let then g, the fixed point of P,, and p, = Py, We have P, pz=
= PnaPaolo = Pn,do = Pn. Observe that p,eQ(l, L); indeed P, g, =
= Puin,mo = P’n+hv,hxrphv,(,q0 = P’n+hu,(ﬂ() €@, L) since n + hy > N. Pro-
perties a), b), ¢), d), e) are eastly verified since in proving them we used only
Pn€Q(, L) and P, sps = py. We have then puy, = Puy,,090 = Prty, P90 =
= Pp+,,090 = Pn,090 = pn and if we observe that P, , maps the set of periodic
functions of period w from Q(I, L) in itself when condition f) 2° is verified, it
is seen that g, is periodic and pa(y + @) = [Pa,e90] (¥ + ®) = [Pn,g0] (y) =
= pa(y)-

20, We can use the above method for discrete systems of the form c,(#, &)
and obtain conclusions about the existence of an exponentially stable bounded
solution which is periodic in the case of periodic systems and almost-periodic
in the case of almost-periodic systems. The proof for this case is much simpler.

We state the following proposition.

Let a discrete system have the properties:

1% |G| <1, & + N <n <& + 2N implies ||ca(#, 3)|| < .

20 1G]] <1, |16y)| <1, &+ N <n < @+ 2N imply

llen(®, €1) — calf, E)|| < ay|[C; — ] ’

30, |lea(R, €y) — cn(fi, G)|| < kyk3—P||C, — Gyf| for all m >n, ||| < H.

Then there exists a sequence p,. € C such that

a) |lpall <1,

b) Pn = cn(ny, pn,) hence p, is a solation,

¢) llea(®, €) — pall < ba=#|[5 — pal| for |[E]] <1, n >4,
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d) if cp (@t + v, €) = ca(#, ¢) then puy, = pa,

e) for almost periodic systems p, is almost periodic.

We prove this proposition in the same way as we proved the theorem.
Let |[5]] < 1, Ppa¢ = ca(#, €); Paa, ¢ = Pa,a, Pa,a Cis obvious. Let n = i,
fig — 2N < fig4y < %4 — N, j > i > 1; we have

len(fie, €) — caldis, €)|| = |lca,(Riy, (s, €)) — cay (i, Cay(is, 5 Il

where ¢’ = cz,(fij, ¢). We get |[ca(fiy, €) — cn(fly, ¢)|| < ai~Y[E — &'|] < 2laf~!

hence lim cy(#, ¢) exists for |[¢]| <I. We define p, = lim cu(#, ¢) and
fi>—o0 fi—>— 0

the proof of properties b), ¢), d), e) is as in the general case.

II. The theorem on continuous dependence on parameters and
the stability theorem.

In order to get a system for which the conditions from the general theorem
are verified we have to prove a theorem on the continuous dependence on
parameters and a stability theorem.

Theorem 2. Consider the discrete systems niqy = fu(¥n), Tn+ = fn(®n) and

suppose that ||fu(x) — fu(@)]| < &, || ' af" a;; (x) i < & for all n and for
|
all « € Ga, 3f" <K, 3f" ’ <K,
Suppose that
2 2 2
I o) — P )| < wllley D e — (’”“’H < w(llz, — i)
hm w(p) = 0 ® increasing.
.qw
Then |izalh, &) — =3l &) || < o &

ol ) — onll 1) — 30 ) -+ 230 Bl < an(€) 182 — &
for i<n<#+N, hm an(&) = 0.

Proof. We have I]xuﬂ(n, I) — zzn(f, T)|| = ||fa@) — fLE@)]] < &
Suppoae ll2a+p(f, T) — 234, T)|| < (1 + K; + ... + K171) & Then

Zaspts, &) — Z5apa(@, D] = | fasnl@nanliis &) — fasp@renld, DIl <
< frrn(@ain(®, ) — frap(@ien D)) + A
+ fnso@iso®, £)) — firp(@3enll O <
< K;|[201p(f, &) — B3iph, DI + E< (1 + K+ ... + KD E
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v

and the first assertion is proved. Let us remark that from this assertion it
follows that if the solution of system xp4, = fp(xs) is defined for & < n <
< #% + N then if & is small enough the solution of the system xy1; = fu(2n)
will be also defined for such n.

To prove the second assertion we start from

T (R, Tg) — Ta+y (R, T,) — X+ (7, Tae) + Ta+ (7, &) =

= fﬁ('iz) - fﬁ('il) - fi?(i'z) =+ f;(‘il) =
1

- | [% (& + A — E)) (G — F) — DB 3, 4 MEy — &)y — il)]dz.
0

o
We get

|| X741 (7, T) — Taq (7, &) — x;ﬂ(ﬁ’ Z,) + -’”;ﬂ(ﬁ: 5 < 5”532 — i’l”
We have then

Ta+p+1(7, 572) — Ty p+1(fs Ty) — x;+p+1(ﬁ; 5’2) + X547, 5'1) =
= farp(@a+p(@t, Ty)) — Satp(@n4p(@, £1)) — f+p(@h+p(f, T5)) +
+ frip@ap(, £y) = fasp(@nsp(f, &) —

— fa+pl@a+n(R, ) + x;+p(ﬁ: Tg) — x;+p(7~‘, z,)] +

+ fa+pl®atp(@, Ty) + Ta+p(f, Tg) — Tii4p(f, Tp)] —

— [a+p(@a+p(@i, Tp)) + fatp(@h+p(fi, £,)) —

— farp@asp(@, 1)) + farp(@i+p(fi, To)) —

— farp(@ip(f, 571)) — fap@a4p(, Tp)) + fi+n(@i+p(f, &) =

1
g = o
= [Fen (g, o, 20) +
0

+ A@asp(f, T3) — @asp(@, £1) — Trsp(fl, Ty) + Ta4p(f, £1))] dA@a4p(7, Zg) —

= Tapp(f, T1) — Ta+p(f, Ta) + Ta+p(f, T,)) —
1

b} .~
— [Zee gy, 2 +
0 .
+ A@i4p(R, 1) — Tr4p(R, Tp))] AA@E+p(7, Ty) — Ta4p(R, Tp)) +
» /
0 .
[ e (o 1) +
0 R
+ @40, &) — T, £))] dATR1p(R, &) — Tasn(B, E5)) +
¢ |
0 e %
+ f —f;;—p [@r+p(R, ZT5) +
0 S A ¢
+ Maiap(R, ) — 2R, T))] AA@R U, &) — 2Roap(R, £y)) ~
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f 3fa+p

[R+p(, T) +

+ l(ﬂ?ﬁﬂn(”, xz) - xg+p(7~h 51))] dl(x:&ﬂv(ﬁ, 5'2) — x3+p(7~% '51))
It follows that .
iy = [[@atpna(f, L) — Tasp (R, Ty) — BRapa (R, Ty) + 2R (@, Ty)|| <
< K,||wn+p(fi, T3) — Zatp(f, Ty) — Xi4p(F, Ty) + Xi+p(#, )| +
+ o(||@g+p(fl, 1) — Trap(By T))|) |[€540(7, Ey) — Th4p(i, Tp)|| +
+ §l[ah1p(, Tp) — TR1p(R, Ty)|| <
KN —1 . . . .
<K+ o (Kl——l_ 5) Kp||xy — Zo|| + EKP||&, — Zyf|
hence vp4y < Kyvp + Bn(€) ||T — Z4|.
From here we get

. KN _1 Ko- .
”PSKg_léllxz_m1|[+Klf(w(K — §) —I-f)——Tsz—;rl[[
1
hence vy < an(§) ||Z, — &,|| for 0 < p g N, lim ay(£) = 0 and the theorem
£->0

is proved.
Theorem 3. Consider the system

Yn+1 = Yu(yn, On)
On+1 — On = Op(Yn, On)
and suppose that:

a) Yy, Oy are defined for ||ly|| < H, & G,

Do <k | Trw o] <k, |, ”| <K,
Bewo| <K,

o w0 — 2, o) } < Ky(lly’ — y"ll# + (10" — 9”1,
o, o) — Sny, 9 “ < Ky(lly' — 911" + 119 — 871",
o, ) 39" " ﬁ")i < Ky(lly’ — 911"+ 119" — 8|1,
2o, ) — "‘f;' @' )| < Kully — g1+ 17 = 07

b) Ya(0,8) =0, (0, #)=an.

; n—1
c) Let A,(9) = 661;,, (0,9), =14+ kz ag; then there exists 0 < g <1
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and K such that ||z,(7, 2)|| << Kq*—*||Z|| for all solutions of the system zp., =
= Ap(0n) 2n.

If all these conditions are fulfilled there exist q', K', | such that

10 “g” <l zmphes ”y,,(n, 7, 19)” < K’ 'n—ﬁ“yll for n >
20 lgll <L gl <1 imply S

|lyn(ii, 7', ) — yal®, 7, 3)| < K'g»(1§ — 9”1l + oll§" — &)

[19a(f, 7, B) — Bu(l, 97, 3) — & + 6”1l < Klg’ — 9”1l + ellF — 31D
(! depends on p). '

Proof. A. Let Vy(z) = sup [|2n+p(%, 2) H ; we have [|z|| < Val(z) < K|l2|].
_ e 1 — |
Let V3 = Valza(#@, 2)] = SuP [[zn+p(n, 2a(f, z))H = = SUP [[2n+p(7, z)”aﬁ
it follows V., = sup Y| |20+ +1(, 2)|| F == sup |25 +2(, z)|| o =

= i‘g’) |2n+p(#, 2)| F

hence

& it )
Vs — Vi< (g — 1) sup [lenspldi, 3)l[ -5 = —(1 — q) V3.
=0 q
1 1
We have further Vy(2') — Va(2") = sup |[2n+p(n, 2")|| — — sup |[2p+p(n,2")|| = <
p>0 % p>0 '

1 "
< sup |[zmsp(m, #) = Znsplm, 2} 5 = SUP llsptn, 2 — 2| 5=
= Vale — ") < K|l — 2|
hence |Vp(2') — Va(2")| < K||2' — 2"'||.
B. We put the first equation of the system in the form
Yn+1 = An(On) Yn + Bu(yn> 9n);
Bu(Yn, ‘91»): = Yu(yn, On) — An(0n) Yn = Yn(yYn, On) — Yu(0, 9n) — An(0n) yn =

0 Y,,

oY, |
f &2 (s B0y dth — 220, 00) o =

aY,, aY” aYn aY”
f [ (AYn, On) — £ (0, 191»)] diy, + ( y 0, ¥y) — (0, 0n))ym

hence [1Ba(Yns 9n)l| < Killynl[*** + Ki|[Yall [|95 — Oall“.

Let Bn = 9n — On; we have B4 — ﬂn = 0n+1 — %y — On+1 — dn) =
= On(Yn, In) — otn = On(Yn, On) — 9»(0 Oa), hence ||Bn+y — Ball < Kiy|lyall.
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n-1
If dn= Ox weJget][lpall < 3 llyal| for
k=)
n > n, ﬁ“ = 0.
C. Let yu(#, 9, 172‘), On(#, §, '19) a solution of the system,

f}; = Vﬂ[y"(ﬁ’ g’ '5)] We have V;’=+1 S V: = Ij:n+1[z1l+1(n; yn(’ﬁ:, 37, ’5))] =
— Valyn(@, 9, )] + Vasalynsa(n, yn(ii, 9, )] — Vasalznsa(n, yu(#i, §, )] <
< —(1 — @) Vi + K||yn+1(n, yn(#i, §, ) — 2011(n, ya(&, §, D).

But yniy(n, yn(#, §, 9)) = An(0n) yn(#, §, 9) + Bulya(®, 9, 3), Sa(#, 9, 9))

Zn+1(, Yn(#, §, 9) = An(0n) ya(#i, 9, 9)
hence

|[Yn+1(, yn(@, 9, ) — 2ns1(n, Ya(ii, §, 9))|| = || Bu(ya(#i, §, ), 9a(®, §, B))|| <

1

S Klllyﬂ(ﬁ’ gv ;,)”,‘.*-1 + K}"'““?/n(ﬁ, g: 5)”("72— ”yk(ﬁ’ g’ Q‘;)H)“'

. fi
It follows that
Vi — Vi< —(1—q) Vi + Killya(i, g, )]+ +
n-—1
+ Ksllyn(#i, 9, DI 2. llye(di, 9, )]} <

n—1

< —(1—q) Vi + K, Vil + KVA( D Ve
k==

Let g < ¢' <1, W,.=?nl_—nl7';; we have

w W 1 7 % L 1 7 % A
n+1 — ”=WV”+1_EWV”=F‘T“(V”“~V”)+

| 1 = (1 1 . 'S 5
+q'”__ﬁV: (?—I)S—?Wn[l—q—szﬁ"—Kascz_ﬁ V:)"]-{-

1 q K ~ K n—1 - .
W (—,—l):—w [ __'___'2 V*u_____la_ V*/]_
. &g " qq”q(k;")
We deduce that )
n—1 .
Wn+; — W< —W, [1 — _,q,___!f_; q'rn-Nr &3&( Z g ch)"];
~ . q q k=n

Wa= Vi = Vi < K||§]].

Suppose Wy < I’ for k < n; then

n—1 : n-1 £

3 7
(? q""‘*Wk) <l (Z q”““) < l’“—'——l——,— " "~ and
& Gk N A5y
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n-—1

1 — l’_IL,z gre-WE — 573 (Z q'k_uwk)uz
q q q

k==
q K2 ’ —#)]’ Ka l'_”‘
>1 =R — —F e > 0
g q ¢ g 1—g)r
1
’ »
if 1—l,>l"‘(!{—,2+———-', K ; ) hence if ' < @ — q)
. q ¢  ¢Q—q)r

K, 15
J [ - q)"]

For such I’ and for Wy <1, k <n we get Wpiy — Wy < 0 hence Wyyy <
< W, <1’ and the inequality is proved by induction if it is true for k = 1,
1

1 (¢ — q)r

K, 1+
[K = q)"]

For such § we have W,, < I’ for all n > i hence

u’n+1 = Wn < —au’m Wn+1 < (1 . G) Wm

Wo < (1 — o)~ *Ws = K1 — a)**|4l[;

it follows that V% < K[¢'(1 — «)]*=#||7|| hence

llyn(®, §, 9)|| < K[g'(1 — «)]*7%||7l|

and the first assertion of the theorem is proved.
D. Let now yn=ya(® &, %), ¥ =yal@ §", %), 0n= 0@ ¢, ),

Oy = (i, §ns 97); suppose |[|F'[| = |§"]|, ¥« = 9"
Denote V** = V,(y, — yn); Wwe have

Va3t — V** = Vanlza+1(®, Yn — yn)1 — Valza(n, Yn — Ya)l -
+ Vn+1(?/n+1 Yn+1) — Vn+1[zn+1(""’ Yn — Yn)1 <
< —(1—q) V¥ + Kllyn+r — Yn+1 — Zn+1(n, Yn — Yn)ll
But

[|Yn+1 — Yn+r — Zona(0, Yn — Yn)ll =
= || Yu(yn> ¥n) — Yn(yn, On) — An(dn) (yn — yn)” =
< | Yulyn, 90) — Ynlyn, I+
=+ |l Yn(?/;v ) — Yuyn, On) — An(dn) (Yn — ya)ll <

ie. if ||7]] <

e

Yn ’ ”
<| f o Wan 93) (B — 953) dA] +

1
Ya ’ Y , i
s HYOJ‘ (?ay. (Y3, 0%) — %y— (0, dn)) (Yo — yo) dA ”=
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—H f (aY" (v 93 — 20 0, «w)

f (aYﬂ (ym ;l) 3Yn —{0, ﬂn) + a;;n (0, 6'n) —
0

Y ’ L4
— aay" (o, an)) dA(ys — Y)| <
< K| |ynl|#1197 — 9l + Ky sup [[yhl[“llyn — yall +
+ K,||9% — 6ull“llyn — yall <
< K. K'"[q'(1 — «)]*=0(§'|| ({lyn — yall + (|95 — all) +
+ K,||9% — Oull*llyn — all-

We know that

|

n—1 . n—1
Ball = 190 — dnll < Ky 3 lyill < K.K'NF11 5 [¢'(1 — a)]k—ﬁ,
k= k=f

hence ll@ — dl|* < K,||7'||*. We have further
mi1 — On1 — (9n — 97) = On(Yn, 93) — On(Yn, ¥'n) =

20 26 v o
—f [ " (Uh 93) W — ¥3) + 5 Wn 95) (9 — «9,,)] d2 =
068 [ 1 vy e _ o
- f Oon W 03 G — v) 42+

+ f [39" i, 04) — 2n (0, 9 )] (9, — ;) di

hence setting y, = 9, — 9, we get

[lyn+s — vall < Killyn — Yall + KK (g’ (1 — «)JC=D{g[[*]|yall.

It follows that
n—1

lyall < llvall + 5 (Kaillyk — gl + K K™“[g'(1 — o) C=D[g[[*[[yel])
k=1

hence
n—1
[|9p — Oall < 1|9 — &'|| + K, 2 llyk — yill +

+ KK |y||* kz [q'(1 — )= — Ol
=f

for n > % + 1.
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By a discrete analogue of the Gronwall lemma this inequality yields
195 — o3l < KB — il +73 i — whl

Let us estimate ||9) — ¥y — &' + #'|| = ||lyn — yall. We have
llyn — yall s:§: (Eyllys — 9kl + KK (1 — )P4yl ) <

n—1
< S (Kllye — y'll + K KMg' (1 — ) E=D [ 17all) +
k=1

KRS [0 — @l E Dy — yall
k=1

which yields the inequality

n—1
|90 — 00 — " + ¥l < Ks(kgﬁ lly" — yell + g (1119 — ﬁ'll)-

Using these inequalities we have
Vit — Vi < —(1 — q) VE* + KlI§[1Mlg' (1 — )}~ Dllyn — vall +

n—1

+ Ky|9'11"llyn — ynll + Kolg'(1 — a)®=D||g°[ | Zﬁllyk — Yl +
k=

+ Kolg' (1 — )] em]|g]4|8" — .
Let ¢ = g + K" and choose ! small enough in order that ¢’ "< gy, ie.

1
I < (gx_K_)z, Suppose [ly'|| <1; it follows
8

n—1
Vit — Vi< —(1—¢") Vi* + Kulg' (@ — ol e-0g 5, Y — yill +
=f
+ Kylg'(1 — a)]ﬂ(ﬂ-mny'lwnﬁ" — &I

Let W= Vi*, we have

=
q

* ok ok
Wﬂ+1 = qun+1 R Vn+1 <

= q"n1+1-ﬂ (¢"Va* + Kyl (1 — ) *=D|F]] 2 llyke — will +

+ Efg' (1 — a)Je=||y'| 4| 5 — #|]) =

n—1
Km , ([q'a—a)]“)"‘“ o
= Wi+ Rl | ;nyk Yl +

Ky e (—[q—il—;“—”) 13 — 1,

hence
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k—#
W*gw,+z > gl ([q‘lq “)]) Z[|y,_y,||+

0\ kA
+ 52 gid - MZ([“—I—““—’]) <

e
L g —ap

2

q .
n—1 n-1

+ ’—j%'ny'n"z (Z (M) H) 95 — vl <

q
i=f k=j

sV:*+-q—,,2 13 — &) +

’ KD”?’HM Qs _ ~ ’
<KW =90 + s—jpq —a5 ¥ — ¥l +
Km v ([qu—a)]u)f‘ lly7 — vl

|

L ’Z Ll =

qll

hence
llyn — Ynll < VR* = ¢ W3 <
< Kq"™%|g" — §"|| + Kull7'||#|9" — &'|| ¢"»* +

n—1
+ Kmny'nuq"n-“z (=L W
=
Let un = E;.l_—,, llyn — Yall; we have
7t ~"n < K7 — 971+ Kyll7 1187 — 811 gt +
+ Kalgivgnr > (LEZ) 7 gpm,
< Ky — 9] LRI — F1 4+
+ Kmli?'“”,.‘?-,{ ([ql'('l ;"a)]gq")j—ﬁu; |

hence un << Ky(17' — §”[| + ||7'1#|9"" — &)

It follows that . .
lyn — ¥all < K@t X7 — 971 + U1 — #1)
185 — 85 — 0" + &1l < Kyu(ll§ — 9”1l + 1711418 — &)
and the theorem is proved.
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III. The theorem on invariant manifolds.

We may now prove the following theorem on the existence of exponentially
stable invariant manifolds.

Theorem 4. Consider the discrete system

Yn+1 = Yu(Yn, 9n) + eY i (Yn, On, €)

0’”“‘1 = 0’"' + @;(yn’ 7,1&) + 80}!(?]"7 01&1 E)
Suppose that Y5, Oy verify all the conditions of theorem 3 and Y}, O verify
the regularity conditions of theorem 2. Then for |¢| small enough there exist
pn : € —> C such that

a) |[pa(9)]] < Ue),

b) [1pa(By) — Pa(9)l| < Lie) |18, — Ball, l’f{,‘ U(e) = lclg L(e) = 0;

o) |7l <1 _implies [lya(#, 9, ) — Pa(Ba(ii, g, )| < K'q™17 — pa(d)l,
d) o = pﬁ(ﬁ) zmplies yn('ﬁ, 179 0) = pn("n(ﬁ’ 97 0))
and the solution is defined for all integers n.

e) pn 18 unique with the above properties,

) 10 If Y5409, 9) = Yaly, 9), Yaunly, 9.¢) = Y3y, &, ¢),
:z+v(?l, 0) = @;(y’ 0)’ @11;+,(y: 9, e) = 6‘}3(9’ 9, &)
then Pn+, = Pn-
20. If Y, (?/, P+ o) = Y;(y: 19)9 Y}.(!/, P+ 0, € = Y%(!/, 9, 8),
65y, ¥ + o) = O4(y, 9), Oy, ¥ + w, &) = Oi(y, ¥, ¢),
then pp(d + @) = pa(P).
g) If Y3, Y1, O;, O are almost periodic sequences (uniformly with respect
to y, 0 e) then py 18 an almost-periodic sequence.
Proof. We have to verify that the discrete system consudered verifies all
conditions of theorem 1. Let g5, ¥, be defined by the system for & = 0.
From theorem 3 we have |[|y3(#, §, 9)|| < K'q™#|7l| for n >4, [|f]| <.

Let N be such that K'q'N < % : we have for ii <<n <# + 2 N using theorem 2
lya(, 9, )| < llgn(d, 9, B) — ya(@, 7, DI + llya(@, 9, D)l < Bulel + K<
< —i— H for |e| and 1 small enough and the solution is defined for such =.
Further, for n > # + N we have |lya(#, §, B)|| < Bnlel + K'q'l < Bnle| +
+ % 1 < 1, for |¢| small enough. Condition 1° of theorem 1 is verified.

We have then by theorem 3

llya@®, g, &) — ya(di, g, 9)|| < K'q'**(lg" — §"I| + ell¥' — 1))
195, g, &) — O(#, g7, 8") — & + 8|l < K'(Ilg" — g1l + ell?* — #”[1)-
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It follows using theorem 2 that

l1yn(®@, §') — ya(®, §”, )| + L ||9a(@, §', §) — Su(#, §”, 9)|| <
< |ya(#, §', 8) — yn(®, §", 9) — ya(@, §', 9) + ya(®, §', 9)|| +
+ L||9a(®, §', F) — On(#i, §”, &) — I4(R, §', 9) + I5(®, g, 9)|| +
+ llya(®, §', 8) — ya(®, §7, )| + L |95, §, 9) — 95, §, 9)|| <
< xon(e) [|F" — §”I| + Lan(e) |1 — 9”1l + K'¢N||g' — §”|] +
+ LK'|lg" — g"|| -
for i + N <n < # + 2N, hence for |¢|, L small enough we get
yn(®, §', F) — yn(®, §"', )| 4 L ||9a(#, §', B) — Ou(®, g7, 9)|| <
<oy —y'll, <1,
and condition 2° of theorem 1 is verified.
In order to verify condition 3° a) we see that for 4 << n < # -+ 2N,

17" — §"ll < L||#" — #”|] we have
[|9a(#, §', &) — Ou(@, §7, ") — & + 9”|| <
< ||9n(®, §', &) — Iu(R, §7, ') — In(@, §', &) + O5(R, g, 9")|| +
+ [0, §', &) — Fp(@i, g7, 9"') — & + 97| <
< epn(e) (19 — 971l + 119" — 9”1) + K'(Il7 — §”1] + ol|® — 9"||) <
< an(e) (1 + L) [|#" — 9”]] + K'(L + o) [|# — "] < a9 — 9",

oy < % if |¢|, L and g are small enough.

We have then for @t + N <n < + 2N, ||§' — §"|| < L ||9' — 9"”|| the
estimation
[1yn(#i, §', 9') — ya(R, §7, 3| < llya(#, §', &) — ya (i, §”, 9")]| +

+ |1Yn(@, §'s 9') — yn(@, §7, 9"') — yau(@, §', &) + ya(®, §7, 9")|| <

S KQN(IF — 971 + e 119" —9"]]) + ean(e) (1§ — g711 + 19" — 9”|]) <

1 ’ ”n 7 rn

S5 L4 oIt — || + an(e) (L + 1) |9 — ¢7|| <
S (=) L9 — 8]
if |¢| and g are small enough.

Condition 4° is obvious from the regularity conditions.

It is easy to see that conditions in f) and g) theorem 4 imply conditions
in f) and g) theorem 1.

Theorem 4 is thus proved.
It is useful to consider the “’autonomous’ case

yﬂ‘l'i = Yo(yﬂ’ 01') + Gyl(ym f?m 6)
Onty = On + O°(yn, ) + €O yn, O, €)
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An invariant manifold for such system will be a function p: € > C such that
if §=p(0) then Y°(F, ) + eY'(g, 8) = p(? + 6°(F, 9) + £O'(y, 9, ¢)), ie.
an invariant manifold for the mapping defined by the system.
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ACTA FACULTATIS RERUM NATURALIUM UNIVERSITATIS COMENIANAB
MATHEMATICA XVII — 1967 ‘

ON ORDINARY LINEAR DIFFERENTIAL EQUATIONS
OF HIGH ORDER &

H. HornicH, Wien

We shall briefly report here on the ordinary linear differential equations
of high order whereby we suppose that the differential equations are of the
normal form, and that their coeﬂ‘lclents are mtegra.ble and bounded, respect-
ively.

If a function satisfies a sequence of such differential equaﬁlons with i mcreasmg
order, then this is the property of the function, which is, apart from the
d]fferentlablhty of all orders connected in a certain’ way with the regularity
of the function and it is so in the case of real as well as in the case of complex
functions.

Let us begm with the real case and let us suppose the dJﬁ'erentla.l equation
is in its normal form:

i
(1) ym 4+ > oy® =g
i=0

where the o; and ¢ are L-integrable, for example on the interval [0, L],
L>o. .

Without loss of generality, we can now limit ourselves to the. solution y
with
2 ¥(0) =%'(0) = ... =y®=1(0) =0,
otherwise there is only the right slde of (1) correspondingly to modify:

We begin with an estimate:

Let on the interval [0, L]

Si=suplol, @ =suplg|

and let L be so small that

n—1

-t
Zo&(n—-i)! <l

13 Equadift II. 193



Then for the solution y with (2) holds the estimate®)

-1
S (”-"": 1)!
@3) ly@) < —= .
In—t
=D Sy
im0
Xn—-1
Now for a fixed X is the quotient W =11 -0

for » — co0; thus if the o¢ are equibounded foralli =1, 2, ...,

log)l < K
and if
Kel—1)<1

then for sufficiently great » the solution y with (2) is arbitrarily small.
Therefore is holds:

Any differentiable function fe C® on [0, L] with f®(0) = 0 for i =0, ...,
which 8 not identically 0 can not be represented as the solution of linear differential
equations of the corresponding high order and of coefficients < K.»

Naturally such a function is not regular.

We can extend this theorem for the functions f €,C* on [0, L] which are
not regular with arbitrary initial values f@(0).

There are functions f € C® with f®)(0) groowing;so that

e

For such (surely not regular) functions it can be easily shown that for
an increasing sequence of natural numbers (n,, 7y, ...) they can not satisfy
a sequence of linear differential equations of the order nx if k is sufficiently
great and the coefficients remain bounded for x = 0.

Let us consider therefore only the case of a function fe C* on [0, L] for

which
2 T TP
im V‘ f® @
n!

1) Proc. Amer. Math. Soc. 17 (1966), 321—324.
2], c.

fW(O) |
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‘Let f satisfy the differential equation
gy + S oy® = g.
i=0

If we put

n—1
PE = > fO05F

i=0

then f(x) = f(x) — P(x) satisfies the differential equation
n—1 -1

§o 'S 0g® =g — 3 PO =7
i=0 i=0

with §(0) = 7'(0) = ... = g®»-D(0) = 0.

Now we can apply to our differential equation with y, f our above mentioned
estimation and we see that ¥ by a corresponding L > 0 becomes arbitrarily
small for all z and sufficiently great n.

We have supposed f to be non-regular at # = 0, therefore is for every natural
m >0 .

m—1

f@) — D 100 %

0

sup
x
and naturally also

infhy =h >0

(otherwise f would be represented as a polynomial or a power series).
Then there exists for every m a point 2, with

m-—1
]
fim) — waw) =
0

On the other hand 7 is arbitrarily small for n — co.
So the inequalities -

log < K, lp] < K and n > n(K)

=>h.

-

can not exist simultaneously for a n(K). .
- Then f surely does not satisfy a differential equation with bounded coefficients
for a sufficiently great order n.%
A simple consequence follows from this:

1. c. 1) 8. 321.
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If f € C™ 13 on the interval [0, L] and if there exists such a sequence of linear
differential equations for every sufficiently great order with equibounded coefficients
that [ satisfies every onme of these differential equation, then f is regular at every
point. '

We will now deal with the regular functions f and we shall consider them
either in the real domain or in the complex plane.

There are simple examples of regular functions which can be represented
as the solutions of differential equations of an arbitrary high order with
bounded coefficients, and there are other examples of such functions which
can not be represented as the solutions of such differential equations.

It is known now, that for the regular functions a number can be determined -
upon which the behaviour relative to the representation as a solution of
differential equations of high order depends. This number depends — likewise
as the order of an entire function — only on the behaviour of the power series
whlch represents this function,

- First we introduce this number:9
., Let f be regular at the point 0 and let

sup Vif®™(0)] < oo,
then -

f&) = > 1o
0

is the entire function of an order <<'1.
If we put for n > 0

sup thm(on = A44(0),

i>n

then A4,(0) > 0 is decreasing and thus the sequence {An(O)} converges.
For ¢+ > 0 and an arbltrary 2

i

Vlf“’(Z)ls VZ (44O 'z[ — A4,(0). e ORI

n=0

Then exists also .
sup |[fOG) = 4n(2)

'4) Monatshefte fiir Math. 70 (1966), S. 330—336.
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for an arbitrary z and n > 0 and .o ek RN ; t

1 o
An(z) < Ap(@)en ™ ~ holds.

For every z exists also B
lim A,(z) = A(z)
and following the above mentioned

A(0) = A(z)
is constant and we denote the constant

tim sup JIFOGT = A1 "

n
as the degree of convergence of f.
For an arbitrary function f regular at the point 0

sup [/If®(0)] = 0

(this expression is then for every z infinit!)
we put correspondingly ||f|| = 0.

Now our problem is: when can a regular function be represented as a solution
of a linear ordinary differential equation

n—1
ym 4+ > oy® =¢
i=0

of a high order.
We put for the function f
8y = V|f(i)(0)l p== 1,25 2 v and Sy = |£(0)] '
and
Sa

T8, T8+ ... T8 ™

We see at once: when the coefficients o4 and ¢ at the point z = 0 are all
absolute << gn

lo)| < g, gl <gn forz=0
then f does not satisfy our differentialbe equation, because there would be
forz=0 . '

. n—1
o= qnll + 8o+ S+ .. + S5 > lpl + 2 lodl 81
Now is for our function f, resp. for the sequence of numbers Sy is
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then there exists a sequence of natural numbers (n,, ny, ...) with

n. > ¢
and f is surely not the solution of a differential equation

npg—1
ym) + > gyt = g
1=0

if the coefficients
oy ™| < %, ™| < % for z = 0

for sufficiently great k.
And now we can show:
If the degree of convergence is for our function f, ||f|| > 1 (also for ||f|| = )
then 't is always
Sz
Ry R
If this would not be the case, then the
i
, 1+ 81+ ... 8t
would converge, but then would be for an n
8% = ea(l + 8 + S+ ... + Spd
S:ﬂ = ent(l + So + 84 ..+ 52:%) (1 4 &n)
Spid = enta(l + 8 + 81+ ... + Sp73) (1 4 en) (1 + &n+q)
S =pm(l + 8+ St + ... + 85D A+ &n) ... (1 4 ent+m—)
Becau.se of eg — 0 then it would be for a sufficiently great »
SR <L+ 84 ..+ 8D+ " ensm
with an arbitrary small > 0.

On account of ||f|| > 1 is at least for one sequence (m,, m,, ...) with an
e > 0 arbitrarily small:

> 0.

q= lim ¢ = lim

=g, >0

Saime > (IIf1] — eym=
which can not hold with |[f|| > 1 after what has been mentioned above.

Then it holds: If ||f|| > 1, then there exists a sequence of natural numbers
(ny, mg, ...) 80 that f is surely not the solution of a linear differential equation,

of which the coefficients for z = 0 absolute < % are with an order nx for every

sufficiently great k%.

8 1. o. 8. 336.
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If finally ||f|| < 1, then for a given and sufficiently great n

Vif®™G) <g<1  hence
™) >0 for % — 0.

Then f always satisfies a differential equation with arbitrarily small coefficients
of sufficiently high order.

We have for ||f|| = 1 simple examples as f(z) = e?, for which f satisfies
a differential equation of any high order with bounded coefficients, but
I do not know an example with [|f|| = 1, in which this would not be the case.
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ACTA FACULTATIS RERUM NATURALIUM UNIVERSITATIS COMENIANAE
MATHEMATICA XVII — 1967

ON THE TRANSFORMATION OF LINEAR HOMOGENEOUS
DIFFERENTIAL EQUATIONS OF THE =*» ORDER

Z. HustY, Brno

We call the equation of the following form
(0.1) 3 (2) i) yrD(@) = 0, aeCyl), i=0,1,...,m, az0inl,,
i=0 !

a general homogeneous linear differential equation of the nt® order. Instead
of “homogeneous linear differential equation” we shall call it simply

“equation”. .
The equation (0.1) is normal (semi-canonical) [canonical] if ay =1 (a, = 0)
[6,=a,=0]. If aifayeCy(l,), i =1, 2, ..., n, then we call the equation

0.2) y™ + 5 (%) (@ifag) yo—H = 0
i=1

1

the normal form of the equation (0.1).

We call two equations quasi-identical if they have the identical range of
definition and the same fundamental system of solution. We denote the
quasi-identical equations by the sign =—. F.i. (0.1) = (0.2).

1. Perturbated equations.

Let us have the equation
(a) y(“)(x) + 2 (‘?) ai(z) .'l(”_”(x) =0, are Cﬂ—i(ll)i i=12...,n
i=1 .

Let u(x) be an arbitrary solution of the equation

3 ,
n+1(al—al‘—a¥)“=0,' ;

We call the equation (u) the accompanying equation to the equation' (a).

(u) | ul' +
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By (n—1) fdld iteration of the equation of the first order

Ly  Pyy) =wy +[au — (n — 1) uw]y =0

we obtain an equation of the n‘* order

(1.2) Po(y) = Py[Paey®)] = u™ 5 (7) f2(as, 05) y®— =
: $=0

= us‘n[”(y; ay, az) =0,
where the function

(1.3) ( ey a)), i=0,1,....n

is for the given n a polynomial of the elements a,, a, of the dimension ¢, which
we obtain as a solution of a certain difference equation of the first order —
see [1; pp. 39—48]. For instance there is |

fo(ay, a5) = 1, fi‘(dn Gy) = @y, [3(ay, ay) = ay,
1

3 , » ,
f3ay, ay) = g5 h + 3a,a, — 3aja, — 20

We call the polynomial f7(a,, a,) the iterated polynomial of the dimension ¢,
the equation (1.2) we call an iterated equation. Let us note yet, that we take
for an iterated equation every equation, which is quasi-identical with the
equation (1.2).

Put :

(1.4) o} = a; — fa,, ay), t=23,4,...,n.
With the aid of (1.4) we can write this in the form

n
(@) In(y; a5, 85) + > () 0fy®=H =0,

i=3 :
where I,(y; a,, a;) = 0 is the normal form of the equation (1.2). We call
the function w? the coefficient of perturbation of the dimension ¢ of the
equation (a), the equation (w) we call the perturbated form of the equation
(a) or the perturbated equation of the equation (a), briefly the perturbated
equation. '

The following can be proved — see [1; pp.50]

Theorem 1. The equation (a) is iterated just then when its fundamental system
18 the function
bt 1

z :
(1.5) un—kpk-lexp {—- [ a, d,s}, zy €1, E=1,2 .cuM
Xy

where u and v are linearly independeht solutions of the equation (u).
The perturbated equation (w) comes in handy for the study of the asymptotic
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and oscillatory properties of the equation (a). We give at least two examplés
on the understanding that the equation (a) is semi-canonical in the interval I, =

= (&, ), i.e. @ =0in I,. Let us put for the sake of mmphmty A= _{3_ 9%
Example 1. Let the following assumptions hold:

(1.6) AM = 0(1), r=0,1,...,n—35,

f 28| Ax*® 4 ec?| dx < oo, c>0, 8 < —;— ; (c,8€kly), e= 41,

Zo
[awttDopdz <o, k=34 ...,m =023 ..,n—k
To !

Hence the equation (a) has in the case of ¢ = 1 the fundamental system
" exp {f(n — 2» + 1) 21-2}[1 +0o(1)], »=1,2,...,m,

v

in the case ¢ = —1
[sin (Bx'~26)]*~[cos (Bx1-2)]~1 4 o(l), »=1,2,...,2,

where f§ = — see [2; pp. 184].

c
1—2s

For s = 0 we obtain the following statement:
Let the following hold: formula (1.6),

[IA+etde<o, [lofldz<co, k=34, ..,mn
Ty

=
Then the equation (a) has in the case ¢ = 1 the fundamental system
em-w02[1 L o(l)], v=1,2 ...,m,
and in the case of ¢ = —1
[sin cx]*—[cos cx]’~1 4 o(1), y=12,

Example 2. Let o} = 0. If the equation (u) is osoxllatory, ‘then every
solution of the equation

(1.7) In(y; 0, @y) + wpy = 0,
which has at least one zero point oscillates, too. If # is even, then'the equation
(1.7) s strictly oscillatory. .

We note yet that M. GREGUS dealt in his paper with the properties of the
integrals of the equation

(1.8) In(; 0, 0) + noltyy’ + ofy = 0
— see [21].
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$ X Transtormation

We denote by the symbol m(I;;) where & s I, < I, the set of the elements
which are defined as follows: The ordered pair of functions {T(x), w(z)} is an
element of the set m(l,;) if

T(x) € Crn11(112), w(x) € Cn(l1z), T'(x) . w(z) # 0 in Iy
Let us choose an arbitrary element {T'(z), u(x)} € m(I,z). If we put into
the equation (a) '
y(x) = u(x) Z(x), t = T(x)’
we have the equation

@ (@) [T@PEOO + S () @) 0-00] =0,  tely=T(y),
i=1

where we put = T_,() [T—(t) is the inverse function to the function 7'(z)],
2(t) = Z[T-,(t)]. We call the equation (a) the image of the equation (a) in the
interval 11z with the coordinates T(x), u(x) and we denote it by the sign (a)
{T'(x), w(x)}. It can be proved that in the interval Iy the following relations
hold

@) = [T'@1 S (@) ole) OPIn@), C@], o =To) i=0,1,...,m,
k=0

where 7 = T"[T’, { = u'|u are the transformed coordinates of the image
(@) {T'(x), u(x)} and

P (0, 0) = > (70 ¢ () 1r—+(0),
i=k.

see [3; 3,1.10]. The function ¢}~/ resp. yj— is the polynomial of the element
n resp. { of the dimension ¢ — j resp. j — k. We obtain both functions
as a solution of certain linear difference equations of the first order — see
[3; (2,1.8), (2,2.3)]. The difference equation which satisfies the polynomial y
is specially simple and therefore we write it here:

26(C) = Lxe—1(8) + [ (0)],"  x(8) = 1.
From this follows f.i. x,({) = ¢, 22(8) = (% 4 &', and so on.
We ‘introduce yet some explicit polynomials: ¢@*(n) = 1,

3m — 5

m—1 m — 2 ,
n, ¢ =—73 ( 1 n2+n),

7' (n) =

n —

%
) 7+,

¢3"(77; C) =1, , ¢?"("]: {) =
Ppin ) = (n — i) [9-"—‘—13;—+—‘ w g+ nc]+ g2+ ¢
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By the symbol 04(I;2) [Pa(l12)] {ka(I12)} we denote the set of all images
[semi-canonical images] {canonical images} of the equation (a) in the interval

Lz . . : - o
If we choose o , '
1-n x )
(2.1) U(x) = c|T"(x)| S exp{— [ a; ds},‘ 0 #cek,,
Ty : ; :

then the image (@) {T'(z), U(x)} € 04(I15) is semicanonic. As the semicanonical
image is following (2.1) determined by the coordinate 7'(x) we write instead
of (@) {T(#), U®)} € palyz) in a shorter way @) {T'(2)} € Pall1a)- 5
We call the image (4) {z} € pa(I,) the fundamental semicanonic image or
also the semi-canonical fundamental form of the equation (a).
If we put '

: ‘

(2.2) Ai= > () ari-k(—a), 1=2,3,...,m, xel,,
k=0

then we can write the semicanonical image in the form

(4) U@ [zw_(x) + 2, () Aia) zm-ﬂ(x)] =0,
where U,(z) = ¢ . exp {—-7(}1 ds}, 0#£cek.

We call the function (2.2) the fundamental coefficients of the equation (a).
Let us put , BT et

23 fMA4;) = fH0,4,), £=0,1,...,m,
(24) In(Z; 4) = 5 () f1(40) 2009,
i=0

O = Ay —fM4y), =34, ..,n
There is for instance . _
f(;l(Az) =1, {L(AZ) =0, ff(Az) e Aﬂ’
, a3 4 migy O ar, 30GRAT.
(2'5) fa(Az) == 2 A2’ fi(Aﬂ) e 5 A2 + 5("1 + 1) Az'
Let us introduce yet the formula (2.4) for n =3, 4:

o - 3 ’
(2.6) _ Iyy; 4;) =y + 34’ + & Azy.

N PPITIN.
(2.7) I(y; Ay) = y® 4 64,y" + 643y" + 5 (As‘ - 5 Ag) Yy -

Then we can write the normal form of the equation (A) in the perturbated
form
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@) INZ; A+ 5 () 2z =0,

{=3
We Ball the function f}(4,) resp. 27 the fundamental iterated polynomial —
briefly the fundamental polynomial — resp. the fundamental semiinvariant of .
the dimension ¢ of the equation (a). We call the equation (£2) the perturbated
fundamental semicanonical form of the equation (a) or briefly the perturbated
Jundamental equation.

We introduce the perturbated fundamental equations of the order 3 and 4

in their most often occurring arrangements. If we put 4 = %A,, Wy =

- o} = 4, — %A; we obtain with the aid of (2.5), (2.6) the perturbated

fundamental equation of the 3¢ order in the form
y"'+2A1,'+(A'+w3)y=0.

If we put A= %A,, 0y = 40§ = 4(118 — —Z—A;), w,=0}=A4,—

—%(A; +%A§), we obtain with the aid of (2.5), (2.7) a perturbated
fundamental equation of the 4t order in the form

Y@ + 104y” + (104’ + ws) y' + [3(A” 4 342) + w,]y = 0,
seer£i. [17; pp. 511—3-26, pp. 528—4-11], [20], [11], [7].

Between the functions (2.3) and (1.3) resp. (2.5) and (1.4) hold the following
relations:

i
fr(Az) =kzo (i?) ﬂc‘(“p az) x‘—k(_al), 1= 3, 49 R ()

: .
Q=73 () ofpi-r(—a), i=3,4,...,m,
k<o
see [6; (2.5)].
The semicanonic image (A){T(x)} € pa(l;z) can be written in the form

@A) U [I'@PEMO + 3 @) ) 26-9¢)] =0, ©=T_,(), where
=
. , "
(2.8) Adt) = [T'@)]* S (§) Au(z) Pph(n), =T, i=2,3, ...,
k=0

where the functions Az, k = 2, 3, ..., n are the fundamental coefficients of
the. equation (v), 4 =1, 4, = 0, Op4(n) = @1 (1, — "5 1) amda1)
holds, see [3; 3, 2.15].
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If the function. T'(z) is in the interval I, the solution of the equatioh
{T, z} = (3/n + 1) A4, [the symbol {T', z} stands for the SoEWARZ derivative
of the function 7'(x)], then the image (A) {T'(2)} € pa(l;2) is canonical and it
can be written in the form (A) where (2.1), (2.8), 43 =0 hold and

ni () — (0 — ! 5 ke
(2.9) Dr%(n) = =k E— k) ez_o n tF3.4k(A,)

— see [3; 3, 3.5]. The function F.4* is the polynomial of the element A, of
the dimension g, which is defined like the polynomial ot — see [3; 2, 3,4).

If the equation (a) is canonical, i.e. if @, = a; = 0, then the canonical image
(@) {T(x)} € ka(I,z) is of the form

@ Vi) TP + 3 @ @ 20001 =0, &= T0)
=3 \

where
1-n

Uyw) = c|T"@)| 2, O#cek,

i-3
1) )= @ bl (— ) @ (e,
y=0
i=3, 4, ...,n, $=T.—1(t).

The function 7'(z) is in the interval I, the solution of the equation {T,x} =10
see [3; 3, 3.6]. _ ¥l

We shall introduce yet the perturbated forms of the images of the equation
(a).

The equation -

@) W In( Gy, ) + ‘i (3) @) 2-H(t)] = 0,
=3

where
@y = (T")~ PP (n, §) + @l
ay = (I") D3, £) + 20%:3(n, {) @y + Gs),

n va) L
In(z; @y, @g) = ‘Zo(?)ﬁ‘ (@y, G5) zm—1),
fia@y, ap) = (T')—‘kzo (fc)ﬂ(“n ay) @L‘k(’?s g,  +1=01...,m
b
wp = (') 2, (b @i, 0), i=34,..,m
is the perturbated form of the image (&) {7'(2), %(z)} € oa(Z;z).. The equation
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" — ——

Q) o UT'[Ia(z; ;) + %m 0] » =) —o,

where ,
4, = (1) ["+1( 7 —n) +Az],
| Iy dy) =20 ,-Zz“" fidy) 200,

fidy) = @A,

&= (1) Z () Q% D15 (),

is the perturbated form of the image (A) {T(x)} € pa(I12):

If the function T'(x) is the solution of the equation {7z} = %—I 4,,
then the equation (Q) is the perturbated form of the canonical image
(@) {T(x)} € ka(I,z), where we put 4, =0, In(z; 0) = 2™,

i—k
Tp = itn — i)t () Z T O M (4,
k=3 e=0

Between the polynoinials (2.3) and F7-t:%(A4,) hold the relations

L 4

zk!(_nl__k_)-!fg(A,)mf(Az)=o, gm0y L,y RS Ak

k=0

3. Equivalence

The notion of equivalence is an important notion in the theory of linear
. differential equations.
Let us have the equation

(b)  zm) + i'(")b‘(t)z<n-">(t)=o beOnily), i=1,2...,n

and let op(Zg) be the set of the imbges of the equation (b) in the interval
z -'7& I b1 < I

We say that the sets 04(I,2), 0b(I. 2;) are quasi-identical denoted by the sign
(3. 1) 5 0a(I1z) = 0b(Iy),

if every element of the set og(I,7) is quasi-identical with one of the elements
of the set, oy(Iy). - The relation (3.1) is reflexive, symmetrical and transitive
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and holds just when at least one element of the set 0a(Iy7) is quasi-identical
with some of the elements of the set op(Iy).

If (3.1) holds, then we say that the equations (a), (b) are in the intervals
I, I equivalent and we denote it by

(a) Iiz ~ (b) In{T'(2)},

where T(z) is the first coordinate of the image (&) € 0a(I;z), Which is in the
interval I,; quasi-identical with the equation (b) so that T'(Iz) = Iy holds.
We call the function 7'(x) the carrier of the equivalence of the equation (b)
to the equation (a).

The second coordinate u(x) of the image (&) is given by the formula

1-n x

u(w) = ¢|T'| T exp { a{ (B,[T'(8)] T"(3) — ay(s) ) ds}.

With the aid of the relations (2.10) the necessary and sufficient conditions
for the equivalence of the canonical equations can be proved.

@ y®@) + > () @) y®@N@) =0, aeCu(ly), 1=23,4, ..., m
1=3

(®) 2m(t) + 23(?) Bi(t) 2@=D(t) = 0, PieCnilly), 1=3,4,...,m

Let us denote
By(og) = g

i
(3.2) Bileg, - ..y ar) = D, (—1)i~"Clay -0,  §i=4,5,...,m,
r=3

where

(3.3) 0i=(’4;:_1“2)(:)/(?:__12) r=3,4,.5.,i.

The formula (3.2) is quoted in the literature as the formula of BrioscHI,
see [16; p. 197], [18; p. 35], [5; 3.7]. Then holds

Theorem 2. (5) Lz ~ () In{T(®)} < S:{T@)], - .., BIT@]} [T" @) =
= Oi(otgy -~ - %), =3, 4, ..., n, ¥ €lyy where T(x) is the solution of the
equation {T,x} = 0. See [5; 2.1}, ;

The function 94(a, . .., a5) 18 the canonical invariant of the equatwn (a) of
the dimension and weight ©. As it is a polynomml of the first order it is also
called the linear tnvariant.

With the aid of the theorem 2 and with the aid of the relations (2.8),
(2.9) the necessary and sufflcxent conditions for the eqmva.lence of the equations
(), (b) can be proved.
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Let us denote
(3.4) ONAy, ..., Ad) = 2 CiPriT(Ay, ..., A), =34 ...,14
r=3

where the constants Ci are determined by the formula (3.3) and ¥p.rsi-r is
the polynomial of the elements 4,, ..., A4 of the dimension 4, which satisfies
a certain linear difference equation of the first order — see [5; (1.6)]. Then
the theorem 3 holds.

Theorem 3. (a) I,z ~ (b) Ie{T(x)} <> O{By[T()], - .., BT ()]} - [T (x)])t =
=04y, ..., i), i =3,4,...,0,% € I,5, where Ayresp. By, t = 2,3, ..., n
are the fundamental coefficients of the equation (a) resp. (b) and the function
T(x) is the solution of the equation

.
n—+1

3
n—+1

{T,=} + By[T(@)] . [T'(®))* = Ay,

See [5; 3.3].
The function O A,, ..., A;) is the fundamental invariant of the equotion (a)
of the dimension and weight i.
The theorem 3 is stated without proof and inexactly in [16; p. 191].
Between the functions o and @} hold the following relations:

(3.5.) 7=0, j=234,..,, i 0}=0, J=34,...,1;
1=34,...,n.

From these relations follows

Theorem 4. The equation (a) is iterated just then when all its fundamental
invariants are identical to zero.

In [16; p. 204—205) is quoted without proof the theorem of F. BRIOSCHI
which is a special case of the theorems 1 and 4: If all the fundamental in-
variants of the equation (a) are identical to zero, then the equation (a) has
a fundamental system of the form (1.5).

The first non-zero coefficient of the perturbation of the equation (a) is
a fundamental invariant, which means that if (3.5) holds, then

0111 # 0« 03,70 and at the same time O = oy,

Theorem 5. Let I, = I,. The equations (a), (b) are mutually adjoint if and

only if the relations
OBy, ..., B)) = (—1)'0}4,, ..., 4i), 1=238,4,...,n.
See [10; 1.18].

Gorollary: Let (&) {T()} € pallsz). The normal form of the equation (A) is
a self-adjoint equation just when
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02, 11(4,, ..., 4) =0, y=12,..., [n—2—l]’ zeliz.
See [10; 2.9].
From the corollary of the theorem 5. follows this statement: If all the
fundamental invariants with odd indices of the equation
n

i=2

are identical to zero, then this equation is self-adjoint. This theorem is
mentioned without proof in [16; p. 224] and [18; p. 235].

Tt seems that it is convenient to introduce the notion of the genus of homo-
geneous linear differential equations.

Let 2 < k < n be a natural number. If

O Ay ..., A)=0, =384 ..,n+2—k  Ohy 70

(for k = 2 we put @&, = 0), we say then that the equation (a) is of the
genus k.
The theorem 6 holds.

Theorem 6. The equation (a) is of the same genus k if and only if the equation
n

n ~
Ii(y; aya,) + Z (}) 0}y =0, Oni3-x 7 0, Z =0
: i=n+3-k . i=n+1

is the perturbated form of the equation (a). See [6; (3.1)].

We take note that under the assumption w}3= 0 resp. ol_, 320 is the
equation (1.8) resp. (1.7) of the genus 3 resp. 4.

From the theorem 5 (corollary) follows that the self-adjoint equation of the
nth order can be of the genus not higher than (n — 1). The iterated equations
are of the genus 2. The equation (a) is not of a higher genus than 3 if its canoni-
cal image is a binomial equation. 3

Many of the properties which hold for the equations of the second order
hold also for the equations of the nt® order of the genus 2. It can be expected
that some of the properties of the kt* order will hold also for the equations
of the n'* order of the genus k, f.i. see [8].
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ACTA FACULTATIS RERUM NATURALIUM UNIVERSITATIS COMENIANAE
MATHEMATICA XVII — 1967 '

ON BOUNDED SOLUTIONS OF A CERTAIN
DIFFERENTIAL EQUATION

F. NEUMAN, Brno

We shall deal with the second-order linear differential equation

(@) y' =4qt)y

where the function g¢(f) is a continuous function on the interval (—oo, ),
and periodic with period 7. The well-known Floquet theory gives all possible
types of behaviour of solutions of this differential equation. For the second-
order differential equation (q) the characteristic equation

1) 2—AL+1=0

is of special interest. Here, the coefficient (so called discriminant) A=
= u'(n) + v(n), where % and v are solutions of (q) determined by the initial
conditions %(0) = v'(0) = 0, w'(0) =v(0) = 1. The following cases may
occur:

1) If |A| > 2 then no non-trivial solution of (q) is bounded on (—c0, o).

2) If |A] < 2 then every solution of (q) i8 bounded on (—o0,c0) In this

case 2) the differential equation (q) is called stable.

3) If |A| = 2 then either all solutions of (q) are bounded on (—oo, oo) or

a solution of (q) is bounded on (—o0, ) and every solution independent
of it is unbounded on (—o0, ).

First, let us deal with case 2). In this case we can obtain the general solution
of the differential equation (q) and at the same time the necessary and
sufficient condition establishing all the stable differential equations (q)
Let us restrict ourselves on the theorems only:

Theorem 1. In every stable differential equatwn Q) there z& tke functwn q(t)
of the form .
qt) = —{tg =, t} Ripis

where {tg o, t} is Schwarz.s derivative, i.e. —'(;((:))) ‘(%”—((g) + ot" ’()
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and a(t) = P(t) + (2n 4 a)t where n is integer, a is a number in the interval
(0, 1), P(2) ts a periodic function with period m such that it has continuous deri-
vatives up to and including the order 3 and P'(t) 4+ 2n + a #~ 0. The function
P(t), number a and integer n are uniquely determined by the stable differential
equation (q).

Moreover, every differential equation y'' = q(t)y with the function q(t)
constructed in this way is a stable differential equation (q).

Theorem 2. The general solution of the stable differential equation (q) (i.e.
with |A] < 2) is of the form
sin [P(t) + (2n + a) t + k]

Y(&; ky, ky) = ky V[P'(t) + 2n + a

»

where a € (0, 1) and ex%7 are roots of the characteristic equation (1), n is a suitable
integer and P(t) satisfies the above conditions.

Let us note that the integer n gives the density of zeros of the solutions.

Now, let us deal with case 3) (i.e. |A| = 2). We I shall introduce the necessary
and sufficient condition under which we may state whether all the solutions
of a given differential equation (q) are bounded or not. This condition is
based on the behaviour of one bounded solution of equation (q) which, in
this case 3), must exist.

Theorem 3. Let y(t) be a non-trivial bounded solution of equation (q) (with
Al =2). Let a, < ... < ay be all zeros of y(t) on [0, w). Set

n

1
r(t) = :_1, y'3(aq) sin? (t — ay)

0 if there is no zero of y(?).

Then every solution of (q) s bounded on (—o0, o) if and only if

ofn [ﬁ — r(t)] dt = 0.

By means of this result we may construct all the differential equations of
a prescribed type. Especially, we may obtain all such second-order linear
differential equations every solution of which has zeros in the same distances
n. The well-known representative of such differential equations is the equation
y"' = —y. One result of this sort:

There are 2% differential equations of this property. Another result:

The set of all differential equations (q) with 4 = —2 all solutions of which
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are bounded on (—o0,0) and such that a solution has just one zero in the
interval [0, ) is exactly the same set as the set of all second-order linear
differential equations every solution of which has zeros in the same distances
equal to 7. -

This is the simplest result of several results establishing a close relation
between disposition of zeros of solutions of a differential equation (q) and
the boundedness of these solutions.
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ACTA FACULTATIS RERUM NATURALIUM UNIVERSITATIS COMENIANAE
MATHEMATICA XVII — 1967 .

ASYMPTOTIC FORMULAS FOR THE SOLUTIONS OF THE EQUATION
(y') +qy=0
M. R4B, Brno

In the course of preceding EQUADIFF I had the honour of holding the:
lecture on asymptotic formulas for the solutions of the equation

1) y' +4ql@)y=0
in J = <a, ) derived by means of the transformation of (1) into
2) YY"+ Q@) Y =0,

and by means of the method of perturbation. The formulas under discussion
were of the form

3) ¥ = ¢@) {[ey + &(@)] U[P(2)] + [¢z + &x(2)] V[P(2)]},

where U, V denote linear independent solutions of (2), ¢, @ are functions
which satisfy certain conditions and ¢,, &, are continuous functions converging
to zero for x — co.

From the numerical point ‘of view it is necessary to estimate the speed.
with which the functions ¢;, ¢, converge to zero or, in particular, to deduce
asymptotic formulas concerning these functions or, at last, to approximate
the solution y with a given exactness on the entire interval J. One can find
in the literature the estimations of functions taken into consideration in very
special cases, especially in the case U =sinz, V = cosz. E.g. G. AscoLr
dealt with the majorisation of functions ¢ [1], [2], V. RicHARD derived
asymptotic formulas of these functions; a very fine result has also besen
introduced in the book by G. SaNsoNE, where the solutions of the equation

'+ [14+q(x)]y=0 were given under suppoéi’oions [ lg(x)| dz < oo,
x
lim ¢g(x) = 0 by means of infinite series that make possible to approximate

T -»o0

the solution with an arbitrary exactness on J. The same problem can ‘be
solved under more general suppositions for the equation

(4) (P y') + alx)y =0
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when using FuBiNI's and PEaAN0o—BAKER’s method [8].
N { Assume q,QeCy,p, PeCy,p >0,P >00nJ. Let ¢, D be funption.s
" satisfying the conditions ¢, PeCy, ¢ >0, D >0, D" > 0.
Let be U, V two independent solutions of the equation

(5) (Px) Y') +Q) Y =0
W=UV' —-UV. Put

1 P
= iy |8 ]

1 Y i i

o (V@) LU(@®) — kU@)], V(@) [IV(D) — kV@)])
— \U@) [kU(®) — (U@®D)], U(@®)[kV(P) — IV(D)]

and assume

JIE (U@ + [V@)} {IU@) + [V(@)]} <o,

[ 1 {U%@) + V*@)} < .

a

Then Equation (4) has the general solution of the form
(). y = () (VD)) VIO@) 2. (—1)"B"@)c,

¥ = ({p() U[P@)]}, {p(z) V[P@)}) g (—1)*B™x) ¢

where ¢ denotes a constant vector and

Ra) = ((1)(1)) Rn () =:f ARn-1,

A suitable choice of functions ¢, @ enables us to find not only asymptotic
formulas derived by means of these methods, but also to make full use of
formulas (6) for the golution of numerical problems mentioned above, and.
to study asymptotic properties in connexion with the transformation of
equation (4).

Equations (4) and (b) being given, one can find a constant & >a and
functions ¢, @ in such a way that all the elements of the matrix 4 are
equal to zero, supposing only, these equations are simultaneously either
oscillatory or non-oscillotory on J. yn this case the functions ¢, @ are solu-
tions of the non-linear system
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_P@)
28

@
(pg')" + [q -~ g—&,—;pd”’] =0

and formulas (6) have, for x > &, a simple form

y = ¢(x) {c,U[P(@)] + ¢;V[P()]},
Yy = ¢;{p() U[P@)]} + cx{p(x) V[P(@)]}"-

In concluding I would like to introduce some applications of the preceding
theorem when substituing equation (5) by the equation y’ + ey = 0,¢ =
— 0, -1 and omitting in formulas (6) all the members from » = 2 up to in-
finity.

In what follows, we suppose that the conditions (*) are valid.

1. Put

P20’

1 " SR
k= (log pg*d@), l=—= [pgp®? — (p¢) —g¢l, h=|E+T
L
Let y be & function defined by means of the equations

sinzp:%, cos1p=—’lT for b 0, p=0  for h=0.

Assume furthermore J |b| < 0. Then equation (5) has the general solution of
the form Z

y = Ap(x) {sin [D(2) + «] — g h(t) sin [@(x) — D(t)]sin [B(t) — p(t) + «] At} +
"71(37),
Im@)] < |4 p(x) #%(x) @,  x(x) =4 zf h.

2. Put

..__1_ 3\’ Lol 1 ; e 2
k = - (log pp*@’)’, l—‘~ apgw LPY) + a9 + PPP7,

and suppose : $10.
I (k) + [2)e?® < 0.
Then equation (4) has the general solution of\ t.he form

y = oiple) (9 + ] e-o@[ere@ — 0] k() — K]} +
+ oxpla) 60 4 [ er@e-19@ — e-100] [kt) + 1) &1} + male),
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Ine(®)] < 4 |lo]| p(a) #x*(z) eH@=20@,  x(z) =,f (k] + 12]) e2®.
3. Put

1
k = (log pp*®’)’, l=—— )’ !
(log pe*®’) e [(p¢')" + q¢]
and suppose

J (k@ + 1| 9%) < oo.
Then equation (4) has the general solution of the form

y = o9(x) {P(x) + zf [P(x) — D()] [k(t) — U(¢) ()] di} +

+ coplx) {1 — ,,f [D(x) — PE)]U(t) At} + ny(),
Ing(x)] < 2 |lcl| p(x) P~1(x) x%(x) exp {2x(z) P~1(x)} [1 + D-1(2)],

o0

#(x) = zf (k| @ + |l] §2).

In all the cases 1., 2., 3. analogues formulas for the derivatives of solutions
are valid.
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ACTA FACULTATIS RERUM NATURALIUM UNIVERSITATIS COMENIANAE
MATHEMATICA XVII — 1967 :

AN APPLICATION OF GREEN’S FUNCTION
IN THE DIFFERENTIAL EQUATIONS

* V. S8EDA, Bratislava

In solving of various types of problems in the theory of ordinary and partial
differential equations, difference equations, there occurs a notion of Green’s
function. With help of it many problems of various character from the theory
of ordinary and partial differential equations, especially from nonlinear
equations, can be reduced to an integral equation of Hammerstein’s type
and thus can be studied from a uniform standpoint. This enables us to carry
over the methods and the results from a one group of the problems to another
group and, of course, to use the results of the theory of integral equations
and in the main, of functional analysis.

The aim of this lecture is to show some methods for obtammg the sufficient
conditions for the existence and partly for the uniqueness of the solution of
a nonlinear boundary value problem, using the fixed point theorems. The
methods may be used in solving of related problems too.

Notations and Assumptions.

Let R" mean the n-dimensional real Euclidean space and if =, y € R®, let
|@, y| be their distance. |z, S| will mean the distance between the point z and
the set S< Rr. If xeR®, § >0, then B(x,8) = {y:yeRn, |2,y < b}
j € Rm denotes the vector with all its components equal to 1.

Let D < R» be a region, D the closure of D, @ # S < D a set. These sets
will satisfy

Al \ saty 1 iVt Lonirekad ns

Assumption 1. Let Dy S be compact j
From this assumption it follows that Dy S = D and hence D is bounded
and S contains the boundary of D.
Denote £ = (DuS)XR"' E°=D x Rmand if b = 0, let
=DuURB) x{=bbyx..x {=b, bd.

m tlmes
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Further, let U be partially ordered Banach space of all real m x 1 vector

functions u(z) = (u,(), ..., un(®)), u(@)eCo(D U 8), z = (xy, ..., ¥,), with

the norm ||u|| = max max |uk(r)|. If u, v e U, then » < v if and only
k=1,...,m xeDUS

if for every k=1, ..., m, xe D U 8, ug(r) < vg(r) holds. Similarly the

sharp inequality is valid and also the inequality in Rm. Denote |u(x)| =

= (|uy(®)), - . ., |um(z)|) and analogically, if w € R™, then |u| = (|u,|, . . ., |%mn]).

As usual, if v, £ v, then (v, v,) = {w:uelU,v, £ u < v,}. <v,v,) is

a closed, convex and bounded set in U. Ey; 0o = {(7, u) : (z, u) € B, v;(x) <

< ug S v(x), k=1, ..., m}, where v,(x) = (v3(%), ..., Vm(x)) S Vy(x) =

= (v93(2), ..., Yom(@) €U, u= (uy, ..., um). Up= {w:uel, |u|| £ b}
Bimilarly as for the vector functions, the matrix function |G(z, t)| is defined

by |G(z, t)] = (|Gulz, t))) if Q(z, t) = (Gul(x, t)), k, 1 =1, ..., m. For H(x) =

= (Hp(z)) eCo(D U 8S), k, 1 =1, ..., m,itis ||H(z)|| = max mngIsz(x)].

1=1,...m zeDu

Gz, t) < H(z,t) if and only if Gy(x,t) < Hul(z,t) for every (z,t) of their
common domain and all k, I =1, ..., m. J (¢J) is the m X m matrix whose
all elements are equal to 1 (are equal to ¢). J is the unit m X m mat*rix.

In what follows, the matrices and the vectors will be supposed to be of the
type m X m and m X 1, respectively.

Consider the (boundary-value) problem

(1) L(w) = f,w), weD,
(2) M(u) = g(x), zes,
where f(z, u) = (fi(z, %), ..., fm(z, u)) is a real vector function of the variables
=@y ..., %n), ¥ = (Y, ..., up) defined in E, g(z) is a real vector function

defined in 8, L is a linear differential operator, and M is a linear operator.
These functions and operators will be supposed to satisfy an assumption.
By a solution of the problem (1), (2) will be meant every u € U satisfying
the equations (1), (2) and possessing as many continuous derivatives as one
usually requires from the solution of the problem (1), (2).
Assumption 2. Let the problem
(3) ’ L(v) = 05, zeD
(4) M(v) = 05, zelS
have only the trivial solution, let there exist a solution v(x) of the problem
L(v) = 05, zeD
M) =g(x), =ze8
and the matriz function G(z, t), so called Green’s function of the problem (3), (4),
with the following properties:
1. J |G(z, t)| dt ewists for each z € D U 8.
D :
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2. Given any & > 0, there eaists a 6 > 0 such that J |G, t) — G(y, ) dt <
D : noere

< &J whenever |z, y| < 6, x, ye DU 8.

T &
3. The alternative holds: Either for every r(z) € U the function i

(5) w(z) = v(zx) + I{ Gz, t)r(t)dt, =xzeDUS
is a solution of the problem

(6) L(w) = r(x), zeD

(7 Mw) =gx), xe8

st

or for every r(x) € U the function (5) satisfies a Helder’s condition and for every
r(x) e U satisfying a Holder’s condition the function (5) is a solution ofs
problem (6), (7).

Remark 1. By the assumption on the problem (3), (4), the solutions
v(x), w(x), as well as G(z, t), are uniquely determined (G(=, t) except on a set
of Lebesguemeasure zero). ' :

Lemma 1. Let Assumption 1 be fulfilled and let the matriz function G(a;, t)
pbssess the following properties: i

1. G(xz,t) is defined and continuous for every x € D uS,teD, t#*x.

2. For x # t the function G(x,t) is almost uniformly bounded in the sense
that, for any 6 > 0, there exists an N = N(8) > 0 such that |G(z,t)] < NJ
forall zeDuU S, teD, |zt 2

3. _HG'(x, t)| dt is uniformly convergent for every xe DU 8, that is, given
any & > 0, there exists a 6 > 0 such that - ) |Gz, t)| dt < &J for all

DNB,5)
zxeDuUS. Mg

Then the function G(z, t) possesses the properties 1 and 2 from Assumption 2.
Proof. Obviously G(z,t) has the property 1 from Assumption 2. Thé
property 2 can be shown in this way. By the property 3, there exists 4 > 0

such that . 1{( , |G(z, t)| dt<—§~J. Suppose yeB(x, —Z—) N (D u 8).
Then | |Gz t)—G@.tldts [ 1G@oldt+ [ 6@ nd<

DNB(z,5) D,-\B(x i) DnB(:c -g-) L

< 2?6 J. With respect to the property 1 of G(x, t) lim |Q(z, t) — G(y, 1) =
Y-z
= 0J for all te D — B(x, —(25—) (that is, for all ¢ € D such that |t, x| 2 )
A

Further the function |G(z,t)| + N ( 6) J is an integrable majorant’ “for
|G(x, t) — G(y, t)]. By the Lebesgue theorem there exists 0 < 9, = 61(95, e) <
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<:—;l such that f |Gz, t) — G(y, t)| dt < ~§J for [z,y| < 4, and

D—B(:c, ?")

hence, [ |G(x,t) — ((y,t)| dt < &J. Finally Assumption 1 implies that o;
D .

does not depend on z.

Remark 2. If Assumptions 1 and 2 hold, then the function H(z) =
= [ |@(x, t)| dt is continuous on D y § and C = [[H(z)|| < co.
D

Assumption 3. Let f(x, w) € Cy(E) and if in Assumption 2 the second part of
the alternative is true, let f(x, u) satisfy on every bounded subset Z < E a Hélder's
condition with constants which may depend on Z.

Study of the problem (1), (2).

First, the equivalence of this problem to an integral equation will be shown.
Lemma 2. Let Assumptions 1, 2 and 3 be satisfied. Then, if the first part of

alternative in Assumption 2 holds, the boundary-value problem (1), (2) is
equivalent to the integral equation

(8) u(x) = v(x) —{—Df Gz, t) f(t, u(t)) dt, zeDuy S.

If the second part of alternative is valid, every solution of (8) is a solution of the

problem (1), (2) satisfying a Holder's condition and conversely, every solution

of the problem (1), (2) which satisfies a Holder’s condition is a solution of the

equation (8), too. Here the only request on the solution of (8) is to be of U.
The equation (8) is a functional equation of the type

9) - u="Tu

The properties of the operator T' defined for every u e U by
(10) Tu = v + | Gz, 1) f(t, u(t)) dt
will now be considered. ?

Lemma 3. If Assumptions 1, 2 and 3 houd, the operator T given by (10) is
contmuaus, compact and TU < U. -
Proof. Let e > 0and b > 0 be arbxtrary numbers. From the inequality

Iﬂul — Tuy| s f |Gz, t)| [f(t, uy(t) — f(2, ug(t))| dt and from the uniform con-

tmmty of f(=z, u) on B, follows the existence of such a 8 — 4(b, ¢) that ||Tu, —
“~Tupt| < emC for uy, uge Up, ||u; — uy| < 8. Thus T is continuous on
Us, Denote Kp = max max |fx(x, u)|.  If ueU,, then [Tu(x)—

R=1,....m (z,u)eE,
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— Tu(y)] 5 [o(@) — o)| + Ko [ |6z, 1) — Gy, ) jdr. {Henoe for a suf

ficiently small 4 > 0, on the basis of Assumption 2, |Tu(r) — Tu(y)l <

< e(1 + mKp)j follows from |z,y| <4, z,yeDu S. Finally, |Tu(r) <
< (llv]] + KyCm)j. By the Ascoli theorem one gets that T'U, is rel&twelv '
compact. At the same time TU < U was proved.

Consider the interval (v — bj,v + bj>, b > 0. Let K, = max |fi(x, u)|
fork=1, ..., m, (z,u)€ Ey-pj,0+b5- For u € (v — bj, v 4 bj) the inequality
[ Tu — v| £ mC’ Kypj is valid. From it, using Lemmas 2, 3 and Schauder’s
fixed point theorem ([1], p. 355) one obtains ;

Theorem 1. Let Assumptions 1, 2 and 3 be satisfied. Let b > 0 exist, for
which

mCOKyp £ b. :
Then there exists ot teast one solution of the problem (1), (2) contamed in the
interval (v — bj, v + bj> (which satisfies a Holder’s condition if in Assumption
2 the second part of the alternative holds).

With help of the Schauder theorem a generalization of the first Fredholm
theorem was proved by another Polish mathematician A. Lasora. This
affirms that a nonlinear equation has at least one solution if a certain system
of homogeneous linear equations possesses only the trivial solution.

Let R be a Banach space. Let Lg(R, R) be the space of all linear (additive
and homogeneous) operators on R into R. In the space L(R, R) the simple
convergence is defined as follows: The sequence {A,} = Ls(R, R) converges
simply to A € Ly(R, R) (Ay 5 A) if for each z e R Apz - Az.

Lasota’s Theorem ([2], p. 89—91). Let @ < Ly(R, R) be a set satisfying the
following conditions:

1. Each sequence {An} < Q contains a subsequence Ang s Aeq.

2. The set U A z is relatively compact in R.
4eQ,lzl|=1

Suppose that for each A € Q the equation
2=A4z

has only the trivial solution.
Further let A = A(z) be the operator on R into Q such that .

‘3. zp > 2z tmplies A(zy) seof A(z).

Finally, let b(z) be the operator whwh maps R into R and oamﬁea the cmidtﬁm
4. b(z) is compaet.

5. Imlilf:c (2l Y16()I]) = 0.
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Under these assumptions there exists at least one solution of the equation
2= A(z)z + b(z).
From this theorem, by method used in the paper [3], one gets

Theorem 2. Let Assumptions 1, 2 and 3 be fulfilled. Let f(x, u) satisfy the
inequality

(11) |f(@, w)| £ (N + Z Lijw|) j
on E, where N 2 0, Ly 2 0, l=1, ..., m, are arbitrary constants. Let the
equahpn

u(x) = ,! G(@-, t) F(t) u(t) dt

have only the trivial solution for every matriz function F(x) = (Fu(x)), where
Fyx) =ax), k, I =1, ..., m, ay(x) are measurable on D and satisfy the
inequality

lay(x) = Ly, l=1, ..., m

Then the problem (1), (2) has at least one solution.
Proof. Defining the vector functions

(@, w) = f@,w) (N + 2 Ljul) " Lin(w), k=1, ...,m,

a(@, w) = fl@, u) = 2. pu@, u) w,

where the scalar function 7(u) = w for |u| < 1, 9(u) = sgn u, |u| > 1, (here
u is scalar variable) the equation (8) can be rewritten in the form

(12) u(x) = Df Q(z, t)[l;1 »it, u(t)) w(t)] dt +
| + ] @@, ) gt u(®) dt + v(2).

The functions px(z, u), q(x, u) € Oy(E) and, by (11), they satisfy

13) P ) S L, lg(a w)l S (N + 3 L)j.

Denote the set of all matrix functions F satisfying the assumption of Theorem
2, by Mr. Let @ be the set of all operators 4 from U into U defined by the
relation

(14) w= Au = DI Gz, t) F(t) u(t) dt, F(z)e Mp.

By the assumption the equation » = Au has for each A4 €@ only the trivial
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solution. Further for ||u||=1, ueU and Ly=L, + ... + Lm | Au(z) —
— Au(y)| < m e Lyj for |z, y| < 6 by Assumption 2. Moreover |Au(z)| S

< mCLyj, xe Dy S, and thus by Ascoli’s Theorem the set lu Au
e [lull=1

is relatively compact.
Denote Ayu = fG(x, t) Fn(t) u(t)dt = fG (, t) Z arn(t) w(t) j dt. In view

of |ayn(x)] < Ly, for each I =1, ..., m the set; {a;,n z)} is weakly compact
in L,(D) and therefore there exists a;(x) € L,(D) and a subsequence {a1,n,(%)}
such that for every g(x) € L,(D)

lim I g(t) ar,n,(t) dt = I g(t) au(t)

k—>oo

holds. Obviously |a;(x)] < L; and besides, we can reach that {ny} is the same

foralll =1, ..., m. Thus for each xe D U 8 and u € U there exists
(15) lim [ Q(z, 1) Z a1, n,(t t)jdt =
k—oo D

=] 6@ 1 Z ay(t) wi(t) j dt.

The functions (14) being equicontinuous on D u 8, the convergence (15) is
uniform.
For each u € U define the operator A(u) € @ by the relation

w= AWy = | 60 > plt ul) ) .
If w >, then A(uts) > A(u). In fact, denoting wp = A(un) g, w = A@)y,
the inequality
it — w1 3 11l | 1606 ) é it wn(®) — ity w(®)]| 5 A
S lplimt max it un(t) — 2wl G

holds, which implies ||w, — wl] - 0 from ||up — u|| = 0.
Consider now the operator

w = bu = [ G(z, t) ¢(t, u(t)) 4t + v(2).
D .
From (13) follows |jbu|| £ (N + L,) mC + ||v||,.so that the operator b is
bounded. Obviously it is also continuous. Finally, from the inequality

|bu(x) — bu(y)] S (N 4+ Ly + 1)meyj for |z,y| < d, 6 is suﬁ'xelently small,
follows the relative compactness of bU in U. s
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Thus, all assumptions of Lasota’s Theorem being satisfied, the equation
(12) has at least one solution in U.

In the following, some theorems will be proved, where the properties of
the partially ordered space U will be used. The first cnes will be the theorems
of a comparison character. Examples of such theorems can be found in the
paper [4]. Here the following definition will be of use.

The function h(x,u) defined cn E,, will be said to be nondecreasing
(nonincreasing) in u on Ey,,, if for each 2 € D U 8 h(z, u,) < h(x, uy) (h(x, u, =
2 h(z, u,) whenever vy(z) < u; S Uy S V().

Theorem 3. Let Assumptions 1, 2 and 3 hold. Let the Green’s Junction
G(x,'t) 2 0J (£ 0J) for all points of its domain. Let there exist the vector functions
hi(z, t), j = 1, 2, with the following properties:

a. hy(z, t) satisfy Assumption 3.
b. The problem L(u) = hy(x, u), xzeD
M(u) = g(x), zelS

has a solution vi(x) and v, < v,. If the second part of the altcrnative in
Assumption 2 is valid, then vy(x) satisfy a Holder’s condition.

c. If G(x,t) 2 0J (= 0J). the functions hj(x, u) are mondecreasing (non-
wnereasing ) in w on Ey, o, and satisfy the inequalities

hy(x, u) < f(x, u) < hy(x, u)

(hl(xy u’) ; f(x: u) g h2(x’ ’lt))

there. Then the problem (1), (2) has at least one solution in (v, v,).

Proof. With respect to Lemma 3 it suffices to prove that 7<v,, v,> <
< (v, vg). Assume G(x,t) 2 0J. If ue (v, v,), then G(z,t) hy(t, vy(t)) <
é G(x’ t) h’l(ti u(t)) § G(x: t)f(t3 u(t)) é G(I, t) hz(tv u(t)) é G(x! t) h2(t1 ’02(t)).
From these inequalities the assertion of the theorem follows. The case
G(x, t) £ 0J is proved analogically. *

Theorem 4. Let Assumptions 1, 2 and 3 hold. Let in Assumption 2 mentioned
Green’s function G(z,t) 2 0J (£ 0J) and the solution v(z) = 05 (< 0)) for all-
points of their domain. Let there exist a vector function h(x, u) with the properties

a. h(z,t) = 0j.

b. h(x, t) satisfies Assumption 3.

c. The problem L(u) = h(x, u), zeD

M(u) = g(z), . zelS
has a solution vy(x) (eatisfying a Hoélder’s condition if the second part of the
alternative in Assumption 2 holds).
@ If Gz, t) 2 0J (5 0J), then h(z, u) is nondecreasing (monincreasing) in
% on B _yq 9y (Evo,—ve) and the inequality



f@, )| < bz, v)
holds there. ~

Then the problem (1), (2) has at least one solution contained in the inferval
(=g, vy ({Vg, —¥p)-

Proof. Let G(x.t) = 0J, v(x) = 0j. Then for —vy £ u £ v, the inequalities
—G(z, t) h(t, vy(t)) £ —G(=, t) h(t, u(t)) £ G(x, t) f¢, u(t)) = G, ) h(t, u(t)) =
< G(w, t) h(t, vy(t)) hold, whence it follows that —v, + 2v £ T'w = v,.

The case G(z,t) < 0J, v(x) < 0j is proved analogically.

A further result can be obtained by using the mesthod dsveloped in [1],
p. 277—280. This method is based on th2 assumption that the opzrator T
given by (10) is dzcomposable into a sum of an isotone operator 7', and an
antitone operator T, T'U < U, T,U < U.

If two elements v,, w, € U are chosen, by the relations

Vn+1 = T10n + Town
Wptqy = Thywy + Tovn, ~ n=0,1, ...

the sequences {vn}, {wy} are d=fined. If
Vg S Wy, vy £ wW; S Wy

hold, then for all » =0, 1, 2, ..

*9

(16) Vp S Wy, Un = Un+s Wity S Wp

and T<vp, wy)> < {Vp+y, Wn+y. Assuming T is continuous and compact there
exists lim v, = 2, lim w, = w, » £ w. The opzrator 7' has at least one

n-—-oo n —>o0

fixed point in the interval (5, w). Each fixed point of T, belonging to {v,, w,),
is contained in (v, w). Moreover, if T is isotone, then both points v, w are
its fixed points.

With help of this consideration the following theorem will be proved.
For the sake of simplicity d=note G *(z, t) = % (G(z, t) + |G, t)]), G-(z, t) =

= (Ol 1) — (G, 0)). Then 6(z, ) = G+, 1) + G-, )

Theorem 5. Let Assumption 1 hold. Let there exist & matriz function
P, (x) (Py(x)) defined on D U S with the properties: :

a. The operator Ly(u) = L(u) — Py(x) u (Ly(x) = L(u) — Py(x) u), as well
as M(u), satisfies Assumption 2 with the Green’s function G,(x,t) (Gy(w,t)).

b. The function fi(z,w) = f(z, w) — Pl(z) w (fz(-'”, u) = f(x, u) — Py(x) u)
satisfies Assumption 3.

c. The function f(x, u) (fy(x, w)) s nondecreasmg in u on E (nonincreasing
inuwon E). ;
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d. There exists a pair of functions vy, wy € U, vy < w,, such that for n = 0
the functions vy 1y, Wn+, defined by the relations

(A7) onan@) = 0(@) + [ G5, 02t 0a(0) A + [ G5(a, ) i, wal0)
Wny(2) = o(@) + JO1@ 0 it wa®) dt + [ Gie, ) fult, oalt)) o
A7) van(@) = v@) + [ G5, ) fult, oa) dt + [ G, ) folt, walt)) dt
Wni(®) = (@) + [ @@, ) folt, walt) A + [ G3(, 1) folt, valt)) At

satisfy the inequaiity (16).
Then the following assertions are true:

1.he functions vu(x), wp(x) given by the recirsive relations (17) ((17')) fulfil
the inequalities (16) for every m = 0 and there exists lim wy(x) = v(z)

n —>oc0

lim wy(z) = wx), () < w(x).

2. The problem (1), (2) has at least one solution in the interval {v, w).

3. Each solution of the problem (1), (2) belonging to {v,, w,> ts contained
m (v, w).

4. If Gy(z, t) = 0J (Gy(x, t) < 0J), then both functions v(x), w(x) are solutions
of (1), (2).

Proof. In the sense of Lemma 2 the problem (1), (2) is equivalent to the
equation

u(z) = (v(x) + Dj Gi(x, t) fult, u(t)) dt) + Df Gi(x, t) fi(t, w(t))dt = Tyu + T,u,

where 7' is an isotone and 7', an antitone operator. ‘Analogous result is ob-
tained in the second case.

Remark 3. Theorem 5 represents a generalization of Theorem 1 in the
paper [5],

Remark 4. More general results could be obtained using a Schrioder’s
theorem ([1], p. 293).

The theory of pseudometric spaces yields great consequences for the theo-
rems on existence and uniqueness of fixed points of functional operators.
The basic facts of that theory are mentioned in [1], p. 40—44. A very general
theorem on existence and uniqueness of the solutions of operator equations
in pseudometric space was proved by a German mathematician J. SCHRODER
([1], p. 164—269). This theorem comprises Banach’s Theorem and, slightly
modified, the KaNTOROVIC fixed point theorem ([6], p. 358). For the sake of
simplicity, it will be mentioned here in a weaker form (the 0perator P will
be supposed to be linear).
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Schroder’s fixed point theorem in a weaker form. Let equation (9) be given
and assume the following conditions hold:

1. The domain X of the operator T s contained in a complete pseudometric

space R with the associated partially ordered linear space H. TX < R.

2. The operator T is bounded, that is, there exists a linear, continuous, and
positive operator P defined on H, PH < H, with the property
(18) o(Tu, Tw) < Po(u,w)  for each pair u, we X.

3. If uy € X 1is given, then the sequence oy defined by

on = Pop—y + 0(ug, Tu), g, =0
converges. Its limit will be denoted by o.

4. The sphere y of elements w € R satisfying the inequality
(19) 9(w7 Tuo) S o0— Q(uo’ T’“o)

28 contained in X, or

4." X 18 complete and all u, given recursively by
(20) Uy = Tup—, w=1,2 .i:
are contained in X.

Then there exists at least one solution of the equation (9) and the sequence wuy,
given by (20), converges to such a solution. All u, and w are contained in v and
the following estimate

o(%, up) S 6 — on
holds.
Remark 5. The conditions 3 any 4 can be replaced by stronger conditions

8’ > pif exists for each fe H. (P°= I means the identity operator.)
=0

(It suffices to consider only f = 0.)
4."" The sphere y of elements w € R satisfying the inequality
o(w, Tuy) = (I — P)—lg(uo, Tug) — 0w, T’“o).
as well as u,, are contained in X.

Theorem on uniqueness. Under the assumptions 1 through 4 of the last theorem
the sphere y given by (19) contains at most one solution of the equation (9).

Lemma 4. If the assumptions 1,-2 and 3’ of the weakened Schrider’s fixed -
point theorem hold, whereby R meed not be complete and P continuous, then there
exists at most one solution of (9) in X. s

Proof. Obviously P is isotone. Assume w, = Tw,, w, = ng By (18),
then it is o(wy, w,y) = f < Pf and further f= Pfs P¥< .... Hence (0 =)

n

__j:_l_ Z Pif. Since Ilm —_— 31 Pif = 0, it follows that f =-0.

© M ->o0
f=0 :
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As an appﬁcation of the Schréder’s theorem the following theorem will be
- mentioned here (compare with an analogous Schréder’s theorem in [1], p. 202).

| i
Theorem 6. Let Assumptions 1, 2 and 3 hold. Let there exist a matriz SJunction
N(z), bounded and measurable on D such that for every (x, u,) and (z, u,) in B°
If@, u) — flz, uy)] < N(x) [u; — uy.
Let the greatest positive eigenvalue A (provided positive eigenvalues exist ) of the
operator P defined by

Pu = [ |G(x, t)| N(t) u(t) dt
D
satisfy the inequality 2 < 1.
Then the following is true:
1. There exists at most one solution of the problem (1), (2).

2. If wy € U is chosen, the sequence wuy, defined for n =1, 2, ..., by
L(ug) = f(x, un—(x)), zeD
M(up) = g(x), xes

converges to the solution w of the problem (1), (2), whereby all u, ond u are
contained in the sphere y of the elements w satisfying the inequality
lw(@) — u, (@) £ o(x) — |uy(@) — uy()], zeDu S
where a(x) is @ solution of the equation
(%) = |ug(@) — uy(x)| + Po(x).
Here the solution of the problem (1), (2) satisfying a' Hélder’s condition is dealt
with if in Assumption 2 the second part of the alternative holds.

Proof. Consider the pseudometric space V of all vector functions
feCyD v 8) with the pseudometric o(f, g) = |f(z) — g(z)|. By the conver-
gence in this space is understood the uniform convergence on DU S . V, as
well as each interval contained in it, are complete. The operator P is linear,
positive and compact. From the inequality 1 < 1, by the Theorem on alter-
native ([1], p. 244), it follows that for every f = 0j, f € V, there exists a unique

solution %s 2 0j of u = Pu 4 f. Define the sequence o, by o, = Poy + f,
Con-=1 .
0y =0. Then oy = 2 P/fand o4, < op, 0n < uy for every n 2 1. At the
=0 ’

same time o, form an equicontinuous set of functions. By Ascoli’s Theorem
there exists their uniform limit ¢. From Schréder’s theorem and Lémma 4
the assertion of the theorem follows.

As an illustration of possibilities of this theory the Rozenblatt—N agumo
theorem will be generalized. By the PErRrON method ([7], p. 216— 217) the
following theorem can be proved.

Theorem 7. Let Assumptions 1, 2 and 3 be satisfied, whereby let S be the
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boundary of D and G(x,t) need not have the property 2 from Assumption 2.
Further assume that:
a. There exvists a constant N > 0 such that

7
fl@, uy) — f@, uy)| < Fv—m [ty — g
for every (x,, u,), (x, u,) € E°.
b. N g Gz, t) j dt < |z, 8] j.

c. For any two solutions w,, u, of the problem (1), (2) there exists

lim ;u’l(y) - 1”2(.’/)[

=0, r each x € S.
y-r ly, S| fo

Then there exists at most one solution of the problem (1), (2) (satisfying a Hol-
der’s condition if the second part of alternative in Assumption 2 is valid).

Proof. For any two solutions %,, u, of the problem (1), (2) (satisfying
a Holder’s condition if need be) the inequality

y(@) — ug(@)] S N [ (G, ) 2@ = 0 g
D It, S|

holds. The function p(x) = ME_S%@)I’ xeD, p(x) =0, xe8, is con-

tinuous on D u 8. If p(x) = 0j, then |[p(x)|| = p > 0. Moreover,
N [ |G, 0] pt)dt < Np [ |G(x, t)| j dt < p |, 8] j.
D D

Combining the last inequality with the foregoing ome, there regults finally
p(x) < pj for each x € D but this leads to a contradiction.

Remark 6. The assertion of the theorem remains valid if the points b.
and c. are replaced by the points:

b.’ zvl[ |Gz, t)] j dt < |, S| j.

c.” For any two solutions u,, u, of the problem (1), (2) there exists a finite

. Iul(y)
lim
Y=z I , SI
D

UYE
The developed theory will be illustrated on the following example.
Let f(x, u) = (fu(x, ), - . ., fm(x, u)) € C4(<0, 1> X R™) be a vector function
of the variables z, v = (u,, ..., Um), let it be periodic in z of pericd 1, f(z, u)
= f(x + 1, ). Consider the periodic boundary-value problem

Uy(y) for each x € 8, which is contmuous on S.
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(21) | w' = f(z, v)
(22) _ %(0) — %(1) = 0.
By [8], p. 718, the problem is equivalent to the integral equation

1
u(r) = Of GQ(x, t) [f(¢, u(t)) — w(t)] d¢
where the matrix function G(z, ) is of the form

——etJ, O0Lt<wzsl
— e

Q(x, t) = .

l1—e

er—tJ,, 0e<tsl
It is easy to see that Assumptions 1, 2 and 3, as well as the assumptions of Lem-

ma 1, are satisfied. Further G(z, t) < 0J. The function H(z) = 6[1 |G(x, t)| dt =
=, ‘Hence C = ||H(x)|| = 1. Let K, = max max1 |fulz, w) — ugl.
Consider the operator P, j = 1, 2, given by the relation

Pu = Of Q(x, t) F(t) u(t) dt, Py = OfllG(x, t)| N () u(t) dt,

where F(z) is a matrix function satisfying the conditions mentioned in Theorem
2 on <0,1) and N(z) € Cy({0, 1)) is a matrix function, u(x) € Cy(<0, 1)) is
any vector function. Then ||Py|| £ (Ly + ... 4+ L), ||Psl| £ ||N|| m.

From Theorems 1, 2 and 6 these sufficient conditions for the existence of
the solution of the problem (21), (22) follow.

‘Theorem 8. The following statements hold:

1. If there exists a b > 0, for which m Kp < b (especially, if f(x, u) — w is
bounded on {0,1) X Rm), then there exists at least one solution of the problem
(21), (22) in the interval {—bj, bj).

m)
2. If lfk(x’ u) - ukl = (N + lZI +Lllull): k= 1, ceey, M, x€<0y 1>:
weR™ N20,L;20,l=1, ..., m are constants and
m
2 Li<1,
=1

then there exists at least one solution of the problem (21), (22).
3. If Az, uy) — uy — f(x, ug) + uy| SIN(x) |u; — us|, where for the matrix

function N(x) € Cy(0, 1)) the inequality ||N(x)|| < —7}{ holds, then there exists
a unique solution of (21), (22).
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ACTA FACULTATIS RERUM NATURALIUM UNIVERSITATIS COMENIANAE
MATHEMATICA XVII — 1967

EXTENSION OF THE AVERAGING METHOD
" TO STOCHASTIC EQUATIONS

I. Vrkod, Praha

This lecture was devoted to Ito’s stochastic equations. These equations
are usually written in the integral form

t ot
(1) a(t, o) = zo(w) + ; a(z, 2(t, »)) dv + ; B(z, (7, w)) dw(r, )

or in the equivalent differential form

(1) dz(t, w) = alt, z(t, ®)) dt + B(t, z(t, w)) dw(¢, »)

The expressions w(t, w) and z(f, ) are random processes, i.e. there is given
a triplet (2, &, P) where 2 is a space, # is a o-field of subsets of 2 and P is
a probability measure which is defined on #. All random processes or random
values are % -measurable functions of the parameter w. Let R, denote the
n-dimensional Euclidean space. First the conditions are given under which
the existence theorem holds:

1) Let w(f, ) be a vector random process with stochastically mdependon’c
increments and F(f) a continuous function such that

E ||w(ty, ©) — w(ty, o)||* = F(t,) — F(t,), E(w(ty, w) — w(ty, w)) = 0
where E means the expectation. -

2) There are given a vector function a(t, ) and a matrix function B(t, z)
where 2 is also an n-dimensional vector. a(¢, x), B(¢, x) are continuous in both
arguments and Lipschitz continuous in z:

|lat, ) — a(t, y)I| = K ||z — yll, ||B(t x) — B(t, y)l| = K ||z — yll.

3) There is given a random value (o) whlch is stochastically independent

of all increments of w(t, w) and E||zy(w)||? < .
Under these assumptions we can find the solution of (1) in the space

Ryp X Q of random processes z(f, w) with the norm VE sup llz(r, w)||2.

It is possible to prove this statement by means of the method of sucoewve
approximations, which converge in this space. ' o
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Now we can already pass to the average theory. Let us assume that the
process w,(t, ) and the function F,(t) depend on a ,,small” parameter e for
€€ <0, 0) and that the following assumptions are fulfilled:

- 4)wi(t, w) = wy(t, ) — wy(t, w) is a process with stochasically independent
increments again and lmg E ||wi(ty, ) — w¥(t;, »)]|2 = 0 uniformly on every

compact set of ¢,, £,
5) F(t) < Foft), F.(t)< FXt) or
5) Folt) = F(t), Ft) <F )
where Z(t), F,(t), F X(t) are the smallest o-fields corresponding to wy(¢, w),
w(t, w) wi(t, w).
6) a,(t x, €) depends on ¢ for ¢ € <0, 6) such that K in 2) is independent of

&, there exists a continuous function y(¢) such that f [la(t, 0, ¢)]| dt = w(ty) —

— w(tl) and a function ¢(¢) > 0, g(e) - 0 for ¢ > 0 such that

Htf (a(z, 2, &) — a(r, x, 0)) dv|| < @(e) (1 + |ja]]) for t; < t, < ¢, + 1.

7) B(t, z, ¢) depends on & for ¢ € {0, 6. The constant K in 2) is independent
of ¢,

&)
tf 1B, 0, &)||> AF (t) < w(ts) — 9(t,)

and
)
J ||B(r, %, &) — B(z, z, 0)||2 dF,(7) < g(e) (1 + ||2]]?)
{) e i

for t; < t, < t; 4 1, the functions g(¢), y(t) being the same as in 6).

8) «{"/(w) depends on ¢ for ¢e (0, 6 such that z(9(w) is stochastically
independent of all increments of the processes w,(t, ®) and wy(t, w). The initial
value z{(w) is stochastically independent of all increments of all the pro-
cesses w,(t, w) and E|[z{)(w) — z®(w)||2 - 0 for ¢ - 0.

Now ewerything is prepared to formulate the

Theorem 1. Let the stochastic equations
(2) o x(t, @) = 2{(w) + f a(t, z,(7, w), &) dv + f B(z, z(r, ), &) dw(r, w) -
be given and assumptions 1) to 8) be fulfilled, then to every L > 0 and n > 0

there 18 &g > 0 such that

E Es(up> [[Ze(r, @) — xo(z, )||2 S for 0= & < g
L1

This result is very similar to a result of Gicaman I. I. [1] which was un-

known to me for a long time,’since his work was not available. But Gichman’s

238



result was derived under different assumptions about the processes w(t, w)
pu the statement itself is also slightly different. '

If we put B(¢, ) = 0 or w(t, ») = const. in (1) then we obtain an ordinary
differential equation and Theorem 1 is then the well-known theorem where
the right-hand side of (2) fulfils condition 6). The stochastic part of (2) that
is B(t, x, ¢) must fulfil condition 7) and that is stronger than a condition
analogous to 6). The following example shows that the condition on B
analogous to 6) would not be sufficient. Let x be a scalar and w(f, w) the scalar
Wiener proces i.e. the almost everywhere continuous process with stochastically

independent increments for which F(t) =t. We shall consider the equation
t

x(f, ) = oj sin -.:— dw(, w). By the well known theorem it holds E|z,(t, w)|*

t
t .2t : t
_ Isinz_z dr— —— 2 gin =~ and lim El|z(t, w)|2 = —
0 £ € T e~0 2

¢
- .
51 while 6[ sin - dr

—- 0 for ¢ - 0.

The number ¢, in Theorem 1 depends on L. However, if we add some
stability properties of solution of unperturbed equation i.e. of equation (2)
for ¢ — 0 and if we omit the least upper bound in statement of Theorem 1
we can choose ¢, independent of L. We shall usé the concept of stability in
average.

Definition 1. The solution z(t,w) of (1') is stable in average, if there is a function.
a(n) > 0 such that K| |Z(t,, ) — %(tg, @)||2 < o(n) implies E||z(t, ) — 2(t, w)||* <
< n for all ¢ = £,

Definition 2. The solution z(t, w) of (1') is asymptotically stable in average
if it is stable in average and if there exist a number A > 0 and a function T'(o, n)
defined for 0 < A, n <A such that E||z(ty, ®) — @(to w)||2 < o tmplies
E||z(t, w) — a(t, »)||2 < n for all ¢t = ty + T(o, 7). 5

Definition 3. We say that the process w(t, w) is homogeneous if all distributions
Fiointasn(A) = P(w(ty + h) — w(t, + h) € ) are independent of h (A is-én
arbitrary n-dimengional Borel set). :

Theorem 2. Let the conditions 1) to 8) be fulfilled, let the convergence
E||w¥(t;, ©) — w¥(ty, )||Z = 0 in 4) hold uniformly with respect to all t,, ty
‘let (t) (¢f. 6) and 7)) be estimated by a condinuous functions p*(t): p(t) —
— y(t) S p*(Ey — ). Let the processes wy(t, ») be homogeneous and let the
equation 5 1 ! ;

(2) dz,(t, w) = a(t, z(t, w), e)dt -+ B(t, z,(¢, ), §) dwy(t, w)' :
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Jor & = 0 have a constant solution x,(t, w) = To(w) for t Z t, which is asymptotical-
ly stable in average, then to every 5 > 0 there are gy >0, 0 > O such that

sup Bllet, &) — 2t o)l[* < 0 for 05 ¢ < e,
{tpyo0) -

where x(t, w) is an arbitrary solution of (2') with the initial condition
Bl|z,(t, 0) — zo(0)|? < o.

We can formulate sufficient conditions for the stability and the asymptotic
stability in average by means of Lyapuxov functions.

Let the function F(#) from 1) be absolutely continuous, then there are
absolutely continuous functions Fy(f) such that

El(wilty, o) — wity, ®)) (wy(ty, ©) — wy(ty, 0))] = Fy(ty) — F i(ty)

where wy(t, ) is an i-compenent of the vector process w(t, ). Denote by
f(t) and fy(t) derivatives of F(t) and Fy(t), respectively.

Theorem 3. Let assumptions 1) to 3) be fulfilled where F(t) is absolutely
continuous and let equation (1) have the solution x(t, w) = 0. "If there exists
& quadratic form V(t, x) = I cy(t) zw; which fulfils the conditions that the
¢iy(t) have continuous second derivatives and that there are comstants d, > 0,
dy > 0 such that

dil|z||2 = V(t, z) < dy||z]|?,
' » Y 14
(3) Wit z) = —‘,)It—]-t-zl 7, ai(t, x) 4 Z cy(t) Bix(t, ) Ba(t, x) fr(t) < 0

; ikl
Jor almost all t > 0, then the solution z(¢, 0) = 0 s stable in average.

Theerem 4. Let the assumptions from Theorem 3 be fulfilled with (3) replaced
by W(t, ) < —dy||x||? for almost all t, d3 > 0, then a(t, ®) = 0 is asymptotically
stable in average. ‘

‘The following question is of interest in the averaging theory. Under what
co_p_ditions the stability of the unperturbed equation (i.e. equation (2’) for
¢ = 0) implies the stability of (2') for small ¢ > 0 and under what conditions
the existence of a periodic solution of the unperturbed equation implies the
existence of such solution of (2’) for small & > 0. Considering this problem
We compare equation (2') with the.deterministic equation

(4) dy = a(t, y, 0) dt

»

ith random initial values. Conditions 4) to 8) must be now reformulated:
4*) The processes w,(f, ») are now defined only for e e (0, 8), they are
Prooesses with stochastically independent increments and there is & continuons
function F(t) (independent of ¢} such that i :
ok

240
-

et



E|lw(ty, 0) — wi(ty, w)|[* £ F(t;) — F(2y), E(w,(ty, ) — wy(ty, »)) = 0.
Assumptions 5) and 5’) are not necessary. ' '
6*) a(t, z, &) is defined for £e<0, 6) and fulfils condltlon 2) where the
constant K is independent of ¢ and
t
I (a(r, y(v), &) — a(z, y(z), 0))dr >0  for ¢ >0
0

uniformly with respect to constant vectors y and t€ < 0 L > for every L>0,
where y(t) are solutions of (4') with the initial conditions y(0) = y.

7*) B(t, x, ¢) is defined for ¢ € (0, 8) and fulfils condition 2) where the constant
K is independent of ¢ and

t
I |B(t, y(z), &)|[2 dF (7) > 0 for ¢ >0

uniformly with respect to constant vectors y and te << 0, L > for every L>0,
where y(t) have the same meaning as in 6*).

8) The partial derivatives %, % exist and they are LipSCHITZ continuous
in x.

The asymptotic stability in average will be replaced by exponential stability
in average, too.

Definition 4. The solutions of (1') are unmiformly expomentially stable in
average, if they are stable in average and there exist positive constants K > 0
and 0 < f <1 such that

E|lzM(t, w) — 2O, 0)||* = BE|[xzM(ty, ) — 2Bty w)][? for t 2 t,+ K
for all the solutions of (1').
Definition 5. A process z(t, w) is periodic with period T, if
P(z(t;, ) € Ay, 2(ty, @) € A, . . ., 2(ts, w) € Ag) =
= P(z(t, + kT, w) € Ay, 2(ty + kT, w) € 4,, ..., 2(ts + kT, o) € 4,)
Jfor all n-dimensional Borel sets Ay, all t, <ty < ...t and for all integers k.

Theorem 5. Let the assumptions 4*), 6*) to 8*) be fulfilled, let a(t, , ¢),
B(t, x, €) be periodic functions tn t with the period T and let w,(t + h, ) —
— w(t, w) be periodic processes with the same period T. If the solutions of equation
(4') are uniformly exponentially stable in average, then there is an &, > 0 such
that the solutions of (2') are uniformly exponmtmlly stable in average for 0 ]
< & £ & and there exist periodic solutions x¥(t, ) of (2') for 0 < & S ¢, and
a deterministic periodic solution y*(t) of (4') and

lim sup Ej|z3(t, w) — y*(@)||* =

e>0 120
holds.
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This Theorem has an interesting consequence for parabolic differential
equations. If a(t, z, €), B(t, «, ¢) fulfil the assumptions of Theorem 5 and if
we add some assumptions which are used in the theory of parabolic equations
(e.g. BTB is positive definite for all positive ¢, BT is the transpose matrix,

- . . oa; 3Bi; 62Bi; .
that B are HSLDER continuous in ¢ and there are —, ——  ———— which
3271 3.’;!71 3171, 3.’17]

are continuous and bounded), then for small ¢ > 0 the parabolic equation

2 H
u_ 1N ? (g Bult, @, €) Bye(t: 2, eu) _ Z oaq(t, x,&) u)
ot 2 LI 7 3:81 0x4

(%)

has 'periodic solutions with the initial values afy(xz) where o is an arbitrary
real number and [ fy(x) dz = 1, f, 2°0. These solutions are relatively asymp-
totically stable in the sense that

i

tim . [, 25 ) — ot 3 ) dz =0

uniformly with respect to 4;, ..., An, py, ..., pn Where u(t, ; f;) is the
solution of the parabolic equation with the initial condition (0, z; fi) = fi,
if [|fu(@)| dz < o and [f,(») dz = « holds.

LITERATURE

[1) Tuxman U. U.: Jupdepenuuarvhvie YpasneHus co CAYUalHbiMU PYRKYUAMU. SUMHAR WKOAG
no Teopuu GeposTHOCTel U maTemaruweckoi crarucruxe. Kuee 1964.
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ACTA FACULTATIS RERUM NATURALIUM UNIVERSITATIS COMENIANAE
MATHEMATICA XVII — 1967

2. PARTIAL DIFFERENTIAL EQUATIONS

A. D. ALExXANDROV, Novosibirsk

A GENERAL METHOD OF MAJORATING OF
DIRICHLET PROBLEM SOLUTIONS

1. Let u(z) be a function in a domain & in the Euclidean n-space E,. We
say that z, e G is its convexity point if the surface § :z = u(z) in (n 4 1)-
space has at the point z,, u(z,) a supporting plane from below, i.e. 2 = pt +
+ q¢ < u(x), pixs + ¢ = u(x,). To such a plane we make to correspond the
point (py, ..., Pa) in En. Let ¥Yy(M), M < E,, be the set of all such points
corresponding to all points x € M (if M includes no convexity points of u,
Yyu(M) is empty). It is ,,the lower supporting image of M by «”. mes ¥y(M)
is a totally additive set functions. One can obviously define the upper
supporting image ¥, (M).

We consider functions % subject to the following conditions;

(A) » is continuous in G + 0G,

(B) the.set function mes ¥y (M,,) is absolutely continuous: this is fulfilled,
in particular, if u € Wi(D) for every D, D + oD < G.

Suppose that u satisfies at almost all its convexity points the inequality

w < X(z, ) U(Vu), w = det (ug), X,U >0. (1)

(Note: any function is twice approximatively' differentiable at almost all its
convexity points. Thus no special differentiability conditions are necessary
as soon as we understand u;, ui; as the coefficients of the approximative dif-
ferentials du, d2u).

In order to formulate our basic theorem introduce the following notations:
h(z, v) be the distance from a point z € G to the supporting plane to oG
with the external normal »; 2 be the unite sphere — the set of all unite vectors.
v; we put Vu = py, p = |Vul.

Theorem 1. If a function u with above conditions (A), (B) satisfies (1) at
almost all convexity poinis, then for any x € G where u(x) < 0 the follomng
inequality takes place
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Ju@@)|
Max,v)

f IU"‘(W) prldpdr < IX(x u(x)) dz. : ()

T his implies an estimation for |u(x)| provided X (x, u(x)) is summable and the
left integral grows to the infinity with the upper limit of integration.

The proof of our theorem runs as follows. Let M be the set of convexity
points of . Owing to (1)

JU-wde < [ X da. 3)
M M
But w = S0 o %n) o the Jacobian of the supporting mapping (z1, ...
Az, ..., am) By anen
") - (pq, - .., pn) for almost everywhere p; = u;. Thus owing to the con-
dition (B)

JU-wdz = | U-Ypv)dp, ... dpa. (4)
M Yu(M)

Obviously Py(M) = ¥u(@) and [ X dr < [ X dv. Therefore {3) and (4)
: M G
imply
J U-Ypyv)dp, ... dpp < | X(@, u(x)) de. (5)
Yu(@) G

Now take a point z € G where u(z) < 0 and construct in (n + 1)-space
the cone C that projects 9G' from the point z, u(x). One can easily observe
from direct geometrical consideration, that to every supporting plane to. the
cone C there corresponds. a parallel supporting plane to the surface S : z=
= wu(z). It means that the supporting image of S includes that of C; i.e.
Yu(@) © ¥¢; and moreover mes ¥, > mes ¥¢. Hence (5) implies -

wj U-ldp, ...dp, < GI X de. (6)

Now elementary geometrical consideration show that the supporting
1ma.ge of “the cone C is a convex domain bounded by the surface with the
equatxon (in spherlcal coordinates p, )

_ lu@)]
h(z,v) °
" 'Thus, if we transform the left integral (8) to the spherical coordinates
P, v, we shall see that it is the left integral in (2). Hence (6) implies (2) and
our theorem is proved.
. 2. Suppose u satisfies an equation
F(uyg, us, w, x) = 0 (M

where F is such that (7) implies (1) at almost all convexity points of w. Then °
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we can apply our Theorem 1 which will give the estimations of the values
w(x).

One can observe that the inequality F < 0 imlies w << K(x, », Vu), when
dZy > 0, for every strictly elliptic F and even for wider class of F. The
estimation K (z, u, Vu) < X(x, u) U(Vu) usually takes place. Thus Theorem 1
proves to be applicable to a very wide class of equations.

The simplest case is the linear equation

@iy +bVu =g, g=f—cu, a¥&& >0. (8)

Because of a/£;&; > 0 we have at the point where d%u > 0
. ;
atiuy > n(aw)™, a = det (a¥). (9)
1
Hence n(aw)® < g — bVu which easily leads to the inequality of the form
(1). The results got for linear equations will be given somewhat further.
3. Under certain conditions on the function U in (1) the inequality (2) can
be transformed into a simpler form. Introduce the functions hg(x) — the
mean values of the distances h(x, »):

1

hr(x) = [;1; f hK(x, v) dv,] " K #0; hy(x)=exp ;l—n f In A(z, v) dv (10)
Q 2

where x, = mes Q.

Theorem 2. If U(pr) < U(p) and _Ij(p) pE-" is a non-increasing function,
then (2) tmplies
ju(@)|
hg(x)

xnof U-1(p) pr~—1dp < J X(z, u(z)) dz. S

4. For the linear equation (8) we get the following results. .
Theorem 3. If in (8) det (a¥) = 1 then at every point x where u(x) < 0

ju(@)] < anllg+| Fa(l[b]]) ho(x) (12)
1 :
where the norms are those in Ly(G), an = n=11, ", Ty = xan~1 is the volume of
the unite .sphere,
- ,
Fu(§) = e, + @a(é), (§ = 0), (13)

on(£), for n > 1, being a bounded increasing function, p(0) = 0, and ¢,(&) = 0.
Presize definition of the function Fy can be given as a convers to an explicitely
represented elementary function.

Theorem 3 leads to the following corollaries.
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Theorem 4. The homogeneous equation (8) with det (a’/) = 1 has no nmon-zero
solution if |lc+|| < oo and _
an|lc+hol| Fu(lb]]) < 1. (14)

If the strict inequality takes place here, then at every x where u(x) < 0

oG F 1 ([[B1]) — lle+holl

5. The inequalities of Theorems 3,4 are presize and no general estimations
nor general uniqueness conditions are possible in terms of norms weaker than
those in Ly (@). The presize meaning of this statement is given by the following
theorems in which we speak on elliptic equations (8) with smooth coefficients,
det (¢¥/) = 1 and on theri smooth solutions % with u/¢G = 0.

Theorem 5. Let the domain G be convex.

(1) Consider in G equations with a given value of the magnitude oy||g|| Fa(||b]|) =
= H. The lower upper bound of the values |u(x)| of their solutions, for every x,
1 sup |u(x)| = Hhy(x). (If G is a sphere. z, is its center, A, B, € posivive numbers,
there eanst in G equations with ||g|| = A, ||b|| = B and the solution, u for which,
|u(zo)| difters from the right part of (12) less than by e.)

(2) For any ¢ > 0 such a homogeneous equation can be given that
anllehol| Fau(l[B]]) <1+ ¢,
but it has non-zero solution.
(8) The estimation (15) is presize in the sense analogous to (1).
Theorem 6. Let G be a sphere; let ¢(&) be such a function, & € [0, ), that
@(&) -1 —> 0 when & - 0. Put for a function g in G
N = [ o(g" de. (17)

(1) Such a sequence of equations a'’uy = f can be given in G that N(f) - 0,
but |u(x)| >0 for every xz e G.

(2) For any & > 0 such equations

athuy; 4+ bVu = 0, atlugy + cu = 0 (18)
can be given in G that N(b) < e, N(c) < &, but the equations have non-zero
solutions.

6. Let r = r(x) be the distance from z € @ to the boundary of the convex
hull of @ in the direction of the vector —b = —b(x). Put ¢ = ¢ + |b| r~1,
5 = f — Cu. ¢

Theorem 7. Under the conditions of Theorem 3

[u(@)| < anllg+|| hn(z). (19)



The condition of nonexistance of non-zero solution is

allc+hal] <1, |le+]| <o, (20)
and if here the strict inequality takes place,
|1f+1] Fn()
= : 21
N < = Tl )

These inequalities are presize in a sense analogous to that of Theorem 5; we
have but to consider in this Theorem the equations with b = 0.

The estimation (19) is formally always true but it has a meaning if ||g4|| <
< oo which is ensured if ||br—1|| < co. This implies certain conditions on b.
Let @ be convex and z — 9G. Then, if roughly speaking b(z) is directed from
4G, r(x) -0 and the condition ||br—1|| < oo gives a comparatively strong
limitation on |b(x)|; but if b(x) is directed towards é@, r(x) > const > 0, and
{|br—1]] < oo if ||]| < co.

The advantage of the inequalities of Theorem 7 in comparison to those of
Theorems 3,4 consists in the properties of the function A,(x). Owing to well
known properties of meanvalues, hn(z) << hy(x) with the only exception when

G is a sphere and xz is its center. Moreover, if G is convex and g(x) denotes
1
the distance of x from &G, we have the estimation hy(z) < Const o™ ().

On the contrary, at every point x € éG which is the vertex of a paraboloid
(of any degree > 1) included in @, hy(x) > 0.

7. All above results allow of an essential generalization which, shortly
speaking, consists in application of the some considerations to the projections
of the solution % on various planes E of any dimensionality m, 1 <m < n.

We may suppose that E is (z!, ..., 2™m) — plane. Then the lower projection
of a function p(z) = @(z!, ..., a"), x €@, is
pe(xt, ...,2m) = inf @(x®, ..., 2"), (22)
(xm+, ... 2n)
and the upper projection is gg(x!, ..., ™) = sup g(z!, ..., 2"?); they are

defined in the projection Gg of G.
The results for linear equation (8) imply the norms ||@||g defined as follows.
Let agp = det (a¥), 1,5 <m, provided E is.(z!, ..., 2™)-plane. We define
1
llglle = llaz™. |@|%]|Ln(en- (23)

We define the functions kgg(x) by the same formula (10) with the only
difference that we integrate over the set 2z of the unite vectors in £ and
pivide by xp, = mes Q5.
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Theorem 8. Under the conditions of the Theorem 3, for almost all planes E

of any bundle there takes place the inequalities
[u(@)] < omlg+||EFm(][B]|E) Ro£(). (24)

Theorems 4, 5 admit corresponding generalizations, too.

8. The methods and results given here are expounded with proofsin a series
of my papers published in
Cubupckuii maremaruueckuti xypuas. 1966, No 3; Becrnux Jlenunzpadckozo
ynueepsurera 1966, NNo 1, 7, 13; Hokaadvs Axademuu mayx CCCP, 1966,
v. 169, No 4,
and partly in a course of lectures “T'he method of normal map in uniqueness
problems and estimations for elliptic equations”, Seminari dell’ Instituto Nazio-
nale di Alta Matematica 1962—1963, vol. 2, Roma 1965,

By a different method under different conditions the problem of majorating
the Dirichlet problem solutions has been studied by C. Pvccr and M. FrRaxa;
cf. in particular C. Pucct, Operatori ellittici estremanti, Annali di Mat., vol.
72, pp. 141—170 (1966).
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ACTA FACULTATIS RERUM NATURALIUM UNIVERSITATIS COMENIANAE
MATHEMATICA XVII — 1967

STRUCTURE OF GREEN’S OPERATORS AND ESTIMATES
FOR THE CORRESPONDING EIGENVALUES.(

G. FICHERA, Roma,

It is well-known that one of the most difficult problems which mathematical
physics poses to quantitative analysis is the rigorous approximation of the
eigenvalues of certain boundary value problems which arise in applied
mathematics. By rigorous approximation we mean giving lower and upper
bounds for any particular eigenvalue such that these bounds approach this
eigenvalue to any prescribed degree of accuracy. It is cohvenient to consider
these problems in an abstract Hilbert space setting. To this end we consider
a complex separable Hilbert space S and a linear operator 7' which maps §
into itself. We suppose that T is a positive compact operator (PCO), i.e.,
T is such that (Tu, u) > 0 for u % 0 [(.,.) is the scalar product in 8] and 7'
maps weakly convergent sequences onto strongly convergent sequences. It is
well-known (and very easy to prove) that positiveness implies that T is
" hermitian [i.e., (Tw,v) = (u, Tv) for any » and » in S] and compactness
implies that T is bounded.

Let us consider the eigenvalue problem

(1) Tu — pu = 0.

A fundamental theorem in Hilbert space theory states that the eigenvalues
of problem (1) constitute a sequence of positive real numbers converging to
zero if — as we shall suppose — 8 is infinite dimensional. Each eigenvalue
has finite multiplicity, i.e., the kernel of the linear operator T, =T — ul
has finite dimension (multiplicity of u). Let

By Z e = oo Zf 2= e

be the sequence of the eigenvalues of 7', each repeated as many times as its
multiplicity. From now on when we mention the sequence of eigenvalues of

(1) This research has been sponsored by the Aerospace Research Laboratories dhder
Grant AF EOAR 66—48 through the European Office of Aerospace Research (OAR),
United States Air Force. '
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a PCO, it shall be understood that this sequence is ordered according to the
criterion just specified; thus the statement: u is the k-th eigenvalue of a certain
PCO is precise.

The problem of the rigorous approximation of the eigenvalues of T is the
following.

For any given k we want to construct two sequences {uy} and {c(D},v = 1,2, ...,
such that:

(2) u@ < pGty, (3) lim u@) = ur,
ites e

4) . o = o@Dy, (3) lim o) = uy.
Y —>o0

The sequence {u()} (called lower bounds) can be constructed in a rather
simple way by means of the classical Rayleigh-Ritz method. Let {w;} be
a sequence of linearly independent vectors complete in the space S. Let us
denote by

(6) pR Zp) = ... =p®
the roots of the determinantal equation
(7) det {(Twi, wy) — p(wi, w))} =0,  (G,j=1,...,»).

The following theorem, which goes back to Plancherel [11], states that {u()}
is a sequence of the lower bounds.

Theorem 1. The sequence {u()} obtained through the Ray yleigh-Ritz method
satwﬁes conditions (2), (3).

Tt is of interest to remark, in view of applications to partial differential
equations, that, instead of using Eq. (7), we may obtain the Rayleigh-Ritz
approximations from the equation

®). det {(Twi, Twj) — w(Twy, wy)} = 0, (=1, ...,

Theorem I. still holds if we substitute Eq. (8) for Eq. (7).

The construction of the sequence {c()} (called upper bounds) is a much
more difficult problem. The first approach to this problem is due to A. Wein-
stein [16], who considered the eigenvalue problems connected with the classical
boundary value problems of elastic plates. The Weinstein method, known
now:.as the method of intermediate problems, was later reformulated in terms
of a PCO in a Hilbert space and deeply investigated (and generalized) by
Aronszajn (see [1], [2] and [10]). Further important results have been obtained
by ‘the Weinstein school, especially by Weinberger [15], Bazley [3] and
Bazley —Fox [4].

It has been proved (see [6], [7]) that the Weinstein method can be included
in the following formulation of the theory of intermediate problems, due to
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Aronszajn. Let T, be a PCO such that T, > 7. Assume that the sequence
of eigenvalues {uQ} of T, and the corresponding sequence of eigenvectors are

known. T, is called a base operator. Then it is possible to construct a sequence
{T,} of PCO’s such that '

i) Ty =>T,=2T,+, =T;

ii) Ty — T, is a degenerate operator, i.e., its range is finite dimensional;
iii) 7', converges uniformly to T for » —co, i.e. lim ||T,—T||=0. If

we let o(}) be the k-th eigenvalue of T',, conditions i), iii) assure that o(}) satisfies
conditions (4), (5). Of course the problem of the actual computation of ¢G) must
still be solved. To this end one takes advantage of condition ii) and, by using
standard techniques of finite rank perturbation theory, it is possible to find
eigenvalues of 7', as zeros of certain meromorphic functions, which Weinstein
introduced for the first time. One then uses two different procedures: one for
the eigenvalues of 7T, which are not eigenvalues of the base operator; and
another for the eigenvalues which are eigenvalues both for T, and 7T',. The
main numerical difficulty occurs in finding the zeros of the above mentioned
meromorphic functions. Some procedures have been given by Weinstein,
Weinberger, Bazley and Fox in order to avoid this difficulty. As a matter
of fact in many important applications the eigenvalues of 7', can be found
as zeros of very simple functions.

The method of intermediate problems has led to the solutlon of many
interesting eigenvalue problems since Weinstein published his important
paper [16] on 1937. Let us mention, among all these, the outstanding result
obtained on 1961 by Bazley [3], who was able to give remarkable lower bounds
for the first two eigenvalues of the helium atom. v

However, one of the theoretical restriction in the method of the intermediate
problems is the assumption that a base operator T, must be known. For
example, if we consider the very simple and classical eigenvalue problem in
the space S8 = L2(0, 1), for the Fredholm operator

1
Ty = of K(x, y) u(y) dy,

(K(z,y) continuous and K(z,y) == K(y, x)), we do not know, in general,
how to construct a base operator.

Therefore in the last two years a different method ha.s been developed by
the author. This new method applies to a class of operators smaller than
those congidered in the theory of intermediate problems, but its appliosition
requires less (e.g., base operator) information. The resulting application! of
this method to eigenvalue problems for elliptic linear differential systems has

261



led to new investigations in the theory of those systems, which, in the opinion
of the author, are of interest on their own. <

In the present paper we wish to expose the main results of this new method,
together with some numerical applications which have been carried out at
the Computing Center of the Faculty of Sciences at the University of Rome.
For these numerical calculations the author wishes to express his sincere
thanks to L. de Vito, director of the Computing Center, and to A. Fusciardi,
F. Scarpini and M. Schaerf. A complete account of the theory of orthogonal
invariants and their applications to partial differential equations can be found

in, [6] or in [7].

1. Method of orthogonal invariants.

Let T' be the above considered PCO. Let us denote by I'™(w,, ..., ws)
thé Gram determinant of s given vectors wy, .. ., w, in the space S, with respect
to'the scalar product (7w, v); i.e., I'(w,, . .., ws) = det {(Tmwy, wj)}, (1, j =
=1,...,8). Let {vx} (k= 1, 2, ...) be an orthonormal complete system in
the space 8. We set :

YYT) = 1
and, for s > 0,

) VT =& > T, .., o),

: PR

The summation > must be understood to be over any set of s positive
Ryeske e

integers. Since the multiple series on the right hand side of (9) has non-
negative terms, its sum — finite or not — is independent of the summation
procedure. It is evident that

Y3(T™) = 93™(T).

The following theorems hold.

Theorem II. #X(T') is independent of the particular orthonormal complete
system wused in its definition, i.e., ¥*(T) is an orthogonal invariant for'th:
operator T.' R '

The index s will be called the order of the orthogonal invariant %¥T) and
the index n the degree of this invariant.

Theorem III. We have #}T) < -+ if and only if ¥UT) < +o0.

“We denote by €» the class of all the PCO’s such that #%(T') < +o0. We then
have € < @ if m < n. There exists PCO’s such that they do not belong to any
C»: However PCO’s which are encountered in mathematical physics generally
belong to some €» for » large enough.
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Theorem IV. The sequence H™T), (s =1, 2, ...) 18 a complete system of
invariants for unitary equivalence of two operators of the class €».

This means that if 7, R € €#, we have T = U~'RU, with U an unitary
operator, if and only if #3(T) = J}(R), s=1, 2, ...

Theorem V. If Ty >T,, (T1€Cr, i =1, 2), then FY(T,) = ¥T)).

Theorem VI. If T'x converges uniformly to T, (T, T € €n), then M=, HY(Ty) =
Let {wi} be the above introduced complete sequence of linearly independent
vectors. Let W* be the y-dimensional subspace spanned by the vectors w,, .. .,
o, and P, the orthogonal projector which maps S onto W*. Let us consider
the positive eigenvalues of the operator P,TP,, that is to say, the roots (6)

of the equation (7). Let @) (k <v) be an eigenvector corresponding to the
eigenvalue u() of P,TP,. We denote by W} the one-dimensional subspace

spanned by (). Let P() be the orthogorial projector of § onto W* © Wy
Let us remark that P, TP, and P®TP® are PCO’s when considered in the spaces
W» and W» © W}, respectively.

Theorem VII. Let T € €». Given s > 0, for v > s let
1

(10) o) — {@?(T)—@s(P,TP,)

n 1
Then the sequence {a(})} satisfies conditions (4), (5).*
The two orthogonal invariants #2(P,TP,) and #%_,(POTP®) must be
considered as numerically known since they are expressed as follows through
the Rayleigh-Ritz approximations

D
VyPIP)= 2 [ 01
1(k)
Y3 (POTPY) = Z IZ SRR U L
hy< ...<hgy 1
1, ooy V(K) 3
The symbol . Z means that the indices 4, ... hs—; are always chosen
hy< ...<hy—
among the mtegers 1, .. ,k—1,k+1, "

Theorem VII solves the problem of the upper approxxmatlon of ug, pramded
that one of the orthogonal invariants ¥3(T) of T is known.

Theoretically, because of the definition (9), @#(T) can be considered as
known. However from the numerical point of view, we can only obtain
a lower bound for #™(T') since it is expressed as a sum of a series with,non-
negative terms. On the other hand, formula (10) requires an upper bound
for ¥™(T) if we wish ¢}) to be an upper bound for u;. In eonclusion, we are
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allowed to use formula (10) for giving an upper bound for ux if we are able
to estimate the remainder of the series which defines #™(T'), orif we can compute
this invariant by some djfferent procedure. We shall see in the following
how to overcome this difficulty.® We believe that theorem VII must be
considered as a remarkable advance in the problem of obtaining upper
approximations for the ux’s, since the problem of finding upper bounds for a
sequence of numbers u,, py, . .., px, ... has been reduced to the problem of giving
an upper bound to a single number: one of the orthogonal invariants of T.

' Let us now consider a measure space with a non-negative measure u and
let 4 be a measurable set in this space. Denote by L2%(4, u) the Hilbert space
of complex valued functions u(z) on A4, with |u(z)|2 summable on 4 with
respect to the measure @ The scalar product in L2(4, u) is the following

(u, v) = [ u() 7(2) dus.
A

Suppose that S is Hilbert-isomorphic to L2%(4, u). It is well-known that it
is always possible to choose the measure-space, x and A4 in such a way that
this is true. For instance, we may take as 4 any bounded open set of an
euclidean space and u the classical Lebesgue measure.

Theorem VIIL. Let T belong to €. Then there exists a kernel K®(z, y)
belonging to LA x A, u-X p) such that T admits the following representation
in the space L? (A, p)

(11) T "Zf K™ (2, y) w(y) duy.

From this theorem we can deduce the following one which provides an
integral representation for the orthogonal invariants of 7' € G,

Theorem IX. Consider the function

K®™(xy, 2)). ... . K®(x,, z4) \
F@y o) =
_ K®™(xg, zy) . ... . K®W(xg, x4)
1t is summable on the cartesian product A X A X ... x A with respect to the
1 2 8

product-measure pgy, X pizy, X ... X pze. For T € € we have
Fs : 1
(1‘2) @;‘(T) :;" f. .o .j f(xl, ceey x,) dﬂxl “ee dllx,.
4 4
‘Representation (12) solves the problem of the computation of #*(T') when

% ¢'}? obviously depends on ¢ and n. However we don’t want to indicate this depen-
dence.explicitly,since we assume s and n fixed and wish to avoid cumbersome notation.
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the kernel K®(x, y) corresponding to the operator 7' ig known. It follows
that (10) furnishes a double sequence of formulas, each of them (for any
fixed s and n) solving the problem of upper approkimation of eigenvalues for
Fredholm (hermitian) integral operators. We would like to observe that using
the integral representation (12) of #(T') and letting n = 2 and s = 1 in the
general formula (10), we arrive at a particular formula already known to
Trefftz [14].

2. Structure of Green’s operators.

If we wish to use representation (12) for eigenvalue problems for differential
equations, we must face the main difficulty consisting in the actual knowledge:
of the Green’s function for the associated boundary value problem. It is.
well-known that only in a very few cases — especially for partial differential
equations — is the Green’s function explicitly known. ot

We now want to show to overcome this difficulty for linear elliptic differential
systems by means of a new approach to boundary value problems for these.
systems; the latter will lead us to an explicit construction of the Greens
operator. This construction is particularly suitable for using formula (10) or
the slight generalization of this formula, given by the following theorem.

Theorem X. Let {T,} be a decreasing sequence of PCO’s uniformly.converging

toT. Let T, T belong to €". Set _
1
yvT,)—¥HP,TP,) el ™
off) = {———‘s@/;“il(l"]";’?ﬁ.’") =+ [
Then oo > o@D for o<, v<w,
and )

lim O'sf"') = U.
0 >0
¥y —=>00

Let X7 be the r-dimensional real cartesian space; we denote by x = (4, ...,
xy) a variable point in X”. If u and v are n-vectors with complex components,
their scalar product usv; will be denoted by uv. If a = {ay} is an ! X I matrix.
with complex entries, the I-vector whose componeuts are a;u; (¢ = 1, l),
will be indicated by au, the a.d]omt matrlx of a, i.e., the matrix {am} Wlth
iy = d@s; will be indicated by a.

Let A be a bounded domain (connected open set) of Xr. We suppose that.
A is a properly regular domain®. Let us consider the following linear aif-
ferential matrix-operator of order 2m

Lz, D)= Dpa,,,,(x)D« O<=p<m 0<g=<m),
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where ap,(r) are | X | matrices, which — for simplicity — we assume to be

of class O in the whole space X; if p is the multi-index (p,, ..., p;), D?
denotes — as usual — the partial derivative
_ i
Dt = ox,?y ... 0aP’

We make the following hypotheses.
1) L(z, D) is elliptic for every = € X7, i. e., we have for any real non-zero
n-veotor &
: det apq(x) £260 £ 0 (|p| = |g| = m)
(P=8&...8 &&=1 |if &=p =0);
2) L(z, D) is formally self-adjoint, i.e.,

apq(%) = (—1)[P| 19| Ggp(2);
_#) The bilinear integro-differential form

B(u, v) = 2. (—1)"? [ (ap,Dou) DPy dx:
P 4
is such that for any function®u of class 0= in X", we have
(—1)mB(u, u) > cl IZ [ | Dru)? da,
pl=m 4

where ¢ is'a. positive constant independent of .

4) There exists a linear operator R which enjoys the following properties:
i) R is a bounded operator with domain L2(4’) (4’ is a domain such that
A'> d) and range in the Hilbert space Hp(A4’) of functions with weak
derivatives of order <<m belonging to L2(4’); ii) R is hermitian on L2(4’);
iii) for any f e L% 4’) we have LRf = f.

Hypothesis 4) is satisfied when there exists a fundamental solution for
the operator B. Hypotheses 1), 2), 3), 4) are satisfied by the classical differential
operators encountered in eigenvalue theory.

Let us consider the space C*(4) of O functions in 4 and the finite dimen-
sional manifold I" of all the functions w such that B(w, w) = 0. Let us denote
by 5#(A) the Hilbert space obtained through functional completion from the
quotient space C=(4)/I" by means of the norm introduced by the scala,r product

.W (%, ©)),= (—1)mB(w, v).

) For the pracise definition of [ propoarly regular domain see [6]p. 21. Roughly speaking,
a p!‘operly regular domasin is a domain with a piece-wise regular boundary such that
8A'== 24 and which satisfies & cone- hypothesis.

) The term ‘‘function’” must be understood as “vector-valued function”, since the
values of the function are I-vectors with complex components.
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Let (.,.)4, denote the scalar produect in the space L’(A ). Let R* be the
bounded linear operator with domain J#(4) and range, in L3(4’), defined by
the equations

((Bf, 9) = (f: R*q)a, [feL¥4'), geH(4)]

Let P be the orthogonal projector of #(4) onto its subspace 2(4) determined
by the solution of the homogeneous equations Lu = 0.

Theorem XI. Let U(A) be the class of all functions belonging to Hp(A) N
N Hym(A,) for every domain A, such that Ay< A. Then for every feL3A)

there exists in the class U(A) one and only one solution u of the boundary value
problem

Lu = (—1)ymf in A
13) { Dry = 0 O<[pl<m—1) on 0A.
Set _
G = R*R — R*PR.
Then the solution w of problem (13) is given by u = Gf. Thus G is the Green
operator for the boundary value problem (13).

Let {wx} be a complete system in the space 2(4) and 2,(4) be the p-
dimensional manifold spanned by w,, ..., o, Let P, be the orthogonal
projector of #(A) onto 2,(4).

Theorem XII. Set G, = R*RE — R*P,R. Then both operators G and G,, as
operators on the Hilbert space 12(A), belong to € for any n > r[2m. Moreover
lim |G — G|]| = 0 and G, > G,

Q>0

The following eigenvalue problem, considered in the space U(4)
14 { Lu — (—1)mju = 0 in A,
(14) Doy = 0 o<sp<m-—1) on 04

has only positive eigenvalues. Letting A~! = u, problem (14) is equivalent
to the following oue in the space L2%(4):
(15) Gu — pu = 0.

For the upper approximation of the eigenvalues of (15) [i.e., the lower
approximation of the eigenvalues of (14)] we can apply theorem X w1th
T = @ and 7, = G,. This is possible by theorem XII. For the computation
of I}(G,) we may use theorem IX if an integral representation of Z is known;
i.e., if a fundamental solution of L is available.

On some other cases the explicit representation of G,, which we have given,
can be used in order to give upper bounds to the remainder of the series
which defines If(@,).

In the following sections we shall consider as examples some classical
eigenvalue problems of mathematical physics.
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3. Two or three—dimensional elasticity.

Let us consider the differential operator of classical elasticity, which we
shall write as follows in the space X7 (r = 2, 3): '
L = wi/nn + atpyen, (=1, ...,7);

« is a given real constant (depending on the elastic material) such that
o> —1.

From now on we shall consider only vector-valued functions with real
components.

Let us consider the eigenvalue problem

Lu+4+ Au=0 in A
(16) u=0 on 04.

We can use the following bilinear form

B(u, v) = —Af (wi/nvisn + oi)ivn/n) do.

Set
=log it forr=2
v (t) =1 forr=3
x Pe—yPole—y) gy

F‘U (x'—y) = 87:(1 + a) 2(,'._1)” (P(lx - ?/{),

0% 0% 5
yis, y) = —Af {Fix/n(@ — t) Freyn(t — y) + oFagjule — t) Fanynlt — y)} dt.

Let {w®} be a complete system of solutions of the homogeneous equations
Lu = 0, such that —B(w*, ') = 05®). Set

o) =Af {Fu/n(x — t) ofyalt) + aFugr(e — t) ofyp(t)} dt.

Let {w'} be any system of linearly independent functions such that w®=0

on 94 and such that {Zw;} be complete in the space L3(4). Let u() >
> ... >uP > ... = pb) be the roots of the determinantal equation

det {[ wiwl do + p [wilpw? de} =0  (i,j=1,...,%)
A A ,

(Rayleigh-Ritz approximations). Set

) For the construction of a complete system of solutions for Lu = 0 see [8] chap. III.
The orthonormality condition — B(w®, o?) = 8y is assumed here only for the sake of
simplicity. It is not necessary in numerical applications.
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1,r 1,

) = {20 [l p2dzdy + > f 0i@) el@) do [ of(z) &iw) dw —

i, A

1L,vay

L -4
=22 [ [ vulay) 6@ @) dedy] — 2 wOPE, .

A
1,v
with the usual meaning for the symbol Z CLet <A< < A

be the eigenvalues of problem (16). Then we have

(17) ) << — (,), (k <),
and
(18) llm () = llm ;1— = A.

4. Vibrations of a elamped plate.

We assume r = 2. The eigenvalue problem is the following
AAyu — 2w =0 in 4,
ou

=%=0 on 0A.

(A, = Laplace operator, % = differentiation along the normal); » is a real

valued function. The u(;) are now the roots of the equations

d=t {fwi wj dx—,quzwizlzwjdx]=O, ) =1y00ne- , ¥),
4 4 '
where the sequence {w;} satiesfies the usual completeness condition and w;
3wi

s 0 on 04. Inequalities (17) and the limit relations (18) hold also in

1
T(k)={1?2ff|log lx — y||2 de dy —
44

1,7y

T ant L, ? f [ f wi(t) log |z — | c;trdx — Z ,1<i)}_1;

({wi} is a complete system of harmonic functions (harmonic polynomials if 4
is simply connected) orthonormalised in L2(4).

this case with
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5. Buckling of a clamped plate.

The eigenvalue problem is now the following
AAgu 4+ AAyu = 0 in 4,

u=€1—L=O on 0A.
on

In this case the lower bounds for A; are given by

1,v
z<;;>={;—1—2 [ [ Jlogle —yl2dedy — 22 [[[ wit)log | — ¢ dt]? dz 4
44 4 4 T4 4

o=

1,v .
+ ;.27 &fAflog |z — y| op(x) wi(y) dx dy)z] _ 3w [‘u(;;')]Z}

The upper bounds [u(})]~! are obtained from the equation
det { f widgw; dx 4+ p fAzwiAij dz} = 0, Eji=1,...,9).
4 4

The systems {w;} and {w;} are the same as in the preceding example.

6. Numerical examples.

We have included in this paper numerical results concerning eigenvalue
problems for elastic plates. The upper bounds (i.e., the inverses of the lower
bounds for the eigenvalues of the Green operator) have been obtairied by the
Rayleigh-Ritz method, wherein we have used systems of polynomials. The
lower bounds have been obtained by the method of orthogonal invariants
and the representation, of the Green operator described in the paper.

For numerical examples concerning ordinary differential equations see [9],
[12], [13].

I) Square plate clamped along its boundary.

' ©)

L . A, 3 2
DAy — Au =0 mA_( 5 <®n <35, 2<st:2<2) ,
u=g—;—l-'=0 On‘aA.

Let ry be the zi-axis (¢ =1, 2). Let r; be the line z; = x,, By H®: %),
(2 = 0, 1) we denote the subspace of L?(4) consisting of all functions which
are symmetric with respect to r; if ag = 0, anti-symmetric if a; = 1. By
H %), (o == 0, 1), we denote the subspace of H (%) of all functions belonging
to H®%) which are symmetrio (anti-symmetric) with respeot to r, if oy = 0
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(23 = 1). The space L2%(4) can then be decomposed into subspaces (whlch are
invariant for the given problem) as follows:

L2(d) = HO0(4) @ HON(4) ® HA0(4)  HMD(4) @ HOV(A) © HAY(4).
000 001
lower bound upper bound lower bound upper bound
A 13.29376 13.29378 177.7193 177.7401
2y 179.408 179.431 976.13 979.59
Ag 496.55 497.03 1569 1584
Ay 977.64 981.25 3158 3282
Y 1577 1593 4038 4306
Aq 3120 3244 5865 6791
2, 3155 3284 6774 8330
Ag 4037 4317 7555 9931
YR 5853 6817
210 6701 8276

(® For the analytical and numerical investigation of this problem see [5]. References

concerning numerical work on the same problem can be found in [5].

lower bound upper bound lower bound upper bound
A 120.2148 120.2143 601.488 601.983
Ay 605.792 606.920 2133.1 2155.6
Ay 1401.5 1415.7 -3398 3491
As 2111.8 2161.2 5429 5834
Ag 3306 3506 6970 7894
Ag 5037 5842 9366 12071
A 5412 6451
Ag 6200 7931
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01—-10

lower bound upper bound
Ay 55.2982 55.2994
Ay 279.35 279.50
Ag 454.37 454.99
A 896.8 901.6
s 1180 1191
g 1833 1875
s 2171 2242
I 2560 2677
- 2 3371 3652
Ao 4154 4716
dig 4556 5329
Ao 4582 5372

IT) Circular plate clamped along its boundary.

AAS —Ju=0 in A= {?+a2<1), u=Z—Z=O on 24.0
The space L%(4) can be décomposed into the direct sum of a sequence of
subspaces (which are invariant for the problem) as follows:

L¥4A)=HO @HO @ ... H®W @ ...,

where H®) is the subspace spanned by all functions of the type f(g) cos k4
and g(p) sin k& where x;, = g cos ¥, ¥, = g sin &, k is a non-negative integer
and f and g are arbitrary functions. Each subspace H® (for k > 0) is itself
decomposable into two invariant subspaces

H® = {f(o) cos k#},  H®Y = {g(o) sin k?}.
It is obvious that the eigenvalues in H® coincide with those of H ®,

Therefore the eigenvalues included in the tables with index % > 0 must be
considered as double eigenvalues.

(" Application of the general method to this problem is due to M. ScHAERF and will
appear in & forthcoming paper. The numerical results exhibited in the present paper
are due to this author.
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k=0 k=1
lower bound upper bound lower bound upper bound
A 104.36311051 104.3631056 452.00448 452.00452
Ay 1581.742 1581.745 3700.11 370013
Ay 7939.38 7939.55 144418.2 14419.1
Ay 25017.2 25022.3 39606.2 39622.3
As 60939.5 61012.2 88482.2 88661.1
Ag 125786 126430 171901 173225
Ay 230123 234133 300129 307340
Ag 380355 399323 476778 507392
Ay 569823 640349 689901 794004
l
k=2 k=38
lower bound upper bound lower bound upper bound
A 1216.4072 1216.4076 2604.061 2604..065
Ay 7154.14 7154.23 12325.4 12325.8
Ay 23656.3 23659.1 36207.4 36215.6
Ay 58870.7 58913.3 83526.1 83625.1
2s 123047 123437 165470 166244
A 227594 230089 293711 298098
y. 381914 394063 476150 495553
Ag 585981 632954 708346 777466
A 822673 970669
k=4 k=5
lower bound upper bound lower bound upper bound
A 4853.31 4853.33 8233.49 8233.57
Ay 19629.1 ©19630.3 29513.3 29516.3
Ay 52658.5 52678.8 -73627.7 73673.3
Ay 114314 114523 152001 152404
As 216597 218019 277274 279738
Ag 371076 378366 460483 472040
A, 583460 613097 704421 748019
Ag 844252 942444
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k=6 k=1
lower bound upper bound lower bound upper bound
A 13044.2 13044.5 19615.1 19615.8
Aq 42457.8 42465.1 58973.7 58989.9
Ag 99763.2 99857.0 131741 131922
A 197374 198104 251235 252489
As 348349 352407 430663 437070
Ae 562700 580302 678459 704371
45 839575 901677
k=8 k=9
lower bound upper bound lower bound upper bound
2 28304.7 28306.3 39500.6 39504.1
Ay 79602.4 79635.6 104914 104979
Ag 170265 170590 216062 216620
e 314402 316460 387704 390951
A5 525050 534802 632331 646714
Ag 808467 845496
k=10 k=11
lower bound upper bound lower bound upper bound
A 53618.9 53626.1 71103.5 71117.8
Aq 135509 135626 172014 172215
Ay 269882 270798 332495 333947
Ay 471976 476928 568059 575391
Ag 753313 773948 888788 917682




k=12 k=18
lower bound upper bound lower bound upper bound
A 92426.2 92452.6 118085 118133
Ay 215080 215414 265387 265921
As 404689 406917 487270 490593
Ay 676795 i 687371 799027 813933
k=14 k=15
| !
[ i lower bound : upper bound lower bound upper bound
‘ A - 148607 l 148687 184542 184674
| Ay 323636 l 324465 390553 391804
‘; Ag 581056 585887 686877 693747
i i i 935594 \ 956172
|
k=16 17
lower bound upper bound lower bound upper bound
A 226468 226678 274986 275311
Ay 466883 468724 553390 556044
As 805574 815148 937997 951097
k=18 k=19
lower bound upper hound lower bound upper bound
A 330725 331214 394333 3950584
Aq 650861 654609 760097 765295
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k=20

lower bound upper bound
A 466485 467526
Ay 881916 889004

Several text-books exhibit the following numerical table due to H. Carrington

A 4
{London—Edinburgh Phil. Mag., vol. 55 pp. 1261—64, 1925), for u = | Z.
It was obtained by computing the zeros of a well-known transcendental function
expressed by means of Bessel functions.

k=0 k=1 k=2 k=38
py | 3.1961 4.6110 5.9056 7.1433
ths 6.3064 7.7993 9.1967 10.537
s 9.4395 10.958 12.402 13.795
e 12.577 14.108 15.579
P 15.716 i
1 .

Dr. Schaerf gets the following results.

k=o k=1

lower bound upper bound lower bound upper bound
iy 3.19622 3.19623 4.61089 4.61090
Mo 6.30643 6.30644 7.79926 7.79928
Ug 9.43945 ’ 9.43950 10.9579 10.9581
A 12.5764 12.5772 14.1072 14.1087
Us 15.7117 15.7165 17.2470 17.2558

It is interesting to observe that the numerical application of the methods
described in this paper proves that some of the classical numerical results
are incorrect in the fifth digit. On the other hand the numerical application
of our method is simpler than the numerical solution of the classical above
mentioned, transcendental equation.
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k=2 k=%
lower bound upper bound lower bound upper bound
" 5.90567 5.90568 7.14352 7.14354
P 9.19685 9.19689 10.5366 10.5367
Us 12.4018 12.4023 13.7942 13.7951
I 15.5766 15.5795 17.0002 17.0053

7. The problem of estimating eigenvalues when estimates for
invariant subspaces are known.

Let us consider the linear operator L with domain the linear variety 91,
of the Hilbert space S. Let V be a linear subvariety of Z;. The following
hypothesis be satisfied:

There exists a PCO G of the space S such that: i) the range G(S) of G is
contained in V; ii) GL = LG = I.

Let us consider the eigenvalue problem
(19) Ly — v =0, vel.

This problem is equivalent to the following one

(20) Gu — pu = 0, uel ‘

where u = A-1. It follows that all the eigenvalues of (19) constitute a non-
decreasing sequence tending to o

MW<h<...<h< ...
Each eigenvalue appears — as usual — in the above sequence as many times
as its multiplicity. ’
Let us suppose that we can decompose the space S as direct sum of a finite

or a countable set of mutually orthogonal subspaces, each of them being an
invariant subspace for G.

S=H,OH,® ... OH:; D ...
Problem (20) is equivalent to the following system of eigenvalue problems:

(205) Gu — u®u = 0, ue Hg
=12 ...)
Set Vo = G(H,). It is easy to prove that <y,

V=V1®V2®...®Vs®...
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and that problem (19) is equivalent to the following system of eigenvalue
problems:
(19¢) Ly — 16y = 0, ve Vs

(8=12...)

Let AD <A < ... <A® < ... be the sequence of the eigenvalues of
problem (19,). Suppose we have obtained for the first Ps > 1 eigenvalues
of problem (19;) the following table of estimates (ts)

0Q < 2O < £©

W

(ts) T
o < IP < &9
We suppose that the upper bounds £® have been computed by the Rayleigh-

Ritz method. That means that the @ are the roots of the determinantal
equation

det {(Lw®), w®) — Aw®, w@)} =0 (b, k=1, ..., ps),

where w, ..., w® are p; linearly independent vectors of Vs.

The problem now arises. From estimates of the tables (ts) is it possible
to deduce estimates for the k-th eigenvalue i of problem (19)?

In solving this problem we shall not make any assumption on the method
used for computing the lower bounds 6). We only assume — without any
loss — that 6 < 6@ < .. < o).

In order to consider a more concrete situation we shall assume that the
tables (t;) are given only fors — 1, . .., q (¢ =1). Assuming that is necessary
if the spaces H, are infinitely many. For s > ¢ we shall only suppose that we
know a positive real number ¢, such that for any eigenvalue of (19;) with
8 > q we have i) > ¢;. Moreover lim c¢; — + o0, if the H; are infinitely
many. o

For instance, in the case of the example II, considered in section 6 (circular
clamped plate), it is possible to show that we may assume

¢s = 16(s + 1) (s + 2) (s + 3).

Let us consider the two sequences {6()}, {¢®} (s=1, ..., q; k=1,
-+ +s Ps). We shall denote by {6a}, {ea} (h=1, ..., m, m =p, + ... + pg)
the sequences obtained from {0@} and {e)}, respectively, by disposing all
their elements in non-decreasing order.

It will be useful to introduce the function I = I(s, ky@s=1,...,¢k=1,
- 445 Pe), whose range is the set 1, ..., m such that

Oy(s, k) = 69,
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This function is not unique if some of the numbers 6() coincide. However
we suppose to have chosen, amongst the possible ones, a well determined
function 1 = I(s, k).

Let us first consider the following lemma.

Lemma XIIL Let b — 6y and k — ix be two real valued functions, the first
defined for h =1, ..., m and the second for k =1, ..., n. Assume that m >n

and 0, <6< . < 0n

MW h< ... <
Let us suppose that there exists a function k — gk defined for k =1, ..., % such
that

1) qr is @ positive integer and 1 < g < m,
11) q; = q; for @ # j implies g1 =m,
III) A >0 (k=1, ..., 1)
Under the above hypotheses we have
(21) Ax = O

Inequality (21) is obvious if gy > k. Let us suppose gx < k. It must exist
an index s such that 1 <s <k — 1, ¢gs > k. In fact ¢s <k for any s <
< k — 1 implies that there exist two indeces 4, j such that 1 <k, j <k,
i EL =g <k<n That contradicts hypothesis II). Existence of g5 >k
with s << k — 1 implies Ax > As = &4, = 0.

Theorem XIV. Let 6% be such that 6 > 63) for s =1, ..., q. We suppose
that, if the spaces Hy decomposing S are more than q, then ¢s > 8%) for every
8 >q. Let n be the smallest integer such that 0 = 8. We have the following
estimates for the first n eigenvectors of problem (19). B

o < A < & k=1, ...,n).
Let us associate to every eigenvalue ; of problem (19) a unit vector vg
such that
Lok — Mgvp =0, weV, (vn, vk) = Onk.
The sequence {v;} may be considered as the union of the subsequences {1}(?}
such that Lv® — Av® = 0, v® e Vs
{A®} is the sequence of the eigenvalues of problem (195).

Let us consider for 1 << k << n the eigenvalue i;. Suppose that vz = v®.
We have ;= A® > 8@ if 1 <s < qandt < p,. We have 4 = 19 = On
either if 1 <s<gq,i > pgorifs>gq. Set

{=l(a,i) if 1<s<q, t<ps
%] =n if 1<s<<gq, 1+ >ps Or 8 >4q.

The functions h — 8, k — Ax, k — gz satisfy hypotheses of lemma XIIIL.
It follows that inequality (21) holds.
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Let wy, ..., wn be the m vectors of V obtained by disposing in a unique
sequence the vectors of the ¢ sequences Wt (s=1,...,¢i=1, ..., Pe)-
The m roots of the determinantal equation :

det {(Lw;, wy) — A(wy, wy)} =0
(hig=1,...,m)
are & < & < ... < &u. From the theory of the Rayleigh-Ritz method it
follows Ay < e (k=1, .. ., m).

The following tables show the estimates, which is possible to deduce (for
the eigenvalues of a square plate and of a circular plate) from the estimates
already known for invariant subspaces. In both cases the lower bounds and
the upper bounds have been compared with the asymptotic values given by
a formula due to R. Courant and A. Pleijel (Comm. on Pure and Applied
Math. III, 1, 1950, p. 1—10). These numerical results suggest that the use of
asymptotic formulas for the numerical evaluation of eigenvalues, even of rat-
her high index, could be misleading.

Square plate

lower upper asymptotic - lower | upper asymptotic

bound bound value bound bound value
h | 13.29376 | 13.20378 | 1.6211 | A, | 1833 | 1875 933.77
Ay | 55.2982 | 55.29934 | 6.4845 | A, | 2111.8 2155.6 1013.2
Ag 55.2982 55.29934 14.590 Ay | 2133.1 2161.2 1095.8
Ay 120.2143 120.2232 25.938 Ay | 2171 2242 1181.8
A | 177.7113 | 177.7401 | 40.528 |4, | 2171 2242 1270.9
Zg | 179.408 | 179.431 58.361 [ 4, | 2560 2677 1363.3
A, 279.35 279.50 79.435 A3 | 2560 2677 1459.0
Ay 279.35 279.50 103.75 A3 | 3120 3244 1557.9
Ay 454.37 454,99 131.31 Az | 3155 3282 1660.0
Ao | 454.37 454.99 162.11 | 2, | 3158 3284 1765.4
Ay | 496.55 | 497.03 196.15 | 4, | 3306 3491 1874.0
Jig| 601.488 | 601.983 233.44 | 4, | 3371 3506 1985.8
A | 605.792 | 606.920 273.97 | 4, | 3371 3652 2100.9
M| 896.8 901.6 | 317.74 |1, | 3308 3652 2219.3
Ay |- 896.8 901.6 | 364.75 Agg | 4037 4306 2340.9
Ao | 976.13 979.59 415.01 | 4, | 4038 4317 2465.7
An| 977.64 981.25 ' | 468.50 |4, | 4154 4716 2593.8
A | 1180 1191 525.24 Ay | 4154 4716 2725.1
Ap | 1180 1191 585.23 | A, | 4556 5329 2859.6
Agp | 1401 1415 648.45 A4y | 4556 5329 2997.4
Ay | 1569 1584 714.92 | 4, | 4582 5372 3138.5
Age |..1577 1593 784.63 Ay | 4582 5372 3282.8
As { 1833 1875 857.58
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Circular plate

lower upper asymptotic lower upper asymptotio

bound bound value bound bound value -
A | 104.363 104.364 16 Ay | 58870.7 58913.3 35344
Ay | 452.004 452.005 64 A | 58870.7 58913.3 36864
Ay | 452.004 452.005 144 ly | 58973.7 58989.9 38416
Ay | 1216.40 1216.41 256 Ago | 58973.7 58989.9 40000
A, | 1216.40 1216.41 400 A5, | 60939.5 61012.2 41616
Ag | 1581.74 1581.75 576 Agg | 71103.5 71117.8 43264
A, | 2604.06 2604.07 784 Ass | 71103.5 71117.8 44044
Ag | 2604.06 2604.07 1024 Ase | 73627.7 73673.3 46656
Ay | 3700.11 3700.13 1296 Ass | 73627.7 73673.3 48400
Ao | 3700.11 3700.13 1600 Asg | 79602.4 79635.6 50176
Ay | 4853.31 4853.33 1936 Agy | 79602.4 79635.6 51984
Ja| 4853.31 4953.33 2304 Ass | 83526.1 83625.1 53824
Mg | 7154.14 7154.23 2704 Asp | 83526.1 83625.1 55696
M| T154.14 7154.23 3136 leo | 88482.2 88661.1 57600
Mg | 7939.38 7939.55 3600 Jey | 88482.2 88661.1 59536
Jg | 8233.49 8233.57 4096 Aoy | 92426.2 92452.6 61504
M| 8233.49 8233.57 4624 Aoy | 92426.2 92452.6 | 63504
A | 12325.4 12325.76 | 5184 doo | 99763.2 99857.0 65536
Je | 12325.4 12325.76 | 57176 les | 99763.2 99857.0 67600
loo | 13044.2 13044.5 6400 heg | 104014 104979 69696
Aoy | 13044.2 13044.5 7056 Agy; | 104914 104979 | 71824
Aoy | 14418.2 14420.0 7744 heg | 114314 114523 ' 73984
Aoy | 144182 14420.0 8464 Ao | 114314 114523 76176
Aoy | 19615.1 19615.8 9216 Ay | 118085 118113 78400
2es | 196151 19615.8 10000 A, | 118085 118133 80656
Ao | 19629.1 19630.3 10816 dag | 123047 123437 82044
Aoy | 19629.1 19630.3 11664 Ayg | 123047 123437 85264
Aog | 23656.3 23659.1 12544 A | 125786 126430 87618
yy | 23656.3 23659.1 13456 Ay | 131741 131921 90000
Aa | 25017.2 25022.3 14400 A | 131741 131921 92416
A5y | 28304.7 28306.3 15376 Ay | 135509 135625 94864
Ay | 28304.7 28306.3 16384 A | 135509 135625 97344
Ay | 29513.3 29516.3 17424 A | 148607 148686 99856
Agg [ 29513.3 29516.3 18496 Ay | 148607 148686 102400
Ags | 36207.4 36215.6 19600 g, | 152001 152403 104976« |
leg | 36207.4 36215.6 20736 gy | 152001 152403 107584
Ay, | 39500.6 39504.1 21904 Ay | 185470 166243 110224 |
Agg | 39500.6 39504.1 23104 A | 165470 166243 112896
Ag | 39606.2 39622.3 24336 Mg | 170265 170589 115600
Ay | 39606.2 39622.3 25600 Agg | 170265 170589 118336 «
Ay | 42457.8 42465.1 26896 Aey | 171901 172214 121104
Ay | 42457.8 42465.1 28224 Agg | 171901 172214 123904
Ay | 52658.5 52678.8 29584 lep | 172014 173224 126736 - |
My | 52658.5 52678.8 30976 Ago | 172014 173224 120600
M| 53618.9 53626.1 32400 Apy | 184542 184673 132496
A | 53618.9 53626.1 33866 Aog | 184542 184673 135424
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ACTA FACULTATIS RERUM NATURALIUM UNIVERSITATIS COMENIANAE
MATHEMATICA XVII — 1967 '

ON THE LINEAR AND QUASILINEAR PARABOLIC EQUATIONS

0. A. LADYZENSKAYA, Leningrad

1. If the coefficients in equations are smooth then it take place the unique
solvability and the strong estimates for solutions of large classes of parabolic
systems with very general boundary conditions. The first estimate of the same
type was the inequality.

(1) S + u2,) de dt + max  [ud(r, t)de <
Qr 0stsT 9
< ch (we — ag(, t) Ugizy + ...)2dwdt 4 claf u2(z, 0) de =
=c¢ [ (Zu)2dz dt + ¢, fu2(x, 0) dz,
Qr 2
Qr= {(z, t):xeR,te[0,T]},

which is hold for any arbitrary function w(z, t), satisfying one of classical
homogenous boundary conditions. After that had been proved the strong
estimates for the parabolic operator in the space Ly(Qr), p > 1. (SOLONNIKOV)
and in the HOLDER space (A. FrrepmaN). These estimates were generalised
for parabolic systemes. The most wide class of systemes and boundary
conditions was considered by SoronnNikov. The unique solvability had been
proved with these estimates together.

The kernel of all these estimates [exepte my prove of the inequality (1)] is
provided by the Korn—Schauder “gluiing”’ idea, which permits one to reduce
the general estimation problem to some canonical estimation problems for
systems with constant coefficients. For this approach to be feasible, however
it is necessary that the coefficients of the leading termes of system be continuous.

2. Investigations of parabolic equations and systems with discontinuous
coefficients have bean based principally on the energy inequality (see the
papers LADYZENSKAYA, VisHIK, Lioxs, BRowDER and others). This ine-
quality holds for a harrower class of systems than that mentioned above —
for so-called strongly-parabolic systems, under some simplest boundary
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conditions. This class of parabolic systems belong the parabolic equations
of the form

@) ue — Zemy = §,

where Z(>m)y is an elliptic operator of the order 2m with principal part in
divergence form: Z(my — D™(a(x, t) D™u) t.

The energy inequality enables one to prove the existence of generalised
solutions, which for the equations (2) have derivatives DZu belonging to
L,(@r) and which are continuous with respect to ¢ in the norm of Ly(R2) (we
require that uy = u(x, 0) € Ly(2), the inhomogeneous term Jf may be of rather
general nature). But it gives no additional information about the solution
even when u, and f are very smooth.

It was not possible on the basis of the methods available up to 1956—57
to derive any conclusions about the improvements of the differentiability
properties of the solutions of parabolic equations with discontinuous coefficients
when u, and f (but not coefficients) become smoother. This situation took
place even for equations of the second order.

Some ten years ago, however, new methods began to develop foilowing
upon the pioneering work of Nash and De Georgi. By means of these methods
had been established a series of new principles (relations) for linear equations
of second order and they proved to be usfull for the study of quasilinear
equations as well.

In joint papers by Urarrzeva and myself were investigated equations
of the form

4L

(3) Uy — a~2i (ats(, t) uz, + as(x, t) u) + bug, + au = f 4+ T

under the conditions that the coefficients a;; be arbitrary measureable functions
satisfying the inequality .
(4) vE® < aybily < wE?, v, u = const > 0,

and that the coefficients of the lower terms, as well as inhomogeneous terms f
and f; in (8), belong to the spaces Ly, (@) with appropriate g (the norm in
: ; ‘ ; ;

Ly,,»(@r) is defined by ||u||g, 0,0, = vrai max ([ |ul¢ dx)?.
o<i<T Q2

Some examples were also given demonstrating that the dependence of the
degree of smoothness of solutions of equation (3) on the parameters g
established in the above mentioned joint papers is best possible.

Slight modifications of the methods developed by stadying these equations
(3) and of the corresponding elliptic equations of the second order enable
one to investigate the cases in which the coefficients and inhomogeneous
terms are elements of Ly, (Qr). [The norm in L,,(Qr) being defined by
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r 1

T xr . .
lwllg,r,@r = {of( [ juj2 dz)? d¢}"]. In a joint paper [*] by N. N. URALTZEVA,
r ,

A. V. Ivavov, A. L. Tresku~ov and myself the study was made of the
ranges of g and rx in which solutions of equation (3):

a) belong to the spaces Lq,r

b) give a finite value to the integral [ exp {Au(x, t)} dz dt, 1 > 0;

¢) have a bounded vraimaximum |u|;

d) have a finite HOLDER norm lulx,,’ 20
The above has all been carried out for generalised solutions of equation
(3) belonging to the space V19(Qr). This space is the completion in the norm
1 1

(5) g, = max ([u(x,t)da)® + (Qf |ug|? dz dt)®.

0<t<sT Q

of the set of smooth functions. Examples were constructed showing that the
regularity conditions given in [*] are exact (in the sence that the indices
gk, & cannot be reduced). I remark also that as it often takes place passage
from the spaces Ly, ., to the full scale of spaces Lg,r enable us to make the results
obtained more transparent (observeable) and more complete.

As an example of the results obtained in [*] I shall formulate the following
theorem:

Theorem 1. Assume that for equation (3) the inequality (4) and the conditions

n n 1
(6) Sat 2bh acly@) +§’_:—1 <1,
hold. Then if
1 n n
fi € Ly(@r), f € Lqgr (@1), 7{"‘% <1+ I1°

U|t—g = Uy(x) € Ly(2) and uls =0

the first initial boundary value problem for equation (3) is uniquely solvable in
the space V10 (@r). (To be more precise, uniquely solvable in V3#@r)).
If f and f; satisfy the more restrictive conditions

_ o .
f € Lgs,rs(@1), T_z+% <1+ 76,

(7 .
> fit€ Linn(@2) L AL .-
=4 qs,T3 ’ rs 2qs 2 ’
where O € (0, 1), then the solution has the sharper properties:
1 n n
uELq’r, Y —;-+§§—IG
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(Remark: from the assumption w e V¥*Qr) one can only conclude that

u € Ly (@1), where _i'+2£q=%) If the constants q and r in (8) satisfy the
inequality

1 n
(8) 7+2—q <1

and the parameter © in (7) vanishes, then [ exp {iu(z, t)} dz dt must be finite
Qr

for some A > 0. If > af, > b% a, > [ feLyr(@r) and q, r satisfy (8) then
i=1 i=1 i=1

u 18 Holder-continuous in (z, t).
In a particular case, when a; = f; = f = 0 and a(, t) > 0, for weak solutions
u(x, t) takes place the maximum principle, that is:

min {0; vraimin v} < u(x, {) < max {0; vraimax u}.
I'p I'y
If a(xz,t) =0, then vraimin u < u(x,t) < vraimax u.
I'y I'yp
In formulating theorem I have not indicated the allowable ranges of
variation of ¢ and » — these depend on the dimension # in (6).
3. Now I should like to give an example demonstrating the necessity of
the restrictions of type (6) imposed on the degree of singularity of coefficients
o .
in (3). The function w =e % which vanishes when ¢ = 0 presents the
solution of the Cauchy problem in half space {(v,t):x € Ey,t >0} for the
equation

n
(9) u,—Au+nZ%éun=o,
, i=1
and for the equation
n
as well.

This solution evidently belongs to V3. Moreover by smoothing u with
respect to ¢ or # one may construct almost-classical solutions of (9) and (10).
This shows that if one of the most important properties of parabolic initial
value problems, namely their deterministic nature, is to be retained, singulari-

ties of the coefficients b¢(x, £) of order l—:?l and singularities of the coeficients

a(x, t) of order % must be excluded. Conditions like (6) take care of it.
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4. All the above-mentioned relations have been established only for single
parabolic equations and for certain limited classes of parabolic systems of
second order. In the heart of these considerations lies the maximum principle
(albeit in a disquised and unusual form). It would be interesting to know
whether similar relationships hold for equations of higher order.

All the results mentioned above apply only to the equation with principal
part of divergent form. For the equation

(11) ug — Mu = Ut — Qijgizy + Gz + U =i

of non-divergence form with arbitrary discontinuous bounded measurable
coefficients a;j(x, t) in more than 2 dimensions the information available is
extremly scarce. In a book by Uraltzeva and myself are the examples showing
the pathological properties of the equation (11) in which the operator M
has the form
&

(12) .L.‘I()u = a/ijux‘zj, aij = 61 + /l: I—xtlg .

Another such pathological property is the following: the operator M, does
n

3 for the

not admit the closure in Ly(2) if » > 2. In fact, when u =

sequence i, (z) = iz + ) € — (a2 + )
”ue,n”Lz(ixl = 1)
Mg, (e < 1)

5. In the joint work Uraltzeva and myself quasilinear equations of the
form

n e
S +_ .
1 2 of functions we have

—>0as ¢ >0 and 5 = n(e) > 0.

(13) Uy — % ai(x, t, u, ug) + oz, t, u, uz) =0,
i

(14) ut — a’ij(x: t’ uw, uz) Uzixs + a(x’ t,' uw, ‘"fz) = 0:

have also been considered. For equations (13) generalised and classical
solutions were both studied. For equations (14) principally classical solutions
were studied.

We have analysed the smoothness properties of the full set of solutions
of the above equations and the unique solvability ,,in the large” in the spaces
of smooth functions of the classical boundary value problems for these
equations. In these investigations we assume that the functions a;(z, ¢, u, p),
a(x, t, u, p) and ay(x, t, u, p) are smooth with respect to w and p and that as
functions of z and ¢ they belong to the spaces Lg,y. I shall not give a detailed
account of these results, as they together with the above-mentioned results
on linear parabolic equations form the principal part of the forthcoming
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book on parabolic equations by Uraltzeva, Solonnikov and myself which
should be appeared by the end of the present year. To indicate the nature
of these results however I will state one result concerning the general class
(14) of parabolic equations:

Theorem 2. Let u be an arbitrary generalised solutions of the equation (14)
belonging to class M, i.e. suppose that w is bounded, has generalised derivatives
ut and uzg belonging to L,(Qr), that the derivatives u, are bounded and depend
continuosly on t in the norm of Ly(Q) and that u satisfies equation (14) almost
everywhere.

Suppose that the functions ay(x, t, u, p) are differentiable with respect to x, u
and p in a neighborhood of the surface u = u(x,t), p = uy(x, t) aud that on
this surface they satisfy the conditions

vE2 < ay(, t, u, p) Ei&5 < pé2, v, 4 = const > 0,

! 3&; (x t, u p oa o I
. \L, b, U, ) (%) ]
_— t < St i a ;
vray :nax 2 = Uy, o’ P ) ! < (p(.l', t)a

where ||@|lag,or < p; and where %+%< 1. Then uy will be Holder-

continuous in (x,t) with a Hélder constant

(e

{uy >Q ) < ¢ (vrasmaz |[u|, n, v, u, uy, q, 7, d)|

T

where d is the minimum distance from the subdomain Q' on Q7 to the base and
laternal surface of the cylinder Qr, and

o = a(vrai max |ux|, n, v, u, gy, q, 7).
Qr

This result as has been mentioned above takes place for the hole class of
parabolic equations of second order. The restictions imposed on the functions
ay, a and u being in the nature of the problem f,, (in particular, as has been
shown in the book on elliptic equations by Uraltzeva and myself, it is
impossible to eliminate the requirement that u, be bounded). This result
together with known results on linear equation with smooth coefficients
reduce all a priori estimation problems for quasilinear equations of second
order to the problem of ‘estimating n;ax |#| and néax g

I ha.ve no time to explain our approach to all these problems. Instead
this I'll mention some unsolved problems.

We studied the equations (13, 14) under the following conditions:

1) uniform ellipticity; for the equation (14) this means the restriction

(18)  w(ul) (1 + [py™E2 < ay(x, t,u, p) &by < u(lul) (1 + [p))me2;
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2) continuity (and mostly differentiability) of the function ayj(z, t, u, p),
ai(x, t, u, p) and a(z, t, w, p) in » and p. '

These equations have been the object of most works of nonlinear problems
up to now. They are well understood now. The methods and results developed
in these studies made it possible to investigate certain problems of mechanics
in which conditions 1) and 2) do not hold precisely. For example, problems
of nonsteady flow through filters, problems connected with Prandtle’s equa-
tions of boundary-layer flow (for which the form a@;&;é; degenerates, i.e. for
which condition 1) not hold), the Stefan problem (in which condition 2) is
not satisfied:Jthe functions a(x, ¢, u, p) are discontinuous in ). The other
various hydrodynamic problems in which unknown boundaries separate
different phases (or flows), may be as the Stefan problem reformulated in
terms of equations of the form (13) in which the functions ay(z, ¢, u, p) depend
discontinuously on w. Attempts to weaken conditions 1) and 2) therefore
seems to be of interest. Such attempts might lead to the discovery of new
phenomena for parabolic equations and require new methods in addition to
the present methods.

Generalisation of results established for equations of the second order to
equations of higher order and to systems of equations would also be of interest.
We have some results on the system of second order but I shall not formulate
them for lack of time.

Show only on the one simple system

-

- - 0 —
(16) v — Av + %—Ic () = f

Zf: (v4(%y, T3, X, t), vy, v;) for which the solvability ,in the large”, is not
established. This system may be considered as model for Navie-Stokes
system. For system (16) we have no energetic inequality, no maximum prin-
ciple, in other words, we haven’t the first step for the studying of system (16).
It is interesting even the question on uniqueness of weak Hopf’s solutions

for (16) that is the solutions with finite energetic norm I;;[QT. I think that the
uniqueness not takes place and it seems me that the Hopf’s solutions for Navier-
Stokes system inself is not unique too. The examples of nonuniqueness
mentioned above support my conjecture. :
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MATHEMATICA XVII — 1967

SOME APPLICATIONS OF THE SECOND METHOD
OF LIAPUNOV TO DYNAMICAL SYSTEMS DESCRIBED
BY PARTIAL DIFFERENTIAL EQUATIONS

P. C. Parks, Coventry

Abstraet

The second method of Liapunov is applied to the stability of dynamical
systems described by partial differential equations. This extension of the
well-known technique for ordinary differential equations is illustrated by two
examples drawn from the field of aeroelasticity — the torsional divergence of
a wing and the supersonic flutter of a panel. Reference is made to the work
of other authors working in various promising fields of application.

Introduection

When applying the second method of Liapunov to stability problems of
ordinary differential equations we generally wish to show that the Euclidean
state space norm S = (2% + 23 + ... -+ 22)1/2 tends to zero as time tends to
infinity, and the stability definitions, Liapunov theorems and their proofs
are expressed in terms of § — for example in KaLMAN and BERTRAM [1].
When considering systems of partial differential equations it may be possible
to choose a new norm, which will involve an integral of the system dependent
variables and their space and time derivatives, which provides a measure
of the disturbed system, from its undisturbed state. We may then take over
all the definitions and theorems for ordinary differential equations, replacing
Liapunov functions by ‘“Liapunov functionals”.

This idea has been put forward by Zusov [2], VoLkov [3] and MovcHAN
[4] in the U.S.8.R., but only recently have appllcatlons of this theory been
seen, PARKS [5] and Wana [6].

Basic Theorems

The following theorems were given by MOvCHAN [4], but are expressed here
in the language of KarmMax and BERTRAM [1].
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Stability Theorem

Suppose there exists a Liapunov functional V such that when ¢ #0,
0 < a(g) < V < (o), V = 0 when g = 0, where a(g) and B(g) are continuous

av . :
non-decreasing scalar functions of o, and that T making use of the partial

.
&iff. equation and its boundary conditions, is such that%}t— < —y(0) <0,
2#0, y(@) =0, g=0, then the system is asymptotically stable. If
«(g) >0 as g >oo then the system is asymptotically stable in the large.

Instability Theorem

Suppose there exists a Liapunov functional V such that V' is bounded

above in terms of g and that where V' > 0, (%I;- is also positive. Suppose further

that given 0 however small there always exists an initial motion at time
t, with o(t,) < 6 such that at this time ¥ > O then the undisturbed motion
is unstable.

The stability theorem is stated in a general way and provides conditions
for uniform asymptotic stability. Certain relaxations may be possible, for
example when considering autonomcus systems.

Applications

The important aeronautical engineering field known as , aeroelasticity”
provides some interesting examples of the Liapunov functional technique.

(1) Torsional Divergence of a wing

For simplicity let us consider a uniform wing (Fig. 1) in torsion under the
influence of aerodynamic loads which depend on the local incidence @ and

local angular velocity _86_6;? !

The equation of motion for a strip element will yield

%0 0 _ 00 .00
where kg and kp are the aerodynamic strip ,,derivatives”.
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l 2 )12
Consider now a norm g = { f o2 + (%?) dy} and a tentative Liapunov
0 .

functional

1
1 A% 26\ *
: 0

i

for which, on substituting for I ¢ @ 5 from (1),

1
av 0 020 00 00
@) T )Y yaata (ay [G" ay] + k6O + ks )
0

1

2
— k0% iz ’ dy = f ks (%) Ay
0

on integrating the second term by parts and using the boundary conditions,

HL

whicharethat@:Oaty:Oand%:Oaty=l.

Now k;, will be negative and so we have stability (but not, without further
argument, asymptotic stability) if V is positive definite in terms of p. Using
the Schwarz inequality that

b 2 b b
(4) {af fa dx} < Jfrdz [g*dx
we have

v

(o)) < [ (2) o
oo (@) av=[[ () a]s

l l ]

(5) J@z(y)dyg[of(a ) dy]fydy_v H( ) ]

%

or

and so

Thus V is positive definite in terms of p if

(6) GJ > —%— 12kg
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Now, for a uniform wing there is an exact theory of torsional divergence found

by solving the equation ;
d:e ’

(7 —GJ = ke(O + «)

for @(y) when the wing root (y = 0) is at incidence «. The solution is

(8) O(y) = «(tan pl sin py + cos py — 1)

where p? = kg/GJ, and torsional divergence occurs when pl — /2. Thus the

exact criterion is

9) ~ 6T > = kg

Galerkin energy methods may also be applied to yield for an assumed mode
Oy) = yll

(10) aJ > —:1; 1%k,
and for an assumed mode O(y) = 2(y/l) — (y/l)?
(11) GJ > —Z— 1%k,

We notice that the Liapunov criterion is conservative while the Galerkin
methods underestimate the exact torsional stiffness required to prevent
divergence as

1 4 2 1
(12) i e

o

(2) Panel flutter

Fig. 2 shows a pin jointed two dimensional panel. The equation of motion
of this panel in supersonic flow is
o2 ‘0% 0% 0z, o0z

where ,,piston theory” has been employed in calculating the aerodynamic
force on a panel element. [g in (13) is air density.]
Consider a norm

o [ (@) ()" (&) o)

and a tentative Liapunov functional
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2 2 2.\ 2 .
(14) Vl:’;'fm(%i) +F(g;;) +D(%) do
0

for which
l

dv, oz\? 0z 0z
0

2
We should like a term in (%) in %/ 80 we try

where
(17) 1 f 00022 + 2mz g‘;dx
0
with -
1
de_f oz\* (6z)2 (82,2 2
0

Now using a lemma due to LorD RAYLEIGH, employed also by MovCHAN [4]
that

1 l 1
022\ ® n? 0z n“ A
0 0
dv
we shall have a positive definite ¥ and — & if
2 2 :
n-%lz—{—%F—#AQaw m (%I—)-FF)Z —;—eamU
and 1
m m 5 00 U 0o — A
are positive definite matrices. An optimum choice of 1 is A = -;— 972"3 when
we obtain conditions | .
n%D
F>— T
(20)

and U2 < (F + 7-3;512)/m
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The first condition is precisely the Euler buckling criterion for the panel and

the second condition, for long panels under tension, says that the air speed
must be less than the speed of waves travelling in the stretched panel: this

is a well known criterion, but obtained here by an unconventional method.

(3) Other aeroelasticity problems

We note the non-linear structural damping treated by PArks [5], and the
bending torsion flutter of a non-uniform wing considered by Wanc [6] (but
note the comments by PArks [7]), and the body bending-tail flutter of WaNG
[8]. Most of these papers look at old problems using the new Liapunov
technique.

(4) Other fields of applications

We note papers on a chemical reacter problem by BLopGetT [9], on plasma
stability by McNamara and Rowraxps [10], on instabilities in Shid dyna-
mies by PriTcHARD [11], and on stability in elastic bodies by SuIELD [12].

There is an urgent need for further research into the construction of Liapu-
nov functionals for these problems — physical quantities such as total energy
are useful and other functionals may be generated by multiplying the
differential equations through by suitable dependent variables and integrating
by parts.

There are likely to be important advances in these directions before long.
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ACTA FACULTATIS RERUM NATURALIUM UNIVERSITATIS O(DHINIANAB
MATHEMATICA XVII — 1967

NON-EXPANSIVE MAPPINGS IN CONVEX LINEAR TOPOLOGICAL
’ SPACES

C. R. DEPRrIMA, Pasadena

A self-mapping f of a metric space (X, d) is said to be non-expansive iff
for all z,y € X, d[f(x), f(y)] < d(z,y). In [1] and [2], F. BROWDER proved
that if X is a closed bounded convex subset of & uniformly convex Banach
space B on which the metric d is that indueed from the norm on B, then
every non-expansive self-mapping of X has a fixed-point. Browder’s result
is included in a similar result by Kirx [3] who showed that, if X is & closed
bounded convex subset of a reflexive Banach space poseessing ‘‘normal
structure”, then the self-mapping f has a fixed-point in X. A oconvex subset
K of a Banach space has normal structure iff, for each non-trivial bounded
convex subset C of K, there is an 2 € C such that

diam (C) > sup ||z — y||.
yeC

It is a simple matter to see that if B is a uniformly convex Banach space
then every non-trivial convex set K in B has normal structure,

In proving these theorems the authors rely heavily upon the special
properties of reflexive Banach spaces. We observe, however, that theseresul s
among others, may be proved directly from a rather simple, but general
principle about semi-continuous mappings on locally eonvex spaces. In the
sequel ¥V will denote a locally convex linear topological space (over the reals
or complexes) and px a lower semi-continuous non-negative convex function
defined on a convex subset K of V. pgg is said t0 be mormal if in addition
pr is non-constant on each non-trivial e¢losed convex subset € of K, We
then have the following. ' '

Propesition. Let K be a weakly compact cofvex subset of the locally oconvex
apace V and let ox be a normal function on K. If f +s o self-mapping of K such
that ,

(1) ex(f(z)) < ox(z), z€K, ~7-
then [ has a fized-point in K. ‘ ’

19 Equadift II. ;‘m



Proof: gx is lower semi-continuous if and only if the sets, defined for
t=>. :
4y = {v e K|ox(z) <t}

are closed. In view of the convexity of gk, the 4, are closed convex sets and,
consequently, are weakly closed. Hence ok is weakly lower semi-continuous.
Because of the weak compactnes of K,

M = {z € K|ox(x) = inf pk(y)}

s then a non-void closed convex subset of K. Indeed, since ok is normal M
consists of exactly one point 2,. On the other hand, f(x,) € K so that og(x,) <
< ex(f(x,)). But assumption (1) yields o(zo) = o(f(x,)), thus f(x,) € M and
hence f(z,) = ;.

A simple generalization of Kirk’s result now follows immediately. Let p
be a continuous semi-norm on V. We shall call a convex subset K of V p-normal
iff for each non-trivial weakly compact convex subset C' of K it is true that
sup p(x — y) is non-constant on C.
veC

Theorem 1. Let V be a locally convex linear topological space, K a weakly
compact convex subset of V, p a continuous semi-norm on V. If K is p-normal
and f 1s a self mapping of V such that, for all z, y € K

(2) p(f(x) — f(¥) < px — y),

then f has a fixed-point in K.
Proof: p is a continuous semi-norm on V, in particular p is convex. Hence
p is weakly lower semi-continuous on V and, consequently, {z|p(z) <1} is
a barrel relative to the weak topology on V. Thus, by [4] (Lemma 1, page 66),
2o(®) = squ p(x — y) is a finite-valued non-negative convex function on K,
i yvekK, y

which is weakly lower semi-continuous. Here K, is any weakly compact
convex subset of V.

We now determine K; = K such that f(K,) = K, on which g, satisfies (1).
‘To this end, let X be the collection of all closed convex subsets C' of K such
that f(C) = C. These sets are, therefore, weakly closed and, thus, weakly
compact, so that K possesses the finite intersection property. Since Kex,
Zorn’s lemma is applicable and, hence, there is a minimal weakly compact
K, € A such that f(K,) = K,. Since Cyf(K,), the closed convex hull of f(K,),
belongs to X", and since Oyf(K,) < K,, the minimality of K, allows us to
wonclude that K, = C,f(K,). This is the convex set K, that we use to apply
the proposition. _ y

‘To this end, for = € K, we set

(%) = sup p(z — y).
vekK,



Since K, = C,f(K,) and since p is both continuous and -eonvex,’
2o(f(x)) = Sup p(f@) —f),  =zekK,

80 that gy(f(x)) < go(x) for x € K,. Moreover, 0o is lower-semi continuous
non-negative convex on K, That g, is, indeed, normal follows from the
minimality of K; for if C = K, is closed convex and non-trivial such that
0o(®) = k = constant on C, then actually C = {z € K,lo(x) <k} and is
a closed convex subset of K, on which g,(f(2)) < go(2). Thus f(C) < C and;
hence ' = K, which is impossible by the P-normality of K. Hence the
proposition is applicable and yields & fixed-point for fin K. -~ - -

We may now state the Kikk and BROWDER results as immediate corollaries
of Theorem 1.

Corollary 1. (Kirk). Let Bbe a reflexive Banach space and K a closed bounded
convex subset of B which possesses mormal structure. I f f is a mon-expansive
self-mapping of K, f has a fived-point in K.

Corollary 2. (F. BROWDER). Let B be a uniformly convex Banach space and
K a closed bounded convex subset of B. A non-expansive self-mapping of K
has a fixed-point in K.

The proof of Corollary 1 follows from the following facts: K is weakly
compact because of the reflexivity of B; the norm is continuous, and K is
norm-normal. As noted earlier Corollary 2 is a consequence of Corollary 1,
since a uniformly convex Banach space is reflexive and has the property that
any convex set has normal structure.

For the sake of completeness, we state two other results which follow from
Theorem 1, or rather Corollary 1. The first is stated and proved in [3]. The
second is due to BROWDER [2] under the more restrictive condition that B is
uniformly convex. It is a partial generalization of the MARKOV—KAKUTANT
result [5], [6] on commuting families of linear contractions.

Corollary 3. Let B be a reflexive Banach space and K a closed convex subset
of B possessing normal structure. A non-expansive self-mapping f of K has
a fizxed-point if and only if there exists an %y € K such that the sequence of iterates
{f™ ()} is bounded.

Corollary 4. Let B be a reflexive, strictly convex Banach space and K a bounded
closed convex subset of B possessing normal stracture. If {f;}, A€ A is a com-
muting set of self-mappings of K, then there is an zy € K such that f,(x,) = ,
for all AeA. ’ '
The proof of Corollary 3 is obtained from Corollary 1 as follows: Let
7 = sup ||wy — f®(x,)|| and let K, be the intersection of the closed ball of
radius r about f®(z,) with K. The K, are closed, bounded and convex.
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Beocause of the non-expansiveness of f, it follows that fm(z,) € K for all
m >n. Thus the collection of weakly compa.ct convex sets {K,} have the

finite mterseotlon property and, hence, C = u A K, is non-void convex
8=1 n=g

and weakly compact, Moreover f(C) = C. Taking the closure C of O, we
observe that C is a closed, bounded, convex subset of K on which f is a self-
mapping. Since K has normal structure so does C and hence Corollary 1 is
applicable to yield the desired result.

With respect to Corollary 4, we first note that, in view of the strict convexity
of B, the fixed-point set of a non-expansive self-mapping of a convex subset
of B is itself convex. If C; = {x € K|f;(x) = 2}, A€ A, then these sets are
ologed convex subsets of K which by Corollary 1 are non-void. Taking account
of the commutivity of the f, it is readily seen that the {C,} have the finite
intersection property. Since B is reflexive, aq C,+# 2.

€
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ACTA FACULTATIS RERUM NATURALIUM UNIVERSITATIS COMENIANAE
MATHEMATICA XVII - 1967

0. VEJVODA, Praha

PERIODIC SOLUTIONS OF NONLINEAR PARTIAL DIFFERENTIAL
EQUATIONS OF EVOLUTION.

The first paper on the subject is perhaps [23] A. VIrr in 1934, As it is
seen from the list of papers known to the author and quoted below, there are
now about sixty published papers on the theory considered. Therefore, it is
impossible to cover the topic in the whole in this survey. Thus, only papers
on partial differential equations of hyperbolic type, which appeared (or are
in press) after my exposltory talk at Equadlﬂ' I (see [20]) in 1962, will be
mentioned.

Let us start with the author’s paper [21]. Here the existence of w-penodm
solutlons of a perturbed wave equation

(1) Utt — Uzgg = Sf(t z, U, e, u'xs 8)
with boundary conditions 5
2 . ; u(t, 0) = u(t, #) = 0

where f is w-periodic in ¢, is investigated by means' of the Poincaré method.
It is neccessary to distinguish three cases: («) w =-2an, 7 a natural number,

B), w = 271:-_;i » P, ¢ natural numbers, (y) @ = 2na, « an irrational humber,

In the case @ = 2zn it is shown that the bifurcation equation of the problem
reads either

2an = ’ : ; r
(3) g J T ult, @), uit, 2), uslt, 2)) oft, ) dz 4t = 0,
v(t, z) = ¢(a: + t) — @¢(—= + t) for any 2x-periodic function ¢ of class C2,
or ; ; :
(3" Jt, z, ult, x — t), wi(t, x — t), wa(t, 2 — ) dt = 0.

Using the latter form of it, it is proved that there exists a d_lassioa.l’i’m-periodio
solution for sufficiently small ¢, if (i) f is sufficiently smooth and ,

f(¢,0,0,0, w,¢) = f(¢, x,0,0, w, &) =0,
(i) the equation A il SEelt Tiy O i e
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(4) G(s) (x) =

2mwn
Eof f(8,2— #,8(x) —8(—x+29), 8'(x) — 8’ (—x + 29), &' () + 8'(—x + 28)) AP =
=0

has a solution s*(x) in a subspace 6’2 of the space C?, (iii) there exists the -
inverse operator

[Gs*)] € L[D > C,], where D = G(C,)

A similar result is obtained for & — 2x % » P, q natural numbers. (A paper

on a similar problem with nonhomogeneous boundary conditions has just
been finished.)

J. KurzweiL[10]applying his theory of integral manifolds of ordinary diffe-
rential equations in the Banach space to the problem (1), (2) (with w = 2z)
gets an analogous result assuming that besides (i), (ii) quoted above, the
condition

(iii’) s*(x) is an exponentially stable stationary solution of a certain ordi-
nary differential equation in a Banach space holds. Then the found
2n-periodic solution of (1), (2) is also asymptotically stable.

In both the papers some particular cases are discussed, for which all
assumptions take place. (E.g.in [21]f = A(t, ) + au + pud, or f = h(t, x) +
=+ (1 — au?) uz; in [10] an autonomous case is treated successfully, too.)

Usually, the verification of conditions (ii), (iii) is rather difficult. Therefore,
the results assuring the two conditions to be fulfilled under some assumptions
which may be verified easier, are desirable. Besides some older results [22],

2k + 1
[24]—[28], [30] for © = 22 —;

assured the existence of a 2n-peri6dic solution of (1), (2) under the conditions

» k, I natural numbers, P. RaBrzowrrz ([17])

that f = f(t, z, u), f is sufficiently smooth and aﬁu[ (¢, z,w) < B <0 (B being

a constant). His method is based on the fact that the bifurcation equation
in the form (3) is an Euler equation of an apropriate variational problem,

namely
g ' 2 =
minimize [ [ F(t, z, u) dz ds;
% eN 0 0
: u

where F(t, z, u) = [ f(t, z,v) dv and N is the subspace in L, of functions of
the form g(x + t) — gp(—= + t), ¢ being 2n-periodic. '

In general, the case w = 2na, « an irrational number, seems to be rather
difficult. Recently, G. T. Sokorov in [29] has shown the existence of an
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w-periodic solution of the problem (1), (2) (be writes it in & lomewhat di-
fferent way) for o = 27:1/_ n a natural number, and f r—-f(t, @,.%).

L. Cesari investigates the problem given by
(5) ez = f(t, z, w, U, uz)
(6) u(t, 0) = u,(t)
J and u, being w-periodic in ¢ and he asks when it is possible to choose the
function (0, ) = uy(0) + »(z), #(0) =0, on a sufficiently narrow strip
—a < z < a 50 that the solution of the problem (5), (6) be w-periodic in ¢,
He makes use of the fact that the modified problem given by

(5" uiz = f(t, z, u, U, ug) —

—— f J(9, 2, u(#, %), u®, %), uz(9, x))dd

and by the condition (6) has always an w-periodic selution if ¢ is sufficiently
small and f and u, are sufficiently smooth. After some anticipatory results
in [2], [3] he proves in [4] that there exists an w-periodie solution of (5), (8)
for a sufficiently small a if the following assumptions are fulfilled: (i) f is
sufficiently smooth, (ii) the equation

(7) ff(o, 0, ug(8), g(8), g(9) (u)) 48 = 0,

where q(t) (4) is the solution of the problem

% =f¢. 0, tq(t), "'o(“)’ a)), 2(0) = p,

has at least one solution x = u*, (iii) the Jacobian of the equation (7) at the
point 4 = u* is nonvanishing. (In CEsanr’s papers the quantities u, f, %
etc. are supposed to be vectors.)

Besides this CEsARI ([5], [6]) studies the problem (B), (6) for

I = efylt, @) + Ow + a(z) u; + B(t) us + eg(b, =, ¥, we, %)},

where y, «, f# and g and %, and » are w-periodic in ¢ and 2 and he seeks a solution

w-periodic in both variables. Making use of the successive apptonmatlon

method and the Fourier method he proves that under the condition C # 0
and some other less fundamental conditions an w-periodic solution exists.

(Iatmnoteﬁghtnowﬂntforambedtehgmphaqntnnofalim&r
type i.e. :
Uiz = (¢, x)+0u+a(z)u+ﬂ(t)us+w(t z, %, U, Ug)

he also derives an existence theorem for an ei-periodie solution adding to the



‘conditions above the requirement that the limit equation (¢ = 0) have an
w-periodic solution of the: form w,(t) + v4(x).)
In [1] A. K. Az1z investigates the existence of an w-periodic solution of
the modified problem (5’) under more general assumptions than CESARI does.
In [7] F. A. FickeN and B. A. FLEISHMAN investigated the problem

(8) Ut — Uggy + 2aus + 2bugy + cu = h(t, x) + sf (¢, x, w, ug, ug)
either for —o00 < # < 4+ o0 or for 0 < z. << # with the boundary conditions
@ : uft, 0) = u(t, ) = 0

They suppose a > 0, b =0,¢>0, f= —u® and b w-periodic in ¢ and suf-
ficiently smooth. Then they prove the existence of an w-periodic solution
for sufficiently small ¢ by examining the transition operator U(t, ) at points
t = T + now, for n°> c0,:n a natural number. -

Making use of the same method J. HavLova in [9] generalized their result

to the case @ # 0,b arbltrary, — +c¢>0,f suﬂ'lclently smooth (V. VITEK

is preparing a paper on a sm_nlar equatlon in two spatial variables.)
A more general equation

(10) uy + 2yuy + Au + F(t, w) = f(t) ,

where A is a positive selfadjoint operator, F(t, ) is a nonlinear sufficiently
smooth operator with F(f, 0) = 0 is treated also by the same method in [11]
by K. Masupa and the existence of a generalized w-periodic solution for suf-
ficiently small f is assured.

Recently, the equation (10) was attacked by J. HAvLovA under somewhat
different assumptions by means of the Fourier method and the existence of
a classical w-periodic solution was shown.

Lately, a spectal case of the” problem (8), .(9), namely a=b=0, ¢ ;é 0

2]
k2+c—m2(%n) >6>0 (]c#:O,

m.natural number),-and f = f(t, », u) the existence of a classical w-periodic
solution was proved.

As early as in 1956 G PBODI ([14]) treated successfully the strongly non-
_lmea.r equatxon »
(1) . : uu — Ay + (t x, ug) = f(¢, =, grad u)
with: 4 =0 on the boundary of a‘domain G. In the last two years, another
strongly nonlinear differential equation

(A2) . o T gy — D glud) = f(t, @)
wds studiéd by G. Prouss ([16]) in the case g(v) = v 4 |v| »and by G. Probi

was studied by the author and for
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([15]) in the case g(v) ~ |v|e~t (o > 1) for ¥ - 400, g being continuous and
monotone. They derive some apriori estimates for periodic solutions and
make use of the Galerkin method. :

In all these cases the existence of a generalized w-periodic solutions, only,
is assured; it would be difficult, howéver, to describe the Banach spaces in
which the solutions lie.
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ACTA FACULTATIS RERUM NATURALIUM UNIVERSITATIS COMENIANAE
MATHEMATICA XVII — 1967

+ {* DISCRETISATION AND ERROR ESTIMATES‘FOR
: ELLIPTIC BOUNDARY VALUE PROBLEMS
OF THE FOURTH ORDER

M. ZrAmMAL Bmo

'1./One of the problems arising in the application of the finite difference
method in solving elliptic boundary value problems is the estimation of the
discretization error. There exists an extensive literature for second -order
elliptic differential equations while there are only few papers dealing with
hi gher order equations. The reason is that we have a very useful and, simple
tool for second order equations, the maximum principle, which holds- both
for differential equations and their finite difference analogs. There does not
exist such a simple tool for higher order equations. In [1] I dealt with an
elliptic equation of the fourth order a special case of which are the biharmonic
equation and the equation for the deflection of orthotropic plates. In “the
paper there is described an O(h?) finite difference analog of the Dirichlet problem
for this equation and an error estimate is proved but only for domains
consisting of a finite number of rectangles the boundaries of which are a part
of ‘the mesh lines. In this lecture I will describe an O(hz) finite difference
analog for domains of ‘a general shape and w111 grve ‘estimates of the dis-
cretization error. -

8, The equation consldered is

(1) Lu= 32 (a(x,y)a )+2a éy (b( Y) 6x8y)+

5? (c(z, ) 75,—) = F(z, y)
(m fact, the method apphes and, the resulta remain true 1f we add to Lu an

operator of the second order .Mu.- = 2 (aq 5——) qu whete azl =,

LR RS 3%

A =y and 1121 au&fj 2 0, ¢q 2 0). We assume tha!i“
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@) 6@y >0 c@xy) >0 0<by)<2mnmina@,y), @, y)

Let @ be the domain in which the equation is considered and let 9 be its
boundary. The boundary conditions have the form

(3) . Dru=D?f (p=0,1) on 2,

where D% = u, Dlu means any of the first derivatives and f is a given function
defined in a domain 2> 2. The ooefficients a(z, y), b(z,y), ¢(z,y), the
functions f(z, y), F(z, y) and the boundary & are supposed so smooth that the
solution u(z, y) of the Dirichlet problem (1), (3) has bounded derivatives up
to the sixth order inclusive.

To formulate the finite difference analog of the Dirichlet problem (1), (3)
we cover the (z, y) plane in the usual manner by a square net formed by lines
parallel to the axes. Let k be the corresponding mesh size. The mesh points
will be denoted by (z, y) as any point in the (z, y) plane. The mesh functions,
i.e. functions defined at mesh points will be denoted by Ul(z, «), E(z, y) ete.
We use the usual notations

Uy, y) = hU(x + b, y) — Uz, 9)), Uz(x,y) = s [U(x,y)— U(x — b, y)],
Uzi = h—’tU(a’ + "’ y) - 2U(x: y) + U(x - h: y)]: .

The operator Lu will be repboed by the difference aperator
(4) LU = (8U%)sz + Uz + GUzR)ew + €Uy

which represents an O(h?) approximation of Lu, i.e.
Lu — Lyu = O(h2) for u e C4.

Let us introduece the sets P, Pi and P§. By neighbors of a mesh point
(=, y) we call 12 mesh points (= + ih, g + jb) with ¢, j =0, 1, +2, 1 <
< i3+ j2 < 4. Now D, is the set of all mesh points from 2. 2, istheset
of neiglibors of the mesh points from P, which do not belong to %, ie.
which do not lie in 2, 9;‘ is the set of mesh points from 9y
such that at least one of their neighbors lies in D».

The discrete analog will be a mesh function defined on 2. First we set

(5) LU@ ) =Fay,  @y9)ed— 9.

. 'To get the equations for the points (z, y) € P we will extrapolate the values
Uz, ), (%, y) € D», by means of the boundary condition (3) and the values
U, y), (#y)eP? and we will insert these extrapolated values in the
expression LyU formed formally. Consider first the point (z — 2h,y). If it
lies in D) the boundary 9 intersects the segment (x — 2, y), (z, y) in a point.
(# — ah, y) with 0 < a < 2 and we set S
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2 —a

2
) Uz, y) + 4=

22—mh6E(x-—1ah,y).
o oz

U — 2h,y) = ( f(w— ah, y) —

This is nothing else than an extrapolation of the second degree by means of

the parabola assuming the value U(z,y) in (2,y) and u(z — ah,y) in
ou(z — ah,y) .

— in (z — ah, y).

If the point (x — h, y) also belongs to 9, then 0 < « < 1 and we set

U(x—h,y)=(i;:°‘) U + b y) + gyl — o, 9) =

1 — ot 0F(z — ah,y)
(14«)? ox )

(¢ — ah, y) and having the derivate equal to

This time we use to the extrapolation the value of U in the point (xz + A, y)
and again the given values of % and gg in (x — ah, y). It can happen that

the point (z + &, y) does not belong to Z3. In this case the boundary 2
intersects the segment (z — 24, y), (z + &, y) at least twice and we extrapolate
U — 2h,y) and U(x — h, y) by means of the values of » and %Z in these
intersections. Futher if the point (x — h,y + h) belongs to %) we extra-
polate the value U(z — h, y + k) in the same way as in the first case, namely
e ,

%" oy
< B < 1, of the boundary & with the segment (x — A, y + &), (2, y) and by
means of U(z,y). We have

by means of the values u, z—g , — in the intersection (x — ph,y + Bh), 0 <

2 |
v —hy+ 9= (52) Ve + 22 P~ gy + o0 +

1 -8 [ of | of ]
S PRl S Y
* B? 3“7,+ %Y 1 (z—ph,y+pm)- »
In this way we extrapolate all remaining values of U (:i:, y) for (z,y) e Dy

After inserting these values in the expression LyU(z, y) formed formally we
get an expression of the form LU — Iy(f) where the operator LyU contains
the terms with U(z, y), (, y) € 2», only and I4(f) consists of terms containing
!5 5 BU) =0 f=0). We set
(8) LaU) = F@,y) + W(f) (@9 D}



3. Fo]lowix_mg [2] let us introduce the L, norms ||E|},, ||E|,, ||E]]l. We set
\BII§ = A2 2, B2,
Sy

IBI12 = ||E|)2 + || BL|2 + [|B,I3,
IBUE = BN + B2 + 1,1

Sp means the set of all mesh points in the plane (z, Y) and E is any mesh
function defined on 25 and extended on Sj, by setting E(x, y) = 0 for (z, y) ¢
¢ Dp. ‘

The main result is given by the following estimate: If £ is the discretization
error, i.e. E(z,y) = u(z,y) — Uz, y) for (z,y) € Dy, E(x,y) = 0 for (®, y) ¢
¢ 9}, then )

() 1Bl = o@%).

There are good reasons to believe that this estimate cannot be ixﬁproved, ie.
the exponent £ is the best though we use an O(h?) approximation. By means
of the' discrete SoBoLEV inequality it follows from (7) '

max |E(z, y)| = O(ht).
(x,v) €Dy,

Futher by means of an inequality due to BRAMBLE (see [3], lemma 3.2) we got

3 1
max (Ea(x, y)| + |By(z, y)| = O(hz lg 7)
_ (x,y) €D ‘
By means of another inequality due to BRAMBLE (see [3], lemma 3.3) it is

easy to show that for Lu = A% it follows from (7)
1E]l, = O(h*), max |E(z, y)| = O(hz g i) .
@v) e, h

4. For domains consisting of a finite sum ‘of rectdngles the boundaries of
which are a part of the mssh lines it is possible to formulate the discrete
analog in such a way that the discretization error satisfies

(8) 1IBlly = 0.

The asumptions are the same as in the general case with the exception of (2).
It is sufficient to assume the uniform ellipticity. For simplicity let us consider
a rectangle. The set of the mesh points lying inside the rectangle will be
derioted by Dy. I' is the set of the mesh points lying on the boundary of the
rectangle, I’y is the set of the mesh points lying outside of the rectangle at
& distance b from the boundary. The mesh function U will be defined on the
set Dyulyuly In Dy we set

- LpUe, y) = F(2,y), (x,y)€Ds.
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On I'y we set U = f and on T we extrapolate the value of U by means of the
boundary values and two neighbors lying inside the rectangle. If, for instance,
(&, n) eI’y and (& — h, n) e I'y we set

1 3 of (&,
The estimate of the discretization error is given by (8) from which it follnws
max |E(z, y)| = O(h?)

z,yeP;

max (|Balz, y)| + |Ey(z, y)| = 0(h= -lg%) -
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3. APPLICATIONS AND NUMERICAL METHODS

ON SOME FUNCTIONS WHICH VERIFY
DIFFERENTIAL INEQUALITIES

T. Popoviciu, Cluj

1. In the very first chapters of the mathematical analysis we find differential
inequalities which characterize important classes of functions with a given
comportement.

Thus it is well-known that the differential inequality f'(x) 2 0 characterizes
the derivable and nondecreasing functions, i.e. the functions whose divided'

difference [2, Z,; f] = w remains > 0 on every set of two distinct
2 1 :
points z,, x, of the definition set of the function.
2. For the consideration of a more general case we introduce the notion
of convex function of higher order.

In the first place the divided difference [y, @y, .. ., Tn+,; f] (of order n) of the

function f on the knots x,, ,, ..., Zn4, may be defined by the recurrence
relation
[Za Tgs -« -5 Zna1; [1 — [®y, @a, + .« oy Xns [
[xla xz’ ~--,xn+1§f]= L : ’f] L - ’ ’f )
Tn+1 — Ty

[z1; f1 = fl(2y) :
or in another way, as the coefficient of 2# of the polynomial of interpolation
(of degree m) which takes the same values as the function f on the knots
Ty =1, 2, , n + 1. Another definition is with the quotient of the form
(7) of two determmants (for the functions (11) in this case).

For the sake of simplification and in the first stage ours considerations we
may suppose that the knots z, are distinct. The case of knots which are not
distinct is obtained by a convenient limite process.

A function f is called nonconcave of order n (n 2 —1) 1f we have

(1) [xla Tgy « ooy x’l'ﬂ’ﬁ 20

on any set of n + 2 distinct points &, s, ..., Tn4g Of the set of deﬁmtlon
of the function. If the strict inequality (wlth the sign >) is valid in (1), t the

R i
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function is called convex of order ». In a similar way we can introduce the
nonconvex functions respective the concave ones of order n, on condition
that the divided difference in the first member of the formuls (1) should
remain S respective < 0. R

3. If we suppose that function f is definite and has a derivative of order
% 4+ 1 (n = 0) on the interval [a, ], the condition
@) f™@) 2 0 (on [a,8))
is necessary and sufficient for the nonconcavity of order n, and the condition
J®+(x) > 0 (on [a, b)) is sufficient for the convexity of order n of the function.
An analogous property exists for the nonconvexes and the concave functions
of order n; respectively.

The demonstration of these properties is based on the mean-value formula

(n 2 0)

: (n+1)
(3) [y, Zg, .., Tnig; 1 = '(fn T Sz
where £ is within the smallest interval which contains all the knots z,. The
formula (8) is due to CAvcHY [2] but it can be perfected and admits various
generalizations [11].

4. The global characterization through the inequality (1) of the nonconcave
functions of order n, corresponds to the local characterization (2). There is
also a more general, local characterization which does not require existence
of the derivative of order n 4 1 of the function. A function is nonconcave
of order # on the point  if there is a neighbourhood of z, on which it is non-
concave of order n. If a function is nonconcave of order » on any point of
the finite and closed interval [a, b], it is nonconcave of order n on [a, b].
- The demonstration of this property results from the general mean-value
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