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PREFACE

As a part of the celebrations of the 500-th anniversary of the foundation
of the first high school in Bratislava and the 25-th anniversary of the
foundation of the Faculty of natural sciences of the Comenius University
the Czschoslovak Conference on Differential Equations and their Applications
Equaprr: II was arranged by this faculty from the 1-st to the 7-th of
September 1966 in Bratislava.

Under participation of 102 mathematicians from abroad (Australia, Austria,
Bulgaria, Canada, Federal German Republic, France, German Democratic
Republic, Great Britain, Hungary, Italy, Japan, Poland, Romania, the Soviet
Union, the United States of America, Yougoslavia) and under the participation
of 160 czechoslovak mathematicians the Conference dealt with the latest
results of the ordinary and partial differential equations and their applications.

The scientific part of the Conference compried 13 comprehensive lectures
held in plenary sessions, 16 comprehensive lectures and 94 communications
delivered in the sections. The Conferencs dealt in 3 sections: 1) ordinary
differential equations, 2) partial differential equations, 3) nums=rical m=thods
and applications. The present Proceedings contain thz complete texts of the
comprehensive lectures delivered in plenary sessions as well as the compreh<ns-
ive lectures held in the sections.

The Conference was prepared by the Organizing Commitee presided by the
Academician O. BorOvka, Dr. Sc., Prof. M. GREcUS, Dr. Sc. was acting as
Secretary of the Committee. The members have been: I. BABUuSka, Dr. Sc.,
M. BarnovskA, C.Sc., Prof. J. KvrzweiL, Dr. Sc., Prof. J. NECas, Dr. Sec.,
Doc. M. R4s, C. Sc., Doc. V. Sepa, C. Sc., Prof. M. Svec, Dr. Sc., Prof. M.
ZrAmAL, Dr. Se.

A large part of the work connected with the preparation of the Conference
has been done by the members of the department of Mathematical Analysis
of the Faculty of Natural Sciences of the Comenius University as well as by
some members of other institutes.

The Conference has been opened by the Academician O. BortvEka, on the
1-st of September. On the same day, after the conclusion of the afternoon
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lectures, a friendly meeting was convened. On Saturday, the 3-rd of September,
most of the participants of the Conference and their guests took part in one
of the 3 excursions in Slovakia. On the 5-th of September some of the members
of the Conference have been invited by the Chaviman of the Slovak Academy
of Sciences, Academician S. ScHwARrz, Dr. Sc., to attend a reception. On the
7-th of September all the participants of the Conference took part at the
reception given by Minister of National Education and Culture of the Slovak
National Council, Dr. M. LG3AN.

For the persons accompanying the members of the Conference a special
programme has been organized.
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ACTA FACULTATIS RERUM NATURALIUM UNIVERSITATIS COMENIANAE
MATHEMATICA XVII — 1967

PROBLEMS OF OPTIMIZATION OF NUMERICAL MATHEMATICS.

1. BABUSKA, Praha

1. Modern computational techniques are putting forward new problems in
numerical analysis. At present numerical mathematics can be considered as
a set od constructive mathematical methods transforming given information
into desired ones (see e.g. BABUSKA [1966], HENRICI [1964], BABUSKA, SOBO-
LEV [1965], BABUSKA, PRAGER, VITASEK [1966]). The classic concepts as for
example that of method are beginning to have new meaning. The first place
is being occupied by algorithms and the methods are rather comprehend as
a class of algorithms of certain kind. Concerning algorithms the following
requiram=nts arise: -

a) sufficient generality of algorithms

this requires the algorithm to be applicable to a sufficiently wide class of
problems. For example the algorithm of integration by Cotes’ formulae of
highest order is not sufficiently general as it is applicable only to the narrow
class of analytic functions.

b) Sufficient universal efficiency;

this means that the algorithm should treat the given informations
»approximately” as well as the optimal algorithm (see below).

c) sufficiently good realizability

By realizability we mean, that the fact, that the computer does not work
in the field of real numbers (the rounding off) should not have a great effect
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on the result. Especially this is the problem of numerical stability (see
BaBUSKkA, PRAGER, VITASEK [1966]).

In this paper we will study some aspects concerning the universal efficiency.
In order to illustrate this problem we will restrict us here only to very special
cases.

2. Let a Banach space B be given and let ¢ € B*. Our task will be to calculate
the value ¢(f) for a given fe B. The principal idea of (linear) numerical
methods of calculation of the value of the functional ¢ is the following.
A matrix of functionals @ = {pP}i=1, ...,m,n=1,2, ..., o7 € B*,
is given (these functionals will be called calculable functionals). Now it is

n
necessary to construct the functionals ¢, = > CPe@ in such a way that

i=1
#n(f) = @(f) for n > co. In practical cases we take gj( f) = @(f) for sufficiently
great n. There is a number of problems connected with this task.

1) Problem of the estimate for the upper hound of error.

Here the upper bound of the quantity en(g, gn, B) = ||p — gnl|5* is to be
estimated.

This problem bears in fact a classic character and is intensively investigated
at present (especially it concerns not only the estimate of order, but also of
the corresponding constants); in the case of integration of periodic functions
see e.g. SOBOLEV [1965], [1967], JAGERMAN [1966], AcaHANOV [1965], EHLICH
[1966], BABUSKA [1965], CARUSNIKOV [1966] and others.

2) Problem of the estimate for the lower bound of error.

Here the lower bound of the quantity

n
Na(p, D, B) = inf llp — > o] g
a®,k=1,...,n k=1

is to be estimated. Also this question is intensively studied at present. See
e.g. SOBOLEV'[1965], [1967], BABUSKA, SOBOLEV [1965], BACHVALOV [1963]
and many others. The quantity gives the maximal accuracy at obtainable
on the ground of given information.
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3) Problem of the optimal formula.

The task is to construct the functionals ¢, in such a way that

Gn((}’, Pn, B) = 7771(¢’ ¢’ B)

See e.g. BABUSKA, SoBOLEV [1965], SoBOLEV [1965], [1967], GoLoMB, WEIN-
BERGER [1959] etc. The concrete construction of optimal formulae is very
difficult and is known only in special cases. In connection with these
difficulties formulae are studied, which are asymptotically optimal or optimal
by order. See e.g. BABUSKA, SoBOLEV [1965], SoBOLEV [1965]. From the
point of view of numerical practice the problem of optimal formulae encounters
soms difficulties. Beyond the difficulties connected with the construction of
optimal formulas there is also the problem of how to choose the space B
in a concrete case. We will now illustrate the practical importance of this
problem by a simple example.
1

Let o) = [ f@) do
0

Let @ be a matrix of the functional,such that @, (f) = LZa,‘,”{f (%)

n

. -
holds. If ||f||3 = f2(0) + [ (f')? dx, then the optimal formula will be the
0

trapezoid-rule. At the same time it is known, that the trapezoid-rule is
scarcely used in practice.

The question of how to lower the risk of choosing the space B in a concrete
case is the question of universality of the formula.

4) Problem of universal optimality by order.

Let A be a given system of Banach spaces B embedded in a Banach space
B,. Let us have a matrix of calculable functionals () € BY and a matrix

of coefficients ¥ = P}, i=1, ..., m;n=1,2, ..... We will use the
following notation:
n
llg —> CPeP||pe
ALe = E[Be ¥, i=1 < C(B)]

ﬂn(‘Pa d}, B )
[where C(B) depends on B, ¢, @, ¥ but not on n]. We will say that the formula

n ,
on = > CPe{ is universally optimal by order with respect to AL?. Further
j=1 i

2 Equadiff II. 17



let us have two formulae given by the matrices ¥; — {fIC®™}, =12 ...

[i.e. Ppyt = Zn i0Me(M]. We will say that the formula given by with the

i=1 -
matrix ¥ is comparable or better or not worse respect to 2 than the formula
given by the matrix ¥,, if 913’1"’ é 913;;? or QIZ‘;:’ > QI‘,f;:’ or ‘l[‘g;l'f’ = ‘.’[‘,f;:’,
respectively. The problem of universal optimality lies in

a) characterization of A%:¢ for a given formula,

b) characterization of 2 in such a that the best formula exist,

c) construction of an algorithm leading to this best formula and an estimate
of the quantities #, and C(B) as functions of B.

3. In.this part we will give some illustrative assertions concerning the universal
optimality. Let us have the task to calculate a functional over the Hilbert space
of periodic functions and let us ask, what is (in the intuitive sense) understood
the concept of this space. Its intuitive meaning can be perhaps expressed
in the following manner.

Definition 1. We will say that a Hilbert space H of 2m-periodic complex:
functions has the property P, if the following properties are Sullfiled.

P,: H is dense in C,,. _

P,: if fe H then also g(x) = f(x + c) e H for every real ¢ and f1l = ligll-

Pgy: His imbedded in Cl,.,.

Now the following theorem holds.

Theorem 1.1

Let H have the property P. Then

l)ekzeH, k= ..., —1,0,1, ...;
2) (etkz, ellzy = 22 for k =1
=0 fork#1
3) TZ %2 < . '
m= —w

It is easy to prove also the inverse theorem.

Theorem 2. :
Let K be the set of all sequences A, A= {..., Ay, Ao, A, ...} for which
A>0,k=...,—1,0,1, ... and 2 ;2% < 0.

Let M be a linear space of all trigonometric polynomials with the scalar product
(etkz, eliz) — 22 for kb =1
=0 fork #1.
Let H ; denote the complete envelope of M in the given norm; then H, has the
property P.

1) It was M. PRAGER who has drawn my attention to this theorem.
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Now we will introduce various systems of spaces with the property P.
Let U be the system of all Hilbert spaces with the property P.

Let A, be of all H, A € K, = K, such that if A € K,, then

Dik=242% k=0,1,2,... ‘

2) k=AM k>0

0

73 an] -
# E/l?[a.n] Tien L =D =<4
t=0 ;

D does not depend on » (but depends on A.)
Let A, be the system of all H,, A € K, © K, satisfying.

M<CH+k?, B>0.
Nowlet &= {¢@P}, j=1,2 ...,2n4+1, n=12, ...

27 ;
ePS) =f ( = 1—19)

be a matrix of calculable functionals and let us turn to the problem of
computation of the functional

W) = 5o | @) @) d, L@ e Ly

Then the formula becomes?
2njl .
Palf) = S OWOEC) W
j=1
Now the question is how to choose the coefficients CM(Z). The following
theorem holds.

Theorem 3.

A necessary and sufficient condition that there should exist such CP(C) that

the formula :
2n +1

ea(f) = 3 CPE) P
i=1

should be universally optimal by order with respect to U, is that :(x ) should
be a trigonometric polynomial. The coefficients are uniquelly determined except
Jor a finite number of indices n and are given by

1 2n
*O(1) — — ¢ =—
¢4 2n+1$(2n+1’)
If {(x) is a more general function, then it follows from theorem 3 that

?) To simplify formally the following assertions we have restricted us to an odd number
of points used. '
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a formula, which would be universally optimal by order with respect to A
does not exist. In connection with what has been said above the question
arises whether it is possible to restrict the system of spaces 2 in such a way
that universally optimal — by — order formula should exist. This is solved
by the following theorem.

Theorem 4.
If {(x) € Ly, then *CP(C) exist so that the formula
2n+1
ea(f) = > *CPE) P
i=1

18 universally optimal by order with respect to Ay. Ezxcept for a finite number
of indices m, the coefficients are uniquelly determined and we have

1 2n
*Om) — ;
o5 2n+lSn(2n—}—l‘7)

4 +oo
where Sp = anke“‘x and ((x) = Z dyetkz |

k=—n k= —oco

By theorem 3 and 4 the universally optimal — by — order formula is
uniquelly determined. It is clear that should we further restrict the system
of spaces U, then the formula can be determined non uniquelly. In this
connection the following theorem holds.

Theorem 5.

Let {(x) € Ly, Then the formula given by theorem 4 is not the only formula
universally optimal by order with respect to U,.

Returning once more to the formula given by theorem 4 we see that it is
not optimal in any H € %, but is universally optimal by order. It is also
easy to see that in fact this formula is obtainable by means of the classic
(interpolation) method using trigonometric polynomials. From this point of
view the connection between the classic (interpolation) theory of quadrature
formulae and the theory based on optimization of formulae is well visible.
But we will not go further in the study of this problem.

Using the simplest examples, I have given some typical theorems concerning
the form of the universal optimality by order. This problem can of course
be substantionally extended to include the problem of calculation of functionals
as well as operators. '

4. In the conclusion let us give some numerical results. Let us compute

n
*3

I = f e*8in z cog x da
n

for different values of «. )
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As the integrand is obviously a 2z-periodic function, I can be written in
the form '

+n
I = f e% 8in zC(x) dz
where ((z) = cos z for |z| < %

f{(x)=0 for%gxgn, —ngxg-——’;—

(here we make use of the symetry of f = e*inz with respect to the point

x= -4 %) Now the integrand has the form studied in theorem 4. In the

following Table together with various formulae the quadrature error is given
in dependence on the number of vaules of the function e®inz (for « = 1, 5, 7)
used in the calculation. Besides the trapezoid-rule and the Simpson formula
also the Romberg formula (sse BAUER, RUTISHAUSER, ST(EFL [1963]) according
to BaumaN algorithm [1961] is given under the notation Romberg. Two
other modified methods are given as Romberg 1 and Romberg 2. The formula
Romberg 1 is that of Bulirsch—Romberg (see BurLirscH [1964]) and the
formula Romberg 2 is that of Bulirsch—Stoer (see BUuLIRSCH, STOER [1965]).
The last one is given for comparison although it is not a linearone.

The computation has been carried out on ths ICT 1900 with a double
precission of word.
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S

-g ;g 1 2 3 4 5 6

S8

<
4 0.17 0 -0.40 -1 0.76 -3 019 -2 | -0.12 0 ; -0.11 -1
6 0.72 -1 -0.62 -2 0.26 -5 0.12 -1 | -0.11 -1
8 0.40 -1 -0.16 -2 063 -8 | -0.85 -5 0.57 -3 093 -3
10 0.26 —1 -0.61 -3 0.11 -10

12 0.18 -1 -0.28 -3 0.15 -13 -0.15 -3 | -0.53 -4
14 0.13 -1 -0.15 -3 0.15 -16

16 0.99 —2 -0.87 —4 -0.54 -19 | -0.38 -7 0.71 -5 | -0.44 -6
18 0.79 -2 =0.54 —4 0.60 —-18

20 0.64 —2 -0.35 -4 0.16 -18

22 0.53 —2 -0.24 —4 -0.16 —18

24 0.44 —2 -0.17 —4 -0.54 -19 -0.12 -6 0.27 -7
26 0.38 -2 -0.12 —4 -0.49 -18

I 28 0.32 -2 -0.90 -5 -0.27 —18
[ 30 0.28 -2 —0.69 -5 | -0.27 —18

32 0.25 -2 —0.563 -5 —0.54 —19 012 -9 ~-0.70 -10 | -0.19 -9
34 0.22 -2 —-0.41 -5 -0.16 -18

36 0.20 —2 -0.33 -5 0.564 —19

38 0.18 —2 -0.27 -5 0.564 -19

40 0.16 —2 -0.22 -5 0.16 —18

42 0.14 -2 -0.18 -5 0.16 —18

44 0.13 -2 -0.15 -5 0.38 -18

46 0.12 -2 -0.12 -5 0.38 -18

48 0.11 -2 -0.10 -5 0.16 —18 0.17 -10 | —0.76 -12
50 0.10 -2 -0.88 —6 0.38 -18

52 0.94 -3 -0.75 —6 0.38 18

54 0.87 -3 -0.65 -6 0.38 -18

56 0.81 -3 -0.56 -6 0.38 -18

58 0.76 -3 -0.49 -6 0.38 -18

60 0.71 -3 -0.42 -6 0.38 —18

62 0.66 -3 -0.37 -6 0.38 —18

64 0.62 -3 -0.33 -6 0.60 —-18 | —-0.62 -13 | —0.13 -12 0.12 -14

Table 1. The calculation of I for o = 1 according to various formulae. 1) trapezoid-rule,

2) Simpson formula, 3) universal formula, 4) Romberg formula, 5) Romberg formula 1,

6) Romberg formula 2.
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&

-g 3 1 2 3 4 5 6
'S

2 &
4 0.08 1 037 1 020 1| —095 0 088 1 | —0.21 2
6 0.37 1 -0.12 1 011 o -065 1 | —021 2
8 0.20 1 -0.61 0 0.51 -2 035 -1 | —0.39 0 0.15 1
10 0.13 1 -0.21 0 019 -3

12 0.86 0 | —0.84 -1 0.57 -5 0.39 0 0.24 0
14 063 0 | —0.41 -1 013 -6

16 048 0 | -0.23 -1 025 -8 | -0.26 -3 | -0.35 -1 | —0.48 -1
18" | 038 0 | -0.14 -1 0.39 -10

20 031 0 | —0.88 —2 0.51 —12

22 025 0 | —0.59 —2 0.55 -14

24 021 0 | -0.41 -2 0.49 -16 052 -3 | —0.56 -3
26 018 0 | —0.30 -2 | —-0.26 -17

28 016 0 | -0.22 -2 | —0.30 -17

30 014 0 | —0.17 -2 | -0.26 -17

32 012 0 | -0.13 -2 0.00 0 0.22 -6 0.50 —4 0.44 —4
34 011 0 | —-0.99 -3 | —0.13 -17

36 094 -1 | —0.79 -3 | —0.43 -18

38 0.85 -1 -0.63 -3 0.87 -18

40 0.76 -1 -0.51 -3 0.87 -18

42 0.69 -1 -0.42 -3 0.87 -18

44 0.63 -1 -0.35 -3 0.22 -17

46 0.58 -1 -0.29 -3 0.87 -18

48 0.53 -1 -0.25 -3 0.17 -17 -0.20 -5 0.65 -8
50 0.49 -1 -0.21 -3 0.22 17

52 0.45 -1 -0.18 -3 0.13 -17

54 0.42 -1 -0.15 -3 0.22 -17

56 0.39 -1 -0.13 -3 0.26 —17

58 0.36 -1 -0.12 -3 | 0.26 -17

60 0.34 -1 -0.10 -3 0.30 17

62 0.32 -1 -0.88 —4 0.87 -18

64 0.30 -1 -0.77 -4 0.35 -17 0.45 -9 0.23 -7 | —0.64 -9

Table 2. The calculation of I for o = 5 according to various formulae. 1) trapezoid-rule,
2) Simpson formula, 3) universal formula, 4) Romberg formula, 5) Romberg formula 1,
6) Romberg formula 2.
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S .

-§ 2 1 2 3 4 5 6

5§

Z &
4 0.77 2 0.52 2 0.21 2 -0.11 2 0.98 2 0.567 3
6 0.29 2 -0.39 1 0.21 1 -0.23 2 0.57 3
8 0.15 2 -0.58 1 015 0 032 0 -0.19 2 0.22 2
10 094 1 -0.25 1 097 -2

12 0.64 1 -0.99 0 0.52 -3 049 1 036 1
14 0.47 1 —0.46 0 0.22 -4

16 0.36 1 -0.25 0 0.79 -6 -0.80 -3 -0.79 -1 -0.52 0
18 0.28 1 -0.15 0 0.23 -7

20 023 1 -0.92 -1 0.56 -9

22 0.19 1 -0.62 -1 0.12 -10

24 0.16 1 -0.43 -1 0.21 -12 -0.40 -1 -0.25 -1
26 013 1 -0.31 -1 0.32 -14

28 012 1 -0.23 -1 0.24 -16

30 0.10 1 -0.17 -1 -0.12 -16

32 0.88 0 -0.13 -1 0.52 —-17 -0.12 —4 0.26 -2 0.15 -1
34 0.78 0 -0.10 -1 0.87 —18

36 0.70 0 -0.81 -2 0.35 -17

38 0.63 0 —0.65 —2 0.11 -16

40 0.57 0 -0.53 -2 0.95 —-17

42 0.51 0 -0.43 -2 0.61 —17

44 0.47 0 -0.36 —2 0.19 -16

46 0.43 0 -0.30 —2 0.69 -17

48 0.39 0 -0.25 -2 0.15 -16 -0.60 —4 041 -5
50 0.36 0 -0.21 -2 0.21 -16

52 0.33 0 —-0.18 -2 0.16 -16

54 0.31 0 -0.16 —2 0.17 -16

56 0.29 0 -0.14 -2 0.23 -16

58 0.27 0 -0.12 -2 0.21 -16

60 0.25 0 -0.10 -2 0.26 —-16

62 0.24 0 -0.89 -3 0.87 -17

64 0.22 0 -0.79 -3 0.30 —16 0.29 -7 0.36 -6 -0.37 -7

Table 3. The calculation of I for « = T according to various formulae. 1) trapezoid-rule,

2) Simpson formula, 3) universal formula, 4) Romberg formula, 5) Romberg formula 1,

6) Romberg formula 2.
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ACTA FACULTATIS RERUM NATURALIUM UNIVERSITATIS COMENIANAE
MATHEMATICA XVII — 1967

ALGEBRAIC ELEMENTS IN THE TRANSFORMATION THEORY OF
2nd ORDER LINEAR OSCILLATORY DIFFERENTIAL EQUATIONS

0. Bortvka, Brno

1. In the last fifteen years, I have developed a transformation theory of
ordinary 2nd order linear homogeneous differential equations in the real
domain. It is a qualitative theory of global character. This theory deals
with the effect of processes connected with the transformations of the
variables on the integrals of the mentioned differential equations.

The origin of the transformation theory of 2nd order linear differential
equations is due to E. E. KuMMER, who was the first to find the 3rd order
non-linear differential equation which forms the basis of the transformation
theory (1834). This equation is:

(Qq) —{X, t} + Q(X) X2 = q(t);
@ and ¢ are given functions of a variable, X the unknown function and the
symbol {X, ¢} denotes the Schwarz derivative of X at the point ¢:

1 X" 3 X"t
2 X't 4 X'1)

Kummer’s ideas have prepared the way for more extensive investigations
into the transformations of linear differential equations of the nth order in
connection with the equivalence problem. The most important results in this
field are due to E. LAcUuERrRE, F. BrioscHi, G. H. HALPHEN, A. R. FORSYTH,
S. Lie and P. AppPELL, in whose works we occasionally also find information
about transformations of 2nd order differential equations in the complex
domain.

The transformation theory in the real domain which I have developed may
perhaps at first sight. appear only as a special case of the linear differential
equations of the nth order (» > 2). One is, nevertheless, necessarily led to
a systematic treatment of this case n = 2. This is due to the fact that the

*linear differential equations of the 2n¢ order not only occupy a special position
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among those of the n (> 2)th order, since only in case of n = 2 two differential
equations are always equivalent, but the results concerning transformations
of 2nd order differential equations are most useful even for a general n.
A systematic investigation of this special case leads, moreover, to a consider-
able enrichment of the classical theory of the 2nd order differential equations,
both as to the formation of new notions and as to the development of the
method.

2. The kernel of the mentioned transformation theory of 20d order differen-
tial equations consists in investigating the connections between the solutions
of the 2nd order linear differential equations

(@ v ' =qt)y, Y=QI)Y Q)

and Kummer’s non-linear 3rd order differential equations (Qq), (qQ). The
functions ¢, @, which I shall occasionally call carriers of the differential

equations (q), (Q), are generally only supposed to be continuous in their
(open) intervals of definition j = (a,8),J — (4, B). A fundamental piece
of information about the mentioned connections, which was already known
to Kummer, is that the solutions X(t), #(T') of the differential equations (Qq),
(qQ) transform all the integrals Y, y of the linear differential equations (Q),
(q), in the sens of the following formulas:

YIXOL  pop _ 9L6(D)]

1) 1) = 7==-2 = T2l

Vixer Vi#(T)]

3. Let us now first introduce some basic notions essetial to any further
research into the transformation theory in question.

Consider a differential equation (q) in an (open) interval j = (a, b). The
carrier ¢ is only assumed to be continuous. The integral space r of the differen-
tial equation (q) is understood to be the set of all the integrals of (q). The
basis (u, v) of the differential equation (q) stands for a sequence of two linearly
independent integrals u, » of (q). The basis of the integral space r is a basis
of the differential equation (q). '

One of the most important notions of the transformation theory is the
notion of a phase, about which I shall now say a few words.

We discern phases of a basis (u,v) of the differential equation (q) and
phases of the differential equation (q).

By a phase of the basis (u, v) of the differential equation (q) we mean any
function « continuous in the interval j and satisfying in the latter, except
for the zeros of the integral v, the equation tg «(t) = w(t) : v(t).

It is easily understood that the phases of the basis (4, v) form a countable
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system, the so called phase-system of the basis (u,v) and that the singular
phases of the system differ by integer multiples of the number z.

A phase of the differential equation (q) is understood to be a phase of any
basis of the differential equation (q). '

Every phase a of the differential equation (q) has, in the interval J, the
following properties:

1. aeCs, 2. o« #0.

By means of a phase « of the differential equation (q), the carrier q of the
latter is uniquely defined, in the s2nse of the formula
@) q(t) = —{a, t} — a’%(t).

The notion of a phase is closzly connected with that of a phase function:

A phase function in the interval j is understood to be a function with the
above properties 1., 2. A phase function a is a phase of the differential equation
(q) with the carrier ¢ defined in the sense of the formula, (2).

A phasz function « is called elementary if its values at any two points ¢,
t + mwej are connected in the following way: a(t + n) = a(t) + = . sgn a'.

The phases I have spoken about are the so called first phases of the basis
(u, v) or the differential equation (q). Besides these, one analogously defines
the second phases, namely by means of the equation tg B(f) = u'(t) : v'(¢).
Since we shall, in what follows, not deal with the latter, we shall simply
always refer to phases instead of first phases.

4. Let us now restrict our consideration to oscillatory differential equations
(q). The term ‘“oscillatory” means that the integrals of the differential
equation (q) vanish, infinitely many times, in both directions towards the
endpoints a, b of the interval j = (a, b).

We shall start our considerations with the theorem that the differential
equation (q) is oscillatory if, and only if, its phases are unbounded on both
sides, from above and from below.

The phases « of an oscillatory differential equation (q) have, therefore,
besides the properties 1. and 2., even the following one:

3. lim«(t) = —o0 .sgn o, lim a(t) = oo . sgn o,
t>a+ t->b—

We see that a phase function unbounded on both sides is a phase of an
oscillatory differential equation (q), i.e. the one with the carrier q defined in
the sens of formula (2).

Oscillatory differential equations (q) have, furthermore, the characteristic
property that they allow, in their intervals of definition, certain privileged
functions, i.e. the so called central dispersions . . ., P—(t), p—1(t), @olt), @y(2),
®a(t), .... The central dispersion with the index v = 0, -1, +2, ... of the
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differential equation (q) is understood to be the function @,(t) defined in the
interval j as follows:

The value @u(t) or ¢_,(t) of the central dispersion @, or p_, (n =1, 2, .. )
is, at every point ¢ € j, the nth number conjugated with # on the right or on
the left with regard to the differential equation (q). In other words: If one
considers an integral y of the differential equation (q), vanishing at the point
¢, then @,(t) or ¢_,(t) is the nth zero of y on the right or on the left of ¢. o(t)
stands for the function ¢. The function @, is also called the fundamental
dispersion of the differential equation (q) and is briefly denoted by ¢.

‘Every central dispersion ¢, has, in the interval J» the following properties:

1. Po(t) > pv(t), 2, ¢» e C3, 3. @ (t) > 0, 4. lim @u(t) = —o0, liin en(t) = oo
tsa+ {—>b—

We see that every central dispersion ®v is an increasing phase function,
unbounded on both sides.
Moreover, we can show that:
~Every central dispersion ¢, and every phasz « of the differential equation
(q) are connected, at every point ¢ € j by the so called Abelian relation

(3) ' a@,(t) = a(t) + v . sgn o',
Instead of a[@r(t)] we simply write ag,(t).

Forming, in (3), on both sides the Schwarz derivative, one receives, with
regard to (2), the relation

— e 1} + glpy) 9" = q00).
We see that every central dispersion v satisfies Kummer’s diff_rential equation
(qq) and, consequently, transforms every integral ¥ of the differential equation
(q) into an integral y of the same differential equation (q) in the sense of
formula (1).

The central dispersion g, are the so called central dispersions of the first
kind of the differential equation (q). Besides these, one also definies central
dispersions of the 2nd, 3rd and 4th kind of the differential equation (q). In
what follows we shall, however, not meet with the latter and will therefore
simply refer only to central dispersions instead of to central dispersions of
the 1st kind.

5. Let us now make g closer study of the transformation theory of oscillatory
differential equations and, for this purpose, first briefly describe a constructive
integration theory of Kummer’s differential equation (Qq): One first defines,
constructively, certain functions continuously dependent on three parameters,
i.e. the so called general dispersions of the differential equations (Q), (q), and
then shows that the latter are exactly the integrals of Kummer’s differential
equation (Qq).
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Let, then, (q), (Q) be arbitrary oscillatory differential equations in the
intervals j = (a,b), J = (4, B). Their integral spaces will be denoted by r
or R. i

Let tyej, TyeJ be arbitrary numbers. Choose in the integral space r
a basis (u, v) and in the integral space R a basis (U, V) such that

(4) u(ty) V(T'y) — v(ty) U(T,) = 0.

It is easily understood that the choice of the latter depends on two arbitrary
parameters. Let us now define, by means of the bases (u, v), (U, V), a linear
representation p of the integral space r on the integral space R by making
correspond, to every integral y er of (q), y = Au + uv, the integral py =
=Y = AU + uV of (Q), formed with the same constants 1, u. The quotient
xp = w : W of the wronskians w or W of the basis (u, ») or (U, V) is allcalled
the characteristic of the linear representation p. The latter has, with regard
to the relation (4), the following property: Every integral y € r of (q), vanishing
at f,, is in the linear representation p represented on an integral Y € R of
(Q), vanishing at 7,. In other words: Y(ty) = 0 always yields py(T,) ='0
With regard to this property, we call the linear representation p normalized
with respect to the numbers ty, T,.

Let us, moreover, consider the numbers conjugated, both on the left and
on the right, with ¢, with respect to the differential equation (q): ..., t_, =
= @-albo); t—1 = @—1(t); to = Polto), ty = @1(to), t; = @alty), .. ., and, similarly,
the analogous numbers with respect to the differential equation (Q): ...,
Ty =0 4(Ty), T, = D(Ty), Ty = Dy(T,), Ty =®(Ty), T, = Dy(To), - - -
Every interval jy = [ty, ty+1) Or §, = (fp_1, ty] forv =0, 1, 42, ... is called
the »th right or left-hand side basic interval of the differential equation (q)
with respect to the number #,; the intervals J, — [Ty, Tysa) or J| = (Ty—1, T},
are called analogously. We see: every number ¢ € j lies in a determined basic
interval j, or j, and, vice versa, every basic interval j, or J» contains exactly
one zero of every integral of (q). An analogous statement holds, of course,
for every number 7' e J and for every integral ¥ of Q).

Now we shall define, in the interval j, a function X as follows:

Let t € j be an arbitrary number and y an integral of the differential equation
(q) vanishing at the point . The number ¢ lies in a determined right-hand
side »th basic interval Jv-

The value X(f) of the function X at the point ¢ is, according to whether
2P >0 or yp < 0, given as follows:

In case yp > 0, X(t) is a zero of the integral py of (Q), namely the one
lying in the right-hand side ¥t basic interval J,.

In case of yp < 0, X(t) is a zero of the integral py of (Q), namely the one:
lying in the left-hand side — »th basic interval J.’.
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The function X is called general dispersion of the differential equations (q),
(Q) with respect to the numbers t), T, and the linear representation p. At the
point #, it obviously takes on the value 7, : X () = T,. '

It is obvious that the general dispersions we have just defined continuously
depend on three arbitrary parameters: one is the arbitrarily chosen initial
value T and the two others are the parameters of the corresponding normalized
linear representation p.

From the properties of the general dispersions, which can be deduced from
the above construction, we shall only mention the following:

Let X be a general dispersion of the differential equations (q), (Q) and p
the corresponding linear representation of the integral space r on the integral
spacz R.

1. The s2t of values of the function X is the interval J : X (9)=J.

2. The function X is a phase function.

3. There holds sgn X' = sgn yp. Conszquently, the function X increases
or decreases according to whether yp > 0 or p < 0.

4. The function X may be expressed by means of two phascs a(t), A(T)
of the differential equations (q) or (Q) in the following way:

X(t) = A-1a(t).

Vice versa, the function 4-1«(t) formed by means of arbitrary phases «, 4
of the differential equations (q) or (Q) is a general dispersion of the differential
equations (q), (Q).

Moreover, there holds the following theorem:

5. The general dispersions of the differential equations (q), (Q) are exactly
the integrals of Kummer’s differential equation (Qq).

6. The above considerations, and especially the constructive integration
theory we have just outlined, hold for differential equations (q), (Q) in arbitrary
(open) intervals j, J. Let us now restrict our considerations to the case j =
=J = (—o0,0) and, consequently, deal only with oscillatory differential
equations (q), (Q) in the interval j = (—o0,0). That is exactly the case
when algebraic elements enter the transformation theory and algebraic
theorems, particularly those from the group theory, allow us to learn new
facts about the integrals of Kummer’s differential equation (Qq).

The prototype of the differential equations to be considered is the differential
equation (—1), i.e. ¥’ = —y in the interval j = (—o0, ). The integrals of
this differential equation obviously have, in both directions, an infinite number
of n-equidistantly displaced zeros, i.e. arranged so that the difference between
any two neighbouring zeros of every integral is always the same, namely 7.
Hence it follows that the fundamental dispersion g of the differential equation
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(—1) is linear, @(f) = ¢ 4 #, and more generally, that the following formula
holds for the central dispersion g,:

pu(t) =t 4 v (v=0, +1, 42, ...).

If, furthermore, « is a phase of the differential equation (—1), then the

Abelian relation (3) yields ’
ot + ) = a(t) + 7 .sgn .

We see that all the phases of the differential equation (—1) are elementary.

7. Let us now consider the st ® formed of all the phase functions-unbounded
on both sides, i.e. both from above and from below- in the interval j =
= (—o0,00). We sce, first, that the function «f(t) composed of two arbitrary
elements «, # € ®, is again an element of &. With regard to this, we shal
now introducs, in the set ®, a multiplication consisting in composing functions.
For any two phase functions «, § € ®, the product «f is therefore understood
to be the composed function «[A(t)]. The set ® is obviously, with regard to
this multiplication, a semi-group. The latter evidently contains the unit
element 1, i.e. the phase function &(f) = ¢; furthermore, there exists, to every
element «(f) € ®, the inverse element «~'(f), namely the function a«—1(t)
inverse to the function «(f). Thus we have shown that the set ®, together
with the considered multiplication, forms a group. Let us call it the phase
group ®.

The phase group & consists, according to its definition, exactly of the
phases of all the oscillatory differential equations (q) in the interval j =
= (—00,00). To discern the phases of the singular differential equations
(q), we shall now introduce, in the phase group ®, a relation # in the
following way: the relation « # f expresses that the phase function g is
a phase of the same differential equation (q) as the phase function «. It is
easily verified that this relation % is reflexive, symmetrical and transitive
and therefore forms an equivalence relation. Consequently, there exists, on
the phase group ®, a decomposition B such that any two elements «, € ®
are phases of the same differential equation (q) if, and only if, they lie in
the same element G € R.

Let now € be that element of R in which the unit element &(t) = ¢ of G is
contained. The formula (2) shows that the phase function &(f) is a phase
of the above differential equation (—1). Consequently, the element € ¢ R
consists of all the phases of the differential equation (—1) and can be shown
to be an undergroup of & :€& < G. This undergroup will be called the
Sundamental undergroup of ®. Furthermore, there holds the following theorem:
The decomposition R coincides with the right-hand side class decomposition of the
phase group ® with regard to €:

: R = 6/,C.

3 Equadiff II.
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The set of all the oscillatory differential equations (q) in the interval j =
= (—00,0) therefore admits an one-one representation on the right-hand
side class decomposition ®/,E, namely the one that makes correspond, to
every differential equation (q), the element g € 6/,€ consisting of the phases
of (q).

We shall now consider the undergroup of & consisting of all the elementary,
phase functions; let us denote it by $. Since, as we know, all the phases of
the differential equation (—1) are elementary and form the fundamental
undergroup €, we see, first, that § is an overset of €. A further investigation
which I cannot describe here in detail, shows that the elementary phase
functions generally depend on arbitrary periodic functions with period =
whereas the elements of € depend only on three parameters. Tt follows that
9 is a proper overset of €. It can, moreover, be shown that § is a subgroup
of . Hence there hold, between the groups ®, 9. €, the relations:

(3) 6> 9H> E,

the overgroups as well as the subgroups in question being proper.
Let us now consider the righ-hand side class decomposition H of the phase
group & with respect to the subgroup $ : H = 6/,$.
First, the relations (5) yield the formula:

(f_I :) G/r$ = 6/1'(E (: [?)’

by which the decomposition H is a covering of 7, in other words, each element
of H is the set-sum of some elements of & ([1]). Furthermore, the following
theorem applies:

The elements of R, contained in an arbitrary element $ax e H (x e ®),
consist of phases of all the differential equations (q) whosz fundamental
dispersion ¢ is the same. .

Finally, let us note that cardinal number of the set of the elements of
contained in an arbitrary element $a € H is always the same and equal to
that of the continuum. Consequently: the cardinal number of the set of all
the differential equations (q) whose fundamental dispersion ¢ is the same
does not depend on the latter and is always equal to the cardinal number N
of the continuum ([2]).

8. We shall now return to the general dispersions of two differential equations
(@), (Q), namely to the integrals of Kummer’s differential equation (Qq).
As we have said above, every general dispersion X of the differential equations
(q), (Q) transforms all the integrals Y of the differential equation (Q) to
integrals y of the differential equations (q), the transformation being expressed
by the first formula (1).

It can, first, be easily seen that the general dispersions of the differential
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equations (q), (Q) form elements of the phase group ®. Indeed, every general
dispersion X of (q), (Q) is, as we know, a phase function, whose set of values
coincides with the interval of definition J of (Q). But since J = (—o0, ®),
the general dispersion X is a phase function unbounded on both sides and
hence an element of the phasz group ®. It is, besides, easy to show that the
general dispersion X is a phase of the differential equation (gx), the relation
between the functions ¢y, ¢, @ being as follows:

ax(t) = q(t) — [1 + Q(X)] X"%(2).
We shall now determine the general dispersions of the differential equations
(q), (Q) in the phase group ® by means of the following theorem:
Let o be a phase of the differential equation (q) and A be one of (Q). The integral
space (X)@q of Kummer’s differential equation (Qq), t.e. the set of all general
dispersions of the differential equations (q), (Q) ts given by the following formula:

(6) (X)@q) = A€o

€ naturally stands for the fundamental subgroup of ©®.

This theorem yields a number of results of which I shall only mention
a few, so as not to spoil the general outline by too many details.

It may first be shown [by means of (6)], that the integral spaces X(qg),
(X)@,q) of two arbitrary Kummer’s differential equations (Qq), (¢1q;) have
the samz cardinal numbers and can be one-one represented on each other
in the s2nse of formula:

X, =2Z21Xz .
In this formula: X € (X)@q), X; € (X)@,qy, Z standing for a fixed integral
of (QQ,) and z for one of (qqy)-

Let us next consider the casz of two coinciding differential equations (Q),
(q) and Kummer’s corresponding differential equation (qq). Every integral
of this differential equation transforms, in the sense of formula (1), every
integral Y of the differential equation (q) into an integral y of the same
differential equation (q). From the above theorem it follows that:

The integral space (X)qq of Kummer’s differential equation (qq) is the
subgroup of ® conjugated with €:

(7) (X)) = o~ 'Co;
« naturally denotes an arbitrary phase of the differential equation (q).
Consequently:

The integral spaces (X)(qq), (X)(q,qyp of two arbitrary differential equations
(99), (q,9,) are isomorphous, the isomorphism being given by the following
formula:

(8) X, =2z-1Xz;
z denotes a fixed integral of the differential equation (qq,).
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A further consideration now permits to investigate, more closely, the al-
gebraic structure of the integral space (X)(qq) of every differential equation
(9qq). One proceeds by first finding out the structure of the integral space of
the differential equation (—1, —1), i.e. of the group «~1Gqy (x € €) and then,
by means by formula (8), passing to the differential equation (qq). One finds,
particularly, that the increasing integrals contained in the integral space
(X)(aq) of (qq) form a normal subgroup U of index 2, the center of this subgroup
coinciding with the infinite cyclic group formed by all the central dispersions
@» of the differential equation (q).

Herewith I have arrived at the conclusion of my lecture. Let me only
add the remark, addressed particularly to those who take a special interest
in the above considerations, that the latter form part of my book “Lineare
Differentialtransformationen 2. Ordnung”. This book will be published by
the Deutscher Verlag der Wissenschaften, Berlin (DDR), in 1967.
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ACTA FACULTATIS RERUM NATURALIUM UNIVERSITATIS COMENIANAE
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ON THE CONVERGENCE OF DIFFERENCE SCHEMES FOR
CLASSICAL AND WEAK SOLUTIONS OF THE DIRICHLET
PROBLEMY

J. H. BRAMBLE, Itlaca, New York
I. Introduction

In the past much work has been done on convergence of sequences of
solutions of difference analogs of the Dirichlet problem for second order
uniformly elliptic equations and in particular Laplace’s equation and Poisson’s
equation (c.f. ForsyTHE and Wasow [4], HuBBARD [5] and literature cited
therein). Usually some rather restrictive conditions concerning smoothness
of the solution of the continuous problem have been imposed in order to
obtain the results. There have been, however, several studies of convergence
properties under less stringent assumptions. Interesting results along these
lines have been obtained for rectangular domains by Wasow [10], WALSH
and Youna [9], and NirscHE and NrrscHE [7] and for piecewise analytic
boundaries with corners by LaasoNEN [6]. Other important work has been
done by Cea [3] who studied self-adjoint equations with bounded and
measurable coefficients and obtained theorems on convergence of difference
approximations to weak solutions in L,.

In this paper some recent results of the author, the author and HusBARD,
and the author, HuBBARD and ZLAMAL will be presented. Only indications
of the proofs will be given since all of this work will be published elsewhere
in complete detail. All the results share the common property that the
smoothness conditions are much weaker than thoge classically assumed.

Although many of the results have been extended to equations with variable

1) This research was supported in part by the National Science Foundation under
Grant NSF GP-3666. Some of this research was completed and the manuscript prepared
while the author was an NSF Senior Postdoctoral Fellow, visiting the Chalmers Institute
of Technology, Goteborg, Sweden. ’
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coefficients and various difference approximations, in order to minimzs
detail, I will consider only the Laplace operator and one of its simplest differen-
ce analogs. .

II. Continuous and diserete problems.

Let R be a bounded region in N-dimensional Euclidean space with boundary
0R. We shall, in the usual manner, consider the space as having been covered
by hypercubes of side 4 and call the corners mesh points. Those mesh points
in R shall be called Rj, and the intersection of 8R with the edges of the cubes
will be called dRj.

We.shall denote the Laplace operator by A and the difference analog by
Ap.  The operator A, will be defined for functions on Bj = R, U O0R; as
follows. When a point x € Ry, has its 2N nearest neighbors also in Rh then
Apis the usual 2N + 1 point approximation to A. We consider, at the remaining
points of Rj, Ay to be defined as a locally O(1) operator (bounded incependent
of h for smooth functions) and such that the matrix arrising from A, operating
on functions vanishing on 0R, is symmetric and of positive type. This is
just one of the standard formulations which is globally second order for
problems with smooth solutions.

We shall concern ourselves with approximating solutions to two problems.
First, the solution w of the classical Dirichlet problem, which satisfies

(2.1) Au =0 in R
u=_f on OR

where f is a given continuous function on 8R. That is, u is to be continuous
on the closure, satisfy Au = 0 in R and its restriction to OR should be equal
to f. Conditions on &R in order for this problem to be solvable are, of course,
well known.

The other problem to be discussed is a weak formulation of the problem
for the inhomogeneous. equation with homogeneous boundary values. More
precisely we define the class

T = {glpe C*+*(R) N O%R); ¢(x) = 0, z € OR; Ag e C4(R); for some «}.
In words, each member must have Holder continuous second partial derivatives
in R, be continuous on R (the closure of R), vanish on 6R and its Laplacian

must have compact support in B. Note that 7T contains the standard “test
functions”. We then want to consider the solution u, belonging to the real

Banach space L, 1 < p < 5 of the equation

N —
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(2.2) [ulg de = [ ¢F du, peT,
E R

for a given F e L,. (If F and 0R are sufficiently regular then the “weak
solution”” u will be the classical one, having zero boundary values.)

We shall consider the following approximating problems as analogs of (2.1)
and (2.2) respectively:

(2.1h) Apup(x) = 0, x € Rp
up(x) = f(x), x € 0Ry
and
(2.2h) Apup(x) = Fp(), x € Ry
up(x) = 0, x € 6Rp,.
In (2.2h) F} is defined as
1
Fa@) = 55 [ F(y)dy
Salz)

where Sp(z) is the (normally oriented) hypercube of side & and center , and
F is extended to be zero outside E.

We shall in the sequel use the notation m) to mean the extension of
a function V(z) defined on Ry, as constant over Sp(x) N R and zero outside
R nu Su@)]

IER}.

11I. Some results on econvergence.

We call a domain R which has no “unstable” boundary points a regular
domain (c.f. Breror [1]). [This condition admits quite general domains and
in particular problem (2.1) is always solvable for such regions.]

Theorem 1. Let R be a regular domain and w the solution of (2.1). Then if
up, is the solution of (2.1h), d@p — u uniformly on R as h — 0.

Although there are several theorems on convergence of difference approxi-
mations in the literature, it is not clear what the most general known result
is for the classical Dirichlet problem. In any case this theorem gives a quite
general result. The proof is quite simple and relies on an approximation
theorem of the type studied by WaLsH [8]. The appropriate theorem is given
in BRELOT [1]. To extend this theorem to more general second order operators
an approximation theorem of BROWDER [2] is used. More restrictions must
be placed on the domain in this case (he calls the resulting domains “firmly
regular’’) but the result is still quite general.

The following existence and uniqueness theorem is easily proved.
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Theorem 2. Let R be a regular domain and let F € L,. Then there exists
aunique we Ly, 1 <p< N—N 5 such that (2.2) holds.

Such a theorem can also be proved for operators with variable coeﬁ'lclents
for “firmly regular” domains provided the coefficients and those of the formal
adjoint satisfy some smoothness conditions.

From our point of view here, an interesting method of proof makes use
of the difference approximations. We obtain the following convergence
theorem as a byproduct.

Theorem 3. Let R be a regular domain and w € Ly, 1 < p < %, be the

solution of (2.2). If up is the solution of (2.2h) then in — u, strongly in Ly,

1<p< Nz,ash—>0

N
The proof involves showing that the functions %, are uniformly bounded

Nl_\_f- 5 - By the weak compactness of bounded sets in
Ly, 1 < p < o0, we obtain a weak limit point which is then shown to satisfy
(2.2). The uniqueness tells us that @, - u, weakly in L, as » - 0. An ad-
ditional argument can then be employed to show the strong convergence.
The extension of this theorem to operators with variable coefficients, though
true, is not a triviality.

It is interesting to note here that even in two dimensions there are problems
of the form (2.2) whose solutions are not continuous. This is true only for
FeL, and F¢ Ly, p>1. If FeLy p>1 and N =2 then u will be
continuous.

in L, forall 1 < p <

IV. Some results on rates of convergence.

In this section we shall consider regions B whose boundaries are no worse
than of class C? (or piecewise C'?). We have the following:

Theorem 4. Let 4R € C* and suppose that the solution w of (2.1) is of class
Cm+3(R), m =0, 1, ..., 0 <A< 1. Then if uy is the solution of (2.1h) it
follows that

mti-e 4 p2-e;, m=0,1,2
(4.1) max |up(x) — u(x)] < K(e)
xeRy hz; m > 3

where ¢ is an arbitrary positive number and K (&) depends on & and w but not on h.
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The proof of this theorem is based on some delicate estimates of the behavior
of the discrete Green’s function.

It should be pointed out here that an order A2 estimate is essentially achieved
when w e O2+%(R). Previous results required that u e C4+°(R) in order to
obtain a second order error estimate. The present theorem yields a great
deal more information than other theorems on this subject. The author has
subsequently become aware of a paper of Bahualov (Vestnik Moskov. Univ.
Meh. Astronom. Fiz. Chem. (1959) pp. 171—195) which essentially contains
this result.

In the important case N = 2 the results are better, in that piecewise (2
boundaries are treated. We have

Theorem 5. Let N = 2 and OR € C? piecewise with no reentrant cusps, i.e,
R is composed of a finite number of C* arcs meeting at (interior) angles m/a;,
t=1, ..., k, ag > 1/2. Then (4.1) holds.

We now consider the case of problem (2.2). It is possible to obtain rate of
convergence estimates even assuming no more than that F e L,. In this
case we obtain only interior L, estimates.

Theorem 6. Let R € C* and w and up be solutions of (2.2) and (2.2h) for
a given F e L;. Then if ¥ e CP(R) the following estimate holds for N = 2.

N
h; 1£1@<N_1
4.2 in —u) Y|, < K(p, P)||F ! ) _ N
(4.2) [[(@n — u) Plle, = K(p, ¥) [|F|L hnhl;  p= g
2
P2 <p<oo

where K(p, V) is a constant depending on p and ¥ but not on h. The notation
I|.llz, @8 just the usual Ly-norm, 1 < p < co.

This result is obtained from a careful estimation of the difference between
the discrete and continuous Green’s functions. Theorem 4 is used in the
derivation of this estimate. Since the analysis is based on the knowledge of
the discrete and continuous fundamental solutions, the result only has been
obtained for the Laplace operator. A similar result should be true in the
more general case.

Other results of this type have been obtained. For example, when F is
Hélder continuous with exponent « the estimates go up to hl+* on compact
subsets. Also if F' is smooth on an open subset 2 of R, local maximum norm
estimates can be obtained on compact subsets of 2. This type of result shows
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that the local properties of elliptic operators are carried over to local conver-
gence properties of corresponding difference approximations.

Finally, we consider the case where more precise knowledge of F is given.
In particular we suppose that F is smooth, except at the origin O, (an arbitrary
point of R) and for simplicity that R is smooth. For convenience we suppose
that O lies at the center of a mesh hypercube for every h. We also prefer
here to state the hypotheses on the solution u itself, rather than as conditions
on F.

Theorem 7. Let u be the solution of (2.2) and F be such that
u e C4+%R — 0)

1; E<m.
(4.3) | DFu(x)| < K
||m 4=k, m+1<k<4
k=0,1, ..., 4, where x| is the distance from x to 0 and DF stands for an arbitrary

partial derivative of order k. In (4.3) m is an integer (not necessarily positive)
less than or equal to 3, 0 < A <1 and m + 4> 2 — N. Then if up is the
solution of (2.2h) we have the estimates, for x € Rp,

hm+l+N—2-e|x|;+2—N 2 _ N < m + A <= 4 — N
(4.4) |up(@) — u(x)| < K(e) { h2ajm+-2, 4—N<m+i<?2
h2, 2<m+ A

where ¢ is an arbitrary positive number and K(e) depends on & but mot on h.
If N > 3 then the last inequality is valid for 2 <m + 4.

The proof of this result is again based on the Green’s function method.
It involves the construction of certain majorants and the development of

some new discrete inequalities suggested by known continuous ones.

" Again it should be pointed out that this type of result displays the local
effect of singularities on the convergence rate of difference analogs of elliptic
problems. Note that we still get convergence away from the origin for any
function whose singularity is not as bad as that of the fundamental solution
and quadratic convergence even allowing bad behavior at the origin.
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NONLINEAR FUNCTIONAL ANALYSIS AND NONLINEAR PARTIAL
DIFFERENTIAL EQUATIONS.D

E. BRowDER, Chicago

Introduection: The two basic approaches to fundamentally nonlinear
problems in partial differential equations are on the one hand, variational
methods (the direct method of the calculus of variations, the Morse theory,
and the LUSTERNIK—SCHNIRELMAN theory) and on the other hand, the
theory of nonlinear operators in Banach spaces (the ScHAUDER fixed point
theorem, the LERAY—ScHAUDER theory of the degree for compact dis-
placements). In the past few years, we have seen a merging of these two lines
of ideas in their applications to partial differential equations through the theory
of monotone operators from a Banach space X to its conjugate space X*,
i.e. operators 7' such that for all » and v in the domain of 7', we have

(Tu — Tv, w —v)= 0,

(where (w, v) denotes the pairing between the functional w and the element v).
On the one hand, every operator 7' which is the derivative (or subderivative)
of a convex functional on X is monotone, and on the other hand, the con-
sideration of monotone (or quasi-monotone, or semi-monotone) operator
equations falls within the framework of nonlinear functional analysis, i.e. the
study of nonlinear operators and nonlinear operator equations in Banach
spaces.

It is our object in the present paper to give a survey of some recent work
by the writer on this type of functional analysis and its applications to various
types of abstract differential equations in Hilbert and Banach spaces. We
refer the reader to an earlier survey ([6]) for a development of the basic ideas
in the application of monotone operators to such topics as:

(1) The existence of solutions for variational boundary problems for non-
linear elliptic Jifferential operators of the form

1) The preparation of this paper was partially supported by a Guggenheim Fellowship
and by N. S. F. Grant GP-5862. ‘
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Aw) =3 Dx(A,(x, u, ..., Dmu)).
Jaj=m -
(2)_ The corresponding existence theorems for parabolic operators of the

form:

ou

(3) Nonlinear equations of evolution in Hilbert and Banach spaces arising
from initial-boundary value problems of various types.

Section 1 below presents the results of [14] on nonlinear equations. of
evolution in Hilbert space and the generalized method of steepest descent
for monotone operators in Hilbert space. Section 2 develops the results of
the extension of this theory as carried through in [16] to Banach spaces. both
for monotone operators 7' from a Banach space X to its dual space X* and
for J-monotone operators T from a Banach space X to X. Section 3 discusses
the general method developed in [15] for proving the existence of periodic
solutions for classes of nonlinear equations of evolution in infinite dimensional
spaces comparable to the classes of differential equations treated in Sections
1 and 2.

We remark that the method of steepest descent and its generalizations
have close links with the ideas of the calculus of variations, and the results
presented below are connected with extensions of the results given in BROWDER
[7] on the application of the Lusternik —Schnirelman principle to the proof
of the existence of infinitely many eigenfunctions for nonlinear elliptic eigen-
value problems.

Section 1: Let H be a real Hilbert space, T an operator (generally non-
linear) with domain and range in H. We consider three inter-related problems
concerning such operators T': )

(I) The existence for a given w in H of solutions u of the equation Tu = w.

(IT) The existence for a given u, of solutions of the nonlinear equation of
evolution

%’% — —T(w), t=0,
with %(0) = wu,.

(III) For a suitably chosen perturbation term R(t, ) which converges to
zero as t - o0, the convergence as ¢ > oo of solutions of the equation

du
dat
to solutions v, of the stationary equation Tv, = 0.
We denote this last problem as that of the generalized method of steepest
descent for the operator 7T'.

= —T(u) + R(t, u)
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We recall that an operator 7 is said to be hemicontinuous if it is continuous
from each line segment in D(T') to the weak topology of H. '

Theorem 1.1: Let T be a monotone operator in the Hilbert space H such that
either: (1) D(T) = H, and T maps H hemicontinuously into H; or (it) T =
= L + T, where L is @« maximal accretive closed linear operator in H and T,
is @& hemicontinuous monotone mapping of H into H which maps bounded subsets
into bounded subsets.

Suppose that there exists R > 0 such that for w in D(T) with ||lu|| = R,
(Tu, u) > 0. :

Then the set of solutions w of the equation Tu = 0 is a nonempty closed convex
subset K of H.

Theorem 1.2: Let T be a hemicontinuous locally bounded operator from H
to H such that for a fixed constant ¢ in R and all w and v of H,

(Tu — Tv, w — v) < c||lu — v||2

Then there exists one and only one strongly continuous, veakly once-differentiable
function w from R+ = {t|te R, t >0} to H such that u is a solution of the
differential equation

%@?‘ — Tu, >0,
with the initial condition w(0) = wu,, for a given u, in H.
In addition, if T is continuous, then w is strongly C1.

Theorem 1.3: Let H be a Hilbert space, f a mapping of R+ X H into H such
that the following three conditions are satisfied:

(1) f is locally bounded (i.e. bounded on some neighborhood of each point of
R+ X H). For each fixed t in R*, f(t, -) is a hemicontinuous mapping of H
into H. For each fized w in H, f(-, ) is continuous from R+ to the weak topology
of H. "

(2) There exists a continuous function ¢ from R+ to R such that for all t in
R+ and all w and v in H:

(ft, ) — f(t, v), w — ) < ot) [lu — v]|2.

(3) For each w in H, f(t, u) is weakly once differentiable from R+ to H, and
there exists @ continuous function q from R+ x R+ to R+ such that for all u
and t:

N/ o i

=) f@ :

i1(3,)“,u)”sq(t,nun) |
Then for any wu, tn H, there exists one and only one function w from R+ to H
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which i8 weakly continuously once-differentiable and which satisfies the differential
equation
du
-
and the initial condition u(0) = u,.

Theorems (1.2) and (1.3) are sharpenings (under more restrictive hypotheses
on the dependence of f on ¢) of an existence theorem given in BROWDER [3]
with the additional assumption that f(f, u) is bounded for ¢ and ranging
through a bounded set of R* X H. The interest of this strenghthening lies
primarily in ‘the fact that it is obtained through a new a priori estimate for
solutions of these equations of evolution from which one obtains much stronger
control over the solutions of these equations. This is brought out more clearly
in the following theorems on mnonlinear evolution equations containing an
unbounded linear operator L.

Detinition: Let H be a Hilbert space, {L(t)| t € R*} a family of closed, densely
defined linear operators in H, T, a mapping of R+ x H into H. If we set Teu) =
— L(t) u + To(t, w), then by a sharp solution w on R+ of the equation of evolution

du '
- = T(u), t >0,
we mean a strongly continuous function w from R* to H with w weakly once
continuously differentiable from R+ to H, u(t) in the domain of L(t) for each
t in R+ and with L(t) u(t) weakly continuous from R* to H, and such that for
all t in R,

= f(t, u), t >0,

% ) = L(t) u(t) + Tolt, u(®)).

Theorem 1.4: Let H be a Hilbert space, L a maximal dissipative linear
operator in H, T, a mapping of R+ X H into H which maps bounded sets into
bounded sets. Suppose that T, satisfies the following three conditions:

(1) For each fixed t in R+, f(¢, *) 13 @ hemicontinuous mapping of H into H.
For each fived u in H, f(*, u) i8 continuous from R+ to the wealk topology of H.

(2) There exists a continuous function ¢ from R+ to R such that for all t in R+
and all u and v in H: ‘

(Toft, w) — Tolt, ©), # — v) < ot) ||lw — oII*

(3) For each fixed w in H, f(t, u) is weakly once-differentiable on R* in t,
and there exists a continuous function g from R+ X R+ to R* such that for all

" tin Rt and all w in H, _
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Then for each uy in D(L), there exists one and only sharp solution u on R+ of
the equation of evolution
du

E = Lu + To(t, u), t 2 0)

with u(0) = u,.
As an illustration of the basic a priori bounds from which these results
are derived, we have the following: '

Theorem 1.5: Let L and T, satisfy the conditions of Theorem 1.4 and let u
be a sharp solution of the differential equation
du

5= Lu + Tt, »).
t

Let C(t) = fc(s) ds. Then:

0

(I) For all t in R+,
¢
|lu()|| < exp (C(t)) [[(0)I| + [ exp (C(t) — C(s)) |[To(s, 0)|| ds.
0

(IX) If q(t, r) is nondecreasing in r (as we may always assume) and if ||u(s)|| <
<< M(3) for all s in R+, then

t
” %;i (t)H < exp (C()) [|T4(0, u(0)) + Lu(0)|| + 0[ exp (C(t) — C(s)) q(s, M(s)) ds.

Combining these apriori estimates with the corresponding existence theorems,
we obtain the following general result on the generalized method of steepest
descent for monotone operators in Hilbert spaces:

Theorem 1.6: Let H be a Hilbert space, T a monotone operator with domain
in H and values in H which lies in one of the two following classes:

(@) T 1s a locally bounded hemicontinuous mapping of H into H.

() T = L + T,, where L is a maximal accretive linear operator in H, and
T, is a hemicontinuous monotone mapping of H into H which carries bounded
subsets into bounded subsets.

Suppose that there exists R > 0 such that (T, w) > 0 for all w in D(T) with
|lul| = R.

Let ¢ be a C! function from R+ to R+ which is non-increasing and such that
c(t) >0ast - +oo, fmc(s) ds = +o0.

0,

Let vy be any element of H with ||vy|| < R, u, any element of D(L) with
[luol| < R.

Then:
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(1) The equation of evolution

du
dt
has one and only one sharp solution w on R+ with u(0) = wu,.
(2) As t > +o0, this solution converges strongly in H [to a solution w, of
the equation Tw = 0. This limit is characterized as that solution of Tw = 0
in the ball Bp = {u| ||u|| << R} closest to the given element v,,.

= —-T(u) — c(t) {u — v}, t >0,

Section 2: We now turn to the generalizations and extensions of the
results of Section 1 to more general Banach spaces than Hilbert space, as
given by the writer in BROWDER [16]. These extensions are of two kinds:

(1) The consideration of monotone operators 7' from X to X*.

(2) The consideration of J-monotone operators 7' from X to X, for
a duality mapping J of X into X*.

We shall consider case (1) first.

Definition: Let X be a Banach space, with X < H < X* for a Hilbert space
H, in the sense that we are given continuous linear injections of each space on
a dense subset of its successor and the pairing between two elements w and w of
H with w in X and u in X* cotncides with the H inner product.

Let f be @ mapping of R+ X X into X*.

Then a function w from R+ to X s said to be a sharp solution on R+ of the
equation of evolution

du,
dt

if w satisfies the following three conditions:

= f(¢, u), t>0

- (1) u 18 continuous from R+ to the weak topology of X.
(2) As a function from R+ to H, u is continuous to the strong topology of H
and satisfies a Lipschitz condition in H on each finite interval. w is strongly
| |
once-differentiable in H a.e. on. R+ and ]' de:_ (t)(

18 essentially bounded on each
H

finite interval.
(3) The differential equation
du
T O = ft u®)

holds a.e. on R™.

To abbreviate these hypotheses, we use the following notation: If Y is
a Banach space, C%(R*, Y) and CY(R™, Y) denote the functions from R+ to
Y continuous to the strong and weak topologies of Y, respectively; C}(R*, Y)
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and CL(R+, Y) denote the continuously once-differentiable functions from
R+ to the strong and weak topologies of Y, respectively; Lj,(R+, Y) is the
family of strongly measurable functions from R+ to ¥ whose norm is bounded

on each finite interval; g:“) denotes the distribution derivative. Then the

assumptions of the above definition may be rewritten:

du

T € Liso(R*, H).

(1) u e CYR+, X); (2) we CYR*, H), and

3) % = f(¢, u(t)), on R+

Theorem 2.1: Let X be a reflexive separable Banach space with X < H < X*
for @ given Hilbert space H. Let T be a hemicontinuous monotone mapping of X
into X* which carries bounded sets of X into bounded sets in. X*. Suppose that
(Tw, u) > +o0 as ||u||x — o0.

Then for each w, in X such that T(u,) lies in H, there exists one and only
sharp solution of the differential equation :

du
'a‘t—:f(t,u), tZO,

on R+ such that u(0) = u,.
We omit the detailed statement of the corresponding time-dependent
result, and pass directly to the generalized method of steepest descent:

Theorem 2.2: Let X be a reflexive separable Banach space with X < H < X*
for a given Hilbert space H. Let T be a hemicontinuous monotone mapping of
X into X* such that T maps bounded subsets of X into bounded subsets of X*
while (Tu, ) > 400 as ||ul|x - 4o0.

Let ¢ be a C non-increasing function from R+ to R+ such that c(t) -0 as
t > +o0, }oc(s) ds = +oo. Let vy be an arbitrary element of H, uy any element

0
of X such that T (u,) lies in H.

Then:
(@) The differential equation
% = —T(u) —c@t) {u — vo}, <t =0,

lhas one and only one sharp solution w on R+ with u(0) = u,.

(b) As t > +o0, u(t) converges weakly in X to a solution w, of the equation
Tw = 0. Moreover, u(t) converges strongly in H to w, The limit element wy 18
uniquely characterized as the solution of the equation Tw = 0 closest to vy in H.
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The existence theorems, Theorem 2.1 and its time-dependent generalization
which we have not stated, apply directly to the treatment of initial boundary
value problems of parabolic type ([3]) and (especially for the time-independent
case) give a significant strengthening of the parabolic existence theorems under
hypotheses on 7' which are essentially weaker than those considered in the
treatment of variational rather than sharp solutions. The previous hypotheses
(though they can be put in a much more general-looking and untransparent
form) have the same force essentially as the following simple assumption:

There exists an exponent p with 1 < p < o0 such that for suitable positive
constants ¢ and c,

[|Tullxe < o{||ull&™* + 1};
(Tu, u) = cqf|ul/g — c.

In Theorem (2.1), however, we need only assume that 7' maps bounded sets
of X into bounded sets in X* and that (T'u, u) > +0 as ||u||x > +o0.

Similar considerations apply to the existence theorem which we derive for
the abstract wave equation of the form

uy = —Au — T(ug) — S(u)

where T' and S are mappings of X into X*, and u;, us denote the first and
second derivatives of u with respect to £. We introduce a class of sharp
solutions as follows:

Definition: Let X be a Banach space, H a Hilbert space with X < H < X*,
Let A be a non-negative closed self-adjoint operator in H, A% its nmon-negative
square root. Let T and S be mappings of X into X*.

Then a function u from R+ to X is said to be a sharp solution on R+ of the
differential equation _

Uy = —Au — T(us) — S(u)
if w satisfies the following five conditions:

(1) u lies in CL(Rt, X) and in CY{R*, H).

(2) ugs lies in L2(R+, H).

(3) For each t in R*, u(t) and uyt) lie in the demain of A, and Aiu lies in
CL(R+, H), Atu; lies in C°Q(R+, H).

(4) For eack t in R+, Au(t) lies in X*, i.c. there exists y(t) in X* which we
denote by Au(t) such that for all w in D(AY) N X, we have

(Abu(t), A}w) = (y(), w).

Furthermore Au lies in Co(R+, X*).
(8) For almost all t in R,

ug(t) = —Au(t) — T(ut)) — S(u(t)).
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Theorem 2.3: Let X be a reflexive separable Banach space, H a Hilbert space
with X € H < X*. Let A be a non-negative closed self-adjoint linear operator
in H such that D(A*) N X is dense both in X and D(A%), where the latter is
given the graph norm. Let T be a hemicontinuous mapping of X into X* which
maps bounded sets into bounded sets, S a Lipschitz mapping of H into H, (where
both T and S may be nonlinear). Suppose that (Tu, u) > +oo as ||u||x - 40
and that T is monotone.

Then for each u, in D(AY) N X and for each u, in D(AY) N X such that
T(u,) lies in H, there exists onc and only one sharp solution w on R+ of the
differential equation

Ut — —Au — T(u,) = S(u)
which satisfies the initial conditions
u(0) = u, u(0) = u,.

Abstract wave equations of the above form with S linear but with time-
dependent tarms were studied by Lions and Strauss [24] who obtained
variational solutions for similar initial value problems but under growth
conditions for T like those disccused above in connection with the first order
case.

We now turn from operators 7' mapping X into X* to the consideration
of J-monotone operators 7' from X to X. These ar2 defined as follows:

Definition: Let X be a Banach space, q a continuous strictly increasing function
from R+ to R+ such that q(0) = 0 and q(r) - +00 as r — +oo. Then a mapping
J of X into X* is said to be a duality mapping with gauge function q if the
following conditions hold for all u in X:

Ju, ) = [[uf| . [[Jull;  [[Jul] = gq(lul]).

Definition: Let X be a Banach space, J a duality mapping of X into X*.
If T is a mapping with domain D(T) in X and with range in X, then T is said
to be J-monotone if for all w and v in D(T),

(T(w) — T(w), J(u — v)) = 0.

The definition of J-monotone mapping was first given and applied in
BrowDER [10] and results on J-monotone mappings have been established
in BROWDER [15] and BROWDER— FIGUEIREDO [19]. The concept of J-mono-
tonicity is intimately linked to that of non-expansiveness of a mapping from
X to X, where U is said to be non-expansive if for all » and v of X,

1U(u) — U)l] < |l — o]

For every non-expansive mapping U, T =1 — U is J-monotone for any
duality mapping J of X into X*. On the other hand, if the differential equation
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T —T(u), t >0,
has .a solution % on R+ with %(0) = u, for every %, in D(T') and if we set
U(t) uy = u(t), then the non-expansiveness of all the operators U(t) is equivalent
to the J-monotonicity of 7. In particular, if L is a closed densely defined
linear operator in X, then L is the generator of a 'y semigroup of nonexpansive
linear operators U(¢), (i.e. ||U(t)|| < 1, t > 0) if and only if L satisfies both
of the following conditions:

(1) (—L) is J-monotone for any duality mapping J of X into X*.

(2) (—L +-I) has all of X as its range.

We present results on J-mounotone operators 7' of two types. First, with
mild regularity assumptions on 7' and very weak assumptions on the space X.
Second, with weak assumptions on the operator 7' (comparable to those in
the Hilbert space case) but with fairly drastic restrictions on the Banach
space X.

Definition: A mapping T of X into X is said to be weakly once-differentiable
at uy in X if there exists a bounded linear operator B such that for all x in X
and all y in X*, _

(T(uy + h), y) = (T(uo), y) + k(Bx, y) + By y(h)
where for each fixed y in X*,
h—'R; y(h) - O, as h -0,
uniformly in x on the unit ball of X.

Theorem 2.4: Let X be a Banach space with a continuous-duality mapping
J of X into X*. Let T be a nonlinear mapping of X into X which is weakly
once differentiable and locally Lipschitzian at each point of X. Suppose that
there exists a constant ¢ in R such that for all w and v in X:

(T(w) — T(0), J(w — v) < cl|u — ol| . [T — o).

Then for each uy, in X, there exists one and only one strongly C' function u

Jrom R+ to X which satisfies the differential equation

du
'H{ == T(u), ¢ 2 0,

with u(0) = w,.

Theorem 2.5: Let X be a Banach space with a continuous duality mapping
J of X into X*. Let L be a closed densely defined linear operator in L which
18 the infinitesimal generator of a C, semigroup of nonexpansive linear operators
in X. Let T, be a nonlinear mapping of X into X which is weakly once-different-
iable and locally Lipschitzian in a neighborhood of each point of D(L), and such



that Ty maps bounded subsets of X into bounded subsets of X. Suppose also that
there exists a constant ¢ in R such that for all w and v in X,

(To(w) — To(v), J(u — ) <Cllu — vf| . ||J(u — v)||.

Then for each wy in D(L), there exists one and only one strongly C! function
u from R+ to X with u(t) in D(L) for all tvin R+ such that u satisfies the different-
1al equation
du

E = Lu + To(u)y t >0,

and the initial condition u(0) = u,.

Theorem 2.6: Let X be a Banach space with a continuous duality mapping
J of X into X*. Let L be a closed linear operator in X which 13 the infinitesimal
generator of a C, semigroup of nonexpansive operators in X. Let Ty be a mapping
of R+ X X tnto X which maps bounded subsets of R+ X X into bounded subsets
of X. Suppose that for each fixed t in R+, T (t, u) is weakly once-differentiable
and locally Lipschitzian on a neighborhood of each point of D(L). Suppose
Sfurther that both of the following conditions are satisfied:

(@) There exists a continuous function ¢ from R+ to R such that for all w and
v in D(L) and all t in R+,

(To(t, w) — Tolt, v), J(u — v)) < ¢(t) [l — || . ||J(w — 0)||.

(b) For each fixed w in D(L), T(t, u) is weakly once differentiable int on R+.
There exist two continuous functions k: R+ — Rt and q: R+ X Rt — R+ such
that for all w in D(L) and all t in R+,

0

Then for each uy in D(L), there exists one and only one strongly C' function
u from R+ to X with u(t) lying tn D(L) for all ¢ in R+ such that u is a solution
of the differential equation -

du
3 = L+ Tolt,w), >0,
and the initial condition u(0) = u, holds.

For this case, we obtain the following variant of the method of steepest
descent:

< k() [[Lul| + q(, [|ul])-

Theorem 2.7: Let X be a Banach space with a continuous duality mapping
J of X into X*. Let T be a mapping with domain and range in X which lies in
one of the following two classes:

(1) T @s a J-monotone mapping of X into X which is weakly once-differentiable
and locally Lipschitzian at each point of X.
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(@) T = —L + T,, where L is a closed linear operator in X which is the
infinitesimal generator of a Cy semigroup of nonexpansive operators in X, Ty is
a nonlinear J-monotone mapping of X into X which carries bounded sets into
bounded sets and such that T, is weakly once-differentiable and locally Lipschitzian
on a neighborhood of each point of D(L).

Suppose that there exists R > 0 such that for w in D(T) with |lu|| = R,
(Tu, Ju) = 0.

Let ¢ be a nonincreasing C* function from R+ to R+ with c(t) - 0 as t > 40,

fwc(s) ds = —4-00. Let ug be any element of D(T) with ||lug|| < R, and let v, be
0
any element of X with |lv|| < R.

Then:
(a) The differential equation
‘ du
T = —Tw — () {u — )

has one and only one solution w on R+ with w(0) = %,.
(b) For each such solution w on R+, we have
T (w(®))l] -0
as t - —+00.
(c) Suppose that in addition to the preceding hypotheses, T satisfies the following
condition:
(C) For each M > 0, there exists a compact mapping C of X into X and

a continuous strictly increasing function p from R+ to R+ with p(0) =0 such
that for all w and v of D(T) with ||u|| < M, ||v|| < M,

|T(u) — T()|| = p(llw— v|}) — [|C(x) — C)II.

Then u(t) converges strongly in X as t - 400 to a solution v, of the equation
Tv, = 0.

As a consequence of Theorem 2.7, we have the following existence theorem
for solution of.the equation Tv = w.

Theorem 2.8: Let X be a Banach space with a continuous duality mapping
J of X into X*, and let T be a J-monotone mapping which is in one the two
classes (1) or (2) of Theorem (2.7). Then:

(1) Let Bg be the closed ball of radius R > 0 about the origin in X, Sg its
boundary. If for some R >0, (Tu, Ju) >0 for all u in D(T) N Sg, then O
lies in the strong closure of T(Bg N D(T')). In particular, if T(Br N D(T)) is
closed in X, then the equation Tv = 0 has a solution v, with ||vy|| < R.
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(2) Suppose that T is J-coercive, i.e.
(Tw, Ju)[||Ju|| > o0,  (||u]| > +o0).

Then the range of T' is dense in X.

(8) If T is J-coercive and satisfies condition (C) of part (c) of Theorem 2.7,
then the range of T is the whole of X.
_4) If X is reflexive and T is J-coercive as well as demiclosed (i.e. for any
weakly convergent sequence u; — u with T'u; converging strongly to w, u lies in
D(T) and Tu = w), then the range of T is all of X.

(5) If X is strictly convex and T is J-coercive, the set

Ky = {vjve D(T), Tv = w}

, for a fixed w in X, is a closed convex subset of X.

We now restrict the class of Banach spaces X, and thereby can eliminate
the regularity conditions impossd upon 7' in the preceding results. Our basic
hypothesis upon X is the following:

Definition: X is said to satisfy the conditions (P) if the following two conditions
hold :

(1) There exists a duality mapping J of X into X* which is continuous and al-
so weakly continuous (i.e. continuous in the weak topology of X and X*).

(2) There exists an increasing sequence {F;} of finite dimensional subspaces
of X whose union ts dense in X, and a corresponding sequence {P;} of projections
of X such that the range of each Py is the corresponding F; and for each j, || Py|| = 1.

The properties (P) were applied in BROWDER—FIGUEIREDO [19] to obtain
an existzncz theorem for nonlinear functional equations involving J-monotons
operators. Asid> from Hilbert spaces, th> most important class of concretzly
defined Banach spaces which satisfy th> conditions (P) arz th> sequencs
spaces [? for 1 < p < 00, as was shown in [10]. The restrictive condition in
the pair of conditions (P) is th> first which does not hold for any L? space
with p # 2 on the line. Property (2) sez2ms to hold for all examples of separable
Banach spaces familiar to th> writer.

Theorem 2.9: Let X be a reflexive Banach space which is strictly convex and
satisfies the conditions (P). Let J be any duality mapping of X into X*. Let T
be a mapping of X into X which is hemicontinuous and locally bounded, and for
which there exists a constant ¢ in R such that for all w and v of X

(T(w) — T(@), J(u — v)) <cllu — o] . [|J(w — v)|.

Then for each u, in X, there exists one and only weakly C* function u from.
R+ to X which satisfies the differential equation '
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du
*d? = T(u), t >0,

and the initial condition u(0) = u,.

Theorem 2.10: Let X be a reflevive strictly convex Banach space which
satisfies the conditions (P), J o duality mapping of X into X*. Let L be a closed
linear operator in X which is the infinitesimal generator of a Cy semigroup of
nonexpansive operators in X. Let T, be a mapping of X into X which is hemi-
continuous, maps bounded subsets of X into bounded subsets of X, and for which
there exists a constant ¢ in R such that for all w and v of X,

N (To(w) — To(v), J(u — v)) < cllu — [ . [[J(u — )]|.
\Then for each uy in D(L), there exists one and only one sharp solution u on R*
of the differential equation

a4 = Lu + Ty(u), t >0,
dt
with u(0) = u,.

By a sharp solution, we mean a function w from R+ to X which lies in
CL(R*, X) with () in D(L) for all ¢ in R+ and with Lu in C3(R*, X).

A time dependent generalization of Theorem 2.10 is the following:

Theorem 2.11: Let X be a reflexive strictly convex Banach space which satisfies
the conditions (P) and let J be a duality mapping of X into X*. Let L be a closed
linear operator in X which is the infinitesimal gemerator of a C, semigroup of
nonexpansive linear operators in X. Let T, be a mapping of Rt X X into X
which carries bounded sets into bounded sets and satisfies the following three
conditions:

" (1) For each fized t in B+, T(t, *) is a hemicontinuous mapping of X into X.
For each fized u in X, To(", w) s a continuous mapping from R+ to the weak
topology of X.

(2) There exists a contintious function ¢ from R+ to R* such that for all w and v
in X and all t in R*:

(Tolt, w) — Tolt, v), J(w — v)) < o(f) |lu — o[ . [|J(w — 2)I[.

(8) For each fixed u in D(L), To(t, w) 18 weakly once differentiable in t from
R+ to X, and its derivative satisfies the inequality

\(% To) (t; u)

for all u in D(L) and a continuous function q from R+ X R+ to R+,

.ol

< q(t, [[ull)
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Then for each uy vn D(L), there exists one and only one sharp solution u on
R+ of the differential equation

du

T Lu + Ty, u), t >0,

with w(0) = u,.
The variant of the generalized method of steepest descent which holds for
this case is the following:

Theorem 2.12: Let X be a reflexive strictly convex Banach space which satisfies
the conditions (P), and let J be any duality mapping of X into X*. Let B'be
a closed linear operator in X which is the infinitestmal generator of a C, semigroup
of monexpansive operators in X. Let T, be a mapping of X into X which is
hemicontinuous and locally bounded. If L is unbounded, we suppose in addition
that T, maps bounded sets of X into bounded sets of X. |

Suppose that T, is J-monotone, and that there exists R > 0, such that
(Tu, Ju) > 0 for all w in D(T') with ||u|| =

Let ¢ be a continuous nonincreasing C* functwn from R+ to R+ such that

0

c(t) >0 as t > 400, f (8)ds = +oo. Let u, be any element of D(L):wzth
[lugl| < R, and let vy be any element of X with ||vy|| < R. '

Then:
(@) There exists exactly one sharp solution w on R+ of the differential equation
% = Lu — Ty(u) — c(t) {u — vy}, t >0,
with w(0) = wu,. 8

(b) For each such solution,
|| —Lu(t) + To(u(t))|| >0
as t > +o0.
(c) For each such solution, u(t) converges strongly in X to a solution v, of
the equation Tvy = 0, as t - +-oc0.

A consequence of Theorem (2.12) is the following existence theorem for
solutions of nonlinear functional equations involving J-monotone operators.

Theorem 2.13: Let X be a reflexive strictly convex Banach space which satisfies
the conditions (P), J a duality mapping of X into X*. Let T be a mapping
with domain and range in X which lies in one of the following two classes:

(@) T is a hemicontinuous locally bounded J-monotone mapping of X into X

(0) T = —L + Ty, where L 18 a closed linear operator in X which is the
infinitesimal generator of a C, semigroup of nonéxpansive operators in X, and
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T, is a hemicontinuous J-monotone mapping of X into X which carries bounded
sets into bounded sets.

Then:
(1) If for a given R > 0 and for all u in D(T) with ||u|| = R, (T, Ju) =0,
then the set
K = {vlpe D(L), To = 0, ||v]| <R}

is @ nonempty closed convex subset of X.

(2) If T is J-coercive, then the range of T' is all of X.

The existence of a solution %, of the equation Tue = 0 in case (a) was
previously established in BrowDER— F1GUEIREDO [19].

Let us turn finally to nonlinear equations of evolution involving J-monotone
operators without a differantiability assumption on the dspendence of f on ¢.

First, we have the following thsorsm which ext>nds the similar rzsult in
Hilbert space proved in BROWDER [4]:

Theorem 2.14: Let X be a reflexive strictly convex Banach space which satisfies
the conditions (P), and let J be a duality mapping of X into X*. Suppose that
f is @ mapping of R+ x X into X which carries bounded subsets of R+ X X
into bounded sets in X. Suppose that f satisfies the following two conditions:

(1) For each fixed t in R, f(t, ") is a hemicontinuous mapping of X into X.
For each fived w in X, f(*,u) is a continuous mapping of R+ into the weak
topology of X.

(2) There exists a continuous function c from R+ to R such that for all t in R+
and all u and v of X,

(ft, w) — fit, v), J(u — v)) < e(t) [|lu — of| . [|J(w — )Il.

Then for each u, in X, there exists one and only one solution u in CL(R*, X)
of the differential equation

L few, =0,
which satisfies the initial condition u(0) = u,.

A corresponding extension ‘of the existence theorems for mild solutions
of nonlinear equations of evolution in Hilbert space involving unbounded
linear operators, as proved in BRowDER [4] and KaTo [21], is based upon the
following natural extznsion of the definition of mild solution:

Definition: Let X be a Banach space, {L(t) | t € R+} a family of closed linear
operators in X, f a mapping of R+ X X into X. Suppose that the time-dependent
linear problem
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0= Loyue,  t=s,

u(8) = u,
has one and only one strongly continuous solution u(t) = U(t, 8) u, for each
8 > 0 and each u, in D(L(3)), where U(t, 8) 18 & bounded linear operator in X
for each s and t in R+ with s <t.

Then a function u from R+ to X 1s said to be a mild solution of the nonlinear
differential equation

%=Lmu+mmL t >0,

if u s a strongly continuous function from R+ to X which is a solution of the
nonlinear integral equation:

u(t) = U(t, 0) ug + f U, s) f(s, u(s)) ds, t>0.
0

Theorem 2.15: Let X be a reflexive strictly convex Banach space which satisfies
the conditions (P), J a duality mapping of X into X*. Let {L(t)|te R+} be
a family of closed linear operators in X, with each L(t) the infinitesimal generator
of a C, semigroup of nonexpansive operators in X. Suppose also that for each
8 > 0 and each uy tn D(L(s)), the time-dependent linear problem

‘31_’: ) = L) u(t), ¢ >s,

u(8) =
has one and only one solution u in CL((s, 0); X).

Let f be @ mapping of R+ X X into X which maps bounded subsets of R+ x X
into bounded subsets of X and satisfies the two conditions (1) and (2) of Theorem
(2.14).

Then there exists for each uy in X, one and only one mild solution v on R+
of the nonlinear equation of evolution

du
r i L(t) u + f(t, u), t >0,

with u(0) = wu,,.

Section 3: We now turn to the problem of the existence of periodic
solutions of equations of the form

d
3.1) T =ftw
where f(t, u) is periodic in ¢ of period p, i.e. f(t + p, u) = f(¢, w) for all ¢ in R+.

We seek to find periodic solutions of period p. We shall present here some
of the simpler results given in BROWDER [15].
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Definition: A function V from the Banach space X to R+ is said to be
a Lyapounov function for the equation (3.1), where f is a mapping of R+ X X
into X, if the following conditions are valid:

(1) V is a convex function on X, with V(0) = 0, V(u) > 0 for u # 0, and the
level sets of V are bounded and uniformly convex, i.e. given R > 0, d > 0 there
exists R, < R such that if V(uy) < R, V(u) < R, with |[ug — u,|| >d, then:

V((wo + u)/2) < R,.
(2) There exists a continuous mapping S of X into X* which is a subderivative
of ¥, i.e. for all w and v in X
V(u) — V(v) = (8(v), v — v).
(3) For each pair w and v in X and all t in R+,
(ft, w) — f(t, v) S (u — v)) < 0.
(4) There exists Ry > 0 such that for all tin R+ and all win X with ||u|| > R,,
(f(t, u), S(u)) < 0.

Theorem 3.1: Let X be a reflexive Banach space, f a mapping of Rt X XA

into X such that for all uy in X, the differential equation

du
W—f(tu t >0,

has exactly one solution with w(0) = u,.
Suppose that f(t, u) is periodic in t of period p > 0, and suppose that there
exists a Lyapounov function for this equation in the sense of the above definition.
Then the equation (3.1) has a periodic solution of period p.
As an application of this result, we have the following:

Theorem 3.2: Let X be a uniformly convex Banach space, J a duality mapping
of X into X*. Let f be a mapping of R+ X X into X such that the equation

———ftu)

has one and only one solution on R+ with u(0) = uy, for any given u, in X.
Suppose further that for each t in R+,

(fit, w) — £(t, 0), J(u — 0)) <0,
and that there exists R > 0 such that for all t in R+ and all w in X with ||u|| > R,
(fit, w), Ju) < 0.

"When if f(t, u) is periodic in t of period p > 0, there exists a solution of the
differential equation which is periodic of period p.
Extensions are given in [ ] to more general nonlinear equations of evolution
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of the types considered in Sections 1 and 2 above. The proofs are all based
upon the following simple fixed point theorem:

Theorem 3.3: Let X be a reflexive Banach space, V a convex continuous
function from X to R+ such that V(0) = 0, V(u) > 0 for u = 0. Suppose that
the level sets of V are bounded and uniformly convex. Let U be a mapping of
a closed convex subset C of X into C such that for all w and v of C,

V(U@) — Uw)) < V(s — v).

Then U has a fixed point in C.

The proof of Theorem 3.3 uses an argument of BRopskr and MiLmaN [1],
which was applied in the case in which V is a function of the norm in an
uniformly convex space by BRowpEr [9] and Kirk [22]. Similar fixed point
theorems with weakened hypotheses can be established in Hilbert spaces and
Banach spaces having weakly continuous duality mappings J by using the
fact that for every nonexpansive mapping U, T'=1 — U is J-monotone,
(cf [10], [17]).

Theorem 3.2 is an extension of a result in Hilbert space given by the writer
in [8].

We remark in conclusion that the most general form of aplication of Theorem
(3.3) to initial value problems can be put in the following abstract form:

Theorem 3.4: Let X be a reflexive Banach space, C a closed convex bounded
subset of X. Let {U(t,s)|t > s} be a family of transition operators on C, i.e.
for r < s <t, Ut,r) = Ult, s) U(s, r), where each U(t, s) is a (possibly) non-
linear nonexpansive mapping of C into itself. Suppose further that there exists
a convex function V from X to R+ such that V(0) =0, V(u) > 0 for u # 0,
and with the level surfaces of V uniformly convex, such that for all t and s, (s < t)
and all v and v n C,

VU¢, s)u — U, s)v) < V(e — v).

Suppose that the transition operators U(t, s) are periodic of period p > 0, in
the sense that for every s <t in R+, U(t 4+ p, s + p) = U(t, s).

Then there exists uy in C such that for every t in R+, U(t, 0) u, 78 periodic
in t of period p. ' 1
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ACTA FACULTATIS RERUM NATURALIUM UNIVERSITATIS COMENIANAE
MATHEMATICA XVII — 1967

FORMALLY NORMAL ORDINARY DIFFERENTIAL OPERATORSY

E. A. CoppiNGgTON, Los Angeles

1. Introduction. We shall present some results concerning the spectral
theory of ordinary differential operators which commute in a formal way
with their formal adjoints. Let L denote the ordinary linear differential
expression given by

L= S D,
k=0

where D represents the operation id/dx, the pi are complexvalued functions
of class C= on an open interval ¢ < z < b of the real axis, and pn(x) # 0
for @ < x < b. The formal adjoint L+ of L is given by

L+= S Dtp.
k=0

We say that L commutes formally with L+, and write LL*+ = L*L,if LL*u =
— L+Lu for all u € C*(a, b); such an L is said to be formally normal. If L
is formally normal we can ask whether it determines, in some natural way,
a normal operator in the Hilbert space Ly(a, b), or perhaps in a Hilbert space
containing Ly(a, b) as a subspace. We shall indicate below that, in general,
this occurs only in rather special cases, and for these cases the spectral theory
is easy. We exhibit a large class of formally normal L which determine no
normal operators in Ly(a, b), or in any larger Hilbert space. Some details
concerning the spectra of these operators are presented. First, we present
some abstract results on formally normal operators, which form the basis
for the work on ordinary differential operators.

The work reported on here is due to R. E. Barsam [1], G. Biriuk and E. A.
CoppiNeTox [2], and E. A. CoppingToN [3], [4], [5].

2. Formally normal operators in a Hilbert space. A formally

1) This work was supported in part by the National Science Foundation.
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normal operator in a Hilbert space $ is a linear, closed operator with domain
D(N) dense in $ such that D(N) = D(N*) and

INfIl = |IN*f1l,  feD@).

A normal operator in $ is a formally normal operator N such that D(N) =
= D(N*). For N formally normal define N to be the restriction of N* to
D(N); thus N = N*D(N). Then N = N*, in the sense that the graph G(N)
of N is contained in the graph G(N*) of N*, and similarly N = N*. (We note
that a symmetric operator in $ is a formally normal N having the {property
that. N = N, and a self-adjoint operator is a normal operator such that
N = N*)
If N is formally normal in $ it can be shown that

DEN*) =DN)+ M, M=l + N*N¥),
DN*) = DWNV) + M, M=l + N*N*),

where »(A) represents the null space of 4, and both sums above are direct
ones. The following result tells precisely when N has a normal extensinn
in . (See [2] and [3]).

Theorem 1. A formally normal operator N in a Hilbert space $ has a normal
extension N, in $ if and only if

(1) M = M, + M,, a direct sum,

(2) GAVM,) 1 GN*{My),

(3) N*, = M,

4) |[N*gl] = [|N*¢ll, @ € My,
and

D(N,) = DN)+ M, NcN,<N*

. The first two conditions imply that N, is a closed operator such that Nc
c N, © N*, and the last two guarantee that N, is normal. It follows from
(3), and the fact that N It = M, that M, =« M N Wi, and moreover dim M, =
= dim M,. Thus a necessary condition for N to have a normal extension
is that dim MM be even. ’ '

It is not true that every formally normal N in $ has a normal extension
in $; in fact, this is not even' true if N is symmetric. However, every sym-
metric N has a self-adjoint (and hence normal) extension in the larger Hilbert.
space $ @ H. We ask whether a similar result is valid for formally normal N.

We shall now alter our notation slightly in order to deal with the several
Hilbert spaces in what follows. Let us assume N, is now a maximal formally
normal operator in a Hilbert space $, (N, has no proper formally normal
extensions in $,), and suppose that

D(N;*) = DNy + W,



where dim ! is finite. It is this case which vccurs for ordinary diﬁ'eréntialope-
rators. In the following we shall refer to two such formally normal operators,
N, in §,, and N, in H,, with
D(N,*) = D(N,) + M2,
and it will be true that M1 = D2; and M2 = W2, We let
M, = N,*|Mm1, M, = N,*|M2;
thus M; maps M into M¢, ¢ = 1, 2. Also, we use the abbreviations
a(Mi) = My + M*,
B(My) = M*My — My*— 1M~

In these notations, the following result characterizes when a maximal formally
normal operator has a normal extension in a larger Hilbert space (See [2]).

Theorem 2. A maximal formally normal operator N, in a Hilbert space 9,
has a normal extension Ay in H = 9, ® 9, if and only if

(1) ML = M1,

(2) there exists a formally normal operator N, in the Hilbert space 9, such that

mz = Me, dim M2 = dim M,

and a one-to-one map C of M onto M? satisfying

(3) a(M,) + C*a(M,) C = 0,

4) B(M,) + C*B(M,) C = 0.

If /=N, ®N,, then

DAY =DAN)+ T +O)M, NN SN

A necessary condition for N, to have a normal extension in $ is [given by
condition (1), but it is not known whether this is sufficient. An N, and C
satisfying (2), (3), (4) exist if M M* = M,*M,, if M,® = ul, |u| = 1, and
in almost all cases if dim M! = 2. Such an N, can be defined in terms of
a conjugation operator J, which is an operator on $, satisfying J? = I,

and (Jf, Jg) = (g,f) for all f,ge$,. Then Ny=JNJ on 9, =9, will
work in the above cases (See [2]).

3. Formally normal ordinary differential operators. Let us now
return to the differential expression

L= S mD*:, D= idjds,
k=0

which we considered in the Introduction. For our Hilbert space we take
$, = Ly(a, b). We suppose that :

|Lul| = [|IL*ull,  ueCPa,b),
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where C®(a, b) denotes the szt of all complex-valued functions of class C*
on ¢ < 2 < b which vanish outside compact subsets of this interval. This
restriction on L is equivalent to the condition LL+ = L+L. Let us define
N, to be the operator in $, which is the closure of L defined on CP(a, b),
in the sense that G(N,) is the closure of G(L|C®(a, b)) in H; @ H;. This
operator N, is formally normal in $, and is called the minimal operator in
$, associated with L. The operator N * is just L on D(N,*), which is the
set of all f e H, such that fe Cr—1(a, b), f®-1) is absolutely coutinuous, and
Lf € ;. The operator N,* is described in the same way with L replaced by
L+*. Hence N, is L+ on D(N,;). We have

D(V,*) = DNy + WM,  DWV,*) = DWV,) + MY,
yhere
M = {pe9, (LL* +I)p =0, Ly e $,},

M= {pe$, [(LL+ + I)p = 0, Ly e $,}.

Thus we see that M and M consist of solutions to a homogeneous differen-
tial equation of order 27, and from this it follows that 0 < dim IM! =
= dim M < 2n.

The simplest example occurs when all the - coefficients px are constants.
Here there are three cases:

(1) a, b both finite,
(ii) only one of a, b finite,
(ili) @ = —o0, b = +-00.

In all cases M! = M1, and dim M! is 2n, n, and O in cases (i), (ii), (iii)
respectively. The N, for case (iii) as a normal extension. If n is odd, the
N, of case (ii) is thus normal, and the N for the other cases have the N of
oase (iii) as a normal eptension. If n is odd, the N, of case (ii) has no normal
eptension in $,; see the remarks just after the statement of Theorem 1.

We now interpret Theorem 1 for our differential operator N,. The conditions
of that theorem can be given a more conventional form by means of two
bracketed expressions:

(uv) = (Lu, v) — (u, L*v), w e D(N,*), v € D(N,*),
[uv] = (Lu, Lv) — (L+tu, L+v), u, v e D(N,*) N D(N,*).
It can be shown that these expressions depend only on %, %/, ..., u®-1 and
v, v, ..., v®1 in the vicinity of @ and b, and they are limiting values of
certain semi-bilinear forms in these quantities. Theorem 1 can be rephrased

in these terms so as to display the domain of a normal extension of N, described
by certain boundary conditiens.
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Theorem 3. The minimal operator N, associated with L has a normal extension

7\7 in H; = Ly(a, b) if and only if dim M! = 2p, and there exist linearly
independent ay, ..., ape ML N M satisfying

(ogaxy = [ayox] =0, (G, k=1, ..., p)
Then N, < N, < N,* and
D) = {we DN | uad =0,j =1, ..., p}.
There is an obvious choice of L whose corresponding N, has a good chance

of having a normal extension in $,, namely those L which can be represented
as polynomials in some formally symmetric differential expression A:

n
L=3 a4, A=4"
k=0

where the ci are complex numbers, some of which may be zero. If the minimal
operator for A has a self-adjoint extension § in ,, then clearly

A n
Nl = z cxSk
k=0

will be a normal extension of N; in $,. In any case, if L is a polynomial in
A = A+, it will be true that N, has a normal extension A", in = $H; @ H;.
This is dus to the fact that the minimal operator 8, for A is symmetric and
always has a self-adjoint extension § in $, and then

n
./Vl = Z cF ik
k=0

is a normal extension of N, in $.

We now might ask: can every L be represented as a polynomial in a formally
symmetric 4, and does every formally normal differential operator N, have
a normal extension in a larger space? For L of order one or two the answer
is yes, but for L of order n 2 3 the answer is no. The simplest example which
shows this is the L deﬁned by

Lu =" + 4" — 3z~ + (323 — 22~%) u,

with $, = L,(0, ). This d>tarnines a formally normal N, with dim M! = 1,
but with dim (! A M) = 0. It is maximal formally normal, but not
normal, and has no normal extensions in any Hilbert space $ > $,. Recall
the necessary condition (1) of Theorem 2.

In spite of the fact that not every L, such that LL+ = L+L, is a polynomial
in a formally symmetric A, the following interesting result is valid (see [1]).

69



’

Theorem 4. For L of orders 1, 2 or 3 the formally normal operator Ny Fkes
a normal extension by 1 9, if and only if
L = ¢A3 + ¢342 4 ¢, 4 + ¢y, A =4+,
where the cx are constants (some of which may be 0), and
‘ 1/\\71=6383+0282—|—CIS-{—001,
for some self-adjoint extension S of the minimal operator for A.

We remark that the example mentioned above is typical for a third order
L which is.not a polynomial in a formally symmetric A. Any N,, for such
an L on a maximal interval of definition, is such that it has no normal extension
in any Hilbert space $ > $;. Examples of higher order operators, to be
given in the next section, further support the conjecture that N, has a normal
extension in some $H > H, if and only if L is a polynomial in some A = A+.
Also, one might conjecture that an analogue of Theorem 4 is valid for L of
arbitrary order.

The spectral theory of normal operators A7y in $ > 9, which have the
form

N y= i cp Lk,
k=0

where & is self-adjoint in $, is completely determined by the spectral theory
for &. If & has the spectral resolution

¥ — [ 1dE(0),

oo n
then A= f p(4) dE(A), p(d) = > crlk.
—oo k=0
Because of Theorem 4, and the remarks following it, we see that results
concerning the spectra of self-adjoint extensions of symmetric ordinary
differential operators assume added importance.

4. Some special formally normal differential operators. We have
investigated in detail a large class of L, for which LL* = L+L, but which
can not be expressed as polynomials in a formally symmetric 4. Let m, n
be relatively prime positivel integers with m >n 2 2, and let g = (m — 1)
" (n — 1)/2. We define the differential expressions Ly, and Ly by

m—1

m =™ J[ (6 — kn +9),

k=0

n—1
Ly =2 [[(8—km + ),

k=0



where 6 = ad, and d stands for d/dx. These operators have the form
m = dm + @z~ dm=1 4 ... + apx ™, '
Ln — d" + blx_ld”_l + I + bn.’l}—”,

where the a; and by are real constants. Let L = Ly + L, if one of m, n is
even; otherwise let L = iLy, + L. Then it is true that LL+ = L+L. If N,
is the minimal operator in $; = L,(0, o) for L, then N, is formally normal,
but not normal; moreover it has no normal extension in $, or in any Hilbert
space § > 9, (see [5]). The example in Section 4 is the case m = 3, n = 2.

The specific nature of the spectrum of N, has been determined for each
pair of integers m, n. Recall that the resolvent set of N, is the set o(V;) of
all 1 € C (the complex numbers) such that (N; — AI)~! exists as a bounded
operator on all of $,, and the spectrum o(N,) = € — ¢(N;). The point
spectrum op(N;) is the set of all 1€ C such that dim »(N;, — AI) > 0; the
continuous spectrum o¢(N,) is the set of all 1€ o(N,) such that N; — il
is one-to-one, the range of N, — A1 is dense in $;, but is not all of H.; the
residual spectrum oy(N,) is the set of all i€ o(N,) such that N, — Al is
one-to-one, and the range of N, — Al is not dense. The essential spectrum
oe(N,) is the set of all 1€ C such that the range of N; — Al is not closed.

There are three cases according as

(¢) m odd, n even,

(b) m odd, n» odd,

(¢) m even, n odd.
For cases (a) and (c) let p(r) = r™ + r#, and for case (b) let p(r) = r™ + 1™,
The curve C in C, defined by

C={leC|l=p(t), —0 <t <o},

plays an essential role; in fact ge(N,) = C. In all cases the point spectrum
is empty. If m > 2n in cases (a) and (b), and m > 3n in case (c), we have
6(N;) = or(N;) = C. In the remaining situations the spectrum is more
interesting, and depends on certain arithmetic relationships between m and =.
The set € — C consists of two components, which we may call T and II,
letting I denote that component which contains the positive real axis. In
case (@), for example, if n <m <2n+ 1, o(N})=CUI if m =2k +1
with k even, whereas o(N,;) = C u IIL if k is odd. The distribution of o(N,)
between o.(N,) and o(XN,) is further complicated., As an example, if m = 3,
n = 2, we have o(N;) = C U II, 0¢(N,) = 0¢(N,;) = C, or(INy) = II (see [5]).
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ACTA FACULTATIS RERUM NATURALIUM UNIVERSITATIS COMENIANAE
MATHEMATICA XVII — 1967

PROBLEMS IN LINEAR CONTROL THEORY

R. ConTi, Firenze

1.

Given a Banach space X and a real 7' > 0 let 4: ¢ - A(¢) be a function
of t € [0, T'] with values in the space of linear (possibly unbounded) operators
in X,

We shall assume the existence of the Green’s function (evolution operator)
associated with A. By this we mean a function @ : ¢, s > G(¢, 8) defined for
0 < s <t < T, with values in the space Z(X, X) of linear bounded operators
in X, strongly continuous in the two variables jointly and satisfying the
conditions:

G(t, s) G(s, r) = G(t, 1), I<r<s<t<T,
G(s,8) =1 (the identity in X)

LT _ 4@y, s)2, v eD(A®)

_OG(tT’:)ﬁ = —G(t,s) A(s)x, xeD(A(s))
where ¢/ét, 9/0s denote strong derivatives and D(A(s)) = X is the domain
of A(s).

There are various known sufficient conditions for the existence of Green’s
function (T. Karo [9], J. Kisynski [10], E. T. PouLsEeN [14]).

Let 1 <p <oo. Given a Banach space £ we denote by L?(0, T'; E) the
Banach space of all E-valued, strongly measurable functions f defined in
[0, 7], such that

T
Iflp = (Of If) Zd)p <0 if p<oo

[flo =esssup {|f(t))g: 0 <t < T} <0, if p=occ.
If ¢ : t - c(t) belongs to L(0, T'; X) then
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t
[at,s)c(s)dse X, o0<t<T
0

the integral understood in the sense of Bochnuer.

Beside X we shall, consider another Banach space U and the space £ (U,X),
of linear bounded operators from U into X.

Let B:t— B(t) belong to Lr'(0,T; £ (U, X)) with p’ = p(p — 1)~ for
l<p<oo, p=1for p=c0, p’=00 for p=1. ‘

If u:t—>wu(t) belongs to L?(0,T; U) then ¢t — B(t) u(tf) will belong to
LY0,T; X) and

¢ .
i[Gf(t, 8) B(s) u(s)ds e X, 0o<t<T.

Summing up, if G exists and if v e X, w e L?(0, T; U), B € L?'(0, T}
ZL(U,X)), ce L¥0, T; X), we may define

t t
(1.1) x(t, u,v) = G(t, 0)v + [ G(t, s) B(s)u(s)ds + [ G(t,s)c(s)ds, 0 <t < T.
0 0

We shall denote by V, W, and % three convex, bounded, closed subsets of
X, X and L?(0, T'; U) respectively and consider the following:

Problem P.Given X, U, p, T, A (or rather G),B,c, V, W, %, determine whether
there are ve V, u € % such that (T, u,v) e W.

A few comments before we go further.

Equation (1.1) can be considered as the Bochner integral version of the
linear differential equation
(1.2) dx/dt — A(t) x = B(t) u(t) + c(?)
with initial condition

(1.3) (0, 4, v) = v.

Sufficient conditions in order that (1.1) yield (1.2) are known (T. Kato
[9], J. Kisy~skir [10], E. T. PouLseN [14]).

The problem we are dealing with is a typical one in linear control theory
where 2 represents the state of some physical system, u, v are controls,
permanent and initial, respectively, and it is required to determine such controls
from given sets %, V which transfer x from V into W in a given time interval
[0, 7] along a trajectory of (1.2).

If dim X < oo then (1.1) is in fact equivalent to the ordinary differential
equation (1.2) and G(t, ) = D(t) D~1(s) where D(¢) is any fundamental matrix
associated with 4. However control problems involving partial differential
equations (distributed parameter controls) require that also infinite dimensional
spaces X be ¢onsidered (A. G. Burkovskit [3], P. K. C. Wawe [16]).
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2.
The linear operator
I'p:x—>G(T,0)x

from X into itself is bounded, therefore the image I'vV of V is a bounded
convex subset of X.
Also the linear operator

T
Ap:u —>6f G(T, s) B(s) u(s) ds

from L?(0, T'; U) into X is bounded and the image A7% of % is a bounded
convex subset of X.’

Therefore W — I'pV — Ap% is a bounded convex subset of X.

By virtue of (1.1) Problem P reduces then to establish whether

T
(2.1) — [ AT, s)c(s)dse —W + I'pV + Ar%.
0

Let us first consider the weaker relation

T
(2.2) — f G(T,s)c(s)dse —W + I'rV + A%,
0

the closure of — W 4+ I'tV 4 ApU.
Recall that for any bounded subset C < X a supporting function A¢(z’) is
defined in the dual space X' by °

ho(x') = sup <{z,a') -
x eC

We need the following lemmas.

Lemma 1.
(2.3) hg(x') = he(2'), ' eX’

Proof Since € < C it follows h¢(2') < hg(x’) by definition. Conversely,
for a fixed 2’ € X' let 2y €C be such that limy (xx, ') = sup (z, ') =

x €Q

1

= hg(z’). Now choose yr € C, |yx — xx|x < k1.
Then <zg, 2") = gk, &' + {¥r — xx, ') < he(x') + k~Y2'|x’, and letting
k —oo we have hg(z') < ho(2').
Lemma 2. If C is a bounded convex set = X, then-
(2.4) a"y < he(2), v’ eX < yeC.
Proof. y € C means (g, 2'> < sup {z, ') = hg(x') = he(') by lemma 1.

LR LS P

Let y ¢C, ie. let {3} N C be v01d Smce {7}, C are convex, closed sets and
{x} is compact the ‘‘strict separation’ theorem holds, i.e. there are two real
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numbers ¢ > 0, ¢ and some ' € X’ such that (x, 3> <c—e<c< {y ¥

x €0, hence ha(y') < (%, x> and ke(y') < {x, x> by lemma 1.
By applying (2.4) to (2.2) we have

Theorem 1. The inequality
T
(2'5) <_ fG(T’ 8) 6(8) dS, x’> < k-W+IrV+A:rU(z,)9 v eX'
0

is equivalent to (2.2), therefore it is equivalent to (2.1) iff the set — W + I'rV +
+ Ap% is closed.

3.

We are now going to indicate some criteria for the validity of

(3.1) —W +TI'nV +Ar% = —W + I'tV + Ap%.
This can be insured by

(3.2) W= W, I'pV =IrV, ArU = A1,

plus an additional assumption namely that
(3.3) X is a reflexive Banach space.

We recall in fact that in a Banach space X: i) all bounded weakly closed
_ subset are weakly compact iff X is reflexive; i) convex sets are weakly closed
iff they are closed; #i7) any finite sum of weakly compact sets is weakly closed.
The implication (3.2) + (3.3) = (3.1) then follows from the fact that all
gets involved are convex and bounded.

Now W=W by assumption. Also I'tV = I'rV since I'r, as a linear
operator continuous in the norm topology of X is also weakly continuous
and V is, by assumption, weakly compact. On the contrary the validity of
Ar# = Ap% requires some further assumption on #%. In particular the case
p=1 has to be put aside since there are examples of Ar% +* Ar% in
LY(0, T'; U) even for U = R, the real number system.

Therefore we shall consider, from now on, only the case 1 < p < oo and
make a further assumption, namely

U = o%
with given ¢ >0 and %, = {u :|u|, < 1}, the unit ball of L2(0,T; U).
What we have to show is then that Ar%, is (weakly) closed, or, equivalently,
weakly compact.
Since A7 is continuous (in the norm hence) in the weak topologies of L?(0,

T; U); X, we have weak compactness of Ar%,; when also %, is weakly
compact, which is equivalent to the assumption that
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(3.4) L?(0, T; U) 13 a reflexive Banach space®,
We thus have

Theorem 2. Let X be a reflexive Banach space and let V, W be convex, bounded,
closed subsets of X. '

Then Problem P has solutions if, U = o#,, o >0, %, the unit ball of
Lr0,T;U), 1 <p <o and U is such that L?(0, T; U) be reflexive.

Let us now turn to the case p = co.

We have (P. L. FALB [6]).

Lemma 3. If U is such that L?(0, T'; U) is reflexive, 1 << p < o0, then the unit
ball %, of L*(0,T; U) is a weakly compact subset of L?(0, T; U).

Proof. Clearly %, is a bounded subset of L?(0, T'; U). Further if a sequence
ui € U, converges in L?(0, T'; U) towards some v € L?(0, T'; U) then v e %,,
ie. %, is a closed subset of L»(0, T; U). In fact ux — v in measure, hence
ug,—> v a.e. in [0, T'] for some subsequence wug,. Since |uly <1 is closed,
|v(f)ly < 1 a.e. in [0, T'], i.e. v € #,. Since %, is also convex it is also weakly
closed in L?(0, T'; U), hence is weakly compact in L?(0, T'; U) as L»(0, T; U)
is reflexive.

From this follows

Theorem 2'. Let X, V, W be as in Theorem 2.

Then Problem P has solutions if % = 9%y, 0 >0, ¥, the unit ball of
L=(0,T; U), provided that L?(0,T; U), 1 < p < oo be reflexive, and
(3.5) Be L'***0, T; Z(U, X)), for some « > 0.

Proof. In fact (3.5) allows to consider A7 as a mapping of L1+1/%(0, T'; U)
into X, continuous (in the norm, hence) in the weak topologies and by lemma 3
(p = 1 4 1/a) it follows, again, that Ap%, is a weakly compact subset of X.

Assumption (3.5) is actually stronger than B e L(0,T; £ (U, X)) which
would be the natural one in the case w e L*(0, T; U). It can be avoided,
however, at the expense of heavier assumptions on U, X, by using a particular
case of the well-known Alaoglu’s theorem, namely

Lemma 4. If L=(0, T; U) = (L0, T; U'))’, then the unit ball %, of L>(0,
T; U) 18 weakly * compact.

Let ux be any sequence in %,. We may assume that u; converges weakly *
towards some u € %,, i.e. '

T T :
(3.6) [ (v, ugd>dt > [ (w,uydt  for all v e LY(0, T; U").
0 0
This will imply Azux - Aru strongly in X in some cases, for instance when
(1) Recall that the reflexivity of L#(0, T; U) depends on U, but not on p, 1 < p < oo.
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U, X are both finite dimensional: dim U = m, dim X =«. In fact Arug,
Aru are n-vectors with components, respectively

T P
i <oy, ug) dt, [ <y, wp dt, j=12,...,n
0 0

where v; denotes the j. th row of the n by m matrix G(T, t) B(¢).
We thus have (H. A. ANTOSIEWICZ [1]).

Theorem 2”'. Let V, W, be convex, bounded, closed subsets of X, dim X = n.
Then Problem P has solutions if % = o%,, 0 > 0, U, the unit ball of L*(0,
T;¥), dim U = m.

4.

We shall now write the right hand side of (2.5) under the assumption
% = 9%, in a more explicit form. We have

h-W+1'rV+oAT%1(x’) = k—W(x,) + h]'TV(x,) e Qh.lrul(xl)

with

' hpw(x') = sup v, 2T, 0)>

vE

and-

r
hyauy(@') = (of ' G(T, ) B(s)|B.ds) /7",

Therefore (2.5) becomes

T
(4.1) <—6[G(T’ 8)c(s)ds, x") < su[I)V dw, ") + .Sul,), v, 2’G(T, 0)) +

T
+ o ([1#'®(T, ) B)| B ds)'f?, o' e X",

This inequality already appeared in the literature in many particular
instances, both finite (H. A. Antosiewicz [1], R. CoxTI [4], R. GABASOV—
F. M. Kirizrova [8], W. T. Reip [15]) and infinite dimensional (W. MIRANKER
[11], G. MocHI [12]).

b.

Some existence theorems for certain typical optimum control problems can
be drawn from (4.1) along the lines followed by H. A. ANrosiewicz [1] in the
finite dimensional case.

a) Let g, be the infimum of g’s such that (4.1) holds and let gx | oo be
a sequence of such g’s. Then (4.1) must hold also with ¢ = g, and we have

Theorem 3. Under the assumptions of Theorems 2,2, 2" if Problem P has
a solution; then it also has a solution v, u with minimum |u|p.
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Sometimes |u|p is called the ‘“‘effort” associated with the control system
and Theorem 3 states that under the assumptions of Theorems 2, 2’, 2"’ there
is a solution of the minimum effort control problem (W. A. PorTEr—J. P.
WirLLiams [13]) as soon as the corresponding control problem has solutions.

b) Another typical problem in optimum control theory is the so-called
“final value” problem (A. V. BALAKRISHNAN [2]). For instance it is required
to minimize (7', u, v) — w°|x for a given w®e X. To this purpose we may
assume the set W to be a closed ball of radius ¢ > 0 with center at w9, i.e.
W = {w°} + eX,, X, the unit ball of X. Then —W = {—w°} + ¢X,, and
how(z') = —<w® x') 4 ela’|x’. Substituting into (4.1), the same argument
we used for g, applied to the infimum of &’'s for which (4.1) holds leads to

Theorem 4. Under the assumptions of Theorems 2.2°, 2'' if Problem P with
W = {w°} + eX, has a solution, then it also has a solution v, w such that
|2(T', u, v) — w0 x ts mintmum.

c) In a similar way we could consider an “initial value’” problem by taking
V= {v}+ 0X;, 0 >0. Then hpy(z') = % a'G(T, 0)> + olz'Q(T, 0)|x’,
ete.

d) The best known problem in optimum control theory is perhaps: the
“minimum time’’ problem: to find solutions yielding the minimum time 7
of transfer from V to W.

Since both sides of (4.1) are continuous functions of 7', denoting by T, the
infimum of 7"s for which (4.1) holds and by T | T a sequence of such 7T's
we obtain

Theorem 5. Under the assumptions of Theorems 2,2°, 2" if Problem P has
a solution, then it also has o solution such that T is minimum.

For an infinite dimensional X particular cases of this Theorem were obtained
by Y. V. Ecorov [5], H. O. FATTORINI [7], A. V. BALAKRISHNAN [2].
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ACTA FACULTATIS RERUM NATURALIUM UNIVERSITATIS COMENIANAE
MATHEMATICA XVII — 1967

ON LINEAR DIFFERENTIAL EQUATIONS OF HIGHER ODD ORDER

M. GrEGUS, Bratislava

In my paper I will consider a differential equation of the n-th order, where
n is odd of the following form:

(@) y™ + 24(x) y' + [A'(x) + bx)]y = 0.

Suppose that 4’(z) and b(x) are continuous functions of x € (—o0, ).
The adjoint differential equation to the equation (a) is of the form

) 2™ 4 24(z) 2 + [4A'(x) — b(x)]z = 0.

Between the solutions of the differential equations (#) and (b) hold some
relations, for instance:

If y5, Y3, --., Yn— are linearly independent solutions of the equation (a)
then
Y1 Y2 cee Ynm
Y1 Y2 - Yam
o Sk O
y(n-—z) y(zn 2) . nn_—ls)

is the solution of the equation (b).
If y(x) is the solution of the differential equation (@) with the property

y@)=y'@) = ... =y®Na)=0, y*rNa)#0,
a € (—oo, ) and y(z) = 0, z #a,
then the solution z(x) of the differential equation (b) with the property
2@) = @) = ... =20-DGF) =0, 2-DF) £0
has also the property z(a) = 0.
We can deduce more of such relations.

The solutions of the differential equation (w), respectively (b) fulfil the
following integral identities:
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(1) y®-1 4 24y + J(b — A’)y dt = const.
a

2) yy=D + Ay? + [[by? — y'y®*~D] dt = const.
respectively

') 2= 4 94z — [ (A’ + b)z dt = const.
2" _ 220D 4 422 — [ [b2® + 2'2»-D] dt = const.

In the following I will introduce the results concerning the solutions without
zeros of the differential equations (@) and (b) and the criterion of the divergence
of the solutions without zeros of the differential equation (b). In the special
case for n = 3 I will quote further results concerning this problems.

At the end I will deal with the existence of solutions of certain boundary
problems chiefly of the third order.

I. First I will introduce two lemmas.

Lemma 1. Let A(x) £ 0, b(x) = 0 for x € (—o0,0). Let y(x) be the solution

of the differential equation (a) with properties y®(a) =0,1=10,1, ..., k—1,
E+1, ...,n—1, y®(a)#0, 1 <k<n—1. Then neither y(x) nor its
derivatives y®(x), i = 1, 2, ..., n — 1 have no zeros to the left side of a. -

Lemma 2. Let the assumptions of Lemma 1 be satisfied and let z(x) be the
®

solution of the differential equation (b) unth the properties z(a) = 0, 1 = 0,

, .., k—1Lk+1,...,n—1, 20)(a) £~ 0. Then2®(x),i=0,1,....n — 1
have no zeros to the right of a and at the same time z®(xr) - 4-oco for a — o0,
i=0,1, ..., n — 3. Here z0(x)— 400 if 20(a) > 0 and 2D (x) > —0 if
*)

z(a) < 0.

The proof of Lemma 1 follows from the identity (2) and that of Lemma 2
from the identity (2').

Remark 1. Similarly as Lemma 2 it can be proved that every non-trivial
solution z(x) of the differential equation (b) with properties

z(@) = 0, z2®(a) 2 0, i1=1,2 ...,n—1 —c <a<< -0,
has no zero point to the right, and no point of zero of the derivatives up to
the order n — 1.
Theorem 1. Let A(x) = 0, b(z) 2 0 for x € (—,00). Then the differential
equation (a) [(b)] has at least one solution u(x) [v(x)] without zero in the interval
(—o0, ) for which holds
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sgn u(r) = sgn '’ (x) = ... = sgn u®~N(x) # sgn w'(x) = sgn u'"’(x) =
= ... = sgn u(®-2A(x) ;

[sgn v(x) = sgn v'(z) = sgn v'’(x) = ... = sgn v(*~N(x)]
for all x € (—0,0) at the same time u'(x) >0, v"(x) >0, ..., u®=2(z) - 0
for x >0 [v(x) > Fo0, ..., ¥®=I(x) > J00 for z - o0].

The solution u(x) without zero-points of the properties mentioned in Theor. 1
can be obtained as the limit of the sequence of the solutions {ux(x)}p_y
with w@(@r) = 0, uP V(@) >0, i =0, 1, ..., n — 2, where {wx}p, is
a suitable sequence of numbers which diverges to infinity. The integral
identity (2) for the solution wuy is of the form

Tn

wul™ Y + Auf = [ [bu} — wiu-2] dt.
x
It can be shown that the solution u(x) fulfils the analogical identity:

(3) w4+ Au? = f [bu? — w'u™ D] dt.

Theorem 2. Let A(x) < 0, b(x) = 0 for x € (—o0,0) and let fb dt diverge,

—o0 < a < 0o. Let z(x) be the solution of the differential equatign (b) with the
properties z0(a) =0,i=0,1, ..., n — 2, 28=V(a) > 0. Then the followmg
holds: zn=1(x) + 24(x) 2(x) - © for x — 00.

The statement follows from Lemma 2 and from the identity (1').

Lemma 3. Let the assumtions of Lemma 2 hold and in additicn let A’ +
+b 20 and [n-1[A'(t) + b(t)] dt diverge, —0 < a < o0.

Let 2(z) be the solution of the differential equation (b) with the properties
20(@)=0,5=0,1, ..., n — 2, 28=(a) > 0. Then it holds: 2»=V(z) +
+ 2A4(x) 2(x) > oo for x — 0.

The statement follows from Lemma 2 and from the identity (1°).

Theorem 3. Let the assumptions of Lemma 3 be satisfied. Then there exists
at least one solution of the differential -equation (@) y(x) # 0 for x € (—o0, ®©)
which has the following properties: y, y', ..., y®=1) are monotonous function of
xe(—w,0),sgny =sgny’ = ... =sgny® D £Leggny' =sgny’’ = ... =
= sgn y®-? for x € (—o0,0) and y >0, y' >0, ..., y®= >0 for z - 0.

Let n = 3. Then the statement of Theorem 2 and Theorem 3 can be
sharpened in the following way:

Theorem 4. Let the assumptions of Theorem 2 and Remark 2 respectweli}
Theorem 3 for n = 3 be fulfilled and let b(z) = 0 do not hold in any interval.
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Then there exists just one solution of the differential equation (a) with the following
properties: y, y', y'' are monotonous functions of x € (—0, ), sgny = sgny"’ #*
# sgn y’ for x € (—o0,0) and y >0, y' -0, y"" — 0 for x —>oc0. '

Theorem b. Let n =3. Let A(x) <0, bx) 2 0, A'(z) + b(x) 2 0 for
z € (—o0, 00) and let b(x) = 0 do not hold in any interval.

If the differential equation (a) has one oscillatory solution in the interval
(@,00), —00 < @ < + 0 (i.e. the solution has an infinite number of zero-points
there) then all solutions of the differential equation (a) are oscillatory in the
interval (a,00) with one exception of the solution y (up to the linear dependence)
which has the following properties: y(x) # 0, sgn y(x) = sgn y''(z) #* sgn y'(x)
for x € (—o0,0), y, y', y'' are monotonous functions of x € (—, ) and y' - 0,
y" - 0 for x - co0. [1].

The question is about the solution without zeros in the case 4(z) 2 0. For
n = 3 hold the following results [2]:

Theorem 6. Let n = 3. Let b(x) = 0 for x € (—o0, ) and b(x) = 0 do not
hold in any interval. Then the solution of the differential equation (a) ha: at
least one solution without zero points in (—o0, 0).

Theorem 7. Let the \assumptions of Theorem 6 be fulfilled and let [ badt

diverge. Then the differential equation (a) has at least ome solution ;;itho'at
zero-points for which holds lim inf y(x) = 0.
¢

: Zg,0) .
If b(x) = m > 0 for z € (x,, ) then y(x) belongs to the class L>.
M. ZrAMAL [3] proved the following theorem:
Let n = 3. Let A(x) =2 m >0, A'(z) + b(x) >=m and b(x) — A'(x) 2 0
for z € (x4, ).
Then every solution of the differential equation (a) is either oscillatory in
(%o, ) or non oscillatory and then limy = limy’ = 0 and y(z) is of the

T —>oo & —>oo
class L2 ,

In the paper [2] is shown that under given assumptions all solutions of the
differential equation (a) are oscillatory in (x,, o) with the exception of one
(up to the linear dependence) which has the mentioned properties.

Now we shall devote our attention to the differential equation (b). According
to Theorem 1, the equation (b) has at least one solution without zero points
and every solution of the differential equation (b) of the properties given in
Lemma 2 and in the Remark 1 has not on the right side of a zero and there
are no zeros of the derivatives up to the order n — 1. In the following we

give the criteria for the rate of divergence of these solutions to the infinity.

.- Theorem 8. Let A(z) £ 0, b(x) = 0 for x € (—0,0) and let b(x) = 0 do not
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hold in any interval. Let f(x) be a non-negative function with the continuous
n-th derivative of propertiesf®™ + 2Af" 4+ [A’' — b]f £ 0 for x € (xy; ©), —0 <
< x4 < 0.

Then there exists for every non-trivial solution z(x) of the differential equation
(b) of the properties z(a) =0, z2W(@) 20, it =1, ..., n — 1, a = x, such
a o = a and such a constant k > 0 that for x > o holds z(x) — kf(x) > 0.

Corollary 1. Let f(z) = e®. Then the non-trivial solution of the differential
equation (b) of the properties z(a) = 0, 2®)(a) = 0 diverges to +-co faster
then e if A(x) <0, b(x) 20,1 +24+ A" —b = 0 for z € (v, ), 7, < a
and at the same time b(x) = 0 does not hold in any interval.

For n = 3 and the case A(z) 2 0 hold the following criteria:

M. ZLAMAL [3] proved:

Let A(x) = 0, A'(x) and b(z) 2 0 be continuous functions of z for
0 <z < 2. Futher let on (z5,0) M = limsup A]/(f) <, m=

z
= lim sup V; [A’(x) — b(z)] < 0. Then every non-trivial solution y(x) fo
the differential equation (b) is either oscillatory or diverges into +oco faster
then a certain positive power z,. The solution y(x) is oscillatory then, and

only then when for every x € (x,,00) holds yy”’ — —%— y'2 4+ Ay?2 < 0.

If b(x) = d > 0, then every scillatory solution of the differential equation
(b) belongs to the class L2

Theorem 9. Let n = 3 and let A(x) = 0, b(x) = 0, A'(x) — b(zx) £ 0 a,t‘ the

same time b(x) = 0 do not hold, in any interval and let [ b dt diverge. Further

let f(x) be a non-negative function with continuous th?rd derivative on (x,, )
for which holds on (x,,0) the inequality f" 4 24f" + (A’ —b)f £ 0. Then
for every solution z(x) of the differential equation (b) without zeropoints on the
interval («,00), & 2 x, holds: |z| — kf > 0 for x € (a, 00), k is a sustable constant.

The proof is given in the paper [2].

II. We devide this section in two parts. In the first section we shall deal
with certain non—homogenous boundary value problems chiefly of the 34
order, and in the second section we shall show some results of the so called
Sturm boundary problems of the 3¢ order.

Let the boundary problem

(4) L(y) = 0.

(6) Uily) =0,%=1,2, ..., n, be given where L(y) is a linear differential
operator of the nth order, » 2 2, with continuous coefficients p, # 0 (coef-
ficient of the highest derivative) p;, ..., pn on the interval (a,, am), Ui,
i=1,2, ..., n are linearly independent forms of y(a,), ..., y®*V(ay), ...,
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y@m), ..., YO V(Am), 8y <8 < ... < Gm, M 2 2. Suppose that the problem
(4), (5) is unsolvable, i.e. its only solution is trivial. Then the following
theorem [4] holds.

Theorem 10. For an arbitrary point & € (ak, ax+1) the function y = G(x, &)
may be constructed (the particular Green’s function) which has the following
properties:

axn—2

1. Gilz, &), —:L Gz, &), ..., Gr(x, &) are continuous functions of x €
w

€<ay, apm).
T i
2. The function
oxn—1
exception of the point &, where it has a discontinuity of the first order with a jump

Gr(x, &) is on {ay, an) everywhere continuous with the

of the discontinuity , 1.e.
Po(£)
P GE 40,8 — (e —0, ¢
e ’)_&cn—l k(§ — ’)_Po(‘f).

3. The function Gi(x, &) is the solution of the equation (4) on the intervals
{ay, &), (&, am> and satisfies the boundary conditions (5).
4. The function Gi(x, &) is by the properties 1., 2., 3., uniquely defined.

Theorem 11. Let Gi(x, &), k=1, 2, ..., m — 1, be the particular Green’s
functions belonging to the problem (4), (5). Then the solution of the problem
(4) Ly) = r(=).
(58) Ui(y) = 0, 8 =1,2; .05 M
where r(x) is the continuous function on {a,, am) is given by the formula

m—1

O =3 | G @ e

k=1 ax

Lemma 4. Let n — 3. Let A(x) £ 0, A'(x), b(x) = 0 be such continuous
functions of x € (—o0, 0) that b(x) — A'(x) = 0 and b(x) = 0 does not hold in
any interval. Then every solution of the differential equation (a) has at most
two zero points or one double zero-point [2]. '
" Lemma 5. Let n = 3. Let A(Ec) 20, 4A'(z), bx) 2 0 be such continuous
functions of x e (—o0,00) that A'(x) + b(x) = 0 and b(z)= 0 does not hold
in any interval. Then every solution of the differential equation (a) has only
two zero points or one double zero point [2].
_ Theorem 12. Let n = 3. Let the coefficients of the differentigl equation (a)
fulfil the assumptions of Lemma 4, resp. 5. Then the boundary problem o
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y" + 24(@) ¥ + [4'@) + b)]y = r(),
y(a,) = y(a,) = ylas) = 0,  a; <y < a3€(—00,0) .

has only one solution given by the formula for m = 3.
The proof follows from Lemma 4 and 5 and from Theorem 11.

Lemma 6. Let n = 3. Let the assumption of Lemma 5 be satisfied. Then
every solution of the differential equation (a) has at most three zero points of the
first derivative. If the solution y(x) has exactly three zero points of the first
derivative, then y(x) has exactly two zeros.

Theorem 13. Let n = 3. Let the coefficients of the differential equation (a)
Sfulfill the assumptions of Lemma 5.
Then the boundary problem

Yy + 24@)y + [A'(@) + b(@)]y = r(z),
yD(a) =y®@), =012 a<b

with periodical boundary conditions has just one solution of the form (6) for
m = 2,

Remark 3. M. GEra of Bratislava in his dissertation devotes his attention
to the problems of the higher orders of periodic boundary conditions.

Now let us consider the differential equation (@) for » = 3 in case that
the coefficients are continuous functions of the parameter 4 e (4,,4,) i.e.
in the form

(@) y" + 24, )y + [A'(x, 4) + bz, )]y = O.
The following oscillatory theorem [2] holds:

Theorem 14. Let the coefficients of the equation (@) A = A(x, 1), A" =
0

i A(x, A), b =Db(x, A) > 0 be continuous functions of x e (—o0,00) and
x
2 € (45, 4y). . .
Further let |A(x, A)| < k, |A'(x, )| £ k, k>0, for all xe(—o0,00) and

Ae (4, 4,) and let lim b (x, 1) = 40 uniformly for all x € (—c0, 00).
A=A,

Let a < be(—ow,0) be given numbers and let y(x, 2) be a solution of the
differential equation (@) with the property y(a, 2) = 0. Then with the increasing
A — A, increases also the number of zero points of the solution y in (a, b) to the
infinity and at the same time the distance of every two neighbouring zero points
converges to zero. ‘ ;

Remark 4. G. SamMsoNE [5] proved also the oscillatory theorem which
can bz formulated for the equation (@) as follows:

Let A = A(z, 4), A’ = —:— A(x, ), b = b(x, ) 2 0 be continuous functions
z .
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of xe(—o,0) and A€ (4,,4;) and lim A(z, 1) = +oo hold uniformly
A4,

for all = € (—o0, 0).

Let b(x, }) = 0 do not hold in any interval. Then the statement of the
previous theorem holds.

With the help of the oscillatory theorems the existence of eigenvalues and
of eigenfunctions of the following boundary problem can be proved:

Theorem 15. Let the coefficients of the differential equation (@) fulfil the
assumptions of oscillatory theorems. Let a < b < ¢ € (—o0, 00) be given numbers.
Further let a(d), a;(A4), B(A), Bi(A) be continuous functions of the parameter
A€ (A, Ay) for which holds |a| + |&y| # 0, |B| 4 |B1] # O, at the same time
either B(A) = 0, or B(A) 5~ O for all the A € (A, A,).

Then there exists such a natural number v and such & sequence of the parameter
A (eigenvalues):

Av, 2-1{+1, o e ey Z.v-;.p, “ee

to which belongs the functional sequence (eigenfunctions)

Yvs Yv41s - - s Yv4py - -

of such property that yvp = y(x, Avip) ts the solution of the differential equation
which fulfils the following boundary conditions

Y(@, Avip) = 0,
0y (A +p) Y(b, Avip) — (Av4p) ¥' (b, Avip) = O,
Br(Av4p) Y(c, Avip) — B(Av+p) ¥' (¢, Avip) = 0O

and y(x, Ay 1+p) has in (a, ¢) exvactly v + p points of zero.
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ACTA FACULTATIS RERUM NATURALIUM UNIVERSITATIS COMENIANAE
MATHEMATICA XVII — 1967

INVARIANT MANIFOLDS FOR FLOWS

J. KurzwEgiL, Praha

The purpose of this paper is to present a geometric approach to the theory
of invariant manifolds of differential systems. Let the concept of an invariant
manifold of a differential system be illustrated by the following simple and
rather typical example (which is frequently met in applications to electrical
systems).

) ¢ = Az, ¢=0,
(2) &= Az + fi(z, ¢, 1), @ =f2(x’ @, t).

Here «z, f, are n-vectors, 4 is an » X n-matrix, ¢ is a coordinate vector on
an m-dimensional torus @. Assume that the real parts of the characteristic
numbers of 4 are different from zero. The subset of B, X @ X E,, which
consists of all points (0, ¢, {), ¢ €D, t € E,, is obviously invariant with respect
to (1), i.e. if () = 0, then x(t) = 0 for a solution (z, ¢) of (1). If f,, f, are
sufficiently small, then a similar situation holds for (2), more precisely there
exists a map p from @ x E, to E, such that if # = p(@, {), then there exists
a solution (z, @) of (2) defined on E,, z(f) = &, ¢(f) = ¢ and z(t) = p(p(t), t)
for t € E,. The map p is unique and the set P of all (%, ¢, {), Z = p(, £) is the
invariant manifold of (2). The behaviour of the solutions of (2) near P is
similar to the behaviour of solutions of (1) near the plane & = 0.

Usually it is assumed that the perturbation f;, 4 = 1, 2 is small in that
sens2 that it fulfils one of the following conditions

@) fi0, @, t) =0,  [Ifi(xy, @, 8) — fe(@y, @, 8)|| S L ||my — )|, d=1,2

L being small (which is usually fulfilled in the way that f; contains higher
powers in x only), "

(II) fl(x: @, t 8) = Egt(x, P, t); P = 1, 27

- gi fulfilling some boundedness conditions, ¢ being a parameter, which is at
our disposal and which may be chosen sufficiently small,

(111) filz, @, t, €) = hi(z, @, tle), -1=1,2,



hi(x, @, ) being periodic or almost periodic in 7, the average of k; with respect
to 7 being zero and & being again the small parameter.

Or it may be assumed that fi is a sum of three terms, each of which fulfils-
one of conditions (I), (IT), (III). Theorems of the above type were proved
for a large number of various situations, for example the matrix 4 need not
be constant, there may appear a small parameter ¢ on the right hand side
of some rows of (2) or on the left hand sides of some rows (i.e. at derivatives
of some components of « or ¢) and recently similar theorems were proved for
equations with time-lags or for functional differential equations.

The unifying theory may be obtained by a geometric approach. The basic
concept is the one of a flow, which is more general then the concept of a dy-
namical system. It differs from the concept of a dynamical system in the
following way: the solution y(¢, 7, t) which passes through # in the moment
7 need not exist on the whole real axis but on some interval <, t,), t, >
and uniqueness of solutions is required with ¢ increasing only. The values
of the solutions y are from a metric space or from a Banach space. By a flow
¥ we shall mean a set of functions fulfilling some axioms and in special cases
Y may be the set of all solutions of a differential equation or of a functional
differential equation. The elements y of a flow Y will be called solutions.

The conditions which guarrantee the existence and uniqueness of an in-
variant manifold for a flow, cannot be stated in detail here. They may be
described roughly as follows: the space Y, where the solutions y of the flow
Y take their values from, may be represented as a product of two spaces X
and @ and the 2- and g-components of the solutions y satisfy some inequalities.

General Theorem: If the above conditions are satisfied, then there exists
a unique map p from @ X E, to X such that if &= (@, £), then there exists
a solution y = (x, @) from the flow, which is defined on the whole real axis x(f) =
=&, p(f) = ¢ and x(t) = p(p(t), t) for t € Ey. Again the set P of all (T, §, 1),
& = p(, 1) is an invariant subset of the flow Y and it is possible to describe the
behaviour of solutions from Y near P.

Let several features of the General Theorem be emphasized.
(i) If the flow Y fulfils the conditions from the General Theorem, then every
flow Z, which is sufficiently close to Y, fulfils conditions of the same type and
therefore thére exists an invariant subset of Z. The fact that flows Y and Z are
close is deseribed by two numbers ¢ > 0, T > 0, { being small and 7T being large
and it is required that the following inequalities hold

A
ot
+

@) . lly@, &, &) — 2, 4,8 s ¢ for Est T,

@y, 85—y, 5,8 — 2, 6,5 + 2,7, 8| = CllE— 7]
for tstst+T.
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Assume that flows Y and Z are the sets of all solutions of
(5) 9 =fy,1),
(6) £ = g(Z, t)’

the space Y where the solutions y and z take their values from being a Banach
space.

Crg)

Theorem CDP (Continuous Dependence on a Parameter): If f and g fulfil
some boundedness conditions, then flows Y and Z are close in the above sense if
t+4

Il f [f(y, 0) — g(y, 0)]1do is sufficiently small for all y, t and 0 < A <='~’1

Theorem CDP may be applied in the special case that

(7) y= h(y’ t/e);
(8) 2 = hy(2),

ho(z) = lim — f h(z, o) do the limit being uniform with respect to z and ¢.

T -ce

This way the averaging principle is includ=d into the above theory w1thout
any transformation of coordinates. "
(ii) The theory of invariant manifolds (or subsets) may be developed for
metric spaces. It is clear that the norm of the difference of y and z in (3)
is to be replaced by the distance; (4) in the case of metric spaces is formulated
in a more complicated way. Usually the invariant subset is a product of
a torus with an Euclidian space, but in the above theory the invariant subset
may be a general complete metric space @. The theory simplifies considzrably,
if @ has the following property:

(A) if ¥is a continuous map from @ to @, if ¥-1 exists and fulfils a Lipschitz
condition, then ¥(®@) = @. It is very easy to prove that every finite-dimensional
manifold has the property (A) and there exist spaces having property (A)
which are not manifolds.

(ili) There are no periodicity or almostperiodicity conditions in General
Theorem. If it happens that the flow Y is periodic [i.e. if f is periodic in ¢
in the case that Y is the set of solutions of (5)], it is verified easily that the
invariant subset remains an invariant subset, if it is shifted in the time by
the period of the flow; as the invariant manifold ig unique, it is necessarily
periodic. In a similar way almostperiodicity may be treated.

(iv) General Theorem may be applied if the behaviour of solutions near the
invariant subset is like the behaviour of solutions of a differential system

near a saddle point; the case that the invariant subset is exponentially stable
is the most simple one.
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(v) Systems with discrete time — i.e. transformations — are included in
General Theorem.
(vi) General Theorem may be applied in case of singular perturbations.

As one of the applications of the above theory the following result may be
mentioned: It is well known that solutions of differential equations with
time lags or of functional differential equations cannot be prolonged with ¢
decreasing in general. It may be deduced from the above theory that the
golutions of a functionally perturbed ordinary differential equation, which
are defined on E,, fill up an (n + 1)-dimensional manifold, if the unperturbed
equation is a (nonlinear) ordinary differential equation in E, or in an n-
dimensional manifold the right hand side of which fulfils some boundedness
conditions. The reason is in the very simple structure of the flow which
corresponds to the unperturbed equation considered as a functional equation:
the z-component of any solution from this flow tends to zero extremely rapilly.
Of course the necessary boundedness conditions are not fulfilled by equation
#(t) = Awx(t) + eBz(t — 1) — it is well known that there exist solutions
@y = elt,j =1,2,3, ... — but the above result always applies, if a functional
perturbation term is added to the right hand side of ¢ = g(¢), ¢ being a co-
ordinate vector on a compact-manifold (and some smoothness conditions
being fulfilled).

Finally let soms results on the Van der Pol Perturbation of a Vibrating

String be described. Consider the problem
(9) U — Ugy = eh(u) Uy, 0z, u(t, 0) = u(¢t, 1) = 0,
h having similar properties as 1 — w® This problem may be transformed
to an ordinary differential equation in a function space of the type (7). There
are no time-indepandesnt solutions of the averaged equation (8), which are
continuous (in the space variable), but there exists an infinity of discontinuous
- ones. Some of them are exponentially stable, other ones are unstable so that
"the picture rendered by the averaged equation is rather complicated. For the
unperturbed equation it may be proved that there exist smooth solutions,
tending with ¢ > to periodic ones, which are discontinuous. Thus it is
shown that there exist discontinuous periodic solutions of (9) and that
discontinuous solutions appear in a natural way, if (9) is examined.
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ACTA FACULTATIS RERUM NATURALIUM UNIVERSITATIS COMENIANAE
MATHEMATICA XVII — 1967

VECTORS OF GEVREY CLASSES AND APPLICATIONS

J. L. Lions, Paris
Introduction.

In several problems in partial differential equations one is led to study the
space of functions % defined in a domain £ of R* with smooth boundary I
and which satisfy conditions of the following type (we take here the simplest
possible case):

1) ([|A*u2da)'t < cLAMy M-k,
2

(2) Afu =0 on r Mk,

where ¢ and L are suitable constants (which depend on u) and M} is a given
sequence — For example, if

(3) My = (2k)!

then (1) (2) imply that % is analytic in 2 = Q U I" (assuming I" to be real-
analytic). A much more general result of this type will be reported in Section
4 below.

Once one is led to study classes of functions satisfying conditions of type
(1) (2), it is natural to put this question in a more general framework and. to
replace in (1) (2) A by an unbounded operator 4 in a Banach space E, condition
(2) being then replaced by &

(§) u € domain of 4, Au € domain of 4, and so on, and condition (1) being
replaced by

(A) |l4bul| < cL*My M- F, .
(where || || denotes the norm in ). :
In Sections 1,2 we give some (simple) remarks on the spaces deﬁned by

(1) Expositery lecture. All details and other results are contained in the book [4] by
E. Magenes and the A.
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(~1) (~2) (the so — called “vectors of Gevrey class” when {My} is a Gevrey
sequence) when (—A) is the infinitesimal generator of a semi-group. [This
contains (1) (2) by taking E = L), A = —A, the domain of 4 consisting
of those functions % which are zero on I'].
The plan is as follows:
. Domains D(A>°; My).
. A criterion of non triviality.
. The semi group on D(A%®; My).
. The case when 4 is an elliptic operator.
. Transposition.
. Cauchy problem.
. Some examples.

G D Ol 00

Bibliography

1. Domains D(A®; My).

Let E be a reflexive Banach space, norm || ||; let 4 be an unbounded
operator given in E; we assume (for semi-group theory we refer to [2], [10]):
(1.1) (—A) is the infinitesimal generator of a continuous semi-group G(t)
in E. Let D(A) be the domain of 4. We set

D(A4®) = {u| AueD(4) ¥ k};
it is well known [2], [10] that D(4*) is dense in K.

Let now {M;} be a given sequence of positive numbers.
We define :

D(A®; M) = {u|u e D(A®); there exist constants ¢ and L (de-
1.2). pending on u) such that ||A%u|| < cL¥M;  k}.

Example 1.1.
If My = (k!)*, « > 1, the coresponding D(A=; My)space is called: the space
of vectors of Gevrey class «.

Example 1.2.
If My = k!, the coresponding D(A>; M) is the space of analytic vectors.
{See {8]) :

"Remark 1.1
_.Definition 1.2 is purely algebraic. There is a “natural” locally convex
topology on D(A®; My): firstly, fix L in (1.2) (but not C) and call DL(A~; My)
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the coresponding space; provided with the norm sup ||A¥*u||, it is
P g Lk My

a Banach space; then D(A*; M}) = inductive hmlt of DL”(A s M), L‘
— 4-00. For details see [4].

Remark 1.2.

Hypothesis (1.1) is perfectly useless in Definition (1.2). But it will be useful
in the proofs below.

The “natural questions’ are now:
(i) when is D(4®; My) # {O}?
(ii) what is the “abstract’ interest of D(A>; My)?
(ili) how can one characterice, in ‘“‘concrete” situations, the spaces D{A®;

My) in “concrete’ terms?

Partial answers to these questions are respectively given in Sections 2, 3, 4

below — some applications being given in Sections 5, 6, 7.

2. A criterion of non triviality.
i
Theorem 2.1. Let {M;} be a non quasi-analytic sequence™ [1] [7]. Then
D(A*; My) is dense in E.

Proof. 1) If {M;} is non quasi-analytic, one can find a sequence g, of
functions with the following properties [7] [9]

oneDMk, on() =0if t <O orif t >ep, &0 if n >0,
9
(2.1) {Qn\O font)dt_ 1.
2) Define next G(on) € L(EZE) by
(22) Glow)e = [ Gt)e. oult)dt, e B
0
One checks easily that G(g,) e € D(A®) and that
(2.3) A%G(on) ¢ = G(ol}) € ¥ k.
Thanks to the fact that g, € Dy, it follows that G(g,) e € D(A®; My).

3) Let now e be arbitrarely given in E; by (2.1) G(gs) ¢ —.¢ in E, and by
2), G(on) e € D(A®; My), hence the result follows.

Remark 2.1. It can happen that D(A®; My)y is dense in E even with
My = 1 ¥ k example: assume that 4 has a complete set in E of eigenvectors
oy then Aw, = Apwp hence ||A¥w,|| < ||wy|| A, ie. belongs to D(A‘f’; 1).

() This means: let Dy, be the space of C» scalar functions ¢ on R with compact su‘pport
and satisfying |... | < |p®)! < cLkMy xtk then Dy, 5= {O}.
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But in can happen that D(A®; My) = {0} if M is quasi — analytic;
d

example: E = L?(0, c0), A= Y D(A) = {f|f, —g% e L?(0, ), f(0) = 0} .

3. The semi-group on D(4>; My).

Theorem 3.1. The necessary and sufficient condition for weE to be in

D(A®; My) is that the function

(3.1) G(.)u = “t > G(t)u”

18 of class M, with values in E, i.e.v
for every finite T there exist constants Cy and L, (depending on T and
w) such that :

32 | s
I

Remark 3.1. This property justifies the terminology introduced in Examples
1.1 and 1.2.

Proof of Theorem 3.1.

1) (3.2) implies (1.2) (with C = C,, L = L;). Obvious, take t = 0 in (3.2)

d*G(t)
dee

and use

% g = (—1)cAku.

k
2) (1.2) implies (3.2). Obvious too. Indeed%k—G(t)uz (—1)*G(t) A*n
hence, for ¢t € [0, T']
dxG(t)
di*
hence 3.2 follows.
It follows easily from Theorem 3.1 that (see [4] for details).

u

< sup [|G®)] LE:p ||A¥ull,
! te[o, T']

Theorem 3.2. For every t, G(t) is a continuous linear mapping from D(A>;
My) indo itself; the semi group G(t) in D(A=; My) is C° (and of infinitesinal
generator — A ). )

One can also show [4] that if for a suitable constant d
(3.3) Mysy < At MMy ¥ k, j
then for every u € D(4°; My) the function ¢ > G(t) u is of class My in ¢ >0
with values in D(A®; My) (i.e., for every finite 7', there exists a bounded

i . 1 dk
set B in D(A=; My) and a constant L such that T, aF G(t)u e B M-k,

te[0,T)).
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4. The case when A is an elliptic operator.

Let us recall first a classical definition: a complex-valued function ¢ defined
on a compact set of R is said of Gevrey order § > 1 (resp. real analytic) if
for suitable constants ¢ and L one has

|Dop(@)] < vt 49x(py! py! ... pal)? (resp. f = 1)
Mp=1{pPy, ..., Pn}, ¥ « € compact set of definition of ¢.
Let Q be a bounded open set of R”, of boundary I'; we assume
I' is a (n — 1) dimensional variety, of Gevrey order S (resp. real
(4.1) {analytic)

Let A be a differential operator in 2; we assume that
(4.2) A is an elliptic operator of order 2m (and properly elliptic if n = 2)
and that
(4.3) the coefficienits of A are of Gevrey order B (resp. real analytic) in 0.

We are going to characterize D(A%; My), taking
(4.4) E = L*Q). ,

(4.5) D(A) = {u|uweH*mQ) N H}MQ)} (that is: DrPue L* Q) & p, |p| <
< 2m, DPy = 0 on I' ¥, |p| <m — 1),

and when we choose

(4.8) My = [(2km)!]5.

One can prove (see [5], [6], [4]):

Theorem 4.1. We assume the hypotheses (4.1), (4.2), (4.3) to hold choosing
D(A) and My by (4.5) (4.6) one has

D(A=; My) =  functions of Gevrey order B in 2 (resp. real analytic)
(4.7) {which satisfy the boundary conditions “A¥u e Hy'(Q2) M k.

Remark 4.1. Under the hypothesis (4.2), — A4 is the infinitesimal generator
of a semi-group in £ and even of an analytical semi-group. [2], [10].

One can replace £ = L*(2) by L?(2), 1 < p < 00, p 7 2, without changing
D(A®; My).

Remark 4.2. The same result holds true for other boundary conditions
than the Dirichlet boundary conditions considered above. — See [4].

Remark 4.3. If u satisfies ||A%u|| < cL¥((2km)!) *+ k and no boundary
conditions, then one can conclude that u is real analytic on every compact
subset of £2; see [3]; this result in contained in Theorem 4.1.

Remark 4.4. A more general result is proved in [4] when we also consider
“non-zero boundary conditions”. ‘ ’ '

7 Equadiff II.
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5. Transposition

Since E is assumed to be a reflexive Banach Space (actually “reflexive” is
used here for the first time — and.in a non essential manner!) all what we
said in Sections 1, 2, 3 is valid after replacing

E by E' = dual of E

G(t) by G*(t) = adjoint of G(t) _

A by A*, A* being the adjoint of 4 in the sense of unbounded operators
in E or the (opposite to the) infinitesimal generator of the adjoint semi-group
G*(t).

Consequently:

(5.1) G*(t) is a semi-group in D(A*<; My)'.
If we make the hypothesis (see Theorem 1.1):
(5.2) D(A*=; M) is dense in E’
then we can identify. E to a sub-space of the dual D(A**; My) of D(A*®; My);
summing up, we have
(5.3) D(A°; Mx) = E = D(A*<; My)!
Taking the adjoint of (5.1) we obtain: .
(5.4) [G*(t)]* is & semi-group in D(A4*~; Mk)'.

But one easily checks that (G*(f))* is an extension of G(t), that we can
still denote by G(t). Therefore:

@(t) is a semi-group in D(4**; My)', which is C* and whose infinite-
(6.5) {sima.l generators is —A4.
For more details, see [4].

Remark 5.1. In the applications, D(A*<; M)’ is not a space of distributions
but a space of functionals (analytic functionals of Gervey’s functionals).
- Structure theorems for the elements of D(A*®; My)' are given in [4].

6. Canehy problem. .

If —A is the infinitesimal generator of a semi-group G(t), then the unique
golution of the Cauchy problem

(6.1 Au +u' =0 (u’ = -((11—':) "
u(t) e D(4),

i {u(o) = %y

is given by

(6.3) u(t) = G(¢) %,

See [2], [10].
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Thanks to Theorem 3.2 and its ‘“‘transposed’ version (5.5) we obtain:

Theorem 6.1. We assume that (5.2) holds true — For u, given in D(A®; My)
(resp. in D(A*=; My)') the Cauchy problem (6.1), (6.2) admits a unique solution,
given by (6.3), which is C° from t 20> D(A®; My) (resp. D(A**; My)').
Moreover, in case (3.3) holds true, the solution u(t) is of class M.

Remark 6.1. In case G(t) is analytic (see Remark 4.1) then, even starting
with u, € D(A*®; M)’ (i.e. with an extremely general Cauchy data), one has
u(t) e D(A®; Mg) - t > 0.
See [4].

7. Some examples.

We take the two as simple as possible cases.
7.1. Heat equation.

Combining results of Sections 4 and 6 we obtain the following result: let
u, be given in Q, satisfying

'\ k.
Then the solution of

(1.1 {uo is of Gevrey order f (resp. real analytic) in O, and A¥yy, = 0 on

(7.2) —Au + %‘ti —0in 2 x 10,0,

(7.3) u(x,t)=0if zel, t >0,
(7.4) u(x, 0) = uy(x), x € 2
is of Gevrey order f§ in x (resp. real analytic if § = 1) and of Gevrey order
28 in t. :

We have just to take: My = [(2k)!)’ in the general theory.

Moreover in this case Remark 6.1 applies —

7.2. Wave equation.

- We consider now

A 0%y . NE
(7.5) - u—I—W—:Om.QX]O,OO[,

(7.6) u(x,t) =0if xel', t > 0,
u(xa 0) = '“oo(x)a TE Q"
TDN2 (2, 0) = vy(a), z € 2.

“* . A 7”



Writing (7.5) as a first order system in ¢ one can apply semi-group theory.
One obtains:

if ug, and wu,, satisfy conditions analogous to (7.1) for u, then u(z, t)
(778 {is of Gevrey order f in z and in ¢.
See [4] Vol 3 for technical details.
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ACTA FACULTATIS RERUM NATURALIUM UNIVERSITATIS COMENIANAE
MATHEMATICA XVII — 1967 '

ON THE EXISTENCE AND REGULARITY OF SOLUTIONS
OF NON-LINEAR ELLIPTIC EQUATIONS

J. Ned&as, Praha
4
Introduction. We shall consider boundary value problems for elliptic
equations of order 2k in the divergent form
S (—1)4Diaa, Diu)] = fiz)
lilsk
where D¢ is the well-known symbol for derivatives in Euclidean space
Ey:Dt = o'tljoahh ... oxiv. We shall deal with the problem of existence
of weak solutions using direct variational methods and for them the regularity
theorems will be derived. In the conclusion the converse process will be used
for investigation of existence of regular solution.
Contents: §1 Weak solution of the boundary value problem. Its determinig
by the variational method.
§2 Regularity of the solution; application of differences method.
§3 Regularity of the solution; on the Hélder continuity of k-th
derivatives.
§4 The existence of regular solution. Application of the first
differential.

§1. Weak solution of the boundary value problem. Its deter-
mining by the variational method.

Let 2 be a bounded domain in Ex with Lipschitzian boundary 2. Let us
denote by E(2) the space of such real-valued infinitelly differentiable functions
on 2 that can be continuously extended (with all their derivatives) to the
closure of Q: 2. D(R) is a subspace of E(2) which contains all functions
with compact support. -

Let ¥ > 1 be an integer, 1 < m < 0. Let W¥)(2) be a normed space of all
real-valued functions which are integrable with m-th power over £ and so
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do all thelr derivatives (in the sense of distributions) up to the k- th order.
The O of w is ||u||wik = ( f Z | D*u(x)/m dz)Ym. Let us denote W"‘)(.Q)

= D(Q).

Let C®)(2) be a space of all real-valued functions which are continuous
with all their derivatives up to k-th order on © with usual norm and let
C®),#(2) be subspace of C*)(2) of these functions whose k-th derivatives are
u-Holder continuous.

We shall define functions ay(z, {j), |i| <k forz e, —0 < {3 <, [jl <k
continuous in variables {; for almost every x and measurable as functions
of x for {; being fixed. Each positive constant will be denoted by C. To
distinguished the constants, if it is necessary we shall use indices. Let us
assume

(L1) e, O <O+ > 1GImY), 1<m<o
lilsk

1 k— i

91 m N

or less: we set if(k—]i])m<N,—q—1—=0if(k—|i|)m>

111

|| >0if(k— |¢])m=N. For1 <q<oletq =-é%l—, Rt =

q[; L and let C(s) be continuous non-negative function for 0 << s < co. Let
i

g eL, 1), g11/(x) = 0. Let us suppose
(L2) e, O <C( 3 |Gl) (9@ + > |GPwm).

, ()<k=Nim k—Nm=(j|<k
The following assertion is valid: the operator ay(x, D/u) is continuous from
WE(Q) into Lg';1,(R2). Its proof is based upon imbedding theorems for W{)(Q)
spaces. (See, for instance, E. CAGLIA};DO [10] and also M. M. VAINBERG [28].)
"Letnowbe D(2) < 9 < E(Q), V =9 in WH(Q) and let Q be such Banach
space that D(22) = @ and that I‘%",,’?(Q) < @ algebraically and topologically.
Let upe W(Q) (stable boundary condition), g € V' such functional that
A .
gv = 0 for v e W¥(2) (unstable boundary condition), and fe@’ (the right-
hand side) be given. Let us denote gv = v, g)aq, fv = (v, f)q.

Definition of the boundary value problem and of weak solution: We are
" looking for such u € W¥(2) that =~~~

(13) = uy e WH(Q),
(1.4) for each ve V: [ 5 Diay(z, Dlu)dz = (v,fdq + (v, 9.

R Klsk
- Thus, boundary value problem (1.3), (1.4), we shall transfer to the problem
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of finding a minimum of certain functional @(v). There are many other
aspects the problem can be approached. Thus, many authors have dealt with
the existence of the solution of boundary value problem using the concept
of ““monotone operators’ which we shall use further. (See, e. g. F. E. BROWDER
[2], [3], M. I. Vi¥ik [30], J. LERrAY, J. L. Lions [17]...) We shall obtain
similar results; the difference is that we shall suppose certain additional
condition concerning symmetry of the operator. But we shall know that
certain functional has minimum in our solution. If the functional is a priori
known then further considerations are analogic to those in papers: F. E.
BROWDER [6], M. M. VAJNBERG, R. I. Kadurovskiy [29]. See also the book
by S. G. MIcHLIN [18].

The condition of symmetry: Let d be the number of indices with lenght
|i| < k, p € D(Ez). Then (1.5) holds almost ewerywhere in Q:

44 o
N | = = (=1l [ ==
15) (=D [Zo e L) Al = (=M [ ag(a £) 2.
There is proved in author’s paper [20] (using the formula for integration
of differential, see M. M. VAINBERG [28]):
Theorem 1.1. Let the conditions (1.2) and (1.5) be safisfied. - Then

(1.6) @) = fldt [ > Diway(x, Dlug + tDWv) dx — (v, fHo — v, 90
0

Q2 lilsk

18 continuous functional on V; its Gateaux’ differential is

(1.7) D®(@,v)= lin; P + n;) — 90) =b[ > Divay(x, Diuy + Div) dz —

. a lilsk
— 0, [P0 — v, 9>0.

To prove the existence of minimum @(v) on V, we shall investigate the
conditions under which the following relations hold: :
(1.8) lim @&@w) =

o Al koo

(1.9)  &(v) is weakly lower-semicontinuous.

If v is the point of minimum of @(v), then DP(v, v) = 0, which is (1.4).
Differential (1.7) is said to be totally monotone (strictly totally monotone)
ifforallv, weV, v # w, o
(110) [ S DY(w — v) [ai(x, Dy + Diw) — au(a, Diug + Div)] dw = 0, (> 0)

2 ik
holds. '
We shall say that the differential (1.7) is coercitive if for all ve V
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(1.11) h[ Iilzk Divay(x, Diug 4 Div) dz > A(||v|]| wik))  holds

R
where A(s)/s € L,(0, R) for every R > 0 and }eim —11-5; [ }"—f:}lds == 100
->00 0

There is proved in author’s paper [20].

Theorem 1.2. Let (1.2), (1.5), (1.10), (1.11) be satisfied. Then there exists
min O(v) (D(v) is defined by (1.6)), namely, in the point v. Function v + u,
18 the solution of problem. If the condition (1.10) of the strict monotony is satisfied,
the solution is unique. In this case D(vy) > P(v) = vy, — v (weak convergence).

Let us remark that (1.11) is satisfied, e.g. if 4, = 0 and

S L, &) = C 5 18d™ 4 C . [L(gs0e-0 ™

lilsk lil =k
If

I‘gk (6e — mi) - [aa(=, &) — ailw, 77)] =0
then (1.10) is satisfied e.t.c. See author’s paper [20].

Let us write the operators ai(x, D/u) in the form a;(x, D*u, Dfu) where
the symbol D*u denotes a vector of derivatives with |x| = k and Dfu a vector
with 8] < k.

We say that the main part of the differential (1.7) is monotone if for v,
w,weV

(112) [ > Diw — v) [ai(x, D*uy + D*w, D’uy + D) —
@ 1=k
— ai(x, D*uy + D*v, DPuy + Diw)]dx >0

holds.
 Let us investigate the conditions under which the functional (1.6) is weakly
lower-semicontinuous. For this we need monotony of the highest derivatives
[see condition (1.12)] and strengthened continuity which is to be locally
uniform regardig the derivatives D>u.

Sufficient conditions for this are following:

Let ¢(s), d(s) be continuous functions for 0 < 8 < 00, non-negative, d(0) = 0
and assume

(1.'13) li] =k : |au®, Lo §5) — i@, Loy mp)l <
=¢(max( 3 lfﬁl’m 2 / ) -[4( 2 165 — mgl) -

‘ . |Bl<k—N/m |<k—NJ |Bl<k—Njm~
B £ S (i B > 1al* 165 — mal# 18],
laj =% la| =k,k—N/ms|8l<k
: L
where 0 <[.¢|’3; < 9|g[‘ﬂ——r& . Let

104



(1.14) ai(m, Ca’ Cﬂ) =| z Cq,aia(xs C,’;‘) + a’i(x, Cﬂ)

al=k

hold for |i| < k. Let ai;, %0 at most when g, > Wrg—l . Let us suppose

(1.15)  lag(e, &)l <e( > 1&l)- (1 + > IZ51%131)

18l <k—Nm k—N/m<|Bl<k
(m—1)qy —m
m . qi|

where 0 < 5 < .q15 and

(1.18) e, )l <c (> 18]) - (gal®) + > |E x5 10131),
|Bl<k—=N/m k—N/m<|Bl<k
where gi(x) =0, gi € Lg%, and g¢ffy >¢'lil if b — Njm <|4l; ¢fj =1 if |¢)] <
< k — NJ/m . Further afj, 5 < %H—ll .
11

We can prove (see again [20]).

Theorem 1.3. Let the conditions (1.2), (1.5), (1.11), (1.12), (1.13), (1L.14),
(1.15), (1.18) be satisfied. Then there exists a minimum of (1.6); let us denote
it v. Function v + u, is the solution of problem.

Let us remark, that

(1.17) S (& — i) - [@u(@, &6s E5) — @il Mo {31 =0

lil| =k

is sufficient for the validity of (1.12).

§2. Regularity of the solution; application of differences method.

E. Hoer in his article [14] and many other authors have used this method
to prove the regularity of solution of non-linear second order elliptic equations.
Thus it is possible to obtain properties of k + 1-st derivatives. Author doesn’t
know how to apply this method, if it is possible, when investigating regularity
of the derivatives of k& -+ 2-nd and higher orders (as for the nonlinear elliptic
equations in general form). :

We shall assume, that functions a(x, ;) are continuously differentiable for

x e, —o0 < ¢ < oo and we denote ay(@, L) = % (2, £7). Assuming m > 2,

we restrict ourselves to the following conditions (see [20]):
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(2.1)

‘ 8—1:1 (.’IU, Ca)

o, Sl < cled® L1, il = Ll = K,
jauta el < ol 14 S 0T, i<k =

la[<k
analogically for |¢| =k, |j| <k,
lay@, L)l <c.(L+ 3 [GI™2), il <k, [jl <k
lal <k

ay(@, {o) &8y =c¢ 3 (L™,

¢l =i =Fk li]| =k

%‘x’ el <o te? 1+ 2, E®) for |i] = k,
' |ai <k

<ol+ S |LIm-Y)
k

ALTES

oag

or to the conditions

(2.2)

c

lay(z, L)l <@+ 3 BT, lil =1l =k d =0,
k

la] =

1
loy(z, L <@+ 3 T .1+ 3 &)

el =k lal <k
and analogically for [i| < k, |j| = k,

oy, L) <c(l+ 3 )T for il <k [j| <k

w3

m_
1

1
L=k Pl <k

lal<k
ed+ 3 Cg)?—llﬂz < > ey l) &y <cy(d + 3 Cz)?_l 1§12,
la| =& lil=li|=k o] =K
Wl g s T, i <k
oy | ( lagk «) ’ ’
'_3%301_*_ ce%—% i+ cz%—% li| = &
oxy ( I¢|Z=:k 2) ( Ialzs:k a) ’ =%

Let us denote by o() an infinitely differentiable function which is equivalent
with dist (v, Q) and which satisfies |Dis| < ¢.ol-lil. (Existence of such
funotion is proved by author in [22].)

We shall consider smoothness of the solution in 2, not in 2. We shall
assume that the right-hand side satisfies an inequality

(23) i L sy <

1=1

where W{*)(Q) is the dual space to ﬁ’g")(!)).
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Applying the standard differences method (see e.g. J. NEGas [21]) we
obtain

Theorem 2.1. Let uw € W{(Q), m > 2 be the solution of problem (1.3), (1.4).
(Generally we do not suppose (1.5).) Let (2.1), (2.3) also be satisfied. Then

¥ a m\ 2
2k D2
/o ZZ(M | Dl ) dz < ¢

1=1 il =k
and thus (N > 3):
2kN mN
(24) [ 3 o¥2 . | Dy|¥-2dx <c¢ < oo,
L i<k
(25) [ > o*P|Dlyfpda <Op < 0, 1<p<o, N=2.
2 |i[<k

Similarly the next theorem is valid:

Theorem 2.2. Let u € W(2), m > 2 be the solution of problem (1.3), (1.4)
(Generally we do not suppose (1.5).) Let (2.2), (2.3) also be satisfied. Then the
inequalities

N 2 my 2
ok, (— d -+ D’u24) der <c¢ < oo,
gf IZI oy [ |¢|Z=k( /]

Jo¥.[d+ S D=y . S (Durde<e<owo
2 lal =k li| =K +1
and (2.4), (2.5) hold.
Analogical assertion is valid if we set > (} instead of > (7 in (2.2).
la| <k lof =k
If £ = 1 (the equation of second order) we can weaken our requirements.
Let us denote functions a;(x, {;) by symbols: a;(z, %, p), 1t =1, 2, ..., N)

ou

a(x, u, p), where p = (py, ..., Pn), Pi = ¢ and let v(s), u(s), u,(s) be non-

N
negative functions for 0 << s < co. Let us denote [p| = ( Z P12, Let us
i=1
assume :

W) L+ 2. S e S 2, p) gy <
TR ‘

i=1 RT™

< ullul) . (1 + lpnm—*ﬁ &,
=1

N .
= ("’“‘ +|az!)-(1+lpl)+ S

A S
| =p(u). L+ p)m, 1<m <o

(2.6) |
3a;
ox;
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ol 3 |0
2 @ u,p)! AP+ 3w p) (1 i) +
N
@7 1 4 %(x, u, P)’ +~;Zl % (@, u, p)’ < y(lul) . (1 + |p|)m,
1<m<co.

Let u e W(2) be a weak solution satisfying the next condition: for each
@ € D(Q) the equation

N i
(2.8) f ( Z ai(x, u, p)—a—‘?;i + a(z, u, p) p)dx =0
2 i=1 i

holds. Theh the next assertion holds (see O. A. LapyZensgaga, N. N. UraL-
CEVA [16]):

Theorem 2.3. Let ue WP(Q), 1 < m < oo be the weak solution satisfying
(2.8), let sup |u(x)| < co. Let (2.6) and (2.7) be valid. Then for @' c Q
z €N

, 2 S Y ,
(2.8) ‘!(1 + |p|ym 2“2::1 (W) dz < ¢(2') < o holds.

If k=1, uye C¥Q) and if we consider the Dirichlet problem we can
substitute 2 for 2’ in Theorem 2.3 when 2Q in sufficiently smooth. (See
(16].)

Analogical results concerning the solution of the variational problem for
the functional [ f(x, u, p) dz (as Theorem 2.3 and following) proved C. B.

e

MorEy [19]. Let f(z, u, p) be a function which has two Hélder continuous
derivatives according to each variable and let the inequality

m
(29) (1 4w + [p|?)? — Cs < f(&, u, p) < Cy (1 + u2 + |p|?)
be satisfied for 1 < m < o0. .
Furthermore, let u, € W1 (2). Let us look for such

m
2

0
(2.10) uwe WR(Q), u— use WH(Q),
that

(2.11) aff (a:u -23;—) dz s mjninfa}l".l
The solution u satisfies Euler equation in the weak form: for ¢ € D(Q):

y @ b 0
(2.12) bf (izl —a%-@":—‘ (@, u, p) + q;—a;::.— (x, u, p)) dz = 0.

' o _ of _
Let us denotew = ai(z, u, p), oy (x, u, p) = a(z, u, p).
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Let

18 2 |
N L e L

m 1
< C(1 + 2 + [p|?)? 2,
a 8 m_
(2.13) % + a—a <O+ w? + [p*)? 1,

m 4N
Gl +ut+ [py? > E< z Ty @ WD) by <

=1 =
-1

N
<O +ut 4T 3 &

IS‘@

be satisfied. (Comp. with (2.2).) Then (see C. B. MorEY [19]):

Theorem 2.4. If u € W(Q), m > 2, u satisfies (2.12) and if the conditions
(2.13) are satisfied then (2.8)" holds. If 1 < m < 2 then there exists w satisfying
(2.12) such that (2.8)" holds again.

See also E. R. BuLEY [6].

§3. Regularity of the solution; on the Hdolder continuity of
k—th derivatives.

Under the assumptions of the Theorems 2.1 or 2.2 we have (3.1) for the
weak solution and ¢ € D(Q)

31 [ S ay D) quoD,a—“dx:

Q [illil<k

el e, aat & i < > = :
= 2 (xDu)Dcpdx—}— P oy F==1,9: o0y N

11,|<k

Thus if we denote w = %— then o is a weak solution of linear differential
1

equation. The investigation of regularity of higher derivatives is based upon
(3.1) and upon regularity theorems for the linear equations. In this section
we restrict ourselves to the assumptions (2.2) with.d = 1. Simple example
can be given to exhibit that conditions (2.1) do not guarantee continuity of
k - 1-st derivatives in 2 in spite of the analyticity of functions a(z, {j), f().
(See J. Nudas [20].)

If k = 1 then (3.1) yields further information if ‘we set ¢ = —Z—u—b‘ v 9 e
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€D(Q), 8 20, by(x) = min (|p|%,n), n=1, 2, ... (p — the comparison
function). See e.g. 0. A. LADY?ENSKAJA, N. N. UraLcEva [16]. The com-
parison function ‘

32) ¢= d:.g—z v, peD@), s >0,
dpn = min {(1 + 2 4 |p|?),n}, n=1,2, ...

has been used in E. R. BULEY’s paper [6] under assumptions (2.9), (2.13)
and m > 2. The same function has been used by C. B. Morey [19] but with
8 < 0. From this the boundedness of the first derivatives on every Q' <
< £ © Q can be obtained when s >oo. (See E. R. BuLey [6], J. NEGAS
[21].) If

(3.3) : sup |p(z)] < C(Q) <o

is proved and if (2.8)" holds then —g—;—l'l— = wis a weak solution of linear equation

with bounded and measurable coefficients on £’ according to (2.1). When

k=1 we can use DE Giorar’s result (if %— = 0 see [12]) or more general
1

result of G. STAMPACCHIA (if g}-% 0) [27]:

Theorem 3.1. Let u € W}(R2) be a weak solution of the equation: for ¢ € D(Q),

N N
op ou _ op
[ 2 o o= [ttt [ > ot
2 ij=1 Q € i=1

' N
where f € Lp(Q), fi€ Lp(Q), p > 5, i€ La(Q), > aykils = C|4[2, then

t,7=1

there exists such 0 < pu <1 that
, . |

[lulled@ @y < C@') (I “L”("’—*—,-Zl Ifillzeper + llullwiPw), @' < 2
holds. 4

- The proof of Holder continuity for higher derivatives and (for ¥ = 1 of
the analyticity of solution) follows e.g. by the result of A. DoveLis, L. NIREN-
BERG [9] (or by results of E. Hopr [14]). We shall formulate the results:
~ E. R. BuLzy [6]: ‘

Theorem 3.2. Let k = 1, m > 2, let u be the solution of (2.10), (2.11) and leb

110



the assumptions (2.9), (2.13) be satisfied. Then (3.3) holds and there exists
0<p <1 that

(3.4) ||ulleH(Q) < O(RQ) < holds.

Applying C. B. MorrEY’s result the Theorem 3.2 can be obtained for such
u which satisfies the condition (2.12). Furthermore, this author obtained:

Theorem 3.3. Let k=1, 1 < m < 2 and otherwise let all assumptions of the
preceding theorem be satisfied. Then there exists such solution of the problem
(2.10), (2.11), that (3.1), (3.4) hold.

0. A. LApYZENSKAJA, N. N. URALCEVA:

Theorem 3.4. Let u € W{(2), 1 < m < oo be a weak solution which satisfies
the condition (2.8). Let sup |u(x)| < oo and let (2.6), (2.7) hold. Then (3.3),
r €

(3.4) hold.

The inequality (3.3) was essential in proof of regularity of the solution for
k = 1. The inequality (3.1) (k= 1) has been considered by many authors
that generalized the result of T. Rapo [26] under essentially weaken assump-
tions (supposing that Q = &', 2Q is smooth and  is strictly convex). (See
e.g. P. HARTMAN, G. STAMPACCHIA [13], D. GiLBARG [11].)

Now let us consider & > 2. The use of the comparison function of the
type (3.2) does not lead to any result and the information
(3.5) sup > | Diu(z)| < C(Q') < ©

x e i<k .
is not available. Accordingly, we shall consider the case m = 2 or we shall
suppose that (3.5) holds. Thus we transfer the problem of regularity of k-th
derivatives to the linear problem.:

Let A;; be a real matrix of bounded measurable functions in a domain O,

li| = |j| = k. We shall use the following assumptions:

(3.6) CilEP< S Aulily < Calll?

[tl=lil=k
(3.7 Ay=Au

Function w € W{(0) is a weak solution of the equation > Di(AyDiw) =

[l =1fl =k
= > Dify with f; € Ly(0), if for each ¢ € D(2)
lif=k .
(3.7) f z AyDioDiw dx = 0[ z Digf; dz.
O li|=lil=k lil =k

Further let us denote 0 d = {z c O, dist (z, 90) = d}, B(zo, 1) = {#, |z —
— 2y <r}. For 0< 1< N let Z&H(0) be such subspace of Ly(0) that
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sup (¢, [ f@)de)li=||f|£EN(0) < co.

zo €0,0>0 B(zy, @) N O
For the properties of these spaces see, e.g. S. CaMpPANATO [7].
Applying S. CaMPANATO’s method [7] whose generalization for the equation

of higher order has been given in the paper [15] of J. KaprLec and J. NE&as,
we obtain the following:

Theorem 3.5. Let w be a weak solution satisfying (3.7)'. If (3.6), (3.7) and if

—o 5
' N .log G
3.8 1= : >N — 2,
1 §_1
240, 4 C,
log o + log G,
Cy

(3.9) fie L@Y0y), d >0
are satisfied then we obtain
) . i+2—N -
IC &-24Da) < 0@ 3 1l 2 oma, w= 5=

(3.8) ts always satisfied for N = 2. For N > 3 it holds when the positively-

definite matrix o Ay 18 sufficiently mear (uniformly on O) to the unit matriz
2

in the sense of (3.8). The constant A is absoMute.

The Theorem 3.5 is — in certain sense — an analogy of the Theorem 3.1
for k > 2.

If
(3.10) [|Aylled <C <o
holds, then (see [15]):

Theorem 3.6. Let w be a weak solution satisfying (3.7) and let the assumptions
(3.6), (3.10), (3.9) with A > N — 2 be satisfied. Then

2_._—1—_2;1\7 holds.

[|w]|c-vim@a) < C(d) mzﬂk IIfill @0 0 arp), = 2

Replace <¢¢,g-> Q in (3.1) by the expression [ lilz Diy i dx where
<2 lif=k

oxy
312) [ 3 2( )o*"dw<oo

8 =k 1=1
Furbher let, us suppose that (2.2) is valid and (for techniaal reason)
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(3.13) a;=0 for |i| <k, ———O for |j| < k, ay = ay.
According to Theorems 2.2, 3 5 3.6 we obtain (see J. NE&AS [23])

Theorem 3.7. Let w € W¥)(Q2), m > 2 be a solution of the problem (1.3), (1.4)
and let the assumptions (2.2), (3.12), (3.13) be satisfied (the comstants C,, Cy
have the same meaning as before). Then we have
(@) ¢f m =N =2 and
G

<Cd* d>0
oxy

li=k 1=1 Erdll (Da)
A
then ||u||c® %(Ba) < Cd—*—3, (Ais taken of (3.8))
(®) if m >2, N =2, (3.5) has the form sup Z | Diu(z)|2 = Ag < Cid—2

x € Qq li|=

(3.14)

and if (3.14) with

1— %%(1 + Cdyt-T
2.1o 2
® -1 _(,‘1—2
1— C, (1 + Cyd—) "2

1—%ﬁu+ow¢2

log 2A (1 Lo d—«)‘“? + log
— Ul 1+ Csd—a)l-?
2

is valid then |jul|c®wa(g) < < d—k-va,
ud

(¢) isf m=2, N >3, g%i = 0, (3.8) is valid with the constants Cy, Cy from
(2.2) and if (3.14) with A from (3. 8) 18 3atwﬁed then
A—
] T (@) < 08

(d) f m >2, N > 3 and (3.5)in theform sup 2, 1D°‘u(:t:)l2 < C,is satwﬁed
z e

la| =&
Sfurther if (3.8), (3.14) with

. 3C 1-Z
11— Tﬁl(l + Cy)
Nlog

C‘(1+0,,) T

l ==
30, 1-2
1 ——5;(1 + Cy)

A ]

log2A (1 + C’a) -3 + log
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A-N+2 2
is valid then ||u||c™® 2 (84 < Cd™* %
) ifm =>2,N >2,|ul|c® () < Cyandif (3.14) with A > N — 2 is valid then

Ao NS S
lJullc® ~2 (2) <Cd™ "7 7.

§4. The existence of the regular solution. Application of the
first differential.

Let 2 be a bounded domain with infinitely differentiable boundary o0.
Let ay(z, j,t) be real functions with the same meaning as in section §1, defined
for |¢] < k continuous on 2 x(—o0 < {; <) x(0 <t < 1) and continuously
differentiable in {;, ¢t and let ay(x, 0,0) = 0. Using the same notation as
above i.e. ay; = o we suppose

oLy
lail(x’ Ca’ t) - “u(y, Na> t)l <
<C( 2 (Ll + 1) (& —gl* + 2 1Ca— nal)
la| <k la| <k

and the same for %oy ,
(4.1) ot
|a:ij(.’17, Cm tl) S ai](?/’ Nas tl) + ai]'(y, Nas t2) — a’ij(x9 G tz)l <

<0, (Iugk|c.,| + 7)) @(lty — &) & — gl + <Zk e — %al)s

and the same for %’

where 'Cg(s) is a non-negative continuous function for 0 <<s <0, 0 <p <1
and w(s) is continuous function for 0 < s < o0, w(0) = 0.
Let us assume further

4.2) (2 i< 2 i nt)ids

Y . ® a| < i| =|j| =k
where C,(s) is a continuous positive function for 0 <s < oo. Further let
fi € CORD), |i| < k, ug e C®).#(2). Let us denote by G®.u(Q) the subspace

n

!
of C®).+(Q) whose elements are functions for which % =0on 02,1 =0,

1, ..k — 1. (The derivation in the direction of exterior normal.) We look
for such weak solution of the Dirichlet problem u e C®).«(Q) that

4.3)  u— upe CE@)
(4.4) for each pe D) [ I IZ Digay(x, Diu, 1) dz = [ l IZk Digf; dz.
S g <k g i<

Let the functions b,(z, Diu, t), |i| < k, |j| < k be continuous on Q X —o0 <
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<f <o xX0<t S 1 continuously differentiable in (;, ¢, bg(x 0,0) = 0:
ob;

3C ! and assume that by, — vy
Roughly speaking, we shall solve the problem (4.3), (4.4) as follows: We
shall look for such curve wu(t), 0 <t <1 with its values in C®.#() that
u(t) satisfies the problem (4.3), (4.4) with tu,, ¢f;. For this curve we shall

Let us denote by = satisfy the condmons (4.1).

obtain a differential equation %;—b = N[t, u(t)] and we shall look for such

solution that (0) = 0. See J. NECAs [24] see also F. E. BROWDER [4]. Thus
instead of solving the problem (4.3), (4.4) we look for a mapping u(t, v) with
adomain t=10,0<t<1,¢t=1,0<17<1and a range in O®).%(22) which

is continuous with its derivative 2—:‘ (¢, 0) from 0 <t <1 to C®.»(Q) for

T = 0. (The case when ay(z, ;, t) does not depend on ¢ is of great importance.)
Further we require

(4.5)  ult, ) — tuy € C®1(D),
(4.6) @eD@): [ > Digayx, Diu,tyds+ (1 —1) [ > Dighi(x, Dlu, t)

Q i<k Q2 i<k

de=t [ > Digfida.

2 i<k

Further let us assume that for ||u|/ctmug) < R < co the following holds:

if we W (Q2) and (4.7) holds for every ¢ € D(Q):

@7 [ MZ ayy(x, D*u, t) DigDhw dx + [ > by(w, D*u, t) DigDiwdz = 0
Q liljil<k Q il lil<k

then w= 0. This assumption implies the existence of only one element (for

[lu|[c®s) < R, if R < o) we C®u(Q) for which

(48) w—1uyye (OJ(’”»"(D)

(4.9) for p e D(Q2 f] " aij(z, D*u, t) DioDiw dz +
Q |illil<k

Z bij(x, D*u, t) DiDiw da = — f z ( (x, D“u, t) +

Q2 liLlil <k 2 |il<k

abi (a:, Dy, t)) Dip dzx -+ f Z fiDlp dz is valid.

Q i<k

It follows e.g. from the article by S. AgmonN, A. DOUGLIS L. NIRENBERG
[1] or from J. KaDpLEC, J. NECAS [15].

Let us denote by w = N(u, ¢, fi, u,) the mapping that assigns to a functxon
u € C®.»(2) from the sphere ||u||c®:") < R, to the parameter ¢ from (0, 1),
to the elements f;, |i| << & and to the element u, the function w. Now, we
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have for a function w e 6‘("):"(?)'), which is a weak solution of the equation

[ S aylx, Do, t) Dig Dwdx + [ > by(x, D*u, t) D'gDhw dw =

a2 |il.lil<k 2 lillil <k

=/ 2 GDlpdx

2 i<k
that there holds:

(4.10) ||o|| c®#@m) < Cyl||ullc®*G), 1) sz [1Gillc@-*(@)

where Cy(7,, ;) is continuous and positive function for 0 < 7, <0, 0 <
< n3 < 1. According to this it follows:

[ (a) The mapping N(u, t, fi, 1) is locally Lipschitzian: for |ju| lc®m) <
<R <o =12 R <R, 0<t<1, |[fillc®"@m) < B, <,

(4.11) | 2ollc®@ =< B, thereis|fu, —wy||c®h#(@) < O(Ro, By) || — g c®(@),

(b) N is continuous as the mapping u, ¢ - w,
(¢) N is coutinuous in f;, u, uniformly with respect to ||| c®@) <
. <R,0<t<]l

For 7 = 0 we have: if u(¢, 0) is a solution of the problem (4.5), (4.6) for
0<t<eandif 0 <e<l, |ud0)||c®#g < R then

'(4.12) %"E (t, 0) = N(u(t), t, fi, wp), 0 <t < & u(0,0) =0
holds and thus
t
(4.13)  u(t, 0) = [ N(u(s), 8, fi, up) ds, 0 <t <e.
0

- Now, using the standart method -based upon the theorem of contraction,
owing to the validity of (4.11) we obtain the existence of the solution of
(4.13) for some interval 0, e), ¢ > 0; if there is such solution for some interval
{0, &), ¢ < 1 then it also exists<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>