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Milan Sekanina, our distinguished fellow and many years’ member of the
editorial board of Archivum Mathematicum died on 21st October, 1987 at the
age of fifty-six. He influenced considerably the development of mathematics in
Czechoslovakia. Topology, the theory of ordered sets, algebra and the theory of
graphs were the main fields of his interest. Widely there are known, for instance,
his results on hamiltonian properties of powers of graphs. M. Sekanina is also
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0. INTRODUCTION

Some authors have studied cyclically ordered sets, e.g. E. Cech [4] who has
used a cyclic order to define an orientation of a closed curve, G. Miiller [6],
N. Megiddo [5], P. Alles [1] and others. A cyclic order is a nontrivial example
of a relation with arity greater than 2; thus a natural question arises, which problems
of the theory of ordered sets can be posed for cyclically ordered sets (e.g. dimension
theory [8], completion [10], representation theory [9] a.s.0.). A great disadvantage
of these investigations is the fact that there is no simple realisation of a ternary
relation. This paper is an attempt to construct ternary relations from binary
relations and vice versa with preservation of transitivity. The relationship between
binary and ternary relations were studied in literature. So G. Birkhoff [3] posed
the problem of a connection of a partial order and corresponding relation
betweeness; this problem was solved by M. Altwegg [2]. M. Sekanina studied
the relation betweeness in graphs [11].

1. BASIC NOTIONS

Let G # 0 be a set, n = 1 an integer and R an n-ary relation on G. The pair
G = (G, R) will be called an n-ary structure. If G = (G, R) is an n-ary structure,
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~ then the set G is called a carrier of the structure G and denoted G = ¢(G), and
the set R is called a relation of the structure G and denoted R = r(G).
Let G be an n-ary structure, x € ¢(G). We call the element x isolated, if for any
(xys .., x,) € H(G) we have x # x; for all i = 1, ..., n; otherwise it is nonisolated.
Let G, H be n-ary. structurzs, f: ¢(G) — ¢(H) be a mapping. f'is called 2 homo-
morphism of G into H iff

Xiyoens Xy € (G, (X1, ooy X)) €HG) = (f(x}), -oe\ f(x,)) € F(H).
A homomorphism f of G into H is czlled strong, iff it is surjective and it holds

Viseer Vg€ c(H), (yyy ..., p,) € F(H) = there exist
X €'y, oees xp€ £ N y,) with (x4, ..., x,) € Q).

A bijective strong homomorphism is an isomorphism'. Two n-ary structures
G, H arc called isomorphic iff there exists an isomorphism of G onto H.

In the sequel we shall deal only with binary and iernary siructures. Recall
that a binary relation which is reflexive and transitive is a quasiordering; a binary
structure G in which #(G) is a quasiordering is a quasiordered set. A quasiordering
which is antisymmetric is an ordering; a binary structure G in which r(G) is an
ordering is an ordered set.

Let R be a ternary relation on 2 set G. We shall call this relation

transitive, it (x,y,2)e R, (z,y, ) € R = (x,y, u) e R,
antisymmetric, iff (x, y,z)e R, (z, y, x)€ R = x = z.

A ternary structure G is called transitive, resp. antisymmetric, iff r(G) is transitive,
resp. antisymmetric ternary relation.
Let G be a ternary structure. Put

DG) = {(x, y; x) e (c(G))3; there exists ze c(G) with either (x,y.z)er(G) or
z,y, vV e r(G)},

A(G) = r(G) v D(G).

In the whole paper, the symbols D(G), A(G) will have just this meaning.
Trivially, it holds

1.1. Lemma. Let G be a ternary structure, x,y e c(G). If (x,y, x) € r{(G), then
(v, y, x) e D(G).
Furiher, we prove

1.2. Lemma. Let G be a ternary structure. If the relation ¥(G) is transitive, then
A(Q) is transitive.

Proof. Let (x,y,2)e A(G), (z,y,u)€ A(G). If z # x,z # u, then (x,y,2z)€
er(@), (z,y,u) e r(@) and (x, y, u) € r(G) < A(G) for r(G) is transitive. If z = x,
then (x, y, u) € A(G); similarly for z = u. Thus A(G) is transitive.
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2. OPERATOR 2

Let G be a ternary structure. Put

B(G) = {((x. y, x), (z, y, 2)) € D(G) x D(G); (x, y, z) € A(G)},
2(G) = (D(G), B(G)).
Thus, 2(G) is a binary structure with carrier D(G).

2.1. Lemma. Let G be a ternary structure. Then the binary structure 2(G) is
refiexive.

Proof. Let (x,p, x) € D(G). Then (x,y. x)e A(G), thus ((x, y, x), (&, y, x))€e
e B(@) and B(G) = r(2(G)) is refexive.

2.2. Lemma. Lct G be a ternary structure. Then it holds:

(1) If G is transiiive, then 2(G) is a transitive binary structure,

(2) If 1KG) = A(G) and 2(Q) is transitive, then G is transitive.

Proof. (1) Let G be transitive and (x, y, x). (z, y. 2), (u, y, u) € D(G) = c(2(Q)),
((x, ¥, x). (z, y, 2)) € B(G) = r(2(Q)), ((z, y, 2), (u, y, u)) € B{G). Then, by definition,
(x.y. 2) e A(G), (z, y, u) € A(G) and by 1.2. (x, y, u) € A(G). From this ((x, y, x),
(u, y, u); € B(G) and B(G) is transitive.

(2) Let rG) = A(G) and 2(G) be transitive. Let x, y, z, u € ¢(G), (x, y, 2) € (G),
(z, v.u)e *(G). Then (x, v, x), (z,y,2), (u, y,u) e D(G) = ¢ (2(G)) and ((x, y, x),
(z, y, 2)) € B(G) = r2(G)), ((z, y, 2), (4, y, u)) € B(G). The transitivity of B(G)
yields ((x, y, x), (4, y, u)) € B(G) which meas (x, y, u) € A(G) = r(G). Thus rG)
is transitive.

From 2.1. and 2.2. it follows

2.3. Theorem. Let G be a ternary structure. Then it holds:
(1) If G is transitive, then (@) is quasiordered set,
(2) If (G) = A(G), then G is transitive iff 2(G) is a quasiordered set.

2.4. Lemma. Let G be a ternary structure. Then it holds:

(1) If the binary structure 2(G) is antisymmetric, then G is antisymmetric.

(2) If Q) = A(G) and G is antisymmetric, then 2(G) is -antisymmetric.

Proof. (1) Let 2(G) be antisymmetric and x, y, z € ¢(G), (x, y, 2) € /(G), (z, y, X) €
e r(G). Then (x, p, x), (z, y, z) € D(G) = ¢(2(G)) and ((x, y, x), (z, y, 2)) € B(G) =
= r(2(G)), ((z, y, 2), (x, y, x)) € B(G). The antisymmetry of B(G) gives (x, y, x) =
= (z, , z), thus x = z and r(G) is antisymmetric.

(2) Let r(G) = A(G) and G be antisymmetric. Let (x, y, x), (z, y, z) € D(G) =
= c(2(G)), ((x,y, x), (2, , 2) € B(G) = r(2G)), ((z, y, 2), (x,, x)) € B(G). Then
(x,y,2) e A(G) = r(G), (z,y, x) e r(G) and antisymmetry of r(G) yields x = z.
Thus (x, y, x) = (z, y, z) and ‘B(G) = r(2(@)) is antisymmetric.

From 2.3. and 2.4. we get immediately
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' 2.5. Theorem. Let G be a ternary structure with the property r(G) = A(G). Then G
is transitive and antisymmetric if and only if 2(G) is an ordered set.

3. OPERATOR 7

Let G be a binary structure. Let @ be the least equivalence on ¢(G), containing
r (G) and p be the natural projection of ¢(G) onto ¢(G)/g. Put
E(G)) = (@) v c(G)lg,
F(G)) = {(x,y,2); x,z€ clG), y € c(G)] g, (x, 2) € H(G), p(x) = p(2) = y},
7 (@) = (E(G), F(G)).
Thus, 7(G) is a ternary structure with carrier E(G) = ¢(G) U c(G)/g.

3.1. Lemma. Let G be a binary structure. Then it holds:

(1) If G is reflexive, then the ternary structure 7 (Q) satisfies (7 (G)) = A(T (G)),

(2) If G contains no isolated elements and if r(7(GQ)) = A(J (G)), then G is
reflexive.

Proof. (1) Assume that G is reflexive and that A(J (G)) — r(7 (G)) # 9. Let
me A(J(G)) — r(7 (@)) be any element. Then m € D(J (Q)), thus m = (x, y, X),
where x, y € ¢(J (G)) and there exists z € ¢(Z (G)) with either (x, y, z) e H(7 (Q@))
or (z, y, x) € (T (GQ)); say (x, y, z) € r(F (@)). This means x € ¢(G), y = p(x) and
as r(@) is reflexive, we have (x, x) € r(G). From this it follows by definition m =
= (x, y, x) € F(G) = r(J (@)), a contradiction.

(2) Let G have no isolated elements, let #(Z7 (G)) = A(Z (G)) and assume that G
is not reflexive. Then there exists an element x € ¢(G) with (x, x) € 7(G). Denote
p(x) =y, thus (x, y, x) € F(G) = r(Z (G)). As G has no isolated elements, there
is an element z € ¢(G) satisfying either (x, z) € #(G) or (z, x) € ¥(G); let us say that
(x,z) e r(G). Then (x, y, z) e F(G) = r(7 (G)) and by definition it is (x, y, x) €
€ D(J (@) < A(Z(@)). Thus (x, y, x) € A(T(G)) — r(J (G)), a contradiction.

3.2. Lemma. Let G be a binary structure. Then G is transitive iff 7 (G) is
a transitive ternary structure.

Proof. 1. Let G be transitive and x, y, z, u € ¢(7 (G)) = E(G), (x,y,2) e (T (G)) =
= F(G), (z, y, u) € F(@). Then, by definition, x, z, u € ¢(G), y € ¢(G)/g, and it
holds (x, z) € r(G), p(x) = p(z) = y, (z, u) € r(@), p(z) = p(u) = y. As r(G) is
transitive, we have (x, u) e r(G) and p(x) = p(u) = y. Thus (x, y, u) e F(G) and
F(G@) = r(7(Q)) is transitive.

2. Let F(Q) be transitive ternary relation on E(G) and let x, y, z € ¢(G), (x, y) €
e r(G), (3, z) er(G). Then (x,y)€ O, (y,z) € O, so that, if we denote p(x) = u,
we have p(y) = p(z) = u. By definition of the relation F(G) it is (x, u, y) € F(G),
(», 4, z) € F(G) and transitivity of F(G) yields (x, u, z) € F(G). This means (x, z) €
€ r(G) and r(@) is transitive.

From 3.1. and 3.2. we get
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3.3. Theorem. Let G be a binary structure. Then it holds:

(1) If G is a quasiordered set, then 7 (G) is a transitive ternary structure with
the property (7 (G)) = A(J (Q)).

(2) If G contains no isolated elements, then.G is quasiordered set iff T (@) is
a transitive ternary structure with the property r(7 (G)) = A(J (G)).

3.4. Lemma. Let G be a binary structure. Then G is antisymmetric iff the ternary
structure I (G) is antisymmetric.

Proof. 1. Let G be antisymmetric and let x, y, z € ¢(J(G)) = E(G), (x,y, 2) €
e (7 (G)) = F(G), (z, y, x) € F(G). Then x, z € ¢(G), p(x) = p(z) = y, (x, z) € HG),
(z, x) € r(G). The antisymmetry of r(G) yields x = z and thus F(G) = r(7(G)) is
antisymmetric. "

2. Let F(G) be antisymmetric and let x, y € ¢(GQ), (x, y) € r(G), (3, x) € r(@).
Then (x, y) € © and if we denote p(x) = p(y) = u, we have (x, u, y) € F(G), (y, u, x) €
€ F(G). As F(G) is antisymmetric, it is x = y and thus #(G) is antisymmetric.

From 3.3. and 3.4. we now get

3.5. Theorem. Let G be a binary structure. Then it holds:

(1) If G is an ordered set, then I (Q) is a transitive and antisymmetric ternary
structure with the property (7 (G)) = A(J (G@)), .

(2) If G contains no isolated elements, then G is an ordered set iff 7 (G) is a transitive
and antisymmetric ternary structure with the property (7 (G)) = A(7 (G)).

4. OPERATORS 209 AND 702

4.1. Theorem. Let G be a quasiordered set. Then the structures G and 2(7 (G))
are isomorphic.

Proof. By definition, it is J(G) = (E(G), F(G)) where E(G) = ¢(G) v c(G)/y,
and 27 (G)) = (D(Z(G)), B(Z (G))). Put for any x € ¢(G) f(x) = (x, p(x), x). As
(x, x) e (@), it is f(x)e F(G) = r(J(G)) and by 1.1. f(x) € D(Z(G)). Thus,
S is a mapping of ¢(G) into D(J(G)) = c(2(7(G))). Let we D(F(G)) be any
element. Then w = (x, y, x) € (c(F(G)))® = (E(G))? and there exists an element
z € E(G) such that either (x, y, z) € /(J(G)) = F(Q) or (z, y, x) € F(G). This means
x,z€c(@), yec(G)lg, p(x) = p(z) =y and either (x, z) e r(G) or (z, x) € r(G).
But then f(x) = (x, y, x) = w and the mapping f is surjective.

Let x,yec(G), f(x) = f(y). Then (x, p(x), x) = (», p(»), y), thus x = y. The
mapping f is injective, hence a bijection of ¢(G) onto ¢(2(7 (G))). Let x, y € ¢(G),
(x, y) € r(G). Then (x, y) € O, thus p(x) = p(y) = u € ¢(G)/g and (x, u, y) € F(G) =
= r(7(G)). By 3.1. we have r(7(G)) = A(J (G)). Further, it is f(x) = (x,u, x) €
€ D(7(G)), f(y) = (», u, y) € D(Z (G)) and by definition we have ((x, u, x), (¥, u, y)) =
= (f(x), f(»)) € B(7 (G)) = r(2(7 (G))). Thus fis a bijective homomorphism of G
onto 2(7(G)).
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-Let x, y € ¢(G) and (f(x), f(»)) € r(2(F (G))) = B(T(G)). 1t is, of course, f(x) =
= (x, u, x), f(y) = (y, v, y) where u = p(x), v = p(y). By definition of the relation
B(7(@))itisu = v,i.e. p(x) = p(y), and (x, u, y) € A(T(G)). By 3.1.itis A(Z(G)) =
= r((7 G)) = F(G) and this implies, by definition of the relation F(G), (x, y) € r(G).
Thus fis an isomorphism of G onto 2(7 (G)).

4.2. Theorem. Let G be a transitive ternary structuie containing no isolated
elements and such that r(G) = A(G). Then there exists a strong homomorphism of
T (2(G)) onto G. ‘

Proof. By definition, it is 2(G) = (D(G), B(%)). and 7 (2(G)) = (E(2(G)),
F(2(G))), where E(2(G)) = ¢(2(Q)) U ¢(2(G))/e; here @ is the least equivalence
on ¢(2(G@)) = D(G) containing 1(2(G)) = B(G).

Let u € E(2(G)). If u € ¢(2(G)) = D(G), then u = (x, y, x), where x, y € ¢(G) and
there exists z € ¢(G) with either (x, y, z) € /(G) or (z, y, x) € r(G). In this case we
put f(u) = x. Suppose that ue D(G)/g. Then there exists € D(G) such that
p(m) = u where p is a natural projection of D(G) onto D(G)/g. Thus m = (x, y, x)
where x, y € ¢(G). We show that for any n = (x, y', x') € D(G) with the property
p(n) = u we have 3’ = y. Indeed, p(m) = p(n) means (m, n) € @ and thus cither
m = n or there exist a positive integer k > 1 and elements m,, ..., m; € D(G)
such that m; = m, m, = n and (m;, m;,,) € B(G) v (B(G))" ! for all i =1, ...,

ok — 1. Let (m;, my,,)€ B(G). Then m; = (x;, y;. s Mip; = (Xiv1, Vit1
X;+1) and by definition of the relation B(G) itis y; = v, .16 (m;, m;, ) € (B(G))™ ',
then (n1;4,, m;) € B(G) and we have again y;, = y;,,. Thus y, =y, = ... =y
and for m = m; = (1, ¥y %) = (X0, %), B,=m = (X Pps X)) = (X' ¥, X) -
we have y = y'. Thus, any element u € D(G)/q determines just one element y € ¢(G)
such that for some x e ¢(G) there is p(x, y, x) = u. We put f(u) = y. Thus, we
have defined a mapping f: ¢(7 (2(G))) — (G)..

Let x € ¢(G) be any element. As G contains no isolated elements, there are
elements y, z € ¢(G) such that either (x, y, z) € "(G) or (y, x, z) € /(G) or (z, y, X) €
€ r(G). In the first and third case it is u = (x, y, x) e D(G) = E(2(G)) and by
definition of the mapping f we have f(u) = x. In the second case it is (y, x, y) €
€ D(G), v=p(y, x,y) € D(G)/ , = E(2(G)) and by-definition we have f(v) = x.
Thus fis a surjective mapping of ¢(7 (2(@))) onto ¢(G).

Let u, v, w € ¢(7(2(G))) = E(2(G)) and (u, v, w) € (T (2(Q))) = F (-@(G)) Then,
by definition of the relation F(2(G)), there is u, w € ¢(2(G)) = D(G), v € c(2(G))/e =
= D(G)/e and it holds (4, w) € {2(G)) = B(G), p(u) = p(w) = v. As u, we D(G)
and (4, w) € B(G), there is u = (x, y, x), w = (z, y, z) for suitable x, y, z € c(G),
and (x, y, z) € A(G) = r(G). By definition of the mapping f'then f(u) = x, f(v) = y,
J(w) = z so that (f(u), f(v), f(w)) € (G). We have proved that f: c(T(2(G))) -
= ¢(@) is a surjective homomorphism of the structure 7 (2(G)) onto structure G.

Let, at the end, x,y,zec(G), (x,y,2)er(G). If we denote (x,y,x)=u,

10
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(2,5, 2) = w,thenu, w e D(G) = ¢(2(G)) and (4, w) € B(G) = r(2(G)). Thus (u, w) €
€ @ so that p(u) = p(w). Denote p(u) = p(w) = v; then u, v, we E(2(G)) and
(u, v, w) € F(2(@)) = r(7(2(Q))). At the same time, by definition of the mapping f.
it is f(u) = x, f(v) = y, f(w) = z, i.e. ue f~(x), ve f~(y), we f~(z). Thus the
homomorphism f of 7 (2(G)) onto G is strong.

In the last theorem, the structures G and 7 (2(G)) need not be isomorphic, as
the following example shows.

4.3. Example. Let G = (¢(G), r(G)) be a ternary structure with ¢(G) = {0, 1, 2}
and r(G) = {(0, 1, 2),(1,2.0),(2,0,1),(0, 1,0), (2, 1, 2), (1, 2, 1), (0, 2,0). (2, 0, 2),
(1, 0, 1)}. Evidently, G is transitive and #(G)= A(G). Further, D(G) = {(0, 1, 0),
(2 1 ,2), (1,2, 1),(0,2,0),(2,0,2), (1,0, 1)}, B(G) = {((0, 1, 0), (2, 1, 2)), ((1, 2, 1),

2,00, ((2,0,2), (1,0,1)), ((0,1,0), (0,1,0), ((2,1,2), (2,1,2), (1,2, 1),
(I. 2, 1)), ((0, 2, 0), (0, 2,0)), ((2,0, 2), (2,0, 2)), ((1,0, 1), (1,0, 1))}, and 2(G) =
= (D(G), B(@)). The least equivalence on D(G) containing B(G) has blocks B, =
= {(1.0,1), (2,0,2)}, By = {(0, 1,0), (2, 1,2)}, B, = {0, 2,0), (I, 2, 1)} so that
E(2(G)) = D(G) v {Bo, B, . B,}, and F(2(Q)) = {((0, 1,0), By, (2, 1, 2)), ((1, 2, 1),
B, (0,2,0),((2,0,2), By, (1,0, 1)), (0, 1,0), B;, (0, 1,0)),((2, 1, 2), B,, (2, 1, 2)),
(1,2, 1), By, (1,2, 1)), ((0,2,0,) B,, (0,2,0)), ((2,0,2), By, (2,0,2)), ((1,0, 1),
By, (1,0, 1))}. Thus J(2(G)) = (E(2(G)), F(2(G))) and as ¢(G) has 3 elements,
c((7 2G))) = E(2(G)) has 9 elements the structures G and 7 (2(G)) cannot be
isomorphic. If we put f((0, 1, 0)) = f((0, 2,0)) = 0, f((1,0, 1)) = f((1,2, 1)) = 1,
f(2,0,2) = f((2,1,2)) =2, f(By) =0, f(B)) = 1, f(B,) = 2, then f'is a strong
homomorphism of 7 (2(G)) onto G.

4.4. Remark. Denote Quas the category of quasiordered sets with isotonic
mappings as morphisms and Tern the category of transitive ternary structures
without isolated elements and such that r(G) = A(G) with obviously defined
morphisms. For morphisms h: G - G’ (G,G")e Tern and k: Q - Q' (Q. Q'€
€ Quas) define 2(h): 2(G) » 2(G’) and Z(k): T(Q) - J(Q') in an expected
way. Then 2 : Tern — Quas and 7 : Quas — Tern are covariant functors.
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Cyclically ordered groups were investigated in [1], [9], ..., [15]. The notion of
cyclically ordered group is a generalization of the notion of linearly ordered group.

Retracts of partially ordered sets were studied in [2], ...,[5].

Retracts of lattice ordered groups, and in particular, of linearly ordered groups,
were investigated in [4]; cf. also [5].

All cyclically ordered groups dealt with in the present note are assumed to be
abelian.

Let G be a cyclically ordered group. An endomorphism f of G will be said to be
a retract mapping if f(f(x) = f(x) for each x e G. In such a case, the set f(G)
is called a retract of G.

It will be shown that to each retract of G there corresponds a two-factor lexico-
graphic decomposition of G. More thoroughly, each retract mapping of G is
a projection onto a large lexicographic factor of G, and conversely. This generalizes
a result of [7] concerning retracts of linearly ordered groups.

1. PRELIMINARIES

For the sake of completeness we recall the definition of cyclically ordered group.

Let G be a group (the group operation will be denoted additively). Suppose that
there is defined a ternary relation [x, y, z] on G such that the following conditions
are satisfied for each x, y,z,a,ba G:

I. If [x, y, z] holds, then x, y and z are distinct; if x, y and z are distinct, then
either [x, y, Z] or [z, y, x].
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II. [x, y, z] implies [y, z, x].-
III. [x, y, z] and [y, u, z] imply [x, u, z].
IV. [x, y, z] implies [a + x - b,a+ y + b, a + z + b].

Under these assumptions G is said to be a cyclically ordered group; the ternary
relation under consideration is said to be a cyclic order on G.

Each subgroup of G is considered as to be cyclically ordered under the induced
cyclic order. The isomorphism of cyclically ordered groups is defined in the
obvious way.

Let G and G’ be cyclically ordered groups. A mapping f: G — G’ is said to be
a homomorphism if the following conditions are satisfied:

(i) fis a homomorphism with respect to the group operation;

(ii) whenever x, y and z are elements of G such that [x, y, z] holds in G and
the elements f(x), f(y), f(2) are distinct, then the relation [f(x), f(»), f(2)] is valid
in G'.

Let L be a linearly ordered group. For distinct elements x, y and z of L we put
[x,p, 2] if

(D) x<y<z or y<z<x or z<ypy<x

is valid. Then G with the relation [ ] (which is said to be induced by the linear order)
turns out to be a cyclically ordered ‘group.

2. LEXICOGRAPHIC PRODUCTS

Let G, be a cyclically ordered group and let L be a linearly ordered group (each
linearly ordered group is considered as to be cyclically ordered under the induced
cyclic order).

Let G, x L be the (external) direct product of the groups G, and L. For distinct
elements u = (a, x), v = (b, ) and w = (¢, z) of G, xL we put [u, v, w] if some
of the following conditions is satisfied:

@) [a, b, c];

(i) a=bs#cand x < y;
(iii) b=c #aand y < z;
(iv c=a#band z < x;
(v) a=b=c and [x,y,z].

It is easy to verify that G, x L with this ternary relation is a cyclically ordered
group; it will be denoted by G; @ L and it is said to be a lexicographic product
of G; and L. We call G, and L the large lexicographic factor or the small lexico-
graphic factor of G, @ L, respectively.

IfG=G,®L,geG, g = (u, x), then we denote u = g(G,) and x = g(L).

14



RETRACTS OF ABELIAN CYCLICALLY ORDERED GROUPS

Let us remark that if H, and H, are linearly ordered groups and if H is their
lexicographic product H, o H, (cf., e.g., Fuchs [6]), then the cyclically ordered
. group H is a lexicographic product H; @ H, of the cyclically ordered groups
H, and H,, and conversely.

The following assertion is obvious.

2.1. Lemma. Let G, be cyclically ordered groups and let L be a linearly ordered
group. Put G = G, @ L and for each ge G let f(g) = g(G,). Then f is a retract
mapping of G.

Let G, and L be as above and let ¢ be an lsomorphlsm of a cyclically ordered
group G onto G, @ L. Put

G? = ¢ '{(a,0):aeG,},
L’ = ¢ '{(0,x): xeL}.
Then GY is isomorphic to G,, and L° is isomorphic to L°. The mapping
0 :G->G®L°

defined by ¢’(g) = a® + x° where ¢(g) = (a, x), a® = ¢~ '((a,0)) and x°

= ¢~ 1((0, x)), is an isomorphism of G onto G} & L°. In such a case we write

G = G° @, L° and G is said to be an internal lexicographic product of G and L°.
Analogously as above, G} and L° are called a large lexicographic factor and

a small lexicographic factor of G, respectively.

In view of 2.1 we obtain:

2.2. Corollary. Each large lexicographic factor of a cyclically ordered group G
is a retract of G.

Internal lexicographic product decomposmons can be characterized intrinsically
as follows.

2.3. Propeosition. Let G be a cyclically ordered group. Let G, and L be subgroups
of G such that L is linearly ordered. Then the following conditions are equivalent:

(@) G= Gx @:L

(b) The group G is an internal direct product of its subgroups G, and L.
Whenever u, v and w are distinct elements of G with u=a -+ x, v=0b + y,
w = X + z (where a, b, ce G, and x, y, z€ L), then [u, v, w] is valid if and only if
some of the relations (i)—(v) above holds.

The proof can be performed by a routine vefification.. (Cf. also [10].)

Let us denote by K the set of all real numbers x with 0 £ x < 1; the operation +
on K is defined to be the addition mod 1. For distinct elements x, y and z of K

we put:[x, y, z] if the relation (1) above is valid. Then K is a cyclically ordered
group. :
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2.4. Theorem. (Cf. [12].) Let G be a cyclically ordered group. Then there exist
a subgroup K, of K and a linearly ordered group L such that G is isomorphic to
K, &@L. _

A subgroup H of a cyclically ordered group G is said to be c-convex (cf. [9])
if some of the following conditions is fulfilled:

() H=G; .

(ii) for each he H with h # 0 we have 2h # 0; if he H, ge G, [—h, 0, h] and
[—h, g, h], then ge H.

The following lemma is an easy consequence of 2.4.

2.5. Lemma. Let f be an endomorphism of a cyclically ordered group G. Then the
kernel of fis a c-convex subgroup of G.

3. LARGE LEXICOGRAPHIC FACTOR CORRESPONDING
TO A GIVEN NONZERO RETRACT MAPPING

Let G be a cyclically ordered group. In view of the consideration performed
in Section 2 and according to 2.4 there exist subgroups G, and L of G such that
(i) G, is isomorphic to a subgroup of K;
(ii) L is linearly ordered;
(iii) G = G, ®; L.

3.1. Lemma. Let f be an endomorphism of G. Then either f(G) = {0} or
oy L,.

Proof. This is a consequence of 2.5, and [9] (3.5 and 4.6).

An endomorphism f of G is said to be nonzero if f(G) # {0}. In what follows
we assume that f is a nonzero endomorphism of G.

3.2. Lemma. Assume that f is a retract mapping of G. Then f(x) € L for each
xelL.

Proof. By way of contradiction, assume that there exists an element xe L
such that f(x) ¢ L. Thus there are ae G, and ye L with f(x) =a+ y, a # 0.
This yields that f(a +.y) = a + y, hence f(a + y — x) = 0. The elementa + y —
— x does not belong to L, therefore the kernel of ffails to be a subset of L. In view
of 3.1, f(G) = {0}, which is a contradiction.

Denote f, = f | L. According to 3.2 we have

3.3. Corollary. Let f be as in 3.2. Then f, i.s; a retract mapping of L.

3.4. Lemma. Let f be as in 3.2. Next let f, = f | G,. Then f, is an isomorphism
of G, onto f(G,).
. Proof. According to the definition, f; is a homomorphism of G, onto f(G,).
Let aeG,, a #0, f(a) =a, + x, a,€G,, xe L. Hence f(a, + x) = a, + x,
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thus f(—a +a, +x)=0. In view of 3.1, —a+ a, + xe L and therefore
a=a,. Hence f(a) # 0. Thus f, is a monomorphism. By summarizing, f; is
an isomorphism. :

We have clearly f(G)nL={0}. If geG and g=a+ x, aeG,, xeL,
f(a) =a + x,,theng = (@ + x,) + (—x; + x) witha + x, € f(G,) and —x; +
-+ x € L. Hence we infer:

3.5. Lemma. The group G is a direct product of the groups f(G,) and L.

3.6. Lemma. Let f be as in 3.2. Then G = f(G,) ®; L.
The proof consists in a routine verification by applying 3.5 and 2.3.

3.7. Lemma. Let f, be as above. There are subgroups L, and L, of L such that
fill)=L,and L=L, ®;L,.

Proof. Since L is linearly ordered and since in view of 3.2, f; is a retract mapping
of L as cyclically ordered group, it is also a retract mapping of L as linearly

ordered group. Thus, according to [7], Theorem 3.4, there are /-subgroups L,
and L, of L such that

(2 L=(@L,oL,,

(an internal lexicographic product of linearly ordered groups L, and L,, cf. [7]).
From (2) we obtain that the relation

L=L, ®;L,.

holds.

Put Ly = f(G,) + L,. The relation L, < L and Lemma 3.6 yield
(3) Ly = f(Gy) ®:L;.
Next, from f(L) = L, we obtain
4) - fG)=L,;.
Also, from 3.6 and 3.7 we infer that
Q) G = f(G,) @;(L, ®;L,).
Clearly

f(Gy) & (L, @: L) = (f(Gy) ®:Ly) @le» = f(G) &, L,.
Thus in view of (5) we obtain
© G =f(G) ®:L,.

Let ge G. In view of (6) there are uniquely determined elements a € g(G) and
x € L, such that g = g + x. Then f(a) = a. Next we have f(x) € f(G) and in view
of 3.2, f(x)e L,. Hence f(x) € f(G) n L, = {0} and so f(x) = 0. We obtain"

@) = fla) + f(x) =a.
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By summarizing, we have the following result:

3.8. Theorem. Let f be a nonzero retract mapping of an abelian cyclically ordered
group G. Then the retract f(G) is a large lexicographic factor of G and for each
g€ G, f(g) is the component of the element g in the factor f(G).

Theorem 3.8 and Lemma 3.1 yield:

3.9. Corollary. Let G be an abelian cyclically ordered group and let H # {0}
be an Il-subgroup of G. Then the following conditions are equivalent:

(i) H is a retract of G.

(ii) H is a large lexicographic factor of G.

This generalizes Theorem 3.4, [7] concerning retracts of linearly ordered groups.
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Our terminology is based on [1]. Given a graph G, V(G) and E(G) denote its
vertex and edge sets, respectively; n := V(G) is its order; A(G) is its edge-connectivity
and 6(G) is the minimum degree of G. The distance between two vertices x and y
is denoted d(x, y) and diam (G) is the diameter of G. The vertex neighbourhood of
a vertex x is denoted V(x). For brevity, A often stands for A(G) and & for &(G).

It is well known that A(G) £ 6(G) and one may ask for conditions on G ensuring
the equality A(G) and 6(G). In this paper we give first a survey of known sufficient
conditions and then provide some new ones.

§1. A SURVEY OF KNOWN RESULTS

In this section we will give a series of known conditions ensuring A = J in terms
of various parameters of a graph. Each of these conditions can be also referred
to as a result, in which case it is meant the assertion that the condition yields
A=3.

The: first such condition is due to Chartrand [3]:

) 3(G) = [n/2].
This was refined by Lesniak [6]: :
@ ' deg (x) + deg (5) 2 n — 1

for any pair of nonadjacent vertices x, y.
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The following result of Plesnik [7] is based on the diameter and obviously
implies results (1) and (2):

€) diam (G) < 2.

Goldsmith and Entringer [5] observed: It is also sufficient that for each veriex x
of minimum degree, the vertices in the neighbourhood ¥(x) have large degree
sums; more precisely:

_ [n/2)* — [n/2] for all even n and
“) Y. deg(w) = for odd n < 15,
’ web e [n/2)? = 7 for odd n = 15.

This result implies (1) but is independent of (2) and (3). Indeed, the graph in
Fig. 1 fulfils (2) and (3) but not (4); on the other hand the graph from Fig. 2 fulfils
(4) but not (3) or (2). :

fig 1 flgz

Bollobas [2] uses maximal graphs with 6 > A and derives several results. The
following is a typical one and perhaps the most important of them: The degree
sequence d; = d, = ... = d, = 6 of G with n = 2 fulfils

k -
) Y (i +dy) 2z kn—1
i=1
for each k with 1 < k < min {[n/2] — 1, é}.
Although the result (5) implies (1) if n is even, in general (5) is independent of
(1)—(4). This can be seen with aid of graphs in Figs. 3 and 4. The former fulfils

(1)—(4) but not (5) and the latter works conversely. '
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. Esfahanian [4] has given lower bounds on the edge-connectivity and, as a con-
sequence, the following condition (4 is the maximum degree of G'and D :=
:= diam (G)): . C e
A=D1+ 44-2)-1 .

1> + 1.

6 Tnz@-1)
The following similar condition is due to Soneoka, Nakada, Imase and Peyrat
[8] and slightly improves (6):

(4d=1°P"14+4~3
A -2

(7) n>(©0-1) +4-1.
As shown in [8] this bound is best possible (at least) for diameters D = 3 and 4.
On the other hand, the graph of Fig. 3 does not fulfil (7) but fulfils (1)—(4).
Soneoka et al. [8] have established also the following generalization of (3) with
g standing for the girth of G:

g—1 for g odd,
<
® b= {g -2 for g even.

They show that this condition is best possible for an infinite number of values
of 6 when gis 4 or gis odd.

Figs. 2 and 4 provide examples of graphs fulfilling (4) and (5), respectively,
and not fulfilling (8). Also there are examples in [8] where (7) works but (8)
does not.

We conclude the survey by a result of Volkmann [9]:

) G is bipartite and § = & I 1 .

Two disjoint copies of complete bipartite graph K(n/4, n/4) provide an example
demonstrating that this result is best possible. Moreover, it is not a corollary of (8),
because there is a bipartite graph with g = 4 and D > 2 fulfilling (9) (e.g. with
n =7, = 2). A generalization of (9) for p-partite graphs is given in [10].

§2. A NEW DISTANCE CONDITION

Here we show that the condition (3) can be slightly relaxed in sense that some
distances can be greater than 2.

2.1. Theorem. If in a connected graph no four vertices u,, vy, u,, v, with
(10) d(ul ’ u2)’ d(ul ) vZ)a d(vl > uZ)’ d(vl ’ 02) _Z. 3

exist, then A = 0.
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Proof. For a contradiction consider a graph G fulfilling the distance condition
with A < 8. Let E, be an edge cut of cardinality 4 and let 4 and 4 be the vertex
sets of the components arising after deleting E, from G. Further, let 4, = 4
and 4, = A be the sets of vertices incident with edges of E, and put 4, := 4 — 4,
and A, := A — A, (see Fig. 5). Denote the cardinalities of A4,,'4,, A, and A4,
by ay, a,, @, and a,, respectively. Clearly 1 = a, and 1 2 a,.

A

AO AI 1 AO

>

fig S

The distance condition in our theorem implies that a, = 2 and @, = 2 cannot
hold simultaneously (otherwise there are u,, v, € 4, and u,, v, € 4, fulfilling (10)).
Thus owing to the reason of symmetry we can assume that a, < 1. Each edge
‘going from a vertex x of 4 ends in 4, U A, or belongs to E,. Since G has no
loops or multiple edges, we have

{al(al—1)+l§}.(al——1)+}.=Aal if  ap=0,

) .<
X deg(x) = (@, +a; +A<da; +a; +4 if  ap=1

x€eA

On the other hand

Y. deg(x) 2 {

x€A

a15 g al(ﬂ‘. + 1) == Aal + a; lf dg = 0,
(al+l)6g(al+1)(l+1)=lal+a1+}h+1 if' a0=1.

Being compared these inequalities give a contradiction in either case. B

<]

fig.b

Fig. 6 shows that Theorem 2.1 is in a sense a best possible result. We have
immediately: ' ‘

2.2. Corollary. If a connected graph G contains such a vertex v, that d(x,y) < 2
f0( all x, y e V(G) — {ve}, then A = 6.

§3. DISTANCE CONDITION FOR BIPARTITE GRAPHS

Now we will give an analog of Theorem 2.1 for bipartite graphs and show that
it yields the result (9).

22



EDGE-CONNECTIVITY AND DEGREE OF A GRAPH

3.1. Theorem. Let G be a bipartite graph with bipartition [A, B). Then A = é
whenever at least one of the following two conditions holds:
(i) diam (G) < 4 and neither part contains four vertices u,,v,, u,, v, such that

(11) d(uy, uy), d(uy , v;), d(vy, uz), d(v, , v,) = 4.

(ii) There exists a. part P with d(x,y) < 2 for all x,y € P.

Proof. Suppose for a contradiction that there is an edge cut E, with cardinality
2 < 6. Clearly 1 > 0. After deleting the edges of E, from G, we obtain two com-
ponents with vertex sets S and S := V(G) — S. In accordance with Fig. 7, 4,, 4,,

Al |A

S

fig. 7

B,, B, denote the sets of vertices incident with some edge of the cut E, and lying
inAnS,An S, Bn S and B n S, respectively. The remaining vertices form the
sets Ay, Ag, By and By, i.e. 4g=A NS — Ay, etc. Let the number of edges’
between A, and B, be i, and that between 4, and B, be A,. Thus A = 4, + 4,.
Finally, let the cardinalities of the sets 4,, 4, ..., B; be denoted by the correspond-
ing small letters, i.e. ao, @, --, b, . Clearly we have ‘

ay S A, by S Ay,a =4, by £,

(i) First suppose that the condition (i) holds. We have to distinguish several
cases, but owing to the reason of symmetry we can confine to the following:
Case 1: ay 2 2 and @, = 2. Then we can find u,, v, € 4, and u,, v, € 4, fulfill-
ing (11). '

Thus without loss of generality in what follows we can suppose g, < 1.

Case 2: ay = by = 0. Then a, + b; > 0 and we can suppose that 4, # 0. For
any xe A; we havedeg (x) £ 4, + b;.Ontheotherhanddeg(x) 26 2 1 + 1 =
=1+ 4, +1= 4, + b; + 1, a contradiction.

Case 3: ay =0, by 2 1. Then for every x e B, we have deg(x) S a, £ 4, < 6,
what is impossible.

Case 4: ay = 1, by = 1. Then for xe 4, we have deg(x) £ b, +1 < 4, +1
and for y € B, analogously deg () < a;, + 1 £ 4; + 1. Thus we can write 26 <
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<deg(x) +deg(y)) < Ay + A, +2 =2+ 2 <5 + 1, which yields 6 < I,
i.e. A =0, a contradiction. :

Case 5: ay = 1 and b, = 1. Then because of Cases 3 and 4 we have b, = 2 and
dy = 2 (use the symmetry). For any xe B, we get deg(x) <a, +1 < 4, + 1
and forany y € 4, we havedeg () < b, +1 < A, + 1. Hence 2(4, + 4, + 1) =
=2(A+ 1) =226 < deg(x) +deg (y) <24, + 2, ie. A, = 0 and thus @, =
= b, = 0. But for ue 4A,, ve By, we have d(u, v) = 5, which contradicts our
assumption (i).

Case 6: ag*=1, by = 2, by = 2. This is excluded by Case | (usc the symmetry).
Having covered all possibilities the proof is completed if (i) is assumed to hold.
(ii) Now let the condition (ii) hold. We can assume that P = 4, i.e. d(x, y) £ 2

for all x, ye A. This yields d(u, v) < 4 for all u,ve B and d(x,u) < 3 for all

x€ A, ue B. Hence diam (G) < 4. However, d(x, y) = 4 for any xe 4,,y€ 4,

(see Fig. 7). Therefore a, . @, = 0 and we can assume that a, = 0. Then the con-

siderations of above mentioned Cases 2 and 3 will work.

Fig. 8 shows that the assumption diam (G) < 4 cannot be dropped; on the other

hand this condition is not sufficient if the rest of (i) does not hold (see Fig. 9).

PO O

fig 8 ) fig.9

3.2. Corollary. Let G be a bipartite graph with diam (G) < 4. If in either part P
there exists such a vertex v, that d(x,y) < 2 for all x,ye P — {v,}, then 1 = 6.
Proof. Immediately, since (i) is fulfilled. n

3.3. Corollary. If a bipartite graph G has diam (G) < 3, then 1 = 6.

Proof. Now the condition (ii) is fulfilled because the distances in the same part
are even. [l

Our theorem implies also the above mentioned result (9) of Volkmann [9]:

3.4. Corollary. If G is a bipartite graph with 6 = (n + 1)/4, then A = 4.

Proof. We will prove that the condition (ii) of Theorem 3.1 holds. Indeed,
if it is not the case, then there exist vertices x, y € A with d(x, y) > 2 and so V(x) n
N V(y) = 0. Consequently, B has at least (n + 1)/4 + (n + 1)/4 = (n + 1)/2
vertices. Symmetrically, 4 has at least (n + 1)/2 vertices too, what is impossible.

Examples from Figs. 10 and 11 show that there are no other relations between
the conditions (i) and (ii) of Theorem 3.1 and (9). The graphs have n = 11,6 = 2.
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In Fig. 10 we have d(1,4) = d(1,5) = 4 and d(x,y) < 2 for all x,ye 4 — {1}.

Also d(6, 10) = d(6,11) = 4 and d(x,y) < 2 for all x,ye B — {6}. Thus (i) is
fulfilled but neither (ii) nor (9) hold.

(1]
[2]
Bl
[4]
[5]

(6]
(71

(81
]

1 2 3 & 5 1 2 3 4 5
6 7 8 9 10 M 6 7 8 9 1 N
fig. 10 fig. 11
In Fig. 11 we see that d(x, y) < 2 for all x, y € 4. Further d(6, 11) = d(7, 10) =

4. Thus (ii) holds but (i) and (9) do not.
Moreover, both these graphs have g = 4 and thus not even (8) is fulfilled.
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Abstract. A tolerance relation of an algebra is a binary relation that is reflexive, symmetric,
and has the Substitution Property. A number of authors (I. Chajda, G. Czédli, L. Klukovits,
J. Niederle, I. Rosenberg, D. Schweigert, B. Zelinka, and the present authors) investigated how
tolerances can be described by the system of blocks (maximal connected subsets). In this paper
we show how to modify known results from idempotent algebras to arbitrary algebras. We prove
the known characterization for lattices without the Axiom of Choice. For lattices with the Chain
Condition, G. Czédli and L. Klukovits obtained a much better result. We generalize their result
to arbitrary lattices, again avoiding the use of the Axiom of Choice. Finally, we show that for
semilattices, the existence of a tolerance-plock is equivalent to the Axiom of Choice.

Key words. Tolerance relation, covering system, Axiom of Choice, universal algebra, lattice.
MS Classification. Primary 08 A 30, 06 B 10; Secondary 08 A 05

1. INTRODUCTION

It is well-known that there is a one-to-one correspondence between congruence
relations of an algebra (4; F) and partitions of 4 with the Substitution Property;
in fact, in informal discussions, the congruence relation @ is often identified with
the corresponding partition. There is a similar one-to-one correspondence between
tolerance relations of an algebra (4; F) and a certain type of covering systems of
the set A4.

For a binary relation ¢ on the set 4, a subset B of A4 is a g-block iff- B is
a g-connected set (i.e., agb for all a, b € B) that is maximal (i.e., if B < C and C
is also g-connected, then B = C). I. Chajda [1] observed that there is a one-to-one
correspondence between tolerance relations and covering systems of blocks.
For lattices, G. Czédli [5] proved that one can define a lattice on the blocks of
a tolerance relation, generalizing the concept of quotient lattice.

The research of the first author was supported by the NSERC of Canada.
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Various papers deal with the covering systems one obtains from blocks of
a tolerance relation. A recent one is G. Czédli and I.. Klukovits [6] in which they
obtain a characterization of the covering system of blocks of a tolerance relation
for an idempotent algebra (an algebra {A; F) is idempotent, if it has no nullary
operations and f(x, ..., x) = x for all x € 4) sharpening earlier results of I. Chajda
[1] and I. Chajda, J. Niederle, and B. Zelinka [2]; see Theorem 1 in § 2.

For lattices, the covering system of blocks of a tolerance relation was
characterized in G. Czédli [5] and in I. Rosenberg and D. Schweigert [13]; see
Theorem 4 in § 2. A much more useful characterization was obtained for lattices
with the Chain Condition in G. Czédli [S]. This result was proved again in G. Czédli
and L. Klukovits [6], applying the characterization for idempotent algebras; see
Theorem 5 in § 2.

In this paper we offer two generalizations of the result of G. Czédli and
L. Klukovits [5] for idempotent algebras: To algebras in which the tolerance-
blocks are subalgebras (Theorem 2 in § 2) and to arbitrary algebras (Theorem 3
in § 2).

For lattices, we make two contributions. First, we show that, using some results
of G. Gritzer and G. H. Wenzel [11], the older characterization theorem,
Theorem 4, can be proved without the Axiom of Choice. Secondly, we generalize
Czé€dli’s result to arbitrary lattices: Theorem 6 in § 2.

However, the lattice proof cannot be extended to algebras, in general, or idem-
potent algebras, in particular. We prove that the existence of a tolerance-block
in a semilattice is equivalent to the Axiom of Choice; see Theorem 7 in § 5.

Tolerances have been used recently in universal algebra in an attempt to describe
the variety generated by the product of two varieties in G. Gritzer and G. H. Wenzel
[11] and E. Fried and G. Gritzer [7] and [8], and in lattice theory to describe
monotone functionally complete finite lattices in M. Kindermann [12].

For the basic concepts of universal algebra and lattice theory, we refer the
reader to G. Gritzer [9] and [10]. ‘

Conditions will be denoted by mnemonic names. We shall refer to condition
(XX) of Theorem n as (n. XX); “n.” is dropped if the context is clear.

2. RESULTS

The main result of G. Czédli and L. Klukovits [6] is as follows:

Theorem 1. Let {A; F) be an idempotent algebra. A family € of nonempty subsets
of A is the set of all blocks of a tolerance relation iff the following conditions hold:

(Cov) € is a covering system, i.e., () ¢ = A.
(AnC) € is an antichain, i.e. X <Y implies that X = Y, for X, Y € &.
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{SP) % has the Substitution Property, i.e., for any n-ary operation fe .
and X, ..., X, €€ there exists an X € € such that f(X,, ..., X,) =
= {f(x1, 005 Xp) | X, € Xy, ..., X, € X,} S X.
{(2-SA) For any 2-covered subalgebra B of {A; F), i.e., any subalgebra B of {A; F)
such that for any two elements a, b € B there is an X € € satisfying a, b € X,
there exists an E € € with B < E.
We have two generalizations of Theorem 1:

Theorem 2. Let (A; F) be an algebra, and let € be a family of subalgebras of
{A; F). Then € is the set of all blocks of a tolerance relation iff the conditions
(1.Cov), (1.AnC), (1.SP), and (1.2-SA) hold.

Theorem 2 is a direct generalization of Theorem 1 since in an idempotent
algebra all tolerance-blocks are subalgebras (I. Chajda and B. Zelinka [4]). Indeed,
if D is a tolerance-block of the tolerance relation 7, fis an n-ary operation, 4, ...,
..., d, e D, then for every de D, dzd; for i = 1, ..., n, hence by the Substitution
Property for 7 and the idempotency of f,

d=fd,..,d)y= fd,,...,d).
By the maximality of D, f(d,, ...,d,) € D, i.e., D is a subalgebra.

Theorem 3. Let {A; F) be an arbitrary algebra. 4 family € of nonempty subsets
of A is the set of all blocks of a tolerance relation iff the conditions (1.Cov), (1.AnC),
(1.SP), and the following condition hold:

(2-SS) For any 2-covered subset B of A, i.e., any subset B of A such that for any
two elements a, b € B there is an X € € satisfying a, b € X, there exists an
Ee% with B< E.

The characterization for lattices is as follows (I. Rosenberg and D. Schweigert
[13]; the result in G. Czédli [5] is somewhat different):

Theorem 4. Let L be a lattice. A family € of nonempty subsets of L is the set
of all blocks of a tolerance relation iff the following conditions hold:
(Cov) € is a covering system, i.e., ] ¢ = L. 4
(AnC) € is an antichain, i.e. X < Y implies that X = Y, for X, Y € &.
(SP) € has the Substitution Property, i.e., for all. X, Y € € there exist U,V € €
suchthat X v Yc Uand X A Y S V.

(2-SL) For any 2-covered sublattice B of L, i.e., any sublattice B of L such that

Jor any two elements a, b€ B there is an X € € satisfying a, b e X, there
exists an E € € with B < E.

In the condition (SP) above we use the notation:
XvY={xVy|xeX yeY},
XAY={xAy|xeX yeY}.
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Theorem 1 is applied by G. Czédli and L. Klukovits to lattices with the Chain
Condition to obtain a much sharper form of Theorem 4, first proved in G. Czédli [5]:

Theorem 5. Let L be a lattice satisfying the Chain Condition, i.e., all chains in L
" are finite. A family € of nonempty subsets of L is the set of all blocks of a tolerance
relation iff € is a system of intervals of L and the following conditions hold:

(Cov) € is a covering system, i.e., | ) % = L.

(SP) € has the Substitution Property, i.e., for all [a,, a,], [by, b,]€ € there
-exist [uy,u,l, [v,,v,] € € such that u, = a, vb,, u, = a, vb, and vy <
S<a, Ab,vy;=a,Ab,.

(UE) The intervals in € have unique endpoints, i.e., a, = b, iff a, = b,, for
[alsa2]’ [b17b2]eg' : '

The following theorem generalizes Theorem 5 to arbitrary lattices:

Theorem 6. Let L be a lattice. A family € of nonempty subsets of L is the- set
of all blocks of a tolerance relation iff all X € € are convex sublattices of L and the
Jfollowing conditions hold:

(Cov) € is a covering system, i.e., | )€ = L.

[SP] € has the Substitution Property, i.e., for all X, Y € € there exist U,V €€

' such that [U) = [X) v, [Y), (U]l 2 (X] v; Y] and (V] = (X] A; (Y], [V) =2
2 [X A lD).

(UE) The convex sublattices in € have unique endpoints, i.e., (X] = (Y] iff [X) =
=[Y),for X, Ye¥.

(2-CS) For any 2-covered convex sublattice B of L, i.e., any convex sublattice B
of L such that for any two elements a, b€ B there is an X € € satisfying
a,be X, there exists an E€ € with B < E.

Notation. For a nonempty subset X of a lattice L, the ideal and dual ideal
generated by X is denoted (X] and [X), respectively. (Note that in [11], we used
(X] and [X) for the orderideals generated by X.) We form three lattices from L:
the lattice of ideals (ordered under <), the lattice of dual ideals (ordered under 2),
and the lattice L/t of all 7-blocks (ordered by =<, see Lemma 2 below). To avoid
confusion, the lattice operations will be denoted by v; and A ; in the ideal lattice,
by v, andA , in the dual ideal lattice, and by v , and A , in L/z (the lattice of z-blocks).
Recall that v, is intersection and A ; is the dual ideal generated by the union.

It is clear that Theorem 6 implies Theorem 5. Indeed, if the lattice L satisfies
the Chain Condition, then convex sublattices are intervals, hence the first three
conditions are equivalent. Condition (2-CS) trivially holds for L, since if B is
a convex sublattice of L, then B = [a, b] for some a,be L, a < b, and the Xe ¢
satistying a, b e X also satisfies B = X. We shall show an example in Section 4

that (2-CS) cannot be dropped in general.
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3. ALGEBRAS

For a tolerance relation 7, let €, denote the set of all z-blocks.

First, we prove Theorems 2 and 3.

Let ¢ be a tolerance relation, and € =%,. Obviously, the conditions of
Theorems 2 and 3 hold for €; in particular, (2-SS) holds, since if B is 2-covered
by ¥, then B is t-connected, hence (by the Axiom of Choice) it is contained in
a maximal t-connected set E € €.

Conversely, let the conditions of Theorem 2 or 3 hold for ¥, and define the
binary relation t by atb iff a, be B for some Be €. (1.Cov) and (1.SP) imply
that 7 is a tolerance relation. Let €, denote the system of tolerance-blocks of .
Since every B € € is t-connected by the definition of 7, there is a B* € €, satisfying
B = B*.

We have to prove that ¥ = &,.

Let Be €,. Then B is 2-covered by € by the definition of z. In case of Theorem 2,
B is a subalgebra, so condition (2-SA) can be applied; in case of Theorem 3,
condition (2-SS) can be applied. In either case, B = D for some D € %¥. Since D
is t-connected and B is a 1-block, therefore, B = D, proving that Be €.

Conversely, let Be 4. Then B < B*e ¥, = € (the last containment by the
previous paragraph), hence B = B* by (1.AnC). Thus B € &,, proving Theorems
2 and 3.

4. LATTICES

We need some results from G. Gritzer and G. H. Wenzel [11]. These results
are proved in [11] without the use of the Axiom of Choice.

Let L be a lattice and let 7 be a tolerance relation on L. For a subset X of L,
we define
X.={yl|lyeL,y £ x for some x € X, and ytx for all xe X}.
We define X* dually.

Lemma 1 (Lemma 5 of [11]). If X is a 1-connected set, then (X,) is a t-block.
Let L/t denote the lattice of tolerance-blocks. Lemma 1 shows that L/ is non-
empty. The lattice operations of L/t can be described as follows:

Lemma 2 (Lemma 7 and Theorem 1 of [11]). Let X and Y be t-blocks.
Then
XV Y=(XVY),
XA Y=XAY),
and ; ‘
X S Y iff for all xe X there is a y € Y satisfying x < .

31



. G. GRATZER, G. H. WENZEL

One should note the dual form of the last statement of Lemma 2:
X £ Y ifffor all y € Y there is an x € X satisfying x < y.

First, we prove Theorem 4 without the Axiom of Choice. It is obvious that the
conditions of Theorem 4 hold for the blocks of a tolerance relation. (To verify
(4.Cov), use Lemma 1 with a singleton as the t-connected set.)

Conversely, let € satisfy the four conditions of Theorem 4, and define the binary
relation 7 by

ath iff a, b € B for some Be &.

(4.Cov) and (4.SP) imply that 7 is a tolerance relation. By the definition of 7,
every Be € is t-connected. By Lemma 1, B* = (B,)" is a t-block containing B.

Now let B be a 7-block. Then B is 2-covered by €. By (2-SL), B = D for some
De®%. Thus B < D and D is t-connected. Since B is a t-block, B = D, proving
that Be €.

If Be ¥, then B* is a t-block with B = B*, and by the previous paragraph,
B* is in €. Again, by (AnC), B = B*, so B is a t-block. &

Now we prove Theorem 6. Let T be a tolerance relation on the lattice L, let
€ = €¢,. Conditions (6.Cov) and (2-CS) are obvious by Lemma 1. To verify
(6.UE), let X, Ye ¥ and let [X) =[Y). If xe X — Y, then xe[X) = [Y), i.e.,
x 2 y for some y € Y. Hence for every x € X, x = y for some y e Y. By Lemma 2,
X 2 Y with respect to the ordering of the blocks. By symmetry, ¥ = X, hence
X =Y. Thus (X] = (Y], verifying (6.UE).

Finally, we prove (6.SP). Let X, Y € ¢ and define U = XV, Y. By Lemma 2
(and using that X' Vv Y is downward directed),

U=XVv,Y=XVY)
={z|zZ x-vyforsome xe X,yeY
and ztx vy forall xe X, ye Y}
=[XV7Y)=[X)vI[Y),

and so [U) < [X) v, [Y). Conversely, if ue [X)>v, [Y), then u = x andu = y
for some xe X and ye Y. Thus u = x vye U, proving [U) =2 [X) v, [Y). Thus
[U) = [X) v, [Y). We also have

X1V, (Y= (X v Y] € (X v Y)] = (U],

completing, by duality, the proof of (6.SP).

Conversely, let € satisfy the four conditions of Theorem 6. We verify that the
four conditions of Theorem 4 hold; then by Theorem 4, we obtain ¥ = &, for
some tolerance relation 7, proving Theorem 6.

(4.Cov) is the same as (6.Cov). To verify (2-SL), let B be a 2-covered sublattice
of L. Then C = J([a, b] | a, b € B) is the convex hull of B, and C is also 2-covered
by . By (2-CS), Ce D for some De ¥, and so B < D e ¥, proving (2-SL).
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To prove (4.AnC), take X, Y € ¢ with X = Y. By (6.SP), there exists a Ue ¥
such that [U) = [X) v, [Y) and (U] 2 (X] v;(Y]. But [X) n [Y) = [X) v, [Y)=
= [X) since X < Y implies that [X) < [¥). Thus [X) = [U/) which by (6.UE)
implies that (X] = (U], and so X = U. Therefore, (X] 2 (X] v, (Y] = (Y], yielding
(X]= (Y]. By (6.UE) again, [X) = [Y), and so X =Y.

Finally, we prove (4.SP). Given X, Y € ¢, by (6.SP), there exist U, ¥ € € such
that [U) = [X) v,[Y), (U]1=2 (X]v; (Y] and (V] = (X]A,(Y], [V) 2 [X)A, D).
Thus [X) Vv, [Y) =[XV ¥)=[U) and (X]V;(Y]=(X Vv Y] < (U]. Now take
xeXand ye Y. Then x vye (X] v, (Y] € (U], thus x vy < u,, for some u, .€ U.
On the other hand, x vye[X) v, [Y) = [U), so u, < x.vy for some u, e U.
Thus u; £ x vy £ u,, and by the convexity of U, we conclude that x vye U,
proving that X v ¥ < U. Similarly, X A Y < V, verifying (4.SP). n-

The following example shows that condition (2-CS) cannot be dropped from
Theorem 6. Let L be the lattice of real numbers with the usual partial ordering.
Let & be the system of all sets of the form [r, » 4+ 1] for a rational number r.
Then & satisfies the first three conditions of Theorem 6. However, € fails (2-CS):
the set B = [\/2, | + +/2) is a convex sublattice which is 2-covered by € however,
B is not contained in any member of €.,

5. SEMILATTICES

Our final result shows that the Axiom of Chmce is needed to prove the exlstence
of tolerance-blocks

Theorem 7. The Axiom of Choice is equivalent to the following statement:
(TB) For a semilattice {S; v) and a tolerance relation © on (S, v), there extsts
a t-block.
Pro of. Let # be a nonempty collectlon of nonempty pairwise disjoint sets Deﬁne
= (J @) v {u}, where u ¢ () ¥. We define the semilattice (S; v) by x v y =u
for all x # y. Finally, we define the bmary relation 7 on S as follows

x=y, T
. |]x€X  and yeY for some X, Ye¥ X #7,
xty iff
X =u,
y =u.

It is trivial to check that 7 is a tolerance relation.

Let B be a t-block. We claim that for every X € #, B n X is a singleton {xz}.
Proof: if x,ye Bn X, then x, ye B, hence xty. On the other hand, x, y € X,
hence by the definition of 7, we obtain x = y. Therefore, B n X contains at most
one element. If B N Xis empty, define B*= B U {x}, where x € X. Observe that xty
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for every y € B; indeed, either x =u or ye Y for some Ye %, X # Y; in both
cases, xty holds. Thus B* is 7-connected and B = B*, a contradiction.
Now we can define the choice function fon # by f(X) = x for X€ €.

REFERENCES

[1] I, Chajda, Partitions, coverings and blocks of compatible relations, Glasnik Mat. Ser. III 14
(34) (1979), 21 -—26. :

[2] I. Chajda, J. Niederle and B. Zelinka, On existence conditions for compatible tolerances,
Czech. Math. J. 26 (1976), 301 —311.

[3] 1. Chajda and M. Zelinka, Tolerance relations on lattices, Casop. Péstov. Mat. 99 (1974),
394-1399.

[4] 1. Chajda and B. Zelinka, Tolerances and convexity, Czech. Math. J. 29 (1979), 584 — 587.

[51 G. Czédli, Factor lattices by tolerances, Acta Sci. Math. 44 (1982), 35—42,

[6] G. Czédli and L. Klukovits, A note on tolerances of idempotent algebras, Glasnik Mat.
Ser. III 18 (38), 35-38.

[71 E. Fried and G. Gritzer, Notes on tolerance relations of lattices: On a conjecture of
R. McKenzie, Manuscript (1987), 1—12. To appear in Acta Sci. Math. (Szeged).

8] E. Fried and G. Gritzer, Generalized congruences and products of lattice varieties,
Manuscript (1987), 1—23. To appear in Acta Sci. Math. (Szeged).

[9] G. Griitzer, “General Lattice Theory,” Academic Press, New York, N. Y.; Birkhiuser
Verlag, Basel; Akademie Verlag, Berlin, 1978.

[10] G. Gritzer, “Universal Algebra. Second Edition,” Springer Verlag, New York, Heidel-
berg, Berlin, 1968.

[11] G. Gritzer and G. H. Wenzel, Notes on Tolerance Relations of Lattices, Manuskripte
Nr. 66, Fakultit fir Mathematik und Informatik der Universitit Mannheim (1987), 1—20.
To appear in Acta Sci. Math. (Szeged).

[12] M. Kindermann, Uber die Aquivalenz von Ordnungspolynomvolistindigkeit und Toleranz-
einfachheit endlicher Verbdnde, in ‘“‘Contributions to General Algebra (Proceedings of the
Klagenfurt Conference 1978),” 1979, pp. 145—149.

[13] 1. Rosenberg and D. Schweigert, Compatible Orderings and Tolerances of Lattices,
Preprint No. 70, Univ. Kaiserlautern (1983), 1—44.

[14] B. Zelinka, Tolerances in algebraic structures, Czech. Math. J. 20 (1970), 179 —183.

G. Gratzer G. H. Wenzel

Department of Mathematics Fakultat fiir Mathematik und Informatik
University of Manitoba Universitat Mannheim

Winnipeg, Man. R3T 2N2 D-6800 Mannheim 1

Canada ' ’ German Federal Republic

34



ARCHIVUM MATHEMATICUM (BRNO)
Vol. 25, No. 1-2 (1989), 35—-46

SPECIAL INVARIANT SUBSPACES
OF A VECTOR SPACE OVER z)z

LADISLAV SKULA
(Received April 7, 1988)

Dedicated to the memory of Milan Sekanina

Abstract. This article deals with a special linear operator S on the vector space V over the Galois
1-1
field Z/IZ of dimension

(/ an odd prime). All invariant subspaces are described in three

ways. The background of this theme is found in the area of the Stickelberger ideal mod I. It is
shown that the matrices of the Stickelberger ideals have a very convenient form for / < 1,000.
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In this paper the vector space V over the Galois field Z//Z is considered

(/ is an odd prime) with dimension i_;—L For this vector space special linear

operators S, (1 < z < / — 1) are defined. The main goal of this paper is to describe
all invariant subspaces of V with respect to the operators S, (Theorem 3.4).

There is defined a special isomorphism F from a group ring R~ (/) (considered
as a vector space) on V and the connection is shown between the ideals of R~(I)
and invariant subspaces of V with respect to S, (4.3.2).

The- theme of this paper derives from the area of the Bernoulli numbers, index
of irregularity of the prime | and the Stickelberger ideal mod I (4.3.3).

The final Section 5 deals with the normal matrix of a subspace of V. Especially
the normal matrix of an invariant subspace of V with respect to the operators S,
is investigated and it is mentioned that for each prime / < 1,000 the normal
matrix of the subspace of V corresponding to the Stickelberger ideal has a very
convenient form (5.9.1).
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1. NOTATION

Throughout this paper it will be designated by
1 an odd prime,

_ =1

Ty ‘
V = {(aQ1), a(2), ..., a(N)) : a(i) € Z/IZ} = (Z/IZ)™ the vector space over the
Galois field Z/IZ (of residue classes mod / on the ring Z of integers) with dimen-
sion N and with componentwise operations,
L={1,2..,N}.

Forintegers 1 < x,z <1 — 1 put

oz o) = 1 if xz=y(mod ),0 < y £ N,
e -1 if xz=ypmod) N+1=Zy<l,

f(x,2) = o(x,2) xzmod 1), f(x,)el,

so f(x,2) = :txé(mod .
For the vector u = (u(1), ..., u(N)) € V put

S;(uw) = v = (v(1), ..., v(N)) e V,

where v(x) = &(x, z) u(f(x, z)) (x € L). Sometimes an integer
xe Z will be considered as the residue class mod / containing x.
According to ([6], 3.4 and 3.5) it holds

1.1. Proposition. (a) E;or each 1 £z <1 -1 (zeZ) the mapping S,: V>V
is an automorphism of the vector space V. =
(b) For1 £z,z £1—1(z,z.€ Z) we have

S, =S, ifandonlyifz=7z.

©If1£2,2,wsl-1(z2,wel),ws=_z.z(modl), then S, = S,,0S,.

(d) The set {S,: 1 £z <1—1, ze Z} with operation e forms a cyclic group
of order | — 1. Generators of this group are the automorphisms Sy, where 1l < R <
< | — 1 are primitive roots mod /.

(The operations o means composition of mappings.)

The aim of this paper is to describe all invariant subspaces of the vector space V
with respect to the group ({S, : 1 Sz S 1 — 1}, 0).

Choose a primitive root rmod / (1 < r < /) and denote by S the mapping S,.
Then :
: {S;:15z281~-1,2eZ}={§":0sn<sl-2,nelZ}
and the S;-invariant subspaces of V for each 1 £z </ — 1, ze Z are just the
S-invariant subspaces of V.
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2. SOME S-INVARIANT SUBSPACES OF V
2.1. Definition. For a subset 4 = L put '

P(A4) = {a = (a(1), a(2), ..., a(N)) e V: Z a(x)z' ! = 0 for each a € 4}.

2.2. Proposition. (a) For each s:bset A < L the set #(A) forms an S-invariant
subspace of the vector space V and dim #(A) = N — | A|. (| A| means cardinal
of A).

(b) For A = B < L the relation (A) 2 &(B) holds.

(c) () =V, #(L)=0. (0 means zero subspace.)

Proof. a) Clearly, #(A) is a subspace of the vector space V. Let u = (u(l), ...,
..., u(N)) € L(A), S(u) = v = (v(1), ..., v(N)) € V. Then for ae 4 we have

iv(x) x* = ng(x, N u(f(x, ) x>,

hence

r2a-—l % U(X) xln-l = % u(f(x, T) (rx)Za—l (E(x, r) — 1) +
x=1 x=1
+ i u(f(x) r))(_rx)Zn—l (S(x, r) = —1) =
x=1

N ' N
=Y u@) y** e(y,r-) =1) + ; u(y) y** ey, r-y) =

y=1
N

= —1) =Y u(y)y* ' =0,
y=1
where r_;eZ, 0 <r_, <!, r.r_; = 1(mod /). Therefore the subspace ¥(4) -
is S-invariant. ¢ : :
(b) The subspace &(A4) is the space of solutions of the system of linear equations

i a(x)x** 1 =0 (ae A),

x=1
over the field Z//Z with unknowns a(1), ..., a(N). The matrix of this system equals
the matrix
: (x?*" Y)Y (xelL,ae A),

which is of Vandermond’s type, hence its rank is equal to | 4 |. It follows that
dim P(4) =N — | 4]. -
(c) The asscrtions (b) and (c) are evident.

2.3, Deﬁmtlon. We denote by ./V the set of all non—quadratlc residues x mod /
(1 <x < ). Forxe put

u(x) = (u(1), ..., u(N)) eV,
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where for 1 < ¢t £ N we have
u(t) — xindt,

(ind ¢ denotes index of ¢ relative to the primitive root r of 1)
The subspace of the space V generated by the vector u(x) will be denoted by U(x).
Hence, ’

Ux)={k.ulx):keZ/Z} and dim U(x) = [.

Since S(u(x)) = x. u(x), U(x) is an S-invariant subspace of the space Y and
S(u) = x . u for each ue U(x).

2.4. Proposition. The vectors u(x) (x € N) form a basis of the space V.

Proof. Asdim V = N, it is enough to prove that the vectors u(x) (x € /) are
linearly indepeﬁdent.

Let ¢(x) € Z/IZ for x € A such that

Y o(x) u(x) (xe &) = o.
(o means zero vector.)
Then
Tex) x(xeN) =0 for each l<v N
It follows
Ye(x) x(xeN)=0 foreach O0ZLiZ<N-I.

The matrix (x)(xe A, 0 <i< N —1) is of Vandermond’s type, hence
¢(x) = 0 for each x € #”. The proposition is proved.

2.5. Definition. For X < A4 let U(X) mean the subspace of the vector space V
generated by the vectors u(x) (x € X), U(Q) is defined as zero space. Hence U(X)
is the direct sum of the subspaces U(x) (x € X):

UX) =X Ux) (xe X)
®

and dim U(X) = | X |.
Since the subspace U(x) is S-invariant, the subspace U(X) is also S-invariant.
2.6. Proposition. Let X, Y < A". Then we have
(@) U(X) < UY)ifandonlyif X < Y,
b) UX)=U(Y)ifandonly if X =Y.

Proof. Clearly, (a) implies (b). Suppose U(X) < U(Y) and x € X. Then u(x) €
€ U(Y) and hence x € Y. Therefore (a) holds and hence (b) as well.

Between the subspaces U(X) (X < A”) and the subspaces ¥(4) (4 < L) the
following relation holds.
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2.7. Theorem.- Let X < N and A =L — {N - %(indx -1:x eX}. Then

U(X) = &L(A4).

Proof. I. We show that U(X) c &(A). Let x € X and u(x) = (u(1), ..., u(N)).
Then x™" = u(v) for each 1 < v £ N. For ae A the integer ind x + 2a — 1
is even and ind x + 2a — 1| % O0(mod / — 1). Therefore we have

N N
Z xindVDZa—l = Z (rind x+2a—l)ind "(mod l) =
v=1

v=1

-3
——
2 (rind x+2a- 1)“ (mod l) = O(mod l)

u=0

N
It follows that ) u(v) v?*~! = 0, hence u(x) € £(A).
v=1

II. Since dmU(X)=|X| =N — | 4| = dim ¥(A4), we get U(X) = FL(A).

3. ALL S-INVARIANT SUBSPACES OF V

In this Section we give description of all S-invariant subspaces of the vector
space V. The proofs use the known results concerning the structure of a linear
operator in an n-dimensional vector spave over a number field that hold also
for the field Z/IZ as.it is possibly easily to see. The notions and these results from
this branch are taken from book [2] by F. R. Gantmacher, Chapter VII. Especially
we use the notion of minimal polynomial of a vector space (with respect to a given
linear operator) and ,,The First Theorem on the Decomposition of a Space into
Invariant Subspaces™ ([2], Chapter VII, Theorem 1).

3.1. Proposition. The polynomial ¥(1) = AN + 1 (considered over the field Z//Z)
is the minimal polynomial of the space V with respect to the linear operator S.
Proof. Recall that the minimal polynomial ¥(4) is the non-zero monic polynomial
over Z/IZ of the least degree such that for each u e V we have ¥(S) (u) = o.

If ueV, then S¥(u) = S¥(u) = S;_,(u) = —u, so ¥(S) (u) = o.

Let u;, = (0,0, ...,0,1,0, ...,0) e V, where 1 is situated on the ith position.
The vectors u; (1 £i < N) form a basis of V.

1-3

For 0£n< let x(n) be the integer, 1 < x(n) < N, e, = +1 such that

e,r"x(n) = l(mod /). Then S” = S; = §, according to 1.1 (c), where w is the
integer, 1l S w £/ — 1, w = r"(mod /). Hence S"(u,) = e,u,(,. Since for 0 < n,
1-3

5 the equality x(n) = x(m) follows n = m, the vectors S°(u,), S'(u,), ...,

m =
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1-3
., 8 27(u,) are linearly independent hence x(S)(u,) # o for each non-zero
polynomial x(1) over the field Z/IZ of degree < N. The proposition follows.

3.2. Remark. Clearly
YA =N+1=I0L-x) (xeN)

over the field Z/IZ. The polynomial 4 — x is the minimal polynomial of the
subspace U(x) with respect to the operator S for-each xe€ A4". The conversion
of this assertion holds as well:

3.3. Proposition. Let U be an invariant subspace of V with respect to the operator S
with minimal polynomial A — x (x e &) (over Z/IZ). Then U = U(x).

Proof. Clearly, U is a non-zero space. Let u = (u(1), ..., u(N)) e U, u # o.
There exists 1 < i < N such that (/) + 0. For | Sj<Nlet 1 £z<5/-1
with the property zi = j(mod /). There exists k€ Z/IZ, 0 # k such that k. u =
= §,(u), hence 0 # k. u(i) = &(i, z) u(f(i, z)) = +u(j). Thus u(j) # 0 for each
1<j< N

Put v = u(1)"'u = (v(1), ..., o(N))e U. Then v(j) # 0 for each 1 £ j < N
and v(l) = 1.

a) For 1 £a,b £ N we have v(a).v(b) = ¢(a, b) . v(f(a, b)). Namely, there
exists ke Z/IZ, k # 0 such that k. v =S,(v) = (w(l), ..., w(N)). Since 1 = v(1),
we get k = w(l) = (1, a) v(f(1, a)) = v(a), thus v(a).v(b) = k. v(b) = w(b) =
= &(b, a) . v(f(b, a)). ,

b) Let 1 £¢,d £ N, e= +1, n a positive integer and ¢" = ed(mod ). Then
v(c)" = ev(d).

We prove this assertion by mathematical induction with regard to n. The case
n = 1 is clear. Let this assertion hold for n = l andlet 1 S C, DS N,E= +1
and let C"*! = E. D(mod I).

There exist integers ¢,0,¢ = +1,1 <6 < N such that C" = gé(mod /). We
have v(C)" — ev(d) and according to a) v(é) . v(c) = &8, ¢) . v(f(9, c¢)). Further
€0,¢) f(6,c) = Cod =eC"*! = ¢E . D(mod I), hence f(9, ¢) = D and ¢E = &(5, ¢),
thus v(C)"*! = ev(d) . v(C) = Ev(D).

c) It holds v(f) = x™* for each | St < N. Put R=r, ¢ = 1 in case r < i2
and R=17/—r, ¢= —1 in case r > If2. There holds xv(j) = &(j, r) v(f(j,r))
(1 £ j £ N), hence x = xv(1) = &(1, r) v(f(1, r)) = ev(R), which follows ex = v(R).
Let 1 £ 1< N, n=ind¢ According to b) (c- R, d=1t,e=¢") we get v(r) =
= &"0(R)" = x", thus x™* — p(1). _

Assertion c) ylelds v = ¥(x) and since each vector from U 1s a multiple of v,
we have U ="U(x).
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3.4. Theorem. Let U be a non-zero S-invariant subspace of the space ¥, dim U =
=m (1 £ m £ N). Then there exists X = A, | X| = m such that U(X) =

Proof. Let G(1) be the minimal polynomial of the space U with respect to S.
Then G(A) divides the po1ynom1al ¥(2) = AN + 1, hence there exists X < 4 with
the property

G =T1G-x (xex),

(considered as a polynomial over the field Z//Z). The First Theorem on the
Decomposition of a Space into Invariant Subspaces then yields

U=YU, (xeX),
@

where U, is an S-invariant subspace of V with the minimal polynomial A — x.
Proposition 3.3 then implies Theorem.

4. CONNECTION WITH THE GROUP RING (Z/IZ) [G]

4.1. Notation. Throughout this Section we shall use the following notation:

G a multiplicative cyclic group of order / — 1,

s a generator of G; thus G = {1 = s° s, ..., s’ "2}

R() = (Z/IZ)[G] the group ring of G over the field Z/IZ; thus R() =

s

1-2
={Y as' :a,€e Z/IZ},
i=0

1-2 ‘
R() ={a=Yas'eR():0=a,+ a,yforeach0 i< N -1},
i=0

F the mapping of R~(/) onto V defined as follows: F(a) = u = (u(1), ...,
1-2

wouN)eV,a=Y asieR™()) and for 1 £ x £ N, u(x) = @y —jnax(@-1 =
i=0

- aO),
F, the mappmg of R~(/) onto R~ (/) for an integer n deﬁned by the formula
F(x) = s".a(x e R™()).

We consider the subring R ~(/) of the ring R(/) as the vector space Qverlthe field
Z/I/Z. Then F is an isomorphism of the vector space R~ (/) onto the vector space V
and the mappings F, are automorphisms of the vector space R~ (/).

4.2. Proposition. Let z be an integer, 1 < z <1 — 1, n = ind z. Then
FOFROF—_" =Sz' : ety . , et
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Thus the following diagram is commutative:

- Fol

R7(1) < v

F S
n 2
R7(2) A v

1-2
Proof. Let u = (u(l), ..., u(N))e V, F '(u) = a = as'eR(), F(0) = =

i=0
1-2
= Y bs'eR™(I) and F(B) =v = (v(1), ..., v(N)) e V. For each integer j let
i=0 5

a;=a;,where0 £ i</ —2,i=jmod/ — 1)
Thenfor1 £x<Nand0<i<!—-2wehaveu(x) =a_,,4,, b;=a;_,and v(x) =

= bl—l—indx = Q_jndx—-n = O—jndxz — a-—inds(x,z)f(x,z) = a—inde(x,z)-—indf(x,z) =
= &(x, z) u(f(x, z)) = u(x). It follows S (u) = v and the proposition is proved.

4.3. Remark. The ideals of the ring R~ (/) can also be characterized as follows:

4.3.1. An additive subgroup I of the ring R~ (1) is an ideal of the ring R~ (I) if and
onlyifs.Ic I
Proof. Clearly, if I has the given property, then it is an ideal of R~ (/). Let [

I+1 k.

be an ideal of &7(/) and let o € I. Denote by f the element s(l—s2)e

2
-1
€ R~ (I), where 1 is considered as an element of Z/IZ. Since R~ ()= (1 — s 2 YR()), .
I1+1 -1
there exists ye R(/) suchthata = (1 — s 2 )y. Thenf.a = L ; 2 s(1—52 ) y=
-1

=s5.(1 -5 2)y=s.a, which implies 5. ax € I.
According to 4.3.1 there holds

4.3.2. A subset I of R~ (I) is an ideal of the ring R™(I) if-and only if it forms an
F,-invariant subspace of the vector space R~ (l) for each integer n.
According to [5], Proposition 3.9 the ideals of the ring R~ (/ are in the one-to-one
correspondence with the subsets X of 4" by the formula
XN > X)) =R"D[[6c-%» (xeX), _

(s — x is considered as an element of R(/)). #(X) is a subspace of the vector space
R-(I) and according to [5], Proposition 3.3 the system of elements a; (1 £ L <
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<l—-2,Lodd, r ¢ X)(1=r, 21— 1, r, =r"(mod!/) for an integer n) forms

2
r_;s'. The image F(#(X) is then
0

1
a basis of the subspace #(X), where a; =

an S-invariant subspace of V, whose basis is formed by the elements F(a;) = u(ry),
and then F(#(X)) = U — X).

We have got in this way another proof of Theorem 3.4.

The general situation looks like the following:

S-invariant subspacesof V « subsets of A~ — ideals of R™())
U=UW) =54 = .
=FfN = X))o X={rpp beb— A} o g4 - X) =
1 =RD.[]c-x)(xeVs = X)

A= L—{N —%(indx —1): xeX},

subsets of L

4.3.3. Special case. If we put A ={l <a = l—;l; l/B,,} (B, means the
Bernoulli number), then | A | = i(!) the index of irregularity of | and according to [6],
Theorem 2.4 (c) #(A — X).= J(I) is the Stickelberger ideal mod I. The set X
is then equal to the set {r_,,,, : 1 < b < l—%}—, I¥B,} v {r}.

The images of some concrete elements from the Stickelberger ideal J~(l) in the

isomorphism F are described in Section 4 and 5 of [6].

5. THE NORMAL MATRIX OF A SUBSPACE OF V

All matrices are considered over the field Z//Z.

5.1. Definition. A matrix M = (m;;) of size mxn (m £ n) is said to be in normal
Sform if there exist integers 1 < j, < j, < ... < j, < nwith the following property:
1 for j=j,
m;; =10 for j < j;,
0 forj=ji,1£ksmk #i,
1 < i £ m. Thus the columns with subscriptions j,, ..., j, form the unit matrix
of order m and the elements of M standing in the left of ones of this unit matrix
are zeros. The number m is rank of M.
It is clear that any nonzero matrix C can be transformed in a matrix M in normal
~form by a sequence of elementary row operations (i.e. multiplication of a row by
a nonzero element from Z//Z and addition to a row another one) and omitting
rows containing only zeros. ' i
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This matrix M ir defined uniquely by this property and we will call it the normal

form of the matrix C.
5.2. Definition. Let 0 # U be a subspace of the vector space V. The coordinates

of vectors of a basis # of U form a nonzero matrix
_ = (u(1), ..., u(N)) (u = (u(1), ..., u(N)) € %)
of size dim U x N. We call the normal form M of the matrix U the normal matrix

of the subspace U.

Clearly, M doesn’t depend on the basis 4, size of M equals dim U x N and the
row vectors of M form a basis of U. The normal matrix of the whole space V
is the unit matrix of order N.

53. Let & # U s V be an S-invariant subspace of V,let 4 = L(&¥ # A4 # L)
and U = #(4),and let r =| 4| (0 < r < N).
There exist uniquely determined integers

0=¢<2=2¢ <& <..<E <& =N,
such that for xe L, &, < x £ &,.(0 < kK < r — 1) rank of the matrix
(xZG— > :::11’ 63:2‘9 sniey érza 1) (GEA)

of size r x(r — k + 1) equals r — k. (Since rank of the matrix (>~ ') (ae 4, te L)
of size r/N equals r (Vandermond’s type)).

Let 1 i< N,i¢{&,¢&,, ..., &} Then there exists 0 < k < r — 1 such that
& < i < &4,. Since ranks of matrices

(PN 8N s facd),
(G - BN CEV)

equal one another and equal r — k, there exist uniquely determined integers
0 x <1 gygr—k)suéhthat

*) . Z £237 x,, = O(mod ).

Putfor1 <j < N(1¢ {61, G

1 for j =i,
m;; = Xy for j=§(l Sy S r—k),
0 otherwise.

5.3.1. Theorem. The matrix M = (m;)) (1 £ i = N,ie{&,&¢, ..., 5}, 1 S/ =
< N) is the normal matrix of the subspace U. :
 Proof. According to definition the matrix M is in normal form and has size
dim U x N'since dim U = N — r. It remains to prove that every row vector of M

belongs to U. Using (*) and the fact U = &#(4) we obtain the Theorem.
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5.4. Definition. We call a subset A = L normal (for the prime l) if A =@ or
A=LorJd # A # L and the normal matrix M of the subspace #(4) of V has
the form

M =(E X), |
where E is the unit matrix of order N — | 4| and X is a matrix of size N — | 4| X
x| A].
The following two Propositions are immediate consequences of Theorem 5.3.1.

5.5. Propesition. Each one-element subset of L is normal for the prime I.

5.6. Proposition. Let A L, J#A# L,r=|A|and B={a — a* :a€ 4},
where a* is the least integer in A. Then the following assertions are equivalent:

(a) A is normal for the prime I,

(b) det (x**) (be B, N — r + 1 £ x £ N) % O(mod /),

() det (2x — 1)) (be B, 1 £ x < r) 2 0(mod /).

We can see easily

5.7. Proposition. Let 3 < | < 11. Then each subset A = L is normal for the
prime [, :
We also obtain by easy computation:

5.8. Proposition. Let | = 13. Then each subset A < {1,2, ..., 6} is riormal for 13
except - - '
(a) A={1,3,5} or 4 = {2, 4,6},

(b) A ={1,4} or A ={2,5)} or A= {3,6).

In case (a) the normal matrix M of & (A) has the form

ol

—10x10};,zl
MZOIX20y222
(000 1y;2
and in case (b) .
(100 x, 0y,
010x,0py,
001 x;0p,(’
0000 1y,

X1, Y1, 21€ Z).
The numbers x;, y;, z; can be computed by means of the equalities (*). Thus
e.g. for 4 = {1, 3, 5} we have

M =

(==
O - O
S oo O
-0 O
S O W
L OO
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and for 4 = {2, 5}

100100
. 0100012
M=1o01100
00001 12
59. Let A-—{l a<—— I/Bz} Z=Au{l—_2_~1}. Using tables of

indices ([3]) and tables of irregular primes ([4] , s. also [1], Table 9) we can derive:

5.9.1: Proposition. For each prime I, 3 < | < 1,000 the sets A and A are normal
Jfor the prime .
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Abstract. We consider the classes of directed graphs which are determined by the existence of
a homomorphism into (or from) a fixed graph. We completely answer the question when a class
of this type is universal.
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1. INTRODUCTION

In this paper we deal with directed graphs (without loops and multiple arcs)
Graphs may be infinite.

Given graphs G = (V, E), H = (W, F), a homomorphism f : G - H is a mapping
V — W which satisfies (f(x), f(»)) € F for every (x, y) € E. We also may say that
G maps into H and we denote it by G —» H.

Denote by GRA the category of all graphs and all their homomorphism. Any
category X for which there exists an embedding of GRA into J¢" is said to be
universal (binding), see [5], [3]. A universal category is very rich in the sense that
~ every concrete category may be embedded into it.

One of the main streams in the study of universal categories is formed by efforts
to find simple examples of universal categories, see [1], [2], [5], [8], [9] for numerous
examples in various areas of mathematics.

In this context perhaps it is worth to mention the following. Some time ago
M. Sekanina and the second author investigated the universality of classes of

graphs related to Sekanina’s characterization of Hamiltonian powers of graphs
[12]:

Supported by Sonderforschungsbereich 303(DFG), Institut fiir Operations Research, Umvermlt
Bonn, W. Germany and the Alexander v. Humboldt Stiftung.

Edited jointly with KAM-Series 88-80, Department of Applied Mathematics, Charles University,
Prague.
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Let k be a positive integer, let G = (V, E) be an undirected graph. Denote
by G® = (V, E™) the graph defined by

[x,y]eE® iff x#y and dgx,y) <k

Here dg(x, y) is the distance of x and y in G. We call G'¥ the k-th power of G.
Among the résult which Sekanina and NesSetfil obtained and which were not yet
published is the following:

1.1. Theorem. Let k be a positive integer. Then the class Gra™® of all k-th powers
is a universal category.

In this note we consider the following classes of graphs from the point of view
of their universality. Let 4 be a graph. We introduce the following special subclasses
of the class Gra: '

' -+ A ={G;G - A4},
+ A {G; G+ 4},
A - ={G;4- G},
A+ ={G; 4+ G}.

These classes were investigated previously in various context: in [10] from the
point of view of algorithmic complexity and in [15] from the point of view of
algebraic properties (such as the existence of products).

In [2] and [1] we considered the classes of undirected graphs which contain
a given graph as a subgraph. As an easy modification we get from this the
following:

1.2. Proposition. For every graph A the classes +» A and A — are universal. '

For the remaining two cases we do not get always an affirmative answer and
we give a full solution in this paper. This is stated below as Theorem 3.1 and 3.2.

‘The motivation of this paper is two fold: First we want to complement the
research for undirected graphs [1], [2]. Secondly the questions considered in this
paper naturally arised in the study of directed rigid graphs, see our companion
paper [4]. Our results support the common belief that the directed graphs although
sometimes easier to construct are in the context of categorial representations
mostly more difficult to analyse.

The key to our analysis is the study of balanced graphs. This is contained
in Section 2 where we define invariants A(G) and A(G); A(G) is called the height
of G, In Section 3 we state our main results. It appears that it suffices to consider
the case — A as the case 4+ is a byproduct of our proof.

A bit surprisingly the universality of a class — A is fully characterized by a fact
whether it contains (just) two mutually rigid graphs. A graph G is rigid if the
identity is the only homomorphism G — G. Two rigid graphs G and H are said
to be mutually rigid 1f they are rigid and there are no homomorphisms G - H
and H - G.
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2. BALANCED GRAPHS

Definition 2.1. A4 cycle is balanced if it has the same number of arcs going one
way as going the other way (with respect to a fixed transversal of the cycle). A directed
graph G = (U, E) is balanced if each of its cycles is balanced. The net length of
_ a path is the number of arcs going forward minus the number going backwards.

—_
A directed path of length n (i.e. with n + 1 vertices) will be denoted by P,. Finally,
P_, denotes the doubly infinite directed path.

Proposition 2.2. For a directed graph G the following two statements are equivalent;

1. G is balanced, o '

2. there is a homomorphism G - P,.

Proof. Since the homomorphic image of an unbalanced cycle must contain
an unbalanced cycle, it suffices: to prove that 1. implies 2. Without- loss of
generality let G be a connected balanced graph. Any two. paths with a fixed
beginning and a fixed end have the same net length. Let x be a fixed vertex of G
and let f(y) be the net length of any path from x to y. One can check that f is

a homomorphism G — P, .

o

This leads to the following:

Definition 2.3. Let G be a balanced graph. Let A(G) be the minimum n such that

there exists a homomorphism G — P,. (Possibly n = ). We call A(G) the height

of G. Denote also N(G) the maximum n such that there exists a homomorphism
B

P, —» G. Clearly A(G) £ A(G). "

Let us remark that it follows from the above proof of Proposition 2.2 that
for a connected graph G a homomorphism f: G — P, is uniquely determined
by the value f(x) for any one vertex x of G. It follows that for a connected

—
balanced G with finite height A there exists unique homomorphism f: G — P,.
This homomorphism will also be denoted by A. By convention, we let A denote
an arbitrary homomorphism G — P if G has infinite height. '

This has several corollaries. We want to mention the following results explicitely
as we shall need them later:

Lemma 2.4. Let G be a connected balanced graph with finite A(G). Then A(x) =
= max {A(P) | P is a path in G which terminates in x}.

a
Lemma 2.5. Let G and H be balanced, f : G - H a homomorphism. Then A(G) <
< A(H).

o



P. HELL, J. NESETRIL

Lemma 2.6. Let G and H be connected balanced graphs with A(G) = A(H)"< 0,
and let f : G - H be a homomorphism. Then f preserves A. (Explicitely Ax(f(x)) =
= Ag(x) for every x € V(G).)

Finally we have

Proposition 2.7. Let G be a rigid balanced graph with finite A(G). Then G contains
a rigid path P with A(G) = A(P).
Proof. Let P be a shortest path (i.e., having the fewest arcs) with A(P) = A(G).
(It exists by 2.4). Then P can be seen to be rigid by 2.6.

Remark. Of course 2.7 need not hold for infinite A.

An antidirected path is a path P with A(P) = 1. Denote by a(G) the maximal
length (number of arcs) of an antidirected path in G. We put a(G) = oo if there are
arbitrarily long antidirected paths. As we shall see below the numbers a(G) may be
wused for testing the existence a homomorphism.

We begin our investigation of balanced rigid graphs of small height with an
analysis of rigid trees.

Denote by T, the path of length 2a + 3 which contains an antidirected path
of length 2a + 1 and does not contain directed path of length 3. It is easy to see
that T, is uniquely determined (up.to isomorphism). The path T, is depicted
in Fig. 1 (where all arcs are directed upwards).

_ o
NN N
. i :

H
Fig. 1 Fig. 3

Similarly, T,,, will denote a path of length 2a + 2b + 4 and height 4, as illustrated
in Fig. 2.

Proposition 2.8. For a fixed A the following two statements are equivalent

1. There are mutually rigid trees T, T', A(T) = A(T’) = A,

2.4 2 4.

Proof. 2. = 1. Consider trees T, .

Then, using 1.6 there exists a homomorphism f: T,, = T, if and only if
asa,b<b Thus T, and T, are mutually rigid. It is easy to extend these
to T,, and Ty, respectively, so that T;, and the T; , remain mutually rigid,
and have the required A. )

1. = 2. Exhausting a few cases one can check that all rigid trees with A < 3 are
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directed paths with A < 2 and the graphs T,, a = 1. (In the only non-trivial case
A = 3, this also follows from the next Proposition.)

: o
- The next result characterises rigid graphs with height < 3. Recall that a retract
of a graph G is a subgraph H of G such that there exists a homomorphism G -+ H
with f(H) = h for all h e V(H).

Proposition 2.8. (1) Let G be connected and balanced, A(G) = 3. Then there
exists an a such that G has a retract isomorphic to T,. (2) Let G be connected and

balanced, A(G) = i,i = 0, 1,2. Then G has a retract isomorphic to P,;.

Proof. Let a be the minimal such that T, is a subgraph of G. Put V(T,) = x,,
X1(0)> X2(0)> X1(1)> *++» X1(a)> X2(a)> X3. We show that T, isaretract of G. Define
r: G - T, by the following:

r(z) = the unique vertex ¢ of T, with A(¢) = A(z) and with the distance (3 arcs)
to x, at least min ((2a + 3), d,;) (where d, is the minimum distance between z
and any vertex v with A(v) = 0 in G).

This r maps all z with A(z) = 0 to x,, all z with A(z) = 3 to x; (by minimality
of a) and all other vertices ‘““as far away from x, as possible”. It is easy to see
that r is a homomorphism, and that r(z) = zif ze T,.

— -
The proof of (2) is easy. Since P; - G — P, is rigid, G — P; must be a retraction.

=}

3. MAIN RESULTS

Now we can formulate our main results:

Theorem 3.1. For a directed graph A the following three statements are equivalent:

1. Either A is unbalanced or A(A) 2 4; '

2. There are two mutually rigid paths P, and P, of height 4 which admit homo- -
morphism into A;

3. The class —» A is universal.

Theorem 3.2. For a directed graph A the following two statements are equivalent:
1. Either A is unbalanced or A(A) = 3:

2. The class A +» is universal.

First, we shall prove Theorem 3.1, Theorem 3.2 will be proved similarly.

We shall make use of the following:

Lemma 3.3. Let P be a rigid finite path, A(P) 2 4. Then there are mutually rigid
paths P, P, such that P is a homomorphic image of both P, and P, .

Proof. Put a(P) = k. An antidirected path in P is called of type 1 (type 2,
respectively) if it contains only vertices x with A(x) = 1 and 2 (A(x) = 2 and 3,
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respectively). (Note that every antidirected path contains vertices with two values
of A only.) Let P, (P, respectively) be the path which is obtained from P replacing
every antidirected path of length a of type 1 (type 2 respectively) by an antidirected
path of length k + a. It is easy to check (using 2.6) that P,, P, are rigid, that
there is no homomorphism P, - P, and P, — P;, and that P is a homomorphic
image of both P, and P,.

a

Proof of Theorem 3.1. 1. <> 2. is a combination of Lemma 3.3 and Proposi-
tion 2.8. Next, we prove 3 = 2, which is easier. Of course it follows from
universality that there are 2 mutually rigid graphs G,, G, which admit homo-
morphisms to H. Using Proposition 2.8 and Lemma 2.6 we get A(H) = 4. Combin-
ing Proposition 2.7 with Lemma 3.3 yields 2.

Now we prove 2. = 3.

Let P,, P, be two mutually-rigid paths of height 4. Explicitely, let P, = (V;, E)),
i=1,2 Let a,a,eV, satisfy A@) =0, A@@)=3, i=12 Let k2
2= max {a(P,) a(P,)} be a fixed odd number. Let G = (V, E) be a given anti-
symmetric digraph (i.e. such that (x, y) € E = (y, x) € E).

We shall construct a directed graph G* = (V*, E*) as follows:

V* = (VxV)U(ExV,) u(Ex{ay, ..., a,by, ..., b}).
The set of arcs consists of the following arcs:
(v, vy), (v, v;)) where (vy, U;) €E,,
(e, 02)s (e, 03)) - where (03, v3) € E;.
Furthermore, for any e = (v, v’) € E, let the vertices (v, a}), (e, a,), (e, a,), ..., (e, @),
(e, a3) and the vertices (e, a3), (e, b,), (e, b,), ..., (e, by), (', a3) form an antidirected
path of length k + 1 with ((v, a?), (e, a,)) € E* and ((e, a3), (e, by)) € E*.

Thus the graph G* is obtained from G by replacing every vertex by a copy of P,
and every edge of G by a copy of P, and by joining appropriate copies by “long”
antidirected paths. Obviously G* admits a homomorphism to H. See also Fig. 3
(again all arrows upwards):

| \ .
RN N 1
1 N . P NN G:
l | !
\ ‘\/\/ \/\/\/‘ ‘\/\/\/\/\/l
INN N NN I\ NN
* A\
G N NN N NN N
PVAVNA IR [PV N |
Fig
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Now it should be clear that if G = (V, E) and G’ = (V’; E’) are directed graphs
and f: G » G’ is a homomorphism then f induces a homomorphism f* : G* -
— G*. The mapping f* may be defined by

[, 01) = (f(v), 1),
(v, v), x) = (f(v), f(')), x).

On the other hand, if g : G* - G'* is a homomorphism, then (using the mutual
rigidity of P, and P, and the assumption on k) we have

g({v} xVy) = {U} xVy,

g{e} xVy) = {e'} xV,.
Put # = f(v). It is also clear from construction that e’ = (f(v), f(v")) if e = (v, V').
Thus g = f*.

Consequentiy the homomorphisms between graphs G* and G'* are in 1 — 1
correspondence with homomorphisms between G and G’. This correspondence
establishes the desired embedding of the category of all antisymmetric graphs
into the category of all digraphs which admit homomorphisms to H.

- a

Proof of Theorem 3.2. We do not need to worry about homomorphic image.
Thus let P be a path indicated on Fig. 4:

N\
N 1/1/1
}\l\l \/\|

Fig.4

It is easy to show that P is a rigid graph. For a given antisymmetric graph G +
+ (V, E) we can construct a directed graph G* = (V'*, E*) by replacing every
edge of G by a copy of the path P. It is a routine to check that every homo-
morphism between G* and H* is induced by a homomorphism between G and H.
This is similar (in fact easier) to the above proof, we leave the details.
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Abstract. A characterization for a special class of Eulerian trails in digraphs which traverse a set
of arcs of a subdigraph D, before any arc of D; = D — D, is traversed, is proved. The most general
structure of a subdigraph D, to allow such a restricted Eulerian trail is given.
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PRELIMINARIES

For notation and terminology, see [2, 4]. Let D be a digraph with vertex set
V(D) and A(D). In particular, V(D) and A(D) are always assumed to be finite,
A < A(D) denotes the set of arcs, incident from v, for v € V(D). For a digraph D
and a subdigraph D, let D — D, € D — A(D,) denote the uniquely determined
digraph without isolated vertices. The following lemma is folklore.

Lemma 1. Let D te a digraph and odp(v) = 1 for all v € V(D). Then there exists
at least one non-trivial strongly connected component C with no arc of D incident
from C (that is, (a, b) € A(D) implies either a ¢ V(C), or b ¢ V(D) — V(C)).

Lemma 2. Let D be a digraph satisfying odp(v) = 1 for all ve V(D). Suppose
D has precisely one (nontrivial) strongly connected component C with no arc of D
incident from C. Then there exists a spanning in-tree with root vy, where v, is an
arbitrary vertex of C.

Proof. Let v, be an arbitrary vertex of C, and let B, be an in-tree with root v,
containing a maximum number of vertices. If V(B,) # V(D) then we consider
D, = {V(B,)), the digraph induced by V(B,). Because of the maximality of B,
there does not exist an arc (x, y) with x € V(D) — V(D,) and y € ¥(Dy); further-
more, one easily concludes that C = D,. D; = D — V(D,) fulfills the assumptions
of Lemma 1. Because of Lemma 1 there exists a strongly connected component
C’ c D, such that no arc of D, is incident from C’. By construction it follows that
C’ n C =0 which contradicts the uniqueness of C.
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Definition. Let D be a weakly connected eulerian digraph, and let D, be a sub-
digraph of D. An eulerian trail T of D is called D,-favouring if and only if for
every v e V(D), T traverses every arc of D, incident from v before it traverses
any arc of D, = D — D, incident from v.

Of course, every eulerian trail of D is a D,-favouring eulerian trail for some
D, (just take D, = D). For which subdigraph D, of exists a Dy-favouring eule-
rian trail? There are two known results on the existence of D,-favouring eule-
rian trails depending on the structure of D, = D — D,.

Theorem 1. Let D be a weakly connected eulerian digraph, and for given v € V(D)
let Dy = D be chosen such that D, = D — D, is a spanning in-tree of D with root v.
Then there exists a Dy-favouring eulerian trail starting (and ending) at v. Conversely,
if T is an eulerian trail of D starting (and ending) at v, and if we mark at every w €
€ V(D), w # v, the last arc of T incident from w, then D, the subgraph of D induced
by the marked arcs, is a spanning in-tree with root v (and hence T is a (D — D,)-
Sfavouring eulerian trail of D).

Theorem 1 plays an essential role in establishing the BEST-Theorem which
gives a formula for the number of eulerian trails in an eulerian digraph. A proof
of Theorem 1 can be found in [1].

Theorem 2. Let D be an eulerian digraph. Let D, < D be chosen such
that odp (v) =2 1 for every veV(D,) < V(D), and let Dy = D — D,. D has
a Dy-favouring eulerian trail if and only if D, has precisely one (nontrivial) strongly
connected component C, with the property that no arc of D, is incident from C,.
Moreover, every D-favouring eulerian trail of D must start at some vertex of C,
and for any vertex of C, there is a Dy-favouring: eulerian trail of D starting at that
vertex.

Theorem 2 was proved by Berkowitz [3].

A GENERAL THEOREM

In view of Theorems 1 and 2, we ask the following question: What is the most
general structure a subdigraph D, of an eulerian digraph D can have in order
to imply the existence of a' (D — D,)-favouring eulerian trail 7'?

Theorem 2 implies that D; must not contain more than one nontrivial strongly
connected component C, with the property that no arc of D, is incident from C,.
But this condition is not sufficient even if D, is weakly connected; this can be seen
from the digraph D* of Figure 1. .

. What if we go the other way round? That is, given an eulerian digraph. D
and D, D, can we find D{ = D with D, < D such that D has a (D — D})-
favouring eulerian trail T* which induces a (D — D,)-favouring eulerian trail T?
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This approach and Theorem 1 and Theo:em 2 lead to the following theorem
which answers our original question.

Figure 1

Figure 1. An eulerian digraph D* having no Do-favouring eulerian trail (the arcs of D; are marked
with i, i = 0, 1).

Theorem 3. Let D be an eulerian digraph, and let D, be a subdigraph of D.
Any two of the following statements are equivalent:

1. D has a (D — Dl)ffavouring eulerian trail.

2. There exists a digraph D] with D, < D < D such that for every v € V(D)

a) od,(r) = odp,(v) if and only if odp (v) # 0;

b) odp:(v) = 1 otherwise.

¢) D, has precisely one non-trivial strongly connected component C, with no arc
of Dy incident from C,.

3. There exists a digraph D] with D, = D} < D such that
a) D has a (D — DY)-favouring eulerian trail;
b) for every Dy with D, = Dy < DY, if (x, y) € A(D; — D), then odp,(x) = 0.

4. D, contains a spanning in-forest D| such that

a) for some vy, and for every x € V(D,) — vy, odp;(x) = 0 if and only if
odp,(x) = 0, and odp;(ve) = 0;

b) D has an in-tree B with root vy and D; < B.

Proof. 1. implies 2. Let T be a (D — D,)-favouring eulerian trail starting at v,.
Define D; by Df = D, if odp,(v) = 1 for every v € V(D); otherwise, for every v
with odp,(v) = 0, mark the last arc of T which is incident from v, and let Df
consist of D, plus the marked arcs. In any case, D; < Df and Dy satisfies 2. a), 2. b).
Moreover, T is a (D — Dy )-favouring eulerian trail because of the choice of the
elements of A(D;) — A(D,). It remains to show that D; has pr_ecisély one non-
trivial strongly connected component C, with no arc of D; incident from C,.
Because of odpi(v) 2 1 for every ve V(D]) and the finiteness of D], D{ has
at least one non-trivial strongly connected component and, in particular, by
Lemma 1 at least one non-trivial strongly connected component C1 with no ‘arc
of D} incident from C; .

T must start and end in a vertex of Cl. Otherwise, there exist one: or'more
arcs (v, w) of Dsuch that ve V(Cf Jand w ¢ V(Cf_ ); among these arcs let (v;, w;) be
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the last arc in T, such that v,, (v,, w,), w, is a section of 7. By definition of C;' 5
(v, w,) ¢ A(DY), and because of odp:(v;) = 1 we get a contradiction to the fact
that T'is a (D — Dy )-favouring eulerian trail. It’s clear now that there can be only
one component C; with the desired property. The implication now follows.

2. implies 3. Take D] and C, as defined by 2 a). b), and c). At first it will be
proved that D has a (D — Dy )-favouring eulerian trail.

Properties 2. a), b), imply that Dy is a spanning subdigraph of D. Therefore and
because of Lemma 1, and property- 2. ¢) there exists in D a spanning in-tree
B! < D, with root vy € ¥(C,) (sce Lemma 2).

Mark all the arcs of B*. Construct T by starting at vertex v, with any arc (v, x),
choose any unmarked arc incident from x, if such arc exists; otherwise, choose
among the marked arcs one which does not belong to B; if such arc exists;
otherwise, choose the arc of By . Continue this way until this procedure terminates
at some y € V(D). Then y = v,; otherwise, T contains more arcs incident to y
than it contains arcs incident from y contradicting D being eulerian. Suppose T
" does not contain all arcs of D. Then let z be a vertex incident with arcs not contained
in T. Since Dis eulerian and T'is a closed trail, id, _7(z) = od, _1(z) # 0. Moreover,
z # v, by the very construction of 7. By definition of B;, there is a path P(z, vy) =
< By joining z to v,. Write

P(z,v0) = z,(2, uy), Uy, «oey Uy, (Uy, Vo), Vo3

possibly. z = u, and u; = v, (i.e. P(z, v,) may contain just one arc). By the con-
struction of T it follows that (z, u,) is not contained in T; therefore, also (u,, u,)
is not contained in T (note that (u,, u,) can be contained in T only if all arcs
incident to u; are contained in T); a.s.o. In particular, (x4, v,) is not contained
in T, contradicting the fact that id (v,) = ody(ve) = idp(ve) = odp(ve). Thus,
T contains all arcs of D. This and the construction of T imply that Tisa (D — D7)-
favouring eulerian trail of D.

Now consider any D; with D, < D; < D and suppose 4(D; — D)) # 90;
let (x, y) € A(D; — D,). By definition of D] in 2. a), b), an arc of D; — D, is
necessarily incident from a vertex z with od, (z) = 0. Hence (x, y) € AD; — D))
implies odp,(x) = 0; thus 3. b) holds as well.

3. implies 4. Start with D as described in 3., and consider a (D — D;")-favouring
eulerian trail T of D. If there is we V(D) different from the initial vertex v,
of T* such that the last arc of T'* incident from w is not in D;", then mark this
arc. Note that in this case none of the arcs incident from w lies in Dy

We define
D+ = Df  if no such w exists;
otherwise, ‘

Di* = (A(D}) v {ae 4, /odp+(w) = 0 and a has been marked}).
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In any case, by definition of Dy *, T+ is even a (D — D *)-favouring eulerian
trail of D, and D} * satisfies 3. b) as well. Moreover, V(D *) = V(D).

Marking for every v # v, the last arc of T* incident from v yields a spanning
subdigraph B and B = D; * follows from the very definition of D} *. Further-
more, odg(v) = 1 for all v # v, and odg(vy) = 0. Suppose B is not connected;
then there exists a weakly connected component B; of B which does not contain
vo and odg (w) = odg(w) = 1 for all we V(B,). By Lemma 1 there exists at least
one nontrivial strongly connected component C, < B, with no arc of B, incident
from C,. Now, if r is the last vertex of T in C,, such that r, (7, s), s is a section
of T, then it follows from the construction of B that (r, s) € A(B); furthermore s €
€ V(C,) because of the definition of C,. By the choice of 7, T terminates in C,
contradicting the fact, that T is an eulerian trail starting in v, ¢ V(B,) o V(C)).
Thus B is connected, and odz(v) = 1 for all v # v,, od(vy) = 0. This implies
that B is a spanning in-tree of D * < D rooted at v,,.

Define D7 by V(Dy) = V(D,) and A(D;) = A(B) n A(D,); thus D; is
a spanning in-forest of D, which satisfies 4. b). Let (x, y) be any arc of Bnot in D; ;
then x # v,. If (x, y) ¢ A(D}), then it follows from the definition of Df * and
D{* > D, that odp:(x) = 0 = odp,(x). If (x,y)e A(D)), then (x,y)¢ A(D,)
by definition of D ; and by 3. b) with D, = D7, odp,(x) = 0 follows.

We summarize: D] is a spanning in-forest of D,, and if x # v, for some v, €
€ V(Dy) (which is the root of B indeed) satisfies odp;(x) = 0-then odp,(x) = 0
(for, x not being the root of B .implies (x, y) € A(B — D) for some y). Since
odp,(x) = 0 implies od,;(x) = 0 anyway and ody;(vy) = odg(vy) = 0, and
because D; < B with V(B) = V(D), the proof of the implication is finished.

4. implies 1. Let DT < D, be chosen as described in 4. a) and let B be
a spanning in-forest of D with root v, and D; < B. Marking all arcs of B we
construct a trail T by starting at vertex v, with any arc (v, x). Choose any un-
marked arc incident from x, if such arc exists; choose the marked arc incident
from x, otherwise. '

Continuing this way until this procedure terminates we get a (D — B)-favouring .
eulerian trail (for arguments see 2. implies 3.).

Because of the freedom to choose the order in which the arcs of 4, — A(B)
appear in T for every v € V(D) we are even able to construct T in such a way that
the arcs of 4} N (D — D,) appear in T before any of the arcs of 4] n D, are
used. This is true even in the case where an arc (x, y) € B does not belong to D,;
for, in this case odp;(x) = odp,(x) = 0 by 4. a), i.e. A} 0 AD)) =8, ie., A} =
S D — D,. In the case of v,, if 4,, N A(D,) # @, than we proceed in the con-
struction of T by starting along an arc of A, N A(D — D,), and each time we
arrive in v, we continue along an arc of A;; N A(D — D,) not traversed before,
as long as there is such an arc. Consequently, 7 is a (D — D,)-favouring eulerian
trail of D. This finishes the proof of the implication. Theorem 3 now follows.
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It is easy to see that Theorem 3 is a generalization of Theorem 1 and Theorem 2.
Both Theorems can be derived by using the equivalent statements of Theorem 3
and some details of their proof. We also note that in proving Theorem 3 we used
ideas developed originally for the proofs of Theorem 1 and Theorem 2.
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0. It has been M. Sekanina who 25 years ago posed the question for the structure
.of those graphs G the square of which has an open or a closed Hamiltonian line
(i.e. G* is traceable or Hamiltonian, resp.), cf. [7]. Since that time many results
concerning this problem could be obtained; to the most important and well-
known ones among them certainly belong the Theorem of Fleischner [2], [3]
verifying a conjecture of Plummer and Nash — Williams [4] (Every block G with
at least 3 vertices has a Hamiltonian square) and its generalization by Chartrand,
Hobbs, Jung, Kapoor, Nash—Williams [1] (For every block G its square is
Hamiltonian-connected and, if G has at least 4 vertices, G? is 1-Hamiltonian as
well). Recently, St. Riha, a young former co-worker of Sekanina’s succeeded in
finding an excellent proof of the following statement (cf. [6]) which implies
Fleischner’s theorem and its generalization mentioned above.

Theorem 0: Let G be a block with at least 3 vertices and x any vertex of G. Then
there are two different G-neighbours a, b of x and a Hamiltonian path in G* — x
joining a and b. : o

Using Riha’s proof-method and his theorem, in the next sections of this paper
we shall get several results on the existence of Hamiltonian cycles in G containing
some edges of G, especially a partial answer to the question, if the Hamiltonicity
of G? always implies the existence of a Hamiltonian cycle in G* containing an
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edge of G. (In case that this conjecture were true it can be easily shown [8] that
for any such G even there is a Hamiltonian cycle in G? containing at least two
edges of G.)

All graphs considered here are supposed to be undirected, simple and finite
(possibly empty). Let G = (V, E) be a graph with the vertex-set ¥ (G) : = ¥V and
the edge-set E(G): = E. If x,ye V, x # y, are the end-vertices of an edge /e E
we denote this edge / by the couple {x, y}. We say that xe V is a G-neighbour of
yeV iff {x,y}eE. The vertex x is called a G-neighbour of M c V iff x¢ M
and x is a_ G-neighbour of some ye M. If X is a vertex (a subgraph or a vertex-
subset) of G then N(X : G) denotes the set of all G-neighbours of the vertex X
(of the set of all vertices belonging to X), and G — X is defined to be the subgraph
arising from G by deleting the vertex X (all vertices of X) and all edges incident
with X (with some vertices of X). By G(M) we denote the induced subgraph of G
generated by M < V. The valency (degree) of the vertex x € V(H) in the subgraph H
of G is denoted by v(x : H). The square G* of G is the graph with V(G?) := V(G)
and {x, y} € E(G?) iff the distance of x and y in G is 1 or 2. A block is a graph
which is 2-connected (non-trivial block) or a path of length 1 (trivial block). A block G
is minimal iff there is no edge / € E(G) such that the graph arising from G by delet-
ing /is a block. Paths and cycles w are comprehended to be special graphs (possibly
subgraphs of a given graph); as usual they are represented by sequences of the
vertices passed by w. Generally we shall not distinguish between a path (or a cycle) w
and its representation by a vertex-sequence. A path of length 0 is called trivial.
Ifp = (x0, Xy, --+» X, _1, X,) is @ vertex-sequence the inverse sequence (x,, X, _1, ---»
X1, Xo) is denoted by p~!, and if ¢ = (yo, ¥y, ---, ,) is another vertex-sequence
then (p, q) is defined to be the vertex-sequence (Xg, X1, ---5 X, _15 Xps Yos Vis -=+s Vs)s
analogously in similar cases. The number of elements of a set M is denoted by |M|.

1. Let G be a graph, w a non-trivial path in G and x an endvertex of w.

Definition. S is a (G?, w, x) —basic—set iff S is a set of pairwise vertex-disjoint

paths in G — w with U V(p) = V(G) — V(w), and there is a mapping f from S
peS
into the power-set of ¥ (w) with the following properties:

(1) S=S,uUS, where S;:= {peS:|f(p)| =i}, i=1,2;

(2) for each peS,, if {a,, a,} = f(p) and {e,, e,} is the set of the endvertices
of p (possibly e; = e,), it holds: {a,, e,}, {a,, e,} € E(G) or {a,, e,}, {a,, e,}e
€ E(G);

(3) for each peS,, if {a} = f(p), then {a, e} € E(G) holds for every endvertex e
of p;

@ f(p) n f(p') = & for any different p, p’ € S;

(5) if S, = & then there is a ze V(w), z # x such that z ¢ f(p) for each peS.
The construction given by Riha in [6]—it is the main point of his proof of
Theorem 0 — verifies the following
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Lemma. Let G be a graph, w a non-trivial path in G, x an endvertex of w and S
a (G2, w, x)-basic-set. Then there is a G-neighbour x' of x and a Hamiltonian path
in G?* joining the endvertices of w and containing the edge {x, x'} and each pe S

as a subpath. .

2. Using this Lemma we shall prove some generalizations of Riha’s Theorem 0.
For this end we introduce the following notations. Let G be a non-trivial block
(i.e. [V(G)| = 3) and w a path in G. By C,(w) and C,(w) we denote the set of all
components C of the graph G — w with |V(C)| = 1 and |V(C)| = 2, respectively,
and we define C(w) := C,(w) U C,(w). Let C € C(w). Then N(C : G) = ¥V(w) and
IN(C : G)| = 2; for C e C,(w) at least two vertices of C have G-neighbours in
N(C : G) and therefore there are two different vertices in C having a pair of different
G-neighbours in N(C : G). For every C € C(w) we form the graph G arising from
G(V(C) v N(C : G)) by contracting all vertices of N(C : G) to a new vertex 0 ¢
¢ V(G) (the edges between C and N(C : G) in G become edges between C and 0
in G¢, of course), where resulting multiple edges are replaced by a simple edge
with the same endvertices and resulting loops are removed. Obviously, G is
a block, and |V (G¢)| = 3 if C e Cy(w). Let us suppose:

(6) For each C e C,(w) there is given a Hamiltonian path h¢ in G% — 0 joining
two Gc-neighbours of 0. .

Furthermore, for each Ce C,(w) we define hc := C (the trivial path consisting
of the single vertex of C). Then it follows that h. and A, are vertex-disjoint if
C # C', C, C' e C(w). Denote by P the set of all subpaths arising from the family
(hc : C € C(w)) by deleting, for each hc, all edges in h; which do not belong to
E(C?). We remark that P consists of pairwise vertex-disjoint paths in (G — w)?
the endvertices of which are G-neighbours of some vertices of w, that every edge
belonging to E(hc) N E(G) for a C e C(w) is also an edge of some p € P, and that
the (disjoint) union of all sets ¥(p) with p € P results in V(G) — ¥V(w). Now the
following algorithm (*) is applied to P (see Riha [6]):

(*) If there exist different paths p, p’ € P with the property that there is a z € V(w)
which is a G-neighbour of an endvertex x of p as well as of an endvertex x’ of p’,
we take such a pair p = (@, ..., x),p’ = (x', ..., b) with x, x’ e N(z: G) for a z€
€ V(w), form the path p" = (p, p') = (a4, ..., X, X', ..., b) which is a path of G> — w
whose endvertices a, b are G-neighbours of some vertices of w (possibly of only
one vertex of w), and replace the elements p, p’ in P by p”. We obtain the set P’ :=
i= (P — {p,p'}) U {p"} and repeat this procedure with respect to P’, and so on.
After a finite number of steps —say r—this algorithm stops, and the resulting set
S := P has the properties:

(7) S consists of pairwise vertex-disjoint paths in G> — w the endvertices of
which are G-neighbours of some vertices of w;

(8) for any different elements p = (x, ..., x’) and q = (3, ..., y") of S, the end-
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vertices of these paths satisfy
N{x,x}: Q) A N{», ¥y} :G)nV(w) =G
) PEJS V(p) = V(G) — V(w);

(10) for any C e C,(w) every /e E(hc) n E(G) is also an edge of some peS.

Let S(hc : C e C(w)) denote the set of all such path-sets S which can be obtained
if we apply algorithm (*) to P in any possible way. Then it is easy to see that every
S e S(hc : C e C(w)) fulfils (10) and all properties of a (G2, w, x)-basic-set with
the exception of (5), where x is either endvertex of w. The mapping f'is chosen as
follows: If for a pe S with |F(p)| = 2 the endvertices e, e, of p satisfy m:=
:= |V(w) n (N(e, : G) U N(e, : G))| = 2, we take arbitrary a, e N(e; : G) n V(w),
i =1,2, with a; # a, and define f(p):= {a,,a,}; if m =1 we have to put
flp) := {a} = N(e, : G) n V(w). For a peS with [V(p)l =1 it follows
|N(e : G) n V(w)| 2 2 for the vertex e of p if pe C,(w), and we take a,,a, e
eN(e:G)nV(w), a, # a,, and f(p) := {a,a,}; if p¢C,(w) and |N(e: G) n
N V(w)| = 2 we proceed as before; if p¢ C,(w) and |N(e: G) n V(w)| = 1 we
define f(p) := {a} with {a} = N(e: G) n V(w).

3. Now we suppose G to be a minimal block with (V. (G)) = 3, and let x and y
be different vertices. Then there exists a cycle in G containing x and y. Because
this cycle has two different vertices a, b with v(a : G) = v(b : G) = 2 (see Plummer
[5], Riha [6]), at least one of the two independent paths joining x and y which
form a separation of this cycle must contain a vertex z # x with v(z:G) =2.
A path p satisfying this property (i.e. p joins x and y and contains a vertex z # x
with v(z : G) = 2) is called an admissible (x, y)-path in G and x its initial vertex.
(Obviously, an admissible (x, y)-path is not necessarily an admissible (y, x)-path.)
Note that for any x # y there is an admissible (v, y)-path in the minimal block G;
if {x, y} € E(G) then every path in G of length > 2 joining x and » is an admissible
(x, y)-path, and if {x, y} ¢ E(G) then there is an admissible (x, y)-path which
is not a Hamiltonian path. Let w be an admissible (x, »)-path in G and assume (6)
for this w. Then there is a ze V(w), z # x with v(z: G) = 2. Assume that the
family (hc : C € C,(w)) satisfies the additional property:

(6a) If o(y : G) = 2 and y is not a G-neighbour of x and the (only) G-neighbour
y* ¢ V(w) of y belongs to a component C* of G — w fulfilling C*C,(w), then hc*
contains an edge {y*, z} € E(G) with some ze N(y*: C*). Now consider an
S eS(hc : C e C(w)) and a mapping f described at the end of section 2. Then it
follows that the set S, = {peS : |f(p)| = 2} is empty only in the case that for '
each p the premise p € S implies [V(p)| 2 2and |V(w) n (N(e, : G) U N(e; : G)| =
= 1, for the endvertices e;, e, of p or |[V(p) = 1 and |N(e: G) n Vip) =1
with (€) = p. In the first case we conclude f(p) = N(e, : G)nV(w) = N(e, : G) n

)
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nV(w) = {a,} because of (7); obviously, v(a, :G) 2 v(a,:w) + v(a, : G({e,, e,,
a,})) = 3, and thus we have a, # z, ie. z ¢ f(p).

In the second case we have f(p) = N(e:G)n V(w) = {a,} for the vertex e
of p; further v(a,: G) = v(a,: w) + v(a, : G({e, a)=22+1=3 if g, is an
inner vertex of'w, and if a, = y and {x, y} € E(G) then v(y : G) = v(y : G(W)) +
+0(y:G{e,y})) 22+ 1=23. Now let a, =y, {x,y} ¢EG); if v(y:G) =2
then because of (6a) and (10) it follows that {y*, z} € E(p) for some z e N(y*:G — w),
where y* € N(y : G) — V(w). This is a contradiction to |V(p)| = 1. Hence in every
case v(a,: G) 2 3, and thus a, # z, i.e. z¢ f(p). So we have proved z ¢ f(p) for
each peSif S, = 0. Consequently, S and f fulfil (5); using the statements of
section 2 and the notations introduced there we get

Corollary 1. Let G be a minimal non-trivial block, x, y € V(G) with x # y, and w
an admissible (x, y)-path in G. Furthermore, we assume that we are given a family
(h¢ : C e Cy(w)) according to (6) and fulfilling (6a). Then every S e S(h.: C e C(w)
is a (G*, w, x)-basic-set satisfying property (10).

For any block H with |V (H)| =2 3 we define .

s(H) := [V(H)| Y, (v(x:H) —2) =2[V(H)I| ICI(EH)| — [V(H))).

xeV(H)

a

Obviously, s(H) = 0 because of v(x : H) = 2 for x e V(H), and s(H) = 0 iff H is
a cycle. Referring to the notations of section.2 we can prove

Corollary 2. Let G be a non-trivial block not being a cycle, and w a non-trivial

path in G with the endvertices x, y. Then for every C € Cy(w) the graph G is a non-
trivial block satisfying

(11) s(Ge) < s(G).

Proof: C e C,(w) implies (see section 2) [V(C)| = 2,|N(C : G)| = 2, N(C: G) =
< V(w), and V(C) n N(w : G) = N(0 : G¢). Hence, [V(G¢)| < [V(G)|, and G is
a block with (V(G¢)) = 3. Let N(C : G) — {x,y} = {ey, ..., &}, and write e, = x
and e,,, = y. Obviously, for. each Xx& V(C) we have v(X: G¢) < v(Xx:G). If

k

x,y¢ N(C:G)wegetk = 2and2 < v(0: Go) £ ) (v(e; : G) — 2);if x e N(C : G),
=1 .

y¢N(C:G)it follows k 2 1and 2 £ v(0: Gy) £ i (v(e; : G) — 2) + 1, analog-
ously for ye N(C : G), x¢ N(C : G); if x,ye N(Cl‘=:oG) we find £k =2 0and 2 £
< v(0: Gp) g_kii (v(e; : G) — 2) + 2. In each of these cases we obtain

5(Ge) = V(G| Y (0(x: G) = 2) = As(G),

xeV(G)
with 1 = %% < 1. This results in (11) because G is not a cycle and therefore

s(G) > 0.
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Note that for blocks H, G with |V(H)| = 3, where H is a subgraph of G and
H # G, it follows s(H) < $(G).

4. Generalizing Riha’s theorem (Theorem 0) we show

Theorem 1. Let G be a block and x, y adjacent vertices. Then there is a G-neighbour
X' of x and a Hamiltonian path in G* joining x and y and containing the edge {x, x'}.

Proof: Obviously, the assertion is true if [V(G)| = 2 and also if G is Hamiitonian.
Assume, Theorem 1 fails to hold, Let G be a block with the least value of s(G)
such that G does not fulfil the property stated in this theorem for some adjacent
vertices x # y. Hence it follows, that G is a minimal block with |F(G)| = 3
being not Hamiltonian, i.e. G is not a cycle, and therefore s(G) > 0. Because G is
a minimal block there is an admissible (x, y)-path w. Obviously w is a non-Ha-
miltonian path. According to section 2 we form the set C(w) = C,(w) U C,(w),
and for each C e C,(w) we consider the graph G, which is a non-trivial block.
Owing to Theorem 0 (cf. [6]) there exists a Hamiitonian path h. in Gé — 0 joining
two G.-neighbours of 0; therefore we can find a family (A : C € C,(w)) realizing
(6). (Note' that (6a) is trivial because of {x, y} € E(G).) Owing to Corollary 1
every S € S(hc : C € C(w)) is a (G2, w, x)-basic-set. Because w is a non-Hamiltonian
path, S(he : C € C(w)) # . Taking an S € S{h.: C € C(w)) and using the Lemma
of section 1 we get a Hamiltonian path in G? joining x and y and containing an edge
{x, x'} for some G-neighbour x’ of x, which is a contradiction to the assump-
tion on G. o

Theorem 2. Let G be a non-trivial block, and x, y different vertices. Then there
are different G-neighbours a, b of x, a G-neighbour z of y, and a Hamiltonian path
in G*-x joining a and b and containing the edge {y, z}.

Proof: The assertion holds for Hamiltonian graphs, i.e. for all non-trivial
blocks G with s(G) = 0. Assume Theorem 2 to be not true, and consider a block G
with |V(G)| = 3 and the least value of s(G) such that the property stated in
Theorem 2 is not fulfilled for some x # y. Then G is a minimal non-trivial block
and not Hamiltonian (i.e. not a cycle), what implies s(G) > 0.

Case 1: Suppose that there is a cycle k in G with x e V(k) and y ¢ V(k). Let b
be a k-neighbour of x. Deleting the edge {x, b} in k we obtain a non-Hamiltonian
path w which is an admissible (x, b)-path.

According to section 2 we form the set C(w) = C,(w) u C,(w), and for each
C e C,(w) we consider the graph G which is a block with |V(G()| = 3.

a) Let ye V(T) for some T e C,(w). Then Corollary 2 yields s(Gy) < s(G);
hence it follows that there is a Hamiltonian path h; in G2 — 0 joining two
Gr-neighbours of 0 and containing an edge {y, z} with a suitable Gy-neighbour z
of y. Then y, z # 0, and therefore z is a G-neighbour of y as well. Thus {y, z} €
€ E(hy) n E(G). For every C e C,(w), C # T, Theorem 0 yields a Hamiltonian
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path hc in GZ — 0 joining two Gc-neighbours of 0. In this way we have succeeded
in finding a family (hc: C € C,(w)) realizing (6). Cwing to Corollary 1 every
SeS(h.: CeC(w)) # & (w is a non-Hamiltonian path) is a2 (G2, w, x)-basic-set
satisfying (10) and consequently, {y, z} € E(p) for some p € S. Using the Lemma
of section 1 with such an S we obtain a G-neighbour a of x and a Hamiltonian
path in G? joining x and b and containing the edges {x, a} and {y, z}. Because of
|[V(G)] = 3 we have a # b, and we have found a Hamiltonian path in G* — x,
joining two different G-neighbours a, b of x and containing the edge {y, z} € E(G)
This is a contradiction to the assumption on G.

b) Let y e V(T) for some T € C (w). Then T consists of the vertex y, and y is
a G-neighbour of exactly two vertices z’, z € ¥(w) = V(k) which cannot be adjacent
in G (note that k has not diagonals because G is a minimal block). We may assume
z # x. Both paths w;, w, joining z’ and z and forming a separation of the cycle k
must contain at least one inner vertex (# z, z'). Then it follows that G — y is
a block with |V(G — y)| = 4 and s(G — p) < s(G). Thus (because of x # z) there
is a Hamiltonian path p in (G — y)® — x joiring two (G — y)-neighbours a, b’
of x and containing an edge {z, 1} € E(G — y) = E(G). Replacing the subpath (z, 1)
(which corresponds to the edge {z, r}) in p by (z, y, f) which is a path of length 2
in G2, we get a Hamiltonian path p’ in G> — x joining different G-neighbours a, b’
of x and containing the edge {y, z} € E(G). But this is a contradiction to the
assumption on G.

Case 2: We have to suppose that every cycle containing x must contain y as
well. Note that at least one such cycle exists. Each of the components of the graph
G — {x, y} is adjacent with x and with y in G and contains exactly one G-neighbour
of x. If x and y are adjacent in G, then G — {x, y} has exactly one component
(G is a minimal block), say T; otherwise G — {x, y} has at least two components,
say Ty, Ty, ..., T,y r = 2.

a) Let {x, y} ¢ E(G). By H; we denote the graph arising from H, := G(V(T;) u
v {x, y}) by adding the new edge {x, y}, i = 1, ..., r. Obviously, H; is a block with
|V(H)| = 3 and s(H;) < s(G) (because of r = 2), and, furthermore, v(x : H)) = 1,
v(x: H)=2,i=1,...,r. Consider any i€ {l, ..., r} and write H and H instead
of H; and H;, respectively. Note that H arises from H by deleting the edge {x, y}.
Let z denote the H neighbour of x being different from y, and let p be any path
in A joining x and y and not containing the edge {x, y}; such a path exists, for
is a block. Then p is a path in H which contains all cutpoints of H. (A cutpoint z’
of H with z’ ¢ V(p) would imply that both x, y belong to the same component C
of H — z', and that there is at least another component C’ # C; therefore the
edge {x, y} € E(H) joins vertices of the same component C of H — 2/, and we get
at least two components of H — z’, in contradiction to the fact that H is a block.)
Obviously, one cutpoint of H is z. Hence it follows that p can be represented by
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the sequence

P=(XZ = Zysnees Bas vy Zys vuvs Dys vonn V) =
’ ’ 4
= (X, P1sP2s -5 Pt_15 Pe)s

where z,, z,, ..., z,(t = 1) are all the (different) cutpoints of H, and p, = (x, z = z,),
e = (Zes voos Zep ) = (Prs Zeg1)y k= 1, ooy t — 1, and p, = (z, ..., ) are non-
trivial subpaths of p forming a separation of p. (Of course, z, # y holds because H
is a block.) With z, := x, z,,{ := y the couple {z, z, ,} of the endvertices of p,
determines a (maximal) block B, of H (B is the maximal subgraph in H being
a block and containing z, and z,,), k =0, 1, ..., #, and these Bys satisfy the
properties: V(B) N V(By, ) = {zx, 1}, k=0, ..., t — 1, V(B) n V(B =& for
0<!l<k<t withk 1+ 1, and By, By, ..., B, are all the (maximal) blocks
of H. (For otherwise we could find a path in H joining x and y and not containing
every cutpoint of H, or we would get a cutpoint of H, respectively, but we have
seen that neither of these situations is possible. To put it concisely: The block-
cutpoint-graph of H is a path, and x and y belong to its different end-blocks.)
Of course, B, = p, = (x, 2).

He s - g rarmsa
3, 34 34- 3&-4 'nt )

Because of s(H) < s(G) we have s(B,) < s(G) if [V(B))| =3, k=0,1,...,¢t
Hence it follows that for such a B, there is a Hamiltonian path in B — z,,
joining two suitable By-neighbours z,:+1 and z;,, of z,, and containing some
edge {z, Z,} € E(B;). We can write this path in the form (z;, 1, ---» Zs Z4» ++» Zhy 1)
and consider the two subpaths g; := (2, {» ---» z) and g} := (%, ..., Z, ;); note
that {z;, Z,}s {Zky1s Zks1)s {Zhet1s Zuy1) € E(H). In case that |V(B)| =2, k = 1,
we have {7, z;, |} € E(H) and we consider the maximal sequence By, By 4 1,-.., By, 1
with [V(By, )l =2,j=0,1,...,1,and k < k + | < ¢ (that is: Either k + [ = ¢
or if k + I < t then it holds [V'(B,,,, )| = 3); now we define q; := &, gi:= (z)
if 1 is even, and g := (), q; := & if / is odd. Then the sequence

G =G G 15 252 P BinGes 5er GF)

is a Hamiltonian path in (H — x)* — y satisfying the following property:
If |V(B,)] = 3 then q joins two B,-neighbours (and therefore H-neighbours)
Yi=zi, and ' i= 24y of y =z,

Cif [V(B)| = 2 and ¢ = 2 then g joins some B,_,-neighbour )’ of z, (namely
y 1=z if [V(B,_))| = 3, and y' := z,_, if |V(B,_,)| = 2) with the B,-neighbour
y'i= 2z of y;

if |¥(B)| = 2 and t = 1 then ¢ = (z,) consists of the only B,-neighbour y’ :=
=y 1= z; of y.
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Thus we can write ¢ = (', ..., "), where »” is an H-neighbour of y and y’ is
an H*-neighbour of y.

Furthermore, from Theorem 1 it follows, that for each block B, kK = 0, ..., ¢,
there is a Hamiltonian path g; in B? joining the vertices z, +1 and z, and containing
some edge {z,, |, Zx+1} € E(By). (This is obvious if z, and z, ., are adjacent. If they
are not adjacent we consider the block B consisting of B,, a new vertex 0 and the
edges {0, z,} and {0, z,,}. Then because of » > 2 we have 5(B) < 5(G), and this
remains valid also for r = 1if # > 2, i.e. in the next subcase b) only the situation
for t = 1 must be considered separately. Hence it follows, that there is a Hamilto-
nian path in B? — 0 joining the two B-neighbours of 0 and containing some edge
{Zes1, 2+ 1) € E(B).) We can write We can write g% = (Zx, 15 Zk41> > Z)s k=0,
1,..,t, and with G := (Zs1» --r Z)—i€. Gk = (Zey1>d8) — k=0,1, ..., 1,
it is obvious that the sequence

q4:= (5 a1 -5 40)
is a Hamiltonian path in H?> — y joining an H-neighbour y* := z, of y and the
vertex x and containing the edge {z, x} € E(H) (because 2z} is a B,-neighbour of
z, = z and therefore z} = x).

Thus we have proved the following assertions for i = 1, ..., r:

There is a Hamiltonian path gq; = (y}, ..., »}) in (H; — x)*> — y joining an
H?-neighbour y; of y and an Hneighbour y! of y.

There is a Hamiltonian path §; in H? — y joining an H;neighbour y;} of y
and the vertex x and containing the edge {Z/, x} € E(H,), where Z' is the only
H-neighbour of x; write g, = (%, ..., 25, x) and ¢, := (b, ..., 2) = §; — x.

Because V(G — {x, y}) and E(G) are the disjoint unions of the sets V(H; —
— {x, y}) and E(H,), respectively, and V(H;) n V(H;) = {x, y} if i # j we obtain:

@ S T2,05 5 Gas ooos @215 G0 if  is even and
(51_1,}’,612,53,5;1, _“,ar—_ll,a’) if r is odd

is a Hamiltonian path in G? — x joining the two G-neighbours a := z'and b := 2"
of x and containing the edge {y},y} € E(G) (and ‘the edge {y,y3} € E(G) if r is
even as well). However, this is a contradiction to the assumption on G.

b) Let {x, y} € E(G). Then G — {x, y} has exactly one component T,. Write
H := G and let H be the graph arising from A by deleting the edge {x, y}. Obvious-
ly, we have the same situation as considered in subcase a) with respect to the
graphs H, H with the only exception that now s(H) < s(G) does not hold (because
of H = G). However, if t > 2 (note that 7 + 1 is the number of the blocks of H)
the construction of the path § remains valid. Now let £ = 1. Then G consists
of the block B := B, containing the two different vertices z;, = z and z, = y,
of the vertex x and of the edges {x, z} and {x, y}. Obviously, s(B) < s(G) if B is
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a nontrivial block. To construct a path § wanted it suffices to construct a Hamilto-
nian path A in B? joining z and y and containing some edge {y, y*} with y*e
€ N(y : B). If |[V(B)| = 2 or B is Hamiltonian (i.e. B is a cycle because G—and
therefore B—is a minimal block) or B has a Hamiltonian (z, y)-path, the existence -
of such an A is obvious. So let B be a nontrivial block being not a cycle and therefore
0 < s(B) < s(G). Now consider an admissible (y, z)-path # in the minimal block B.
Then {y, z} € E(B) is not possible because G is a minimal block. Thus {y, z} ¢ E(B),
and we may suppose that w is not a Hamiltonian path in B. Then we proceed as
in the proof of Theorem 1 (now for B instead of G, y instead of x, and z instead
of y, of course) with the following modification: If v(z : B) = 2 and the only
B-neighbour z* ¢ V(w) of z belongs to a component C* of B — w fulfilling C*
€ C,(w), we choose a Hamiltonian path hc. of B..— 0 joining two B..—neighbours
of 0 and containing the edge {z*, z'} € E(B) with some z' € N(z* : Bc.); such an hg.
exists because of s(Bc.) < s(B) < s(G). Hence, besides (6) also (6a) is fulfilled
by the family (k. : C € C,(#)) having been chosen, and Corollary 1 and the Lemma
of section 1 yield the required Hamiltonian path h.

So in every case there is a Hamiltonian path § in H* — y joining an H-neighbour
y* of y and the vertex x and containing the edge {z, x} € E(H), where z denotes the
only H-neighbour of x; write § = (y*, ...,z,x) and q := (y*, ...,2) =G — z.
Then (g™, y) is a Hamiltonian path in G? — x joining the G-neighbour z # y
of x with the G-neighbour y of x and containing an edge {y*, y} € E(G). But this
is a contradiction to the assumption on G. Thus Theorem 2 is proved. o

Now we can generalize Theorem 1 to

Theorem 1’ Let G be a block and'x, y, z vertices with x # y. Then there is
a G-neighbour z' of z and a Hamiltonian path in G* joining x and y and containing
the edge {z, z.}. '

Proof Form the graph H consisting of G, a new vertex 0 and the edges {0, x}
and {0, y}, and apply Theorem 2 to the nontrivial block H and the vertices 0 and z
(instead of G and x and y, respectively). o

5. Let G be a connected graph, z € ¥(G) a cutpoint of G, further G, and G,
two connected subgraphs of G forming a non-trivial separation of G with V(G,) n
N V(G,) = {z} (that means: V(G,) v V(G,) = V(G), E(G,) n E(G,) = E(G({z})) =
=, E(G,) v E(G,) = E(G), and G,, G, # G) and h, and h, two paths in G2
and G2, respectively. Now we consider the following properties:

(12) h, is a Hamiltonian path in G? joining two different G-neighbours of =z,
and h, is a Hamiltonian path in G2 — z joining two different G-neighbours of z
if |V(G, — z)| 2 2 and consisting of the only G-neighbour of z in G, if
IV(G, — 2)| = 1.

(13) h, is a Hamiltonian path in G? joining z with a G-neighbour of z, and &,
is a Hamiltonian path in G2 joining z with a G-neighbour of z.
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Definition. (h,, G,) & (h,, G,) iff property (12) is satisfied; (h,, G,) « (h,, G,)
iff property (13) is satisfied.
Representing the paths h,, h, by vertex-sequences we see immediately

Corollary 3. If (h,, G,) » (h,, G,) then
hl + h2 = (hl’hZ’ Z'),

where z' is the initial vertex of h,, is a Hamiltonian cycle in G*. If (h,, G,) « (h;, G,)
then
hy O hyi= (hy, hy")

is a Hamiltonian cycle in G*. O
(Of course, (h;,G,) < (hy,G,) holds iff (h;',G,) < (h{', G,); however,
(hy, Gy) & (h,, G,) does not imply (h,, G,) + (b, G,).)

Corollary 4. If G,, G, form a non-trivial separation of a connected graph G with
V(G,) n V(G,) = {z} for some z € V(G), and if there exists a Hamiltonian cycle h
in G?, then there are paths h, and h, in G, and G ,, respectively, satisfying(h,, G,)
= (hy, Gy) or (hy, Gy) » (hy, G)) or (hy, G) & (h'zg G,).

Corollary 4 can be easily proved by considering the maximal G,-sections and
the maximal G,-sections of A. ' O

Note that the block-cutpoint-graph bc(G) of a connected graph G with |V(G)| = 2
is a tree and that its endvertices (i.e. vertices of valency < 1) in every case are
representing some (maximal) blocks of G. (If G is a block then bc(G) is a one-
vertex-tree, and this vertex is also considered to be an endvertex of bc(G).) We
define bce(G) := J if |V(G)| £ 1.

Theorem 3. Let G be a connected graph with |V(G)| = 3 satisfying the property
that G* is Hamiltonian. Suppose that bc(G) has at least one endvertex representing
a non-trivial (maximal) block of G. Then there is a Hamiltonian cycle in G* containing
some edge l € E(G).

Proof: If G is a block then we only need apply Theorem 2 to G.

If G is not a block consider an endvertex of bc(G) representing a non-trivial
block G, of G, and let z be the cutpoint of G belonging to G,. Then G, and G, :=
=G — (V(Gy) — {z}) = G((V(G) — V(Gy) v {z}) form a non-trivial separation
of G with ¥(G,) n V(G,) = {z}, and Corollary 4 implies the existence of some h,, h,
such that (b, G,) & (h,, Gy)V (h,, G,) » (hy, GV (hy, G,) < (h,, G,) holds
Because G, is a non-trivial block according to Theorem 2 there is a Hamiltonian
path h, in G — z joining two G,-neighbours (i.e. G-neighbours) of z and contain-
ing an edge / € E(G,).

If (hy, Gy) & (hy, G,) then ((z, hy), G,) + ((z, hy), G,), and (z, hy) U (z, hy) is
a Hamiltonian cycle in G? containing / € E(G). If (h,, G,) + (h,, G,) then (h,,G;) +
+ (hy, G,), and h, + h; is a Hamiltonian cycle in G* containing / € E(G).
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If (hy, G,) © (hs, G,) then ((z, h}), G, <> (h,, G,), and (z, h}) U h, is a Hamilto-
nian cycle in G? containing / € E(g). O

For a connected graph G with | V(G) | = 3 we form GV := G — V,(G), where
Vi(G) := {x e V(G): v(x : G) = 1}. Then it is easy to show

Corollary 5. Let G be a connected graph with | V(G) | = 3 satisfying the property
that G* is Hamiltonian. Suppose that all endvertices of bc(G) are representing trivial
(maximal) blocks of G. If be(G") =0, or if be(G'V) has an endvertex representing
a trivial (maximal) block of G'*) then there is a Hamiltonian cycle in G* containin
an edge | € E(G). . O

Now it remains the case that all endvertices of bc(G) are representing trivial (maximal) blocks
of G and all endvertices of bc(GV) are representing non-tiivial (maximal) blocks of GV. It is
rather obvious that this problem could be solved if the following statement were true.

Conjecture: For every connected graph G with | V(G) | = 3 fulfilling (14) and every vertex
x € V(GV) with 1(x : GV) = v(x : G) the existence of a Hamiltonian path in G> — x joining
two G-neighbours of x implies the existence of a Hamiltonian path in G?> — x joining two suitable
G-neighbours of x and containing some edge of G.

(14) GY is a non-trivial block A for any different veitices x, y € V1(G) their G-neighbours are
different (i.e. N(x : G) # N(y : G)).

We remark that this Conjecture holds in case that | ¥1(G) | = 1 because of Theorem 2.
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1. INTRODUCTION

By a median algebra is meant an algebra with one ternary operation satisfying
the identities

(1) (a, a,b) = a,
(2) ((aa d, C): b: C) = ((b9 ¢, d)a a, C)'
Such algebras were investigated (under various names) by several authors. A survey
of these algebras is e.g. in [1].

An important example of median algebras is derived from distributive lattices.
Given a distributive lattice ¥ and the operation
3) (a,b,c) = (an b)v (ba c)v (cA a)

then M(¥)=(L; (,,)) is a median algebra. Accordingto [10] each median algebra
is isomorphic to a subalgebra of an algebra M(%).

In an /-group ¥ = (G; +, —, 0, A, Vv) the operations (3) and + are related by the
identity

4) u+(@abc)y+v=@wu+a+v,u+b+v,ut+c+v).
Definition. By a median group (m-group) there is meant an algebra (G; +, —, 0,

(,,)) where (G; +, —, 0) is a group, (G; (, ,)) is a median algebra and the identity
(4) holds.

If 4 is an /-group then the m-group (G; +, —,0, (, , )), where the ternary opera-
tion is given by (3), is said to be associated with 4.
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The class of m-groups is much larger than that of m-groups associated with
l-groups. Nevertheless some results which are valid for /-groups can be applied
(possibly in a modified form) to m-groups. The present paper contains some
examples of such results.

Some fundamental properties of m-groups were announced in [7]. Several
interesting results on m-groups and their important classes are contained in [9].

2. SOME PROPERTIES OF MEDIAN ALGEBRAS

2.1. Fundamental notions and properties. Let o = (4; (, , )) be a median algebra.
If a,b,ce A and (a, b, ¢) = b, we say that b is between a and ¢ (in symbols, abc).
If a;,...,a,e A and a;a;a, holds for 1 <£i <j < k < n, we denote this by
a,a,, ..., a,. (a, b) will denote the set {x € 4: axb}. ((a, b); A, V) is a distributive
lattice where xA y = (a, x,y) and xv y = (b, x, y) [6]. aub, buc and cua imply
(a, b, ¢) = u [10]. Call a mapping ¢: A — B between two median algebras between-
ness-preserving if abc implies (@a) (pb) (¢c). Let € = (C; <) be a linearly ordered
set and let abc meanthata < b < corc¢ £ b < a. If ¢ is a betweenness-preserving
injective mapping from C to a median algebra &, the set {¢c: ce C} will be
called a /ine (in ). A subset K of A is said to be convex if a, b € K, u € A and aub
imply u € K. One can easily check that K forms a subalgebra of «.

-N will denote the set of positive integers.

2.2. The following identities hold in an m-algebra [8, Th. 2].

%) (a,b,¢c) = (b, a, c) = (b, ¢, a),

6) ((a, b, ¢), d, ) = ((a, d, e)‘, b, (c, d, e)).

The following relations are easy to prove.

@ abc implies cbha, ‘
®) a(a, b, c) b,

9) [10] § abc and buc imply abuc,

(10) abe and ach imply b= c.

These identities and relations are used freely in what follows.

2.3. We say that the elements a, b, c, d of a median algebra form a cyclic quadruple
(a, b, ¢, d) whenever abc, bed, cda and dab hold. It can be easily shown that the
- element d is uniquely determined by the elements a, b, c.

2.4 [3, Proposition 2]. A subset L of a median algebra with card L # 4 is a line
~iff for any a, b, c € L one of the relations abc, bca, cab holds. Obviously a subset
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‘of a line is a line. If a is an element of a line L such that for each b, c € L either abc
or acb holds, we say that a is an end element of L.

2.5. Let A be a line in a median algebra and 0, ae A, a # 0. Denote A’ =
={xe€A: x0a}, A,= A — A'. Then A = A" U A, and x € A’ together with y € A,
imply x0y. Routine proof omitted.

2.6 [4]. A subset C of a median algebra o is called a Cebysev set if for each a e A
an element ‘a; € C exists such that aact holds for any r € C. a. will be said to be
the projection of a into C. It can be easily shown that the element a is uniquely
determined and that C is a convex subalgebra of /. The mapping x — x is a homo-
morphism of «/ into C [4, 5.8].

2.7. A maximal line in a median algebra of, which is convex, is a CebySev set.

Proof. Let C be such a line and x € A. If for each a, b € C either abx or bax
holds then C u {x} is a line, hence x € C and xc = x is the projection. Consider
the opposite case. If card C = 4 then x. is the element (u, x, v) where u, v are
the end elements of C. Suppose card C # 4. Then u, v € C exist such that neither uvx
nor vux holds. We shall show that t+ = (u, x, v) is the projection x.. t€ C and
t¢ {u,v}. Let ae C and s = (x, 1, a). There are three possibilities: i) auv, ii) avu,
iil) uav, and it suffices to consider i) and iii). The case i) yields autv. This together
with ast implies that either asut or aust holds. In the first case xs¢ implies xut which
together with xtu yields u = ¢ — a contradiction. In the second case we have ustx
and 1sx, hence t = s = (x, ¢, a). In the case iii) either uatv or utav holds. In both
cases this implies xta (e.g. the first possibility yields zau and xtu).

2.8. Let o/ be a median algebra and 0 € A. The algebra (4;A) where an b =
= (a, 0, b), is a semilattice [10]. The corresponding order relation will be denoted
by < (i.e. a £ b means Oab). av b will denote sup {a, b} if exists. In such a case
(@avb)anc=(@nc)v (bnac)for any c e 4 (see [10, 8] and [12, 3]).

3. ELEMENTARY PROPERTIES OF MEDIAN GROUPS

3.1. Examples of median groups
a) To any /-group ¥ there is its associated m-group M(%). Such m-groups satisfy
the identity .

* (x,0, —x) = 0.
T. Marcisova [9] has shown that an m-group satisfies (*) iff it satisfies the identity
(**) —(x,9,2) = (—x, —y, —2)

and it does not contain any non-zero element of a finite order.
The following examples show that there are finite m-groups.

75



M. KOLIBIAR

b) Let # = (B;A,Vv, ', 0, 1) be a Boolean algebra. Define a + b = (a A b’)v.
v (aAb), —a = a, and take the operation (3). Then (B; +, —, 0, (,,))is an
m-group.

c) Let €, be a (cyclic) group with the elements 0, 1, 2, 3, and addition mod 4.
Take the distributive lattice with the same elements as ¥,, where 0 is the least
element and 1, 3 are atoms. The group %, with the operation (3) is an m-group
different from that in b) with the four-element Boolean algebra 4.

In what follows ¢ denotes an m-group.

32.a<candb £ cimply (a, b, c) = av b.
The proof is straightforward.

3.3. Let the elements a, b € G satisfy

(i) an b=0=an (—=b) =(—a)A b.

Then a) (—a)A (=b)=0,b)a+b=av b=>b + a.

Proof. a) Denote (—a)A (—b) = (—a, 0, —b) = u. Then Ou(—a) and Ou(—b)
hold. Since a0b, a0(—b) and (— a) 0b, we get successively (—a —b) (—b)0, (—a —b)
(=b)u, (—a)O(u + b), uO(u 4+ b), 0(—u)b, and symmetrically O(—u) a. This
together with b0a yields b0(—u). Since 0(—u) b, we get u = 0.

b) (0,b,a + b) = (—b,0,a) + b = b, hence b < a + b, and similarly a < a +
+ b. Using a) and 3.2 we geta + b =a + (—b, —a,0) + b =av b.

3.4. Elements a, b € G satisfying (i) in 3.3 will be said to be orthogonal (in symbols,
a lb).

In /-groups the relation a L b is defined to mean (ii) | a|A | b| = 0, where
|a| =av (—a) [2, 3.1]. It can be readily proved that in an m-group associated
with an /-group, (i) and (ii) are equivalent.

3.5.a L biff (0,a,a -+ b, b) is a cyclic quadruple.
We omit the easy proof.

3.6. Givena,beG,a+ b =av biffa lb.

Proof. a+b = av b implies a=aA (a+b)=(a, 0, a+b)=a—+ (0, —a, b),
hence (—a)A b =0, and similarly, an (—b) = 0. Using 3.2 we get a + b =
=(a,a+b,b)=a+ (—b,0, —a) + b, hence (—a)A (—b) =0 and a L b. The
converse implication was proved in 3.3b).

37.Leta,x,yeGanda l x,a Ll y. Then an (x + y) = 0.

Proof. First (4,0, x+y)=((a, 0, x), a, x+ y) =((a, a, x +), 0, (x, a, x +y)) =
=(a,0,(x,a,x+ ). Now (x,a,x +y) =x + (0, —x + a, y). Since —x L a,
—x 4+ a=(—x)va(3.3b)), hence (0, —x + a,y) = (—x)v &)A y = ((—x)A
A YV (a@an y) =(—=x)A y (see 2.8). Using this we get (x, a, x +y) = x +
+ (=x,0,y) = (0, x, x + y) hence (@, 0, x + y) =(a, 0, (0, x, x +y)) =
=((4,0,0), (2,0, x), x +y) = (0,0, x 4 y) = 0.
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38.alxanda Llyimplyal x + y.
Proof. From the suppositions it follows —a L x, —a L y,a L —xanda L —y.
Using 3.7 we get (—a)A (x +y) =0=anA (—(x + y)).

39. Let ae G. The set H= {xe€ G: a L x} forms a subgroup of K.
Proof. From the definition of the orthogonality it follows that x € H impliex
—x € H. This together with 3.8 proves the assertion.

4. CONVEX MAXIMAL LINES

If (i) ¢0:% >~ o x%# is a direct decomposition of an m-group ¥ then the
m-group & is isomorphic to the m-subgroup of %, whose elements are ¢ ~'(a, 0),
ae A. An analogous assertion holds for #. In what follows we shall suppose that
in the direct decomposition (i), &/ and # are m-subgroups of ¥.

We shall deal with direct decompositions (i) in which & is a line. In this case
convex maximal lines (i.e. maximal lines which are convex) prove to be important.

4.1. Theorem. Let an m-group ¥ satisfy the identity (*) and let A be a line in M(%)
such that 0 € A. The following are equivalent.

(@) A forms a subgroup of (G; +, —, 0) and a direct factor of %.

(b) A is a convex maximal line in M(9).

Corollary [5, Th. 1]. Let 4 be an I-group. A maximal chain in G which is convex
and contains 0, is a direct factor of 4. ‘

Remark. The following assertion is easy to prove. Let & be an /-group. A convex
line in M(%) containing 0 is a (convex) chain.

The proof of Theorem 4.1 is divided into a sequence of lemmas. % is supposed
to satisfy (*) unless other is said.

4.2. Let 94 = of X B where o is a non-singleton line. Then A, = {(a,0): a € A}
is a maximal line in ¢ and it is convex.

Corollary. Let % be an l-group and let G = o X % where </ is a non-singleton
chain. Then {(a,0): ae A} is a convex maximal chain (and contains (0, 0)).

Proof. Obviously 4, is convex. Let ¢ = (v, v) € A X B and A4, U {c} be a line.
Then either (i) c is an end element of 4, U {c} or (ii) c is between some two elements
of A,. The case (ii) yields c € A, immediately. In the case (i) recall that 0 and 2u
belong to A hence either #0(2u) or u(2u) 0 holds. Combining this with Ou(2u)
(a consequence of (—u)Ou) we get u = 0. Then for any a e 4 either 0a(—a) or
0(—a) a holds. Because of a0(—a) this gives a = 0. This contradiction shows that
the case (i) is not possible.
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4.3. Suppose 9 satisfies (**). Then Oxy implies 0(y — x) y and 0(—x + y) y.
Proof. From the supposition we get 0(—x) (—y), hence y — x =y + (0, —x,
- -=y) =@,y — x,0). The proof of the second relation is similar.

4.4. Let & satisfy (**). Let A, B be convex lines in 4 with the end element 0.
IfpeA— Bandqe B — A then pA q = 0.

Proof. Denote pa g =r. (r, p,q) = ((p, 0, q), p, q) = r and Orp, Orq. For the
elementsp’ =p — randq' =q — rwegetp’A g =©0,p —r,q —r) =(r,p,q) —
— r = 0. According to 4.3, 0Op’p and 0g’q. Hence there hold

either al) Op'r or a2) rp'p, and
either bl) Og'r - or b2) rq'q.

al) and bl) yield 0p'q’ or 0g'p’, hence p' =p'A q¢  =01ie. p=ror qg =0 ie.
g = r. This is a contradiction, since r € A N B. al) and b2) yield 0p’q’ —a contradic-
tion as above. The case a2) and bl) is symmetric. If a2) and b2) hold then 0 =
=p'Aqg =r(sincer <p <p,r<q Z<qandpa q=r).

4.5. Let 9, A, B be as in 4.4, If neither A = B nor B = A then an b =0 for
each ae A and each b € B.

Proof. Let p, g have the same meaning as in 4.4. Then pA ¢ = 0. For a€ 4,
b € B there hold either al) Oap or a2) Opa, and either bl) 0bq or b2) Ogb. a2) and b2)
yieldae A — Bandbe B — A hence a A b = 0 according to 4.4. al) and b2) yield
an b=an pAn b.But pa b = 0by 4.4. The case a2) and bl) is symmetric and al)
and bl) give an b =aA pAn ba g =0.

4.6. Let & be arbitrary,u € G,and let Abe alinein%. Thenu + A = {u+a:ae A}
is a line. If A is a maximal line (convex line) then so is u + A.
Routine proof omitted.

4.7. (see [9]). For each ae G and each n e N, Oa(na) holds.

48. I[fae G and m,ne N, m < n, then 0(ma) (na).
The proof proceeds by induction on m. For m = 1 the assertion holds by 4.7.
Assume O((m — 1) @) (n@) (m < n). According to 4.7 Oa((n + 1 — m) a) hence
((m — 1) a) (ma) (na) which, together with the assumption, yields 0(ma) (na).

4.9. Let ae G. If (0, a) is a line then (—a, a) is a line too.

Proof. Since (—a,0) = —a + (0,a), (—a,0) is a line by 4.6. Because of
(—a)0a, (—a,0) U (0, a) is a line. It suffices to show:

(i)te(—a,a)implieste (—a,0)orte (0, a).

Denoteu = (0, ¢, —a),v = (0, ¢, @). Then —v = (0, —¢, — a)and (0, u, —v) =
=(0,(0,¢, —a), 0, —¢t, —a)) = (0, t,— 1), 0, —a) = (0, 0, —a) = 0. From Ova
we get 0(—v) (—a) and, because of Qu(—a), either Ou(—v) or 0(—v) u holds. In
the first case u = (0, 4, —v) =0, in the second v =0. u = 0 implies 10(—a) which
together with af(—a) yields af0i.e. ¢ € (0, a). Similarly, if v = 0 then t € (0, —a).
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4.10. If ae G and (0, a) is a line then (—na, na) is a line for each ne N.

Proof. For n =1 this holds by 4.9. Suppose (—(n — 1)a, (n — 1)a) =B
is a line (n > 1). According to 4.6, a + B = ((—n + 2) a, na) is a line. By 4.8
0((n — 2) a) (na) hence O0((—n + 2) a) (—na) which together with (na) 0(—na)
yields 0 € (na, (—n + 2) a) hence (0, na) is a line. Now 4.9 is applicable.

4.11. Let A be a convex maximal line in &, containing 0. Then
i) For each ae A and n € N, na belongs to A.

il) ae A implies —ae A. '

iii) a,be Aimply a + b e A.

Proof. i) If a = 0 the assertion is trivial. Suppose a # 0. Let 4" and 4, be
as in 2.5. We apply 4.5 to the convex lines A, and (0, na) (see 4.10). There are three
possibilities.

a) (0, na) = A,, b) A, = (0, na),

¢) xA y = 0 for each x € 4, and each y € (0, na).

The case a) yields na € 4 immediately. In the case c) we get, using the relation Oa(na)
(4.7), that a = aA na = 0 —a contradiction. Consider the case b). Take ye 4’
and set (y, 0, na) = u. Then yuOa. Since a and u belong to (0, na), either Oau or
Oua holds. The first case together with aOu yields a =0 —a contradiction. In the
second case u = 0, so that y0(na). Hence y0(na) for each ye 4’ and 4’ U (0, na)
is a line and 4 = 4" U A, « A" U (0, na). The maximality of 4 implies na e A.

ii) The set B = —a + Ais a convex maximal line (4.6) and contains the elements 0
and —a. By i) —2a€ B, hence —aca + B = A.

iii) There are three possibilities: 1. Oab, 2. Oba, and 3. a0b. In the case 1.
b(a + b) (2b). Using i) we get a + be A. The case 2. is similar. In the third
case (—a) 0(—b), hence 0a(a — b) and b(a + b) a so that again a + b € A.

4.12. Let A be asin4.11 and be G. If 0 # ae A and b L a then b, = 0.

Proof. b L a implies bOa and b0(—a). This together with a0(—a) yields
(b, a, —a) = 0. For the element ¢ = b, there hold ¢ e A, bta and bt(—a). There
are three possibilities: a(—a)t, (—a)at, and (—a) ta. In the first case we get
a(—a) tb, hence 0 = (b, —a, a) = —a —a contradiction. Similarly the second case
is not possible. In the last case we get (b, a, —a) = ¢ hence t = 0.

4.13. Let A be as in 4.11. If 0 ¥ ae A and b L a then b L x for each x e A.
Proof. By 4.12 and 4.11, b0x and b0(— x). Since —b L a too, (—b) Ox. Hence
b1 x. ’

4.14. Let A be as in 4.11. Denote B = {—x, + x: x€ G}, x; = x, and x, =
= —x; + x. Then x = x; + X5, X, €A, x,€B and x, L x,.

Note that x;, + x, = x, + x, (see 3.3).

Proof. The element u = (x,, 0, x,) belongs to A. By 4.11 iii) x, + u € 4, hence
(%, xy,x; +u) = xq, so that 0 = —x; + (x, x;, x, +u) = (x,,0,u) = u ie.
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(x‘l ] 0’ x2) — 0‘ Further(_xl ’ O’ xZ) = _(xx,O, —X + x) = =X + (Oa xl’x) =
= —x; + x, =0and (x,,0, —x;) = 0 by (*¥). '

In what follows we shall use the notations from 4.14.

4.15. For each x€ G, (—x)4 = —X4.

Proof. According to 4.14 x; L x,. We have to show that (—x) (—x,) a for
eachae A. Since (—x, —x,,a) = (—x, — x;, —x;,a) = (—x,,0,a + x;) — xy,
it suffices to show '

i) (=x,,0,a+ x;) =0.

If x, = 0 then x0¢ for each t € 4, hence x,0(—a) and, according to (**), (—x,) Oa,
which yields (i). If x, # 0 then x, L x, by 4.14 and according to 4.12, (x,), = 0,
hence x,0(—x,; — a) and (—x,) 0(a + x,) i.e. (i) holds.

4.16. If a, = 0 then a L t for each te A.

Proof. By 4.15 (—a), = 0 hence for each t e A4 there holds (—a) 0z (and a0¢t,
ald(-1)).

4.17. The mapping x — x, is a homomorphism from the group (G; +, —, 0) onto
its subgroup A.

Proof. It suffices to show that foreachae Aand x, ye G, (x + y, x; + yy1,a) =
= Xy + y;.8Since (x +y, x; +y1, @) = x; + (x5 + 2,0, —x; +a — y)+n
it suffices to prove x, + y, L —x; + a — y,, i.e., according to 3.9,

@) x; L —x; +a - yy,

(i) y, L —xy +a —y,. ‘ =
If x, =0, (i) holds by 4.16. If x, # 0, (i) follows from x, | x, by 4.13. The
proof of (ii) is similar.

4.18. The following holds for any x e G.

(i) The representation x = a + b, ae A, b € B, is unique.

(ii) Ifae A then a, = a and a, = 0. [f be B then b, = 0 and b, = b.

(iii) ae A and b € B imply (a + b), = a, (a + b), = b.

(iv) ae Aand be Bimply a L b.

(v) a+b=>b+ aforeachae A and b e B.

Proof. (i) b = —y4 + y for some ye G (see 4.14). x =a + b hence y — x =
=y, — a, and using 4.11 and 4.17 we get y, —a=(y — x), = y4 — X4. Thus
a=x4and b= —x, + x.

(ii) The assertion on a is obvious. If b € B, there is y.€ G such thatb = —y, + y.
According to 4.17, b, = b, = —y, + y; = 0 aod b, = b. (iii) follows from 4.17
and (ii), (iv) follows from (ii) and 4.16, and (v) follows from (iv) and 3.3.

4.19.If x =x; + x, andy = y, + y, are the representations in 4.18 (i) then
x+y=(x +y)+ (2 +y2), —x = (—x,) + (—x;) where x, + y, and —x,
belong to A and x, + y,, —x, belong to B.
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Proof. By 4.17, (x +y); = x, +y,. Further (x +y), = —(x +») +
+ (x +y) = x, + y,. This proves the first assertion. The proof of the second
assertion is similar.

4.20. B forms a subgroup of the group 9.
Proof. The assertion follows from 4.18 and 4.19.

4.21. B is a CebySev set and x - —x, + x is the corresponding projection.

Proof. Let x€ G and let x = x, 4+ x, be the representation in 4.18 (i). For
each be B we get (x,x,,b) = (x; + X3, X5, b0) =(x1,0, b — x;) + x5. b — x;
belongs to B (4.20) and by 4.18 (iv), x, L b — x,, so that (x,, 0, b — x,) = 0.
Hence x, is the desired projection.

The following theorem, together with 4.2, completes the proof of the theorem 4.1.

4.22. The mapping ¢: x — (x,, X,) is an isomorphism of m-groups % and of X B
where of and # are m-subgroups of 4 with carriers A and B respectively.

Proof. According to [4, 5.8] the projection into a CebySev subset is a homo-
morphism of median algebras. This together with 4.18 and 4.19 implies that ¢ is
a homomorphism of m-groups. Consider the mapping y: 4 x B - G with y(a, b) =
= a -+ b. From the definition of ¢ it follows that ) o ¢ = idgand by 4.18 p o Y =
= id,« g, hence ¢ is a bijection.

4.23. Theorem. Let ¥ be an m-group satisfying (*) and let A be a convex maximal
linein %. If ae A then —a + A is a direct factor of K.
The theorem follows from 4.6 and 4.1.
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Abstract. Milan Sekanina and his collaborators have investigated the realizability of topologies
and of closure operators by set systems. In particular they have shown that Top has precisely two
[8] and Clos has no [3, 7, 2] realization by set rystems. Moreover Top and Clos have precisely
one realization by Conv [10]. In this paper it is shown that Top has a large (even illegitimate) co-
llection of realizations by neighbourhoods, but Clos has only one. Moreover Clos has precisely
two realization® by uniform neighbourhoods.
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TERMINOLOGY

Constructs are pairs (A, U) consisting of a category A and a faithful functor U:
A - Set [1]. A realization of a construct (A, U) by a construct (B, V) is a full
embedding E: A - B with U = V o E [6].

Top is the construct of topological spaces and continuous maps.

Clos is the construct of closure spaces (sets with a closure operation satisfying
Kuratowski’s axioms except possibly the idempotency axiom) and continuous
(= closure-preserving) maps.

Neigh has as objects all neighbourhood spaces, i.e. pairs (X, N) where N: X —»
— PPX is a map, associating with any x € X a collection N(x) of subsets U of X
with x € U; and has as morphisms f: (X, N) — (X', N') all maps f: X - X’ such
that x € X and U € N'(f(x)) imply f~*[U]e N(x).

UNeigh has as objects all uniform neighbourhood spaces, i.e., pairs (X, <), where
< is a binary relation on 2X satisfying the :
conditions (1) A< B—>Ac B

and(2) Ac B<CcD- A<D,
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and has as morphisms f: (X, <) - (X', <) all
maps f: X - X’ such that 4 <’ B implies f~'[4] < f~'[B].

SSet has as objects all pairs (X, &) with S < 2X and as morphisms f: (X, &) —
- (X', &) all maps f: X - X’ such that 4 € &’ implies /™ '[4] e &.

RESULTS

Proposition 1 [8]. Top has precisely two realizations by SSet.

Proposition 2 [3, 7, 2]. Clos has no realization by SSet.

Proof: Assume that E: Clos — SSet is a realization.

Notation: E(X, cl) = (X, &(cl)). Then E: Clos — SSet, defined by E(X, cl) =
= (X, £(cl) v {J, X}), is a realization too. On a 3-element set X there are precisely
43 = 64 closure structures and precisely 2(**~2 — 64 subsets & of 2X with
{&, X} = &. Hence E induces an order-isomorphism between the ordered sets F,
of all closure structures on X and F, of all subsets & of X with {, X} = &.
Since F, has precisely 3 atoms and F, has 6, this cannot be.

Proposition 3. Top has a proper class (even an illegitimate collection) of realiza-
tions by Neigh.

Proof: Let C be a strongly rigid proper class of Hausdorff spaces with more
than one point. (Such a class exists by [5, 4]; cf. also [11]). For every subclass I
of C define a realization E,: Top — Neigh by E (X, 0) = (X, Ny(0)) where U e
€ Np(0) (x) provided U is an open neighbourhood of x in (X, 0) or there exists
(X', 0')in I, a continuous map f: (X, 0) —» (X*, ¢'), and a neighbourhood ¥ of f(x)
in (X', 0') with U = f~'[V].

The realizations E, are pairwise different, since, if (X,0) belongs to I'\ I,
then for any x € X, N(0) (x) consists of all neighbourhoods of x in (X, 0) and
N (0) (x) consists of all open neighbourhoods of x in (X, 0).

Proposition 4. Clos has precisely one realization by Neigh.

Proof: For every closure space (X, cl) define a map Ny: X -» 22X
by N, (x) ={U = X| x ¢ cl (X\ U)}. Then E: Clos — Neigh, defined by E(X, cl) =
= (X, N, 1s a realization.

For uniqueness, consider an arbitrary realization E: Clos — Neigh.

Notation: E(X, cl) = (X, N,,)). Let (X, cl) be a closure space. Then the following
hold:

@) Ny(x) # 9 Jfor every x € X.
Proof: Assume N(x,) =9 for some x, € X. Let (X’, cl’) be an arbitrary
closure space, let x be an arbitrary element of X', and let f: X — X" be the constant
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map with value x. Then continuity of f> (X, cl) - (X', cl’) implies N (x) = 9,
This in turn impliest that every map between closure spaces is a morphism. Contra-
diction.

(b) X e N(x) for every x € X.
Proof: This follows from (a), since every constant map between closure spaces
is continuous

() X ={1,2}:
(c1) if cl{1} = cl{2} = X, then N4(1) = N, (2) = {X},
(c2) if el{1} = {1} and cl{2} = {2}, then No(1) = {1}, X} and N.,(2) = {{2}, X},
(¢3) if cl{1} = X and cl{2} = {2}, then one of the following two cases holds:
Case A: Ny(1) = {{1}, X} and N(2) = {X3,
Case B: N,(1) = {X} and N,(2) = {{2}, X).
Proof: follows immediately from the fact that, there are only 4 neighbourhood
structures on {1, 2}, which satisfy (b).

d) X ={1,2,3}:ifcl{1} = cl{2} = X and cl{3} = {2, 3}, then one of the follow-
ing two cases holds:

Case A: Ny(1) = {{1, 2}, X} and N_,(2) = N.,3) = {X},

Case B: N (1) = N,(2) = {X} and N4(3) = {X, {2, 3}}.

Proof: Let (X', cl’) be the indiscrete closure space with underlying set X’ =
= {1, 2}. Then the maps f: (X', cl') - (X, cl), defined by f(x) = x,and g: (X', cl') =
— (X, cl), defined by g(x) = x + 1, are continuous. Hence, by (cl), we obtain:

if Ue Ny (1), then 2eU,

if Ue N, (2), then 1eU,

if Ue N,(2), then 3eU,

if Ue Ny(3), then 2€eU.
Next, let (X, cl) be the closure space, defined by X = {1,3},cl{1} = X and cI{3} =
= {3}. Then the map h: (X, cl) — (X, cl), defined by h(x) = x, is continuous. Hence,
by (c3), one of the following cases must hold:

Case A: Ue N,(3) » 1 e U,

Case B: Ue N (1) - 3eU.
Since (X, cl) is not indiscrete, Ny (1) = Ny(2) = Ny(3) = {X} cannot hold. This
implies (d).

(e) Case B cannot hold.

Proof: Assume that case B holds. Let (X, cl) be as in (d), let (X', cl’) be an

arbitrary closure space, let x be an element of X', let U be a subset of X’ with
xe€ U, and let f X' —» X be defined by
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3, if y=x,

fo)=1{2, if ye U\{x},
1, if ye X\U.

Then the following conditions are equivalent:

) Ue Ner (%),

) 12 (X', Noy) = (X, Ngy) is a morphism in Neigh,
A3 (X' cl')y > (X, cl) is continuous,

4) ' c'{x} = U.

Hence in particular, if (X’, cl’) is a topological T -space, then N, (x) = {U <
< X| xe U} for every xe X'. Since there exist different 7-topologies on an
infinite set, E is not injective on objects. Contradiction.

" (f) E=E

Proof: In view of (e), Case 4 must hold. Again, let (X, cl) be as in (d) let
(X', cl’) be an arbitrary closure space, let x be an element of X’, let U be a subset
of X’ with xe U, and let /> X’ — Y be defined by

1, if y=x,
(N =42, if ye U\{x}.

3, if ye X\\U.
Then the follbwing conditions are equivalent:
m Ue Ner (%),
?) [ (X', Noy) = (X, I’\“Icl) is a morphism in Neigh,
A3 i (X' cl) > (X, cl) is cof;tinuous,
@) x ¢cl’'(X\U).

Thus N, = N, ie, E=E.

Proposition 5. Clos has precisely two realizations by UNeigh.

Proof. As in the proof of Proposition 4, two cases arise. Case A4 leads to the
realization E,: Clos — UNeigh, defined by E,(X, cl) = (X, <, (cl)), where A <
<, (cl) Biff A() cl(X\ B) =8, i.e., iff B is a neighbourhood of A in the familiar
sense. Case B does not lead to a contradiction but to the realization E,: Clos —
— UNeigh, defined by E,(X,cl) = (X, <, (cl)’ where 4 <, (cl) B iff (X\B)n
ncl A =9, ie., iff X\ 4 is a neighbourhood of X\ B in the familiar sense.

Remark. Since the construct Rere of reflexive relations has a rcdlization E:
Rere — Clos, given by
xeclAe3Jae Aapx,
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since the restriction of E to objects with finite underlying sets is an isomorphism,
and since the proof of Proposition 5 depends only on finite closure space, Rere
has precisely two realizatioos in UNeigh (resp. in Neigh).
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Abstract. For each locally presentable category it is provéd that all full subcategories closed under
limits and «-filtered colimits are reflective.
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M. Makkai and A. M. Pitts have recently proved that each locally finitely
presentable category J# has the following property: all full subcategories closed
under limits and filtered colimits are reflective in 5, see [8]. One is impelled to
ask: 1. does this hold for locally presentable categories of infinite rank ?, and 2. can
filtered colimits be substituted by a-filtered colimits? The proof presented in [8]
does not seem to give an answer. We were particularly interested in the latter
question since the affirmative answer is the best result possible absolutely (i.e.,
independently of set theory). We have namely proved in [9] that the well-known
Vopénka’s principle (which is a large cardinal principle much stronger than the
existence of measurable cardinals, see [7]) is logically equivalent to the following
statement: if 5 is a locally presentable category then each full subcategory of #
closed under limits is closed under a-filtered colimits for some regular cardinal «.

The aim of the present paper is to answer both of the above questions
affirmatively:

Theorem. Let # be a locally presentable category, and o a regular cardinal.
Then each full subcategory of 3 closed under limits and o-filtered colimits is re-
Slective in H# .

Proof. We can suppose that # = Set” for a small category M. This will
not lose generality since for each locally presentable category s there exists
a small category M such that # is equivalent to a full, reflective subcategory ¢’
of Set™ closed under B-filtered colimits in Set¥ for some B. (See 8.5 in [6]).
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Then ' has the above property: each full subcategory % of #’ closed under
limits and o-filtered colimits in ¢’ is closed under (x + p)-filtered colimits
in Set™, thus is reflective in Set™, and hence is reflective in #”. It follows
immediately that the equivalent category s has that property too.

Thus, we are to prove that each full subcategory # of Set¥ closed under
limits and «-filtered colimits is reflective in Set¥. Without loss of generality,
we may suppose that

o > card (mor M).

It follows that each object F of Set™ is an a-directed union of all of its «-small
subobjects, where an object D is a-small provided that ) card DX < . (In fact,
XeobjM
for each X € o) M and each 4 = FX.card A < «, consider the subfunctor D, = F
defined on objects by D, Y = ) Ff(A).)
Y

fi X~

m
A subobject G — F in Set™ is said to be a-pure provided that for each sub-
d

object D — F with D a-small, in the pullback

m
GC—ro

D

dl

S

@

D

|
ld
F

—————
m

there exists a morphism f: D —» G with d’' = f. m’.
. 3 m v
A. & is closed under a-pure subfunctors;.i.e., if G —» F is a-pure and Fe Z,
then we will prove that Ge #. Let (D;);., be the diagram of all a-small sub-

functors D; < F. Observe that J is an a-directed poset and F is the colimit of
d;

that diagram (where the colimit morphisms are the inclusion maps D; — F). For

each j we have, by the a-purity, a morphism f;: D; - G with

) fi-my=d
in the following pullback of inclusion maps

m!

G N D, ——2—D.

-~ J
2 dj'l £ - de
’/
G — F
m
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Observe that
mj’ dy :
(€)) GnG;,-D,TF is an equalizer
m.fy

since fj(x) = x iff x is an element of G N D;. (Unfortunately, ;' s need not be
compatible with the diagram (D;).) ’

Define a diagram H : J - & as follows. For each j e J, H; is a product of copies
of Findexed by {ke J|j < k}, and if j < j" then H;;: H; - H; is the canonical

hy

projection. Since H is o-filtered, the colimit colim H = (H; —» H);., belongs
to Z. For each je J define 4,6;: D; — H; by the following compositions with
the projections m,: H; - F, j < k:

and .
) M .0;=m.f.dy

where d;: D; - D, is the inclusion map. It is easy to verify that if j < j', then
" 4y .d;y = Hjp . A; and hence, we have a compatible collection h;. 4;: D; » H
yielding

A =colimd;:F—H, A.dj=h;.4,.
Analogously, d;. . d;; = H;; . d; and thus we have

8 =colimé;:F—~H, 8.d,=h;.s;.
We will prove that

m 4

G->FZTH
é

is an equalizer —since F, H € & and % is closed under limits, this implies G € Z.
Since in Set¥ finite limits commute with a-filtered colimits, it is sufficient to
show that each

mj 4y
—>
J

is an equalizer. First 4;. m; = ;. mj because, for each k = j,
nk.Aj.m‘;:dj-'nj’ bY(4),
=m.df by (2),
=m. d’: . ‘{,’k’
where dj,: G 0 D; - G n D, is the inclusion map, and
nk.aj.m;=m.ﬁ.djk.m; by(S),
=m .ﬂ . 'nk . d]’k
=m.d.d, by (1).
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Further, suppose that p: P — D, fulfils 4;. p = §; . p. By composing with ;: H; —
— F we obtain, via (4) and (5),

di.p=m.f;.p
and thus, by (3), p factors through m;.

B. A morphism f: P —» Q in Set” will be called a y-epimorphismif Y card
XeobjM
[0X — fx(PX)] < y. We are going to prove that for each object P in Set”
there exists a cardinal y such that every morphism with the domain P factors as
a y-epimorphism followed by an a-pure monomorphism.

We will first show a standard process of enlarging any monomorphism m:
Qo = Q in Set” to an oa-pure one. This is done inductively, by defining an
a-chain of monomorphism m;: Q; - Q for i < «, with m, a-pure. First, m, is
the given monomorphism, and m; = | ) m; for each limit ordinal i. Given m,:

j<i
m d
Q; = Q consider all pairs of subobjects (D, — D, D, - Q;) where D is a-small.
Since Set™ is wellpowered and has, essentially, only a set of a-small subobjects, -

all such pairs have a (small) set of representatives. Let us choose a set T; of
m @

representative pairs of monomorphisms (D, — D, D, — Q;) such that D is a-small
and that there is a monomorphism d: D - Q with d.m' = m;.d’ a pullback;
choose one d and denote it d = u,, ,. Then put
My =m0 ) g
(m',d)eT;
Let us verify that m, is a-pure. Given a subobject d: D - Q with D a-small, we
form the pullback of m, and d:

'
S S

D0 D
|
m
o ——>Q

(¢}

Since D, is a-small, d’ factors through some Q;, i < a. That is, if m;,: Q; — Q,
denotes the connecting monomorphism, there is d”: D, - Q; with d’ =m,, . d".
It is clear that d. m’ = m;.d" is a pullback, and hence, we can suppose that
(m',d") e T;. Then we have u,, 4. < m;,,, i.e. there is a morphism f,: D - Q;,,
with u,y g = m;,, . fo, which composed with m,, , yields f: D - Q, with f. m' =
= d'. Thus, m, is a-pure.

Now, inspecting the construction of m, we see that my,: Qy, —» Q, is a d-epi-
morphism for the following cardinal 6 = VY ¢; (independent of Q): §, = 0 and

i<a
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if i is a limit ordinal, then 6, = V §;. Given ¢,, let §;,, be the cardinality of a set
J<i
m d

of representative pairs of subobjects (D, — D, D, — Q') where D is any a-small
object and Q' is any object for which a §;-epimorphism Q, — Q' exists. Thus,
for each object Q, we have found a cardinal J such that any monomorphism with
domain Q, factors as a J-epimorphism followed by an a-pure monomorphism.

Finally, given an object P, let y be the join of all §’s associated with quotient
objects Q, of P. Then each morphism f: P — Q factors as an epimorphism e: P - Q,
followed by a monomorphism m,: P, — @, and factoring the latter as a J-epi-
morphism m, ,: Qo —» Q, followed by an a-pure monomorphism m,: Q, - Q,
we obtain the’required factorization: my , . e is a y-epimorphism (since y > J)
and f=m,.(my,,,.e).

C. & is reflective in SetM. In fact, the embedding functor £ — Set¥
satisfies the solution set condition: for each object P of Set¥ consider a re-
presentative set of y-epimorphisms with the domain P and codomain in % (for y
as in B.). Then A. and B. show that this set is a solution set of the embedding
functor.

Remarks. (1) The above proof shows that the theorem can be slightly strengthe-
ned: each full subcategory of # closed under limits and reduced powers
modulo a-complete filters is reflective in . (If « is compact, the filters can be
replaced by ultrafilters. In particular, each full subcategory of # closed under
limits and ultraproducts is reflective.)

(2) We have been partly inspired by [5]. Some ingredients of our proof are not
really new; see the characterization of ¢-algebraically closed (= a-pure) embeddings
in [4], (5—7), and the well-known procedure of constructing algebraic closures.

(3) The assumption that s be locally presentable cannot be omitted in the
above theorem. For example, the dual Ord®® of the usual category of ordinals
is not reflective in its extension by an initial object. However, that extension is
complete and complete, and Ord®® is closed in it under (small) limits and non-
empty colimits.

(4) We have shown in [2] that, under some set-theoretical assumptions, the
collection Ref(s#) of all full reflective subcategories can be badly behaved even
if # is locally finitely presentable: for s# = graphs we have exhibited two members
of Ref(s#) whose intersection is not a member of Ref(#).

The situation is different with the collection Ref,(s#) of all full reflective sub-
categories of # closed under a-filtered colimits.

Proposition. For each locally presentable category # and each regular cardinal a,
Ref () is a small complete lattice in which meets are intersections.
Proof. Since Ref,(s#) coincides with the collection of all full subcategories
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of s# closed under limits and a-filtered colimits, the only fact to be proved is that
Ref,(5#)is small. This follows from an easy inspection of the above proof. First, since
a £ fimplies Ref, (o), = Refy(#) we can suppose, without loss of generality, that #
is locally a-presentable. Then for each % € Ref, () the reflector of £ preserves
a-filtered colimits and hence, £ is determined by the reflections of a-presentable
H-objects in Z. There is, essentially, a set only of a-presentable objects P, and
for each of them we have provided in our proof a solution set of morphisms with
domain P and codomains in % the size of which was independent of #. Thus
Ref () is small.

The fact that Ref;(.%’) is closed under intersections also follows by [3] (a remark
before 5.3.).
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Abstract. J. Hashimoto introduced in [7] a notion of a complete permutability of partitions on
aset as a generalization of commutativity of two partitions. By H. Draskovi€ova [5] this is transferred
unchanged to partitions in a set. Unfortunately, her notion fails to generalize the commutativity.
In the present paper, this disadvantage is removed by a little modification of the definition. This
definition reproduces that of Hashimoto in the case of partitions “on”. The relations of the modified
notion to that of the associability, which represents another generalization of the commutativity,
are found. Properties of the introduced complete permutability are discussed in Theorems 1.9, 1.10
and 1.11. An analogous definition is given for congruence relations in an algebra. Some sufficient
conditions are found that guarantee the possibility of the preceding results to be applied for con-
gruence relations. In particular, a characterization of complete permutability for 2-groups is derived.

Key words. Partition “on” and “in”, ST-relation, congruence relation, complete permutability,
associability, commutativity. ’ '
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A partition in.a set G is a system A4 (possibly empty) of nonempty mutually
disjoint subsets of G [2, 3, 4]. The elements of A are called blocks of the partition A.
The union ()4 of all blocks of 4 is said to be a domain of A. If the domain of 4
is equal to G, (J4 = G, the partition A4 is called a partition on G.

It is a well-known fact, that there exists an one-one correspondence between
all partitions on a set and all equivalence relations in the same set, and analogously,
an one-one correspondence between all partitions in the set G and all symmetric
and transitive relations (ST-relations) in G. We shall find it useful to hold, if need
be, the partitions in G (on G) for ST-relations (equivalence relations) in G and
vice versa. If 4 is an ST-relation in G, the corresponding partition in G is (J4/4,
where in this case (J4 = {x € G: xA4x}.

Let (G, Q) be a universal algebra with the system of operations 2 and let 4
be an ST-relation (a partition) in the set G. We say, that A is a congruence relation
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in the algebra (G, Q) if 4 preserves the operations of Q (of arity > 1). Congruence
relations A4 in (G, Q) with UA = G are said to be congruence relations on the
algebra (G, Q). We denote by

P(G) the system of all partitions (ST-relations) in the set G,
n(G) the system of all partitions (equivalence relations) on the set G,
A (G) the system of all congruence relations in the algebra (G, Q)
(the system of the corresponding ST-relations in the set G),
%(G) the system of all congruence relations on the algebra (G, Q),
(the system of the corresponding equivalence relations in the set G).

Some known and relevant facts related to these notions are summarized in the
following

Theorem. The set n(G) is a complete, semimodular and relatively complemented
lattice [13), [11] Th. 67. The lattice P(G) is complete, semimodular and Brouwerian,
it is not relatively complemented [4] Ths. 4.5, 4.1 and 5.3, n(G) is a closed sublattice
of P(G). If (G, Q) is an algebra, then the set 4(G) is a closed sublattice of n(G)
(see e.g. [11] Th. 84; [1] VI § 4 Th. 8). The lattice €(G), where (G, Q) is an Q-group,
is modular (see e.g. [8]11V, 2.2). If G is a lattice or an I-group, then €(G) is a distributive
lattice (see e.g. [11] Th. 90, [1] XII1 § 9 Th 16). All the lattices P(G), n(G), A (G),
%(G) are algebraic [12] 1.6; [1] XII §9 Th. 16, VI §4 Th. 9; [10] § 5.

The domain UA of a congruence relation A € A (G) is a subalgebra of the algebra
(G, Q). The nullblock A(0) = {x € G: xA0} of a congruence relation A in an Q-group
(G, Q) is an ideal in | JA and there holds A = | J4/A(0) [9] 1 1.3 and 1.4. O

1. The notion of the complete permutability of partitions was introduced in [7],
p- 90 for partitions on a set and in [5], Def. 1.3, unchanged transferred to partitions
in a set. The mentioned definition in [7] reads

(*) A system {A, : v € '} of partitions on a set G is called completely permutable
if for arbitrary subsets 9 # A = I’ and {x': 1€ A} = G it holds

whenever x*(C,V C,) x*, u, ve A, where C, = A\ A,, a € A, then there exists
" v a

ted
t¥a

x'€ G such that x'A,x, 1€ A.
Note that the definition (*) was introduced in [7] for congruence relations on
a universal algebra (G, Q). Since the lattice ¥(G) of all congruence relations on
(G, Q) is a closed sublattice of the lattice of all partitions 7n(G) on the set G, the
replacement of congruence relations by partitions is unessential (viz. v =V p)
For a reason, which will be explained in the sequel, it is suitable to modify the
definition (*) for partitions in a set as follows

1.1. Definition. 4 system of partitions in a set G {4, : 1€ '} with card ' > 2
is called completely permutable [finitely permutable] if for an arbitrary [ finite]
subset A = I' with card A > 2 and for an arbitrary system of elements U =
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= {x':1e A} = G fulfilling x"(C,VC,)x", u, ve A, u # v, where ae AC, =
= A A,, the condition (1.1Z) or (1.2Z) is valid

teA
t*a

(1.1Z) x € G exists such that x'A,x, L€ A, or
(1.2Z) there exist « € A and A} €| )A,/A, which satisfy a)% < A, and b) A4} N

U4, # 8 for some 1€ A implies Ay € | JA,/A,. (By V there is meant the supremum
Vp in P(G).)

Note. If we should admit card A = 1 in the Definition 1.1, then it would hold
Uu4d =G

el
Indeed 1€ I', choose y € G and A = {i,} for some ¢, € I'. Then the requirement for
the singleton A = {y} = G (y = x”) is satified trivially and thus (1.1Z) or (1.2Z)
do not be fulfilled unless it holds y e U 4,,, i.e. U{J4, = G. O
el
1.2. Definition ([9] IV Def. 4.1; [5] Def. 1.2) A4 system {A, : te I'} of partitions
in a set G is called associable if it satisfies; For any system U = {x':te T} of

elements of the set G fulfilling x*(\ A,) x*, u, v € I', one of the following conditions
holds : sl

(1.1A) x € G exists such that x'A,x, 1e T, or

(1.2A) a € I' and AL € ) A,/ A, exist such that a) A = A} and b) if 4y N (J4,; # 9
for some Be T, Aye\)A,/4,.

Any nonempty subset of an associable system is associable [5] and [9] IV 4.5.
Then the following two Propositions are evidently true.

" 1.3. Proposition. Any associable system of (at least two) partitions in a set is
completely permutable. O

1.4. Proposition. If {4, :ceT'} with cardI' > 2 is a completely permutable
Lfinitely permutable] system of partitions in a set G, K = I' with card K > 2, then the
system {A, : t€ K} is completely permutable [ finitely permutable] as well. O

1.5. Proposition. Let {4, A,} be a system of two partitions in a set G. Then the
following are equivalent.

a) The system {A,, A,} is completely permutable;

b) The system {A,, A,} is associable;

¢) The partitions A, and A, commute.

Proof. cimplies b. Let the partitions 4, and 4, commute and let x'(4,; V 4,) x2.
By [9] III 3.1.1(1), A; V A, = A A, U A, U A,, thus x'4,4,x* or x'4,x* or
x'A,x%. In the first case x € G exists such that x'4,x4,x?, consequently (1.1A)
holds. In the second case x', x* € A} (« = 1) for some block 4; € (J4,/4,. If for
i = 2 there exists an element x € A} N | J4,, then x24, 4,y for some y € G. From
the commutativity of 4, and A4, it follows x?4,4,y, thus x?A4,x*. Hence
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x'A,;x*A,x* and therefore the condition (1.1A) is satisfied. The last case x'A,x2
is symmetric to the preceding one.

b implies a is evident.

a implies c. Let the system {4,, 4,} be completely permutable, A = {x!, x?} <
c G and x'4,4,x*. Then x'(4, V 4,) x*. If the condition (1.1Z) is satisfied,
then x € G exists such that x'4,x4,x%, hence x'4,4;x2. Let (1.2Z) hold, let a €
€ {1, 2} and a block A, € | J4,/4, exist such that A = 4. For any ¢ € {1, 2} there
holds x! or x? € AL N | JA4,. Thus AL e J4,/4, (. = 1,2),ie. (x',x}) e 4, N A4,
€ A,A,. The reverse inclusion can be proved symmetrically. Hence 4,4, =
= A,A,, the desired commutativity. O

1.6. Corollary. Any two partitions belonging to a completely permutable [ finitely
permutable] system of partitions in a set commute.
Proof follows from 1.4 and 1.5. O

1.7. Remark. For partitions on a set the definition 1.1 of the complete permut-
ability is identical with the definition (*) (appart from the requirement card I' > 2
and card 4 > 2).

Proof. For partitions {4,: te I'} on a set it holds x*(C,v C,) x", pu # v, p,
ve A<« x*C,V C,) X', u, ve A. Further the condition (1.2Z) for partitions “‘on”
mplies the condition (1.1Z) (with an arbitrary x Ad',). O

1.8. The principal disadvantage of the definition 1.3 [5] for the complete per-
mutability of partitions in a set is that it is not equivalent to the commutativity -
in case of two partitions.. The 1.3 [5] version of the complete permutability of two
partitions 4,, A, implies the relation 4, V A, = A, A,, while their commutativity
implies A, V A, = A{A;, U A; U A, by [9] 3.1.1(1). Thus the complete permut-
ability by [5] implies the commutativity ([9] IIT 3.1.1(3)), the converse does not
hold in general ([9] III 3.1.1(1)). '

As we see, the notions of associability and complete permutability generalize
the notion of commutativity. It is usefull when two generalizations are comparable.
Our definition 1.1 admits such a comparison. This is given by Proposition 1.3.
Such a comparison is not true for the complete permutability version [5]. Namely,
all the partitions of a system {4,: ¢« € I'}, which is completely permutable in the
sense of [5] have the same domain. Indeed, in this case 4,v 4, = 4,4,, y,veT,
so that | J4, = (J4, by [9] III 3.1.1(6).

Now, we give some properties of complete permutability. To this end let us
recall two notions..

A subset H of a set G is said to respect a partition 4 in G if H contains each block
of A, which it intersects ([9] IV Def. 4.8).

Let A = {A4,: 1€ I'} be a system of partitions in a set G and # # H < G. Under
A N H we understand the system {4, N H: eI} ([9] IV Def. 4.8.2). As for the
symbol 4, M H, see [3]12.3: 4,1 H = {4' n H: A' €| J4/A4, A* n H # §}.

»
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1.9. Theorem. If a system A = {A,:1e '} with card ' > 2 of partitions in
a set G is completely permutable | finitely permutable], then the following conditions
are true.

(A.1Z) For any K = I' with card K > 2 and Gy = (\J4, # 9 it holds that
1eX

{A, " G : v€ K} is a completely permutable [ finitely permutable] system of parti-
tions on Gg;

(A.2Z) \JA, respects the partitions Ag, o, BeT.

Note. Let Y be the symbol for supremum in the lattice P(G). Then for 9 # A <
< K there holds G, V 4, = \V (G, M A,). Analogously for infimum.

teA teA

The result follows after some easy manipulation.

" Proof of Theorem will be-carried out for the complete permutability. The case
of finite permutability is analogous.

First, from 1.6 it follows that 4, and 4, commute (a, € I'). Suppose that UA,,
does not respect A,, i.e. that for some x,ye G it holds x,ye Ale|)4,/4,,
xel )4y, yelJA4;. Then ad;xA,y for some ae G and thus ad,4,y, wh'ch means
that y € U4, —a contradiction. Thus (A.2Z) holds.

To prove (A.1Z), let us choose A = K with card A > 2 and denote 4, N Gx =
= A(eK),C, = A A(xe A). Consider A = {x':c€ A} € G with x*(C,V C,) x",

€A
t¥a

u#v, pve A Then x*(C,v C)) x*, p # v, u, ve A, where C, = A 4,. Con-

ted
t*a

sequently (1.1Z) or (1.2Z) hold for the completely permutable system {4,: te I'}
of partitions in G. Now, (1.1Z) reads that x € G exists with x‘4,x, € A. We shall
prove that x € G and so it will be showed x‘4,x, ¢ € A. On the one hand it holds
x,x'€ A} for some A}e|)4,/4, (te A). On the other hand 4 = G implies
x'€|J4,, a € K. Since [ J4, respects A' and x‘e(J4, we have xe 4} = J4,,
o € K, so that x € G, whence x'4x,, € A.

From the condition (1.2Z) we get an anlogous condition for the system
{A,: te A} of partitions on G, which by 1.7 implies that (1.1Z) for the system
{A,: 1€ A} is true, completing the proof. O

1.10. Theorem. A4 system A = {A,: 1€ I'} withcard I' > 2 of partitions in a set G
is completely permutable [finitely permutable] iff the following conditions (Bl)
and (B2) are true.

(B1) Any two partitions of the system A commute;

(B2) IfA<=T,cardAd >3 [Ny >card 4 2 3], A = {x": ce A} = G, ¥(C,v
v C,) x"% u, ve A, u # v, then there exists x € G such that x'Ax, 1€ A.

Proof will be carried out for the complete permutability. The case of finite
permutability is analogous.

_(B1) and (B2) imply evidently the complete permutability of A.

99



1. SEVECKOVA, F. SIK

Conversp]y, let A be completely permutable. By 1.6, (B1) holds. To prove (B2),
let A = I'withcard 4 > 3and A = {x: 1e A} = G with x*(C,v C,) x", p,ve A,
u # v. If (1.1Z) is true, then x € G exists with x'4,x, t € A. Let (1.2Z) be satisfied.
We shall prove that 4. N (J4, # 9 for all te A and thus that Al is a block of
every A, (¢ e A). From this one derives that an arbitrary x € A: fulfils x'4,x, 1€ A.
Choose ¢ € A. There are u, v € A such that u, v and ¢ are different (recall that card
A = 3). From x*(C,v C,) x* we get x"A,x". It follows that e.g. x* €| )4,. Since
xt e A: we get then x* e 4! N (J4, which was to be proved. D

1.11. Theorem. A system {A,: e I'} with card I' > 2 of partitions in a set G
is completely permutable [ finitely permutable] iff the following condition is satisfied.

If A<=T with card A > 2[X, >card A > 2] and A = {x': te A} = G with
xXMC,v C) X" u # v, u, ve A are given, where C, = A A,, then one of the follow-
ing conditions is fulfilled ptic

(C1) x € G exists such.that x'Ax, 1€ A, or

(C2) card A = 2 and there exist x€ A and Al e (J4./A, such that A < Al and
AynUd, =B for Be A, B # a

Proof. Obviously the condition of the Theorem implies that (1.1Z) and (1.2Z)
are fulfilled. It remains to prove that the complete permutability [finite
permutability] implies that the condition of the Theorem is fulfilled.

Suppose that A < I' with card 4 > 2 and A = {x": 1e A} = G with x*(C, v
v C)x', u#v, u veA are given. Provided card 4 > 3 holds, (C1) is true by
Theorem 1.10. Suppose card A = 2 and denote A = {1, 2}. Then x'(C, v C,) x*
means that x'(4,v 4,) x2. By 1.10, 4, and 4, commute and by [9] III 3.1.1(1)
Ayv Ay = AjA, U Ay U A,. Then x'A4,A4,x* or x'4,x? or x'4,x*. In the first
case x'4,xA,x* for some x € G, thus we have (C1). The second case leads to the
relation x', x? € A} for some block A} e )4,/4,. If A} n ()4, # 9, then since
(4, respects A, we have A} = ()4, and the condition (C1) is fulfilled for an
arbitrary x € {x!, x*}. Analogously for the third case. O

1.11. Example of an associable (and therefore completely permutable) system
{A,;veT'} of partitions in the set G = {1,2,3,...,11}, I' = {1, 2, 3,4} (for
which, in addition, G, # G whenever A # K, A, K < T, is satisfied).

All blocks of any partition A4, to 4, are singletons:

A;:1234 678

A, 123 56 9 10.

As: 12 45 17 9 11

As: 1 345 8 10 11

Gii,2,3,4) = {1}, G253 = {1, 2}, Gy,2,4y = {1, 3}, Gy 3,4y = {1, 4},
G(2'3’4) == {l, 5}, G{I,Z) = {], 2, 3, 6}, G{1’3} = {1,2,4,7}, G{1,4) = {1, 3,4, 8},
G(2,3) ="'- {l, 2,‘ 5, 9}, G{z’4} = {l, 3, 5, ]0}, G(3.4} = {], 4, 5, l]}.
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Evidently for card A = 1 the sets G, differ from one another and from the preced-
ing ones, as well.

2. The definition of a completely permutable system of congruence relations
in an algebra (G, Q) can be formulated analogously as in Definition 1.1 with the
distinction that in the join C, v C, underv there is to understand the supremum V ,
in the lattice #(G). Unfortunately, suprema in %#°(G) do not coincide with those
in P(G) hence the latticc ¢ (G) is not a sublattice of the lattice P(G). Consequently,
the theory concerning pa-titions cannot be applied directly to congruence rela-
tions. Thus it is useful to study conditions which assure “the closedness’ of some
subsets of #°(G) in P(G). In the following we point out some cases.

2.1.. Definition. Let {A,: te I'} withcard I' > 2 be a sjzstem of congruence rela-
tions in a universal algebra (G, Q). This system is called completely permutable
[finitely permutable] if the system of corresponding partitions in the set G is
completely permutable [ finitely permutable] according to the lattice H(G) o)
congruence relations in the algebra (G, Q). (Now, in the Definition 1.1 under v
supremum V, in J(G) is meant.) :

Under certein conditions the permutability of congruence relations can be
related to the lattice P(G). Later, one of these will be given.

2.2. Proposition ([9] I 1.2) Let (G, Q) be an algebra and {A,: 1€ F} c A(G).

Then Vy A, = VpB,, where by B, there is meant the congruence relation
ted b :

A, Vy ...VyA,, for an arbitrary finite choice A4,,, ..., A, in {A;:te A}. O

2.3. Theorem ([9] I 1.2.0) Let (G, Q) be an algebra and {A,: . € A} an up-directed
subset of the lattice #(G). Then V4, A, = VpA,. O

ted €A .

2.4. Corollary. Let (G, Q) be an algebra and A = {A,: 1€ I'} = H'(G). Let every
finite subset A of A be up-directed. Then \ 4 A, = VpA,.
Proof follows from 2.3 and 2.2. O ‘4 e

2.5. Proposition ([9] IV 4.8.1 (b)) If A is a congruence relation in an Q-group G
and H a subgroup of the additive group G, then H respects the partition A iff A(0) =
c H (where A(0) is the block of the partition A containing the neutral element 0
of the group G). O

2.6. Theorem. Let a system {A,: € I'} with card I’ > 2 of congruence relations
in an Q-group (G, Q) be completely permutable [ finitely permutable]. Then the
following conditions a) and b) are true

a) 4,0) = (JA4p, @, BeT;

b) For every K < I' with card K > 2 [N, > card K > 2] the system {G/(A4,00)):
1€ K} of congruence relations on Gx = () \JA, is completely permutable | finitely
permutable]. ek
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Proof. The condition a) expresses the requirement (A.2Z), Theorem 1.9 (see
also 2.5). As for the condition b), there holds G./(4,(0)) = A, M G,. Reference
to a) shows that 4,(0) < G,. Thus, our conditions a) and b) express the conditions
(1.12) and (1.2Z) of Theorem 1.9 provided G is an Q-group. Finally, for the
congruence relations “on” (on Gy) the equality V, = V, is valid. O

Part Il of the present paper will contcin applications of the results discussed
in this Part 1.
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O PETYJAPHOCTHN 3JIEMEHTOB PEJIATNBA

JI. A. CKOPHAKOB
(IToctynnio B pepaxuuio 17 ro mas 1988 r.)

ITocsawaemes namasmu Muaana CekanHuHbl

Pesiome. Kputepuii peryaspHOCTH 3JIEMEHTa MOJYIpynnbl GMHapHBIX oTHOmMEHWH oGo6maercs -
Ha ciydali pensaTHBOB (anre6p orHomeHui). M3 3TOro M3BJIEKAIOTCA HEKOTOPHIE CIEACTBHA AN
nonyrpymsl B-oTHomenni, rae B — Gynesa anreGpa. ’

KioueBbie C10Ba: PENATHB, anrebpa OTHOLIEHHH, MONYTPyNNa OTHOLIEHUH Han Gynesoit anre-
Opoit.

Knaaccndnrangua AMO: 04 A 05, 20 M 20

Peasmusoii wnu aazepoii omHoweHuil Ha3bIBaeTCA yHHMBEp3ajibHas anrebpa R

curnatypsl {+,.,—,0, 1,0, *, E},, r0e + , . H o — OUHApHbIE OMEPALMH,
— M * — yHapuble, a 0, I u E Hynbaphbie, npuyeM {g | + , ., —,0, I} — 6ynesa
anrebpa, {R|o,*,E} — Morouag uHBONIOUMEH, (X + Y)oz = xob + Yoz,

(x+p)*=x*+y*ux*oxoy < y nna mobwIx x, y, z€ R. B HacTosIE#H 3aMeTKe
TIPUHATHL 0603HaYeHHs], HCTIO/b30BaBIUKeCA B [2], rae MOXHO HaliTH ¥ JanbHeliuye
CCBUTIKH. BaXHBIM NMPHMEPOM pEJIITHBA CIYXHT MHOXECTBO BCeX B-OTHOLIEHHH,
rae B — Gynesa anre6pa (cM. [ 1]). HanoMuum, uro eciu B = 2, To B-oTHOLIEHHS —
3TO OOBIUHEIE GHHAPHBIE OTHOLLUEHUA. B CBA3M C 3THM BO3HMKAeET 3aaya 06001eHus
CBOWCTB peniaTvBa OMHApHBIX OTHOILEHHMH HA TPOM3BOJIbHBEIE pejisTuBa. OmHa U3
Takux 3a/a4 U peliaeTcs B HACTOsAILEH 3aMeTKe.

DeMeHT @ peaTHBa R HAa3BIBACTCH pecyAApHbIM, ECIIH @ = Q o 0 o @ IUISt HEKOTO-
poro ¢ € R.

Eciiu ¢ — aneMeHT pensituBa R, TO MOJIOXKHM

e =e*ogog*
Teopema 1. Caedyrowue ceoiicmea s1emenma o pessmusa R pasnocuavhbl:

(1) o pezyaspen; (2) g < go@og;(3)e =@ogo0(cp. [7], Teopema 2).
Hoxaszarensctso. (1) = (2). Ecna ¢ = ¢ o ¢ o @, TO, IPUMEHAA COOTHOLIEHHE
(S6):

:

(@ob)(cod) < ao((@*oc)(bod*)od(cm. [2], ¢. 130, cBoiicTBo (S 6)),
rae a = E, nony4yaeM '

(@00)(@o0*) <(B(eooog))oe* =pgoe*=0.
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BTOpHYHOE IpHMEHEHHE TO# ke GpopMyJibl npu d = E naer
(e*ogo@¥) o =¢*o((eo0)(@00*) =0.
Bsuay [3], c. 155, ynp. 1, oTciona Britexaer
o <*opo0* =0
o, BBHAY [2], nemma 1 (2),
Q@ =Q0o00o0Q < QoQoop.

(2) = (3). Ucnonb3ys HepaBeHCTBO X* o X o ¥ < J U JBOACTBEHHOE COOTHOLICHHME,
MOJIY MM

(SYl

0 <Q00Qo0@ =000%0000¥00 < Po0*0Q <0 =o0.

(3) = (1). TpuBuanbHO.
Teopema 2. Eciu ¢ — pezyaaphbiii 31emenm peasmued R, mo g o @ o @ — HAu60.1b-

wwuil ungepcHulii 31emerm 3aemenma o (Cp. [7'], ¢. 97, cnencTeue).
HMoxa3atenbcTBo. IlycTh ¢ = g 0 0 0 0. BBUIy Teopemsl 1,

Qo0oQ =Qo0QoQoQoQ=2¢

GoQo0 =§ogo§ogo§ogoa = aogoa = 0o,
T. €. 6 — MHBepCHBIH s 0. ECmi 1€ R, 00 To@=Q U To Qo T = T, TO, HCIIOJb3YSA
[2], nemmsr 1 (2) 1 1 (4), a Takxke (S 6) u3 [2], nonyuum
(@*0goe@*) T =1(0*0000*) (t0Qo1) <
<0*0(@oT0@)(fo@*0t*) 0T =
=0*¥0(Eo@)(@o0*o1*) 0T <.
< 0*o(Eo(E*op)(@oTo00)o(@*01*) o1 =
=p*0p00og*ot*01 =0.
B cuny [3], c. 155, ynp. 1, oTciona BeITEKaeT, 4TO
T<g*opog*=g.
Vuurnsas [2], nemma 1 (2), HOJyYaEM T = ToQoT < o Qo o.
Itycte M — Hemycroe MHOXecTBO. ByneBa anrebpa B Ha3wiBaeTca M-noanoil,
€CJIH OHA COICPXMT TOYHbIC BEPXHHE M HHXKHHE T'PaHH JIFOOBIX CBOMX MOJMHOXECTB,
MOIIHOCTh KOTOPHIX HE MPEBOCXOMUT MOIIHOCTH MHOXecTBa M. OToOpaxeHue g:

M x M — B ua3piBaetcs B-omnowenuem. IlpousBenenne ¢ o ¢ B-OTHOLUCHHHA @ ¥ &
ONpENeNIeTCA PAaBEeHCTBOM ‘

eoa(a,b) = Z"a(a, x) a(x, b)
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o ‘
aast mobsix @, be M (em. [1]). Ecin B = 2, To B-oTHOWeHUss — 3TO OGbIYHBIE
OTHOLIEHMS ¢ O6bIMHBIM TIpou3BeseHHEM. COBOKYMHOCTb BCEX TaKMX OTHOLUEHHM
Ha M 0xa3bIBACTCSA PEJISTHBOM, €CJTH B KAUYECTBE PELIETOYHBIX ONEpPalHii pACCMOTPETh
TEOPETHKO-MHOXSCTBEHHbIE OOBEIMEHHE, TIEPECEUeHUE U NOMOJIHEHUE, NI JIOOBIX
a, be M onpenenuts 9*(a, b) = o(b,a) u

1, ecid a = b,
Ea, b) = {O, ecv a + b,

u nonoxutb 0 = Ful =M x M. HazoBeM B-OTHOLUEHHE Q pediaeKCUHbIM, €CITH
E < o, u_aumucumempuunovim, eciau g o* < E.

Teopema 3. PegrexcugHoe anmucumempuynoe B-omuowenue @ pezyiapHo mozda
u moavko mozoa, kozoa @ = @ o ¢ (cp. [8], @ maxxce [5] u [7]).

Hoxa3zaTenbcTBO. Ecid ¢ = gog@, TO 9 = Qo @0, T.€. ¢ perynspHo. Eciaa
Q PETYJISPHO, TO, B CHJLy TeOpeMbI 1, ¢ = g o g o @. Tockobky @ pedIieKCHBHO, TO
o(x, x) = 1 nng Bcex x € M u, cleqoBaTeNbHO,

62 = Y 06,0 06, D e 1) =

s, teM
= I (e60) + o) + oz 1) <
< 0% %) + elx, 2) + oz, 2) = e(x, 2),
s Ao6sIx x, z € M. TIockoJIbKy @ aHTHCHMMETPUYHO, TO
e(x, 2) o(z, x) = e(x, 2) *(x, 2) = 0,
eciiu x # z. CneoBaTenbHO, ECIU X # Z, TO
8(x, 2) 0z %) < o(%,2) o(z %) = 0.
Kpome Toro, npu Jito6bIX X, y ¥ 3 MOJIyYaeM
&0, 2) e(z, X) = e(r, ») 8(y, 2) (3, %) <
< X o, s) (s, 1) e(t, x) = ege(y, x) = e(y, x),

s,teM
OTKy/Ja PH X # Y BbITEKAET
C ex e, D e x) < ex, p) e, x) = 0.

CnenoBartenibHO, IJiF JIFOO0ro x € M UMeET MeCTO

1= Q(x; x) = ZMQ(x’ y)b(ya Z) Q(Z’ X) =

= ZMQ(x, x) e(x, z) e(z, x) =

= o(x, x) §(x9 x) o(x, x) = 6(xa x).
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Taxum o6pa3som, E < g, uTo, BRIy [2], 1emma 1 (2), Biever
Qo0 =0o0Eop<gQogoog=0=0o0E<goo.

Onpenenenue pedIeKCHBHOCTH M aHTHCHMMETPHYHOCTH B-OTHOIIEHMS [TOCIOBHO
TIEPEHOCHTCS Ha 3JIEMEHT NPOM3BOJILHOTO peyiaTuBa. IIpM 3TOM aHaor TeopeMsl 3
TpUBHANbHBIM 00pa3oM BepeH s Jroboro penstuBa, rae x = x* s moboro
aNeMenTa X, W00 U3 ee TMOCHUIOK BBITEXKAET, YTO E < x = xx* < E. To %e caMoe
MOXHO CKa3aTh U O DPEJIATHBE

(26 ] Y, N, l9 \9@9 G’ O —1’ {e})’

rae G — rpynna c eausuueii e (cm. [ 5],[6]). B camom seste, momyctum, uto 4, B e 26,
ecA,ANn A" ={e} n ABA = A. Torna e = a;ba,, rne a,, a,c AubeB.
QOrcrona

a;' = ba, = eba,ec ABA = A

M, CJIEI0BATENIbHO, @; = e¢. AHAJIOTHYHO TOJy4aeM, 4TO @, = e. Takum o6pa3omM,
e = be B, oTkyna
aa’' =aea’'e ABA = A.

s mobbix a’, a’’ € A. TakuMm o6pasom,
AAc Ac A{e} < AA,

T.e. AA = A. OgHaKo, BONPOC O CNPaBeJIMBOCTH aHAJOra TEOPEMBI 3 IS MPOM3-
BOJILHOTO PEJIATHBA OCTAETCA OTKPLITHIM.
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Abstract. Modules over a not necessarily commutative multiplicative sup-lattice 4 are described
as the Eilenberg—Moore algebras of a fairly elementary monad (T, 7, u) over Set with TX = A*
which was considered before for commutative A, in particular when A is a frame. These modules
are shown to carry a generalized metric structure, inducing another monadic functor.

Key words: sup-lattice, multiplicative sup-lattice, frame, locale, quantale, module, monadic
functor.

MS Classification: 06 D 99; 06 A 23, 18 C 15, 18 C20

INTRODUCTION

For a frame A (= complete lattice withxA YV y; = VY xA y,) Machner [4] gave
a rather technical description of the algebras of the following monad 1, = (T, n, p)
on Set:

TX = A%, (TN (@) 0) = V{ex) | xe [Ty} (f: X > ¥, pe A%, ye V),
nx: X > A%  with  gx(x) (x) = 6., (Kronecker’s delta),

py A2 > A with  py(@) (x) = V {B(9)A 0(x) | ¢ € 45} (D € 44%, x € X).

However, from Joyal’s and Tierney’s work [3] one now has a nice characterization
of these algebras: interpreting 4 as a commutative monoid (with A as multiplica-
tion) over the sup-lattice (= complete lattice in which one considers Y the only
structural element) 4, Eilenberg —Moore algebras with respect to 7, are nothing
but modules over the monoid 4, i.e. sup-lattices M which come equipped with an
associative and unary action 4 ® M — M of sup-lattices.

* Partial support by the Université Catholique de Louvain (Belgium) and by NSERC (Canada)
is gratefully acknowledged.
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In this short note we present this observation in the non-commutative case.
More precisely, we show that the above monad exists for every sup-lattice 4
which comes equipped with an associative, but not necessarily commutative
multiplication and a one-sided unit (so in particular for every quantale i1 the sense
of [1], and that the algebras are the same as in the localic case described above.
We also observe that they. carry a generalized metric structure which we discuss
in terms of adjoint functors.

1. SUP-LATTICES

The category SupLat has as its objects partially ordered sets X ‘which admit
arbitrary suprema (in particular, one has 0 = V@ and 1 = Y X), and as its morphisms
f: X = Y mappings which preserve suprema. Every such morphism has a right
adjoint f, : ¥ — X, given by the formula

Jx)sy
: x < fu(y)’
(or fu(y) = V{x | f(x) < ¥}); f« preserves all infima, so 1t can be interpreted as
a morphism f° : Y% - °X? in SupLat with X° the sup-lattice provided with the
partia! order opposite to that one of X. (Recall that the existence of arbitrary
suprema implies the existence of arbitrary infima.) Obviously,

(—)° : SupLat — SupLat

is a contravariant isomorphism of categories, yielding a strong self-duality of the
category SupLat.
A bimorphism f: X x Y - Z of sup-lattices satisfies the laws

fOVxLY) = Vi), £ V) = VG ).
The tensor product of two sup-lattices X, Y is given by a universal. bimorphism
XxY->X®Y, ((xX)y)eprx®y,

so that Bihom (th Y, Z) ~ Hom (X ® Y, Z). Therefore, bimorphisms can be
always written as SupLat-morphisms on the tensor product.

2. MODULES OVER MULTIPLICATIVE SUP-LATTICES
A sup-lattice A is called multiplicative When it comes equipped with a nullary
operation ¢ : 1 = A (i.e. an element ¢ € 4) and a binary operation
AR A4, o«®p +af,
in ‘SupLat. A left A-nidule M is a sup-lattice together with an action
- d '/i®M—->M, a®x|->dx,
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in SupLat such that
(af) x = a(fx) and ex=x (e, e d,xe M)

hold. The morphisms of the cate’gory A-Mod of left A-mcdules are morphisms
S M —> N in SupLat such that flax) = af(x). A right A-module M is a left
A*-modu'e where A* has the multiplicative structure given by ¢ and o * § = fo.
We write Mod-A4 for 4*-Mod.

If 4 with its multiplicative structure is itself a left (right resp.) 4-module, then 4
is called a left (right vesp.) monoid over SupLat; it is a monoid if it is both a left
and right 4-module. ‘

Every frame (= locale) is a monoid when putting aff = aA f and ¢ = 1;
in fact, frames are those monoids over SupLat with ¢ = 1 and «* = «. (The
Joyal — Tierney [3] proof survives dropping commutativity.) Prime examples of
locales are the lattices of oren sets of a topological space.

More generally, quantales in the sense of Borceux and van den Bossche [1] are,
by definition, right monoids over SupLat with ¢ = 1 and a®> = «. Those were °
‘introduced to describe, inter alia, the lattice of closed right ideals in a C*-algebra.

For a mulitiplicative A4, a left 4-module M, and every « € M, the SupLat-
morphism «(—) : M — M has a right adjoint, denoted by (—)% so

ax <y

x <y
One has a SupLat-morphism-
MO®A—’MO, y@a’_’yaa

which provides M° with ia right 4-module structure:

x <y x <y

eEX <y (af)yx <y

X<y a(Bfx) <y
Bx < y*
x < (o

This way one obtains a strong duality
(—)°: A-Mod — Mod-A.

‘ For A commutative this gives a strong self-duality of 4-Med (which is the seif-
duality of SupLat mentioned before when taking 4. to be the 2-element chain).
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3. MONADICITY OF LEFT A-MODULES

Theorem 1. For a left monoid A over SupLat, A-Mod is monadic over Set.

Proof: Forevery set X, AX = Set (X, A) carries the structure of a left 4-module,
with (a@) (x) = ag(x) (a € 4, ¢ € A¥, x e X), which is simply a direct product
of X copies of the left 4-module A4. It is indeed the free left 4-module over X,
since every Set-map f: X —» M into a left 4-module M factors through

Ne: X =A%, with nux)(x) =¢ and fex)(x)=0 for x # x/,
by a unique morphism in SupLat, namely

g: A > M  with  g(e) = V{e() f(x) | xe X}

for all ¢ € AX. _

It is elementary to show that the forgetful 4-Mod — Set creates coequalizers
of absolute pairs, so it is monadic (cf. [5]). But it is not difficult either to see directly
how 1 ,-algebras (M, m) correspond to left 4-modules M (here 7, is the monad
induced by 4-Mod — Set which may be described as in the Introduction, replac-
ing A by the multiplication of A): for a left 4-module M, the Eilenberg —Moore
structure m is a morphism 4™ — M in 4-Mod with mn,, = 1,,, so

m(p) = V{o(x) x| xe M};

on the other hand, given an Eilenberg—Moore structure m on a set M, A acts
on M by

ax = m(an(x)). o

Analogously one can show that Moed-A4 is monadic over Set when A is a right

monoid. So one has:

Corollary 1. For a commutative monoid A over SupLat, both A-Mod and (A-Mod)°?
are monadic over Set. o

4. THE INDUCED HEYTING STRUCTURE

For a left monoid A4 and a left A-module M and every x € M, the SupLat-
Morphism (=) x: A - M has a right adjoint, denoted by x — (—), so

ax Sy
a<x_,y
One has a SupLat-morphism
M@M° - A x®ymr(x->y),
satisfying the following laws for all x, y e M:

]
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Proposition 1.
N X<yeeg<x-oYy,

2 , Vx(z—+y)(x—>z) =Xx-).

Proof: (1) is trivial, and it implies
x=>y=¢x-y)<(y->y)(x—-y < Lhs. of (2).
For the other inequality needed in (2), first observe that trivially
(x>2)x <z *)
for all x, z e M; therefore,
(E=2Nx->2)x=C->p((x>2)x) <(z>y)z <y,

hence (z » y)(x > z) < x —> yforall x, y,ze M. o
Passing to the induced Heyting structure causes no problems when forming
direct products:

Proposition 2. For families (x;);, (y;); in the direci product [] M; in A-Mod
one has ‘
(x)i = i = 0 (x; = y)-

Proof: Since the partial order in [ M, is componentwise, we have
i
a < (x) > ()
a(x;) < ()

Vi:ox; <y

Viia <x;-oy

« < AGx—y) o

However, morphisms require more detailed considerations:

Proposition 3. For left A-modules M, N and a Set-map f: M — N one has"

M x>y < f(x) > f(y) (x, y € M) holds if and only if f is monotone (i.e.
x <y= f(x) < f(y)) and satisfies af(x) < f(ax)(x€ 4, xe M). '

(2) For f monotone and onto, f(x) = f(y) < x - y (x, y € M) implies f(ax) <
< af(x) (x€ 4, xe M). .

3) flax) < af(x) (e € A, x € M) implies f(x) - f(y) < x >y (x,ye M) if
and only if f reflects the order (i.e. f(x) < f(y)= x < y). ‘

Proof: (1) “=" fis monotone by Prop. 1 (1). From a < x — ax < f(x) - f(ax)
one obtains af(x) < f(ax). “<=" In a < f(x) = f(xx) we may substitute & = x — y
to obtain with (*)

x =y < f(x) > f((x - p) %) < f(x) = @)
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since fis monotone. .

(2) We may write, for « € 4 and x € M given, af(x) = f(y) and have a < f(x) -
= f(y) < x >y, hence ax < y, so f(ax) < f(p) = af(x).

(3) “="" Reflection of the order foilows from Prop. 1 (1) again. “<" With
o = f(x) = f(y) one obtains from (*)

S = ) x) < (f(x) - f)) fix) < f),

hence (f(x) - f(3) x < y, s0 f(x) > f(¥) < x > ). o

5. THE METRIC POINT OF VIEW

If, for a left monoid 4 over SupLat with ¢ = 1 and for a left 4-module M,
we write

dx,p) =x—y, a+f=ps a<fef<o 0 =2
then Prop. 1 gives
(D dix,y) =0 =dy,x) = x =y,
(2 d(x, y) < d(x, z) + d(z,y)

for all x, y,ze M.

For a partially ordered (Set-based) semigroup (S, +, <) (so (S, +) is a not
necessarily commutative semigroup and (S, <) is a poset with the binary + mono-
tone in each variable) such that there is a bottom element ® with @ + @ = @, we
consider the category

S-Met -

whose objects are pairs (M, d) with a set M and a function d: M x M — S that
satisfies (1) and (2), and whose morphisms f': (M, d) - (M', d') are non-expanding
maps, i.e.

d'(f(x), () < d(x, y).

Putting (x < y <> d(x, y) = @) defines a functor S-Met — PoSet (the category of
partially ordered sets and monotone maps).

- If we denote by A* the partially ordered semigroup as described above (so A"
is, as a semigroup, 4* and, as a poset, 4°) then Propositions 2 and 3 give
immediately: :

Corollary 2. There is a faithful functor A-Mod — A™-Met that preserves products
and reflects isomorphisms.
Next we shall point out that the functor is actually monadic.
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6. SUMMARY IN TERMS OF ADJOINTS

For a left monoid A over SupLat with ¢ = 1 # 0 one has:

Theorem 2. /i1 the diagram

8 +
A-Mod A -Met
Uyl Ug < — s
Set
SupLat e PoSet
Ul\t . d//()/u

of forgetful functors, each one has a left adjoint; U, Us, Uy, Uy, Ug are monadic
whereas U, , Us and U, induce trivial monads.

Proof: Denoting the left adjoint of U; by F;, one has F, X the power set PX
of the set X, F,X = X with the discrete order, and F;X the system of down-sets
in the poset X (cf. [2]). F, is tensoring with A, so F,F,; gives an alternative way
of constructing the left adjoint F as in Theorem 1, i.e.

A ® PX = A%,

For a poset X, the metric structure of FsX = X is given by

eif x<y
é(x,3) = {0 otherwise

(recall that O is the bottom element in A4, i.e. the top element in 4™). Since U, =
= U,Us trivially has a left adjoint, we just need to show existence of Fg: this can
be derived from Corollary 2 above and Theorem 3 of [6], applied to the triangle

\

U8 +
A-Mod ~ A -Met

US\i //7

Set

(we do not have an explicit construction of Fg).

Monadicity of U,, U;, U,, Ug, Ug is easily checked with the Beck—Paré
criterion (cf. [5]); U,, Us and U, obviously induce identical monads (to have
UsFs = 1d, one needs 1 # 0 in A). : o
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In 1974, V. Koubek [4] proved that the category Par of paracompact Haus-
dorff spaces (and continuous maps) is almost universal. It means that any concrete
category X has an embedding F (= one-to-one functor) into Par such that
g : FA - FB is of the form F(f) iff g is non-constant. Such embeddings F are
called almost full. Due to constant maps, this is the strongest universality which
topological spaces may offer. The second author proved that the categories Metr
of metrizable spaces ([7]) and Comp of compact Hausdorff spaces ([8]) are almost
universal (in both cases, morphisms are continuous maps) provided that the
following statement is true

(M) It does not exist a proper class of measurable cardinals.

It remained open whether one really needs (M) for these results. We show
that the answer is yes (for Comp, it solves Research Problem 12 in [6]).

Str(4) denotes the concrete category of structures of type 4 (= a set of
possibly infinitary relation and operation symbols) and homomorphisms (maps
preserving relations and operations). A full embedding of concrete categories is
called a realization if it commutes with underlying set functors ([6]). A category &
is called universal if any category can be fully embedded into «f. A basic (and deep)
result is that the category Graph (= Str(4) where 4 consists of one binary
relation) is universal iff (M) is fulfilled (see [6]). The mentioned results of [7]
and [8] are proved by constructing almost full embeddings Graph — Metr and
Graph®” — Comp. ‘

115



J. ROSICKY, V. TRNKOVA

Proposition 1. The existence of an almost universal concrete category admitting
a realization into Str(A) implies the universality of Graph.

Proof: Let (X, U) be an almost universal concrete category and F: . —
- Str(4) a realization. We will show that any concrete category # can be
fully embedded into Graph.

Let #* be the category obtained from # by adding an initial object / and
a terminal object T; i.e. obj# ™ = obj# U {I, T}, I # T and obj# n {I, T} =9,
X is a full subcategory of #*, #* (I, H) and #*(H, T) are one-element for
any Heobj# ™, Jf (H,I) = #*(T, H) = 9 for any H € obj#. The underlying -
set functor of 3# can be easily extended to # *. Hence # " is concrete and there
is an almost full embedding G : #* — . Since F is a realization, the composi-
tion E=F.G: #* — Str{4) is an almost full embedding. Therefore E(my) :
: E(I) -» E(T) is non-constant (my is a unique morphism 7 - H) and we can find
x,y € E(I) such that their images in E(m;) are distinct. Then xy = E(my) (x),
yu = E(my) (y) are distinct for any H € obj # and E(f) (xy) = xg, E(f) Wx) = yu
for any f: H —» H. Consequently, g : E(H) — E(H) is non-constant iff g(xg) = xp
and g(yy) = yg. Hence E gives a full embedding of # into Str{d’) where 4’
is obtained from A by adding two new constants interpreted as x; and y,. But
Str(4’) has a full embedding into Graph (see [6]).

Theorem 1. Metr is almost universal iff (M) holds.

Proof: As already mentioned in the introduction, (M) implies the almost
universality of Metr. For the converse, we realize Metr into structures with
one w—are relation; (xg, X3, ..., X,, ...) belongs to the relation iff the sequence
Xy, .ees Xy ... CONvVErges to x,. Proposition 1, Graph is universal. As stated in the
introduction, it implies (M) (see [5]).

Remark 1: The same resu't is true for metrizable spaces with morphisms
taken as '

(a) uniformly continuous maps,

(b) non-expanding maps.
In case (a), we represent metrizable spaces by structures with an w—ary relation
again; but (x,, X, ..., X,, ...) belongs to the relation iff lim d(x,,, X;,+,) =0

n—»aoo

where d is the distance. In case (b) we use o binary relations R,, n > 0 an integer;
xR,y iff d(x, y) < 1/n. The opposite implications are proved in [7].

Proposition 1 is not applicable .to Comp because Comp cannot be fully
embedded into Str(4) without (M) (see [5]).

‘Proposition 2. Let there exist an almost universal concréte category A admitting
a full embedding F : 4" — Str(A) with the property:

‘For every K € objX there is a subset Y g of (the underlying set of ) F(K) such that
Jorany f: K- Kin X
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(i) F(f) maps Y into Y.

(ii) F(f) maps the whole F(K) into Yg iff f is constant.
Then Graph is universal.

Proof: We will follow the proof of Proposition 1. Let & be a concrete category.
Since # = £°? is concrete ([6], p. 33), we may take »#*, an almost full embed-
ding G: #* - A and the composition E = F.G : (#*)°? - Str(4). Then E
is an embedding and E(h) maps Yy, into Y forany h : H - H in #*. More-
over g : E(H) - £(H) does not map the whole E(H) into Y, iff g = E(h) for
rome h: H— H.

Choose x € E(T) such that y = E(myg) (x) ¢ Y. Then xyz = E(ng) (x) (ng is
a unique morphism H — T) does not belong to Y. We have E(h) (xg) = xg
for any h : H— H. Hence E gives a full embedding of & = s#°? into Str(4")
where 4’ is obtained from 4 adding a new constant interpreted as xj.

Theorem 2. Comp is almost universal iff (M) holds.

Proof: As already mentioned in the introduction, (M) implies the almost
universality of Comp. -Let F : Comp°” — Ring send .a compact Hausdorff
space X to its ring of continuous real-valued functions (Ring is the category
of rings with unit and with unit preserving homomorphisms). It is well known
that F is a full embedding (cf. e.g. [3], p. 152). Taking for Yy the set of all constant
real-valued functions on X, it is easy to check that (i) and (ii) of Proposition 2
are fulfilled. Hence the almost universality of Comp implies (M).

. Remark 2. The almost universality of Comp implies.the existence of a stiff
proper class & of compact Hausdorff spaces (i.e. if S,8§€% and f: S — S is
a morphism then either f"is constant or S = S and f is the identity). One does
not need the full force of (M) for it, the existence of a rigid proper class # of
graphs is sufficient (cf. [8]), £ is rigid if X, Y e # and f: X - Y is a morphism
then X = Y and fis the identity).

Our method yields that, conversely, the existence of a stiff proper class of
compact Hausdorff spaces implies the existence of a rigid propei class of graphs
(not to enlarge & to &% but kill constant maps by choosing x5 ¢ Y5, S€%). -

For metrizable spaces, the following statements are equivalent:

(a) Metr contains a stiff proper class of objects,

(b) The category of metrizable spaces and uniformly continuous maps contains
a stiff proper class of objects. .

(c) The category of metrizable spaces and non-expanding maps contains a stiff
proper class of objects.

(d)' Graph contains a rigid proper class of objects.

Remark 3. The existence of a rigid proper class # of graphs_is really weaker
than (M). Indeed, it is easy to show (cf. [1]) that the existence of & is exactly the
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negation of the Vopénka’s Principle which is well known in set theory (see [2],
VP [= Vopénka’s Principle] says that, for each first-order language, every class
of models such that none of them has an elementary embedding into another is

a set). Hence
VP = non(M).

It is known in set theory that VP is stronger than non(M) (even, it cannot be shown
that VP is consistent with ZFC + non(M)). It follows by Godel’s second in-
completeness theorem and by the fact that VP yields a model of ZFC + non(M).
Indeed, VP implies the existence of a supercompact cardinal » ([2], 33.15, 33.14 (a))
and the set V' of all sets of rank less than x is a model of ZFC + non(M) (by [2],
the Corollary to 33.10).
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Abstract. On démontre que la variété base d’un systéme linéaire de quadriques de S, a Jaco-
bienne de rang r — k est: un S; double, ou une variété réductible, qui posséde deux sub-variétés
rationnelles, ou .une variété rationnelle irréductjble. Aprés on donne des exemples significatifs.

Key words. Quadric, linear system of quadrics.
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lo

Dans l’espace linéaire S, de coordonnées projectives homogénes x; (i =
=0,1,...,7r), choisissons d + 1 quadriques linéairement indépendantes:

f0=0af1 20,,_]:’:0

avec:

r
i K _ ki
= Y afxx, (af =a}).
k=0

Le systéme linéaire L, de dimension d, qui en résulte, est exprimé par 1’équation:
d
Y Cfe=0.
q=0

Supposons que la matrice Jacobienne a » + 1 lignes et d + 1 colonnes:

of, q=0,1,...,d
i=0,1,..,r
soit arang m =r — k.

ox;

La matrice Jacobienne égalisée a zéro est le lieu géometrique des points de S,
conjugués entre eux-meémes par rapport a toutes les quadriques du systéme. Si la
matrice Jacobienne est identiquement nulle, cela signifie que tout I’espace est le
lieu des points conjugués. Si le rang est r — h (h = 0) un pomt générique de S,
est conjugué avec un S,,.

J =
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Donnés deux systémes linéaires L, et L,, qui ont en commun un systéme
linéaire L., leur systéme-union résulte de dimension a + b — c.

Nous dirons que le systtme L;,\m < d) de dimension d et & Jacobienne de
rang m est réductible, lorsqu’il est I'union de syst¢émes subordonnés, parmi les
quels au moins un L, (c < g) n’a pas des quadriques en commun avec les autres;
autrement dit, il sera nommé: irréductible.

Il existe le:

Théoreme. Un systéme linéaire irréductible de quadriques L,, _,(r — k < d,
k = 0) a pour variété base seulement une des variétés suivantes:

I. Un S, double et, dans ce cas, les quadrigues sont des S,-cones avec S,-sommet
en commun:

II. Une variété réductible, qui posséde deux sub-variétés rationnelles de dimensions h
etr—h+k—-11<h<r-2:"

Sy _y - , . r+k-—-1
111. Une variété rationnelle irréductible de dimension: —
Démonstration. Considérons avant tout le cas particulier: k = 0. Soit le systéme
‘linéaire irréductible de quadriques L;,(r < d) de S,.

D’aprés un théoréme connu (voir: [2] et [5]) les quadriques de L,, qui passent
par un point générique P de S,, ont en commun une droite, qui résulte corde de la
variété base ¥ du systéme.

Soit R le complexe des droites constitué par toutes les cordes de ¥, qui a cause
du théoréme cité, remplissent tout S,.

Entrecoupons ce complexe par un hyperplan S,_;. Chaque droite du complexe
sera entrecoupée dans un point. Il est ainsi possible établir une correspondance
biunivoque entre les points de I’hyperplan et les droites du complexe R.

Pour cela le complexe R est rationnel.

Supposons que les quadriques aient en commun un point double 4. 11 en résulte
que toutes les droites, qui sortent de 4, sont cordes de la variété constituée par le
point A. Elles remplissent tout S, et il est évident qu’elles forment un complexe
rationnel. : '

Les quadriques ne peuvent pas avoir un autre point double B en commun,
sinon par un point générique P il passerait plus qu’une corde: la droite P4 et la
droite PB. A

Par conséquent le rang de la Jacobienne serait < r, contre I’hypothése.

Il s’ensuit que les quadriques sont des cOnes avec S,-sommet en commun.

’Hors de ce cas, puisque R est rationnel, il en résulte que les coordonnées de
droite de ses droites, les p,,, c’est 4 dire les mineurs extraits de la matrice:

Xo X1 X2 ... X,
Yo Y1 Y2 <o Wr
sont fonctions rationnelles de » — 1 paramétres indépendantes.
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Nous pouvons indiquer avec M(xq, Xy, ..., X,) €t N(¥g, ¥y, ..., »,) deux points
quelconques de la variété base et avec MN la corde qui les joint.

Si la variété base est réductible, il aura dans elle deux variétés subordonnées. W
et Z de dimensions respectives het r — h — 1 (1 < h < r — 2). On rejette le cas
h=0et h=r — 1 parce que dans ce cas les quadriques cbntiennent au moins
un hyperplan. Donc elles résultent couples d’hyperplans ayant un hyperplan en
commun. '

Les autre hyperplans de la couple devraient posséder un S;: il en résulte que
leur nombre est co”~!. Pour cela le syst¢éme de quadriques aurait dimension d =
= r — 1, contre ’hypothése qu’il soit r < d.

Les variétés W et Z ont les dimensions citées parce que, en projetant' W par
un point générique P on obtient une variété T de dimension h 4 1, qui entrecoupe Z
seulement dans un point Q externe a la variété intersection de W avec Z.

En effet, en résultant la droite PQ corde de V, seulement dans ce cas P résulte
conjugué avec un seul point par rapport a toutes les quadriques du systéme.

Notons:

Xo=1,x; =@,(6,,02,...,04), X3 =DP2(01,03,...,0)y ..., %, = P(G,,0,,...,064)
les équations paramétriques de W.
On peut indiquer celles de Z avec:

YVo=1Lyi =¥ 1(T1,T2s s Trop=1) V2 = Vo015 T25 e is Tropmt)s eees Y =
= 'Pr(rl’ T2y eees 1'-r—h—l)'
Les premiers rp;,, extraits de la matrice (1) résultent:
Por=Y¥1 — &,
Poz=Y¥, — P,

Il s’ensuit que les différences:
q’i—Qi (i=1,2,...,r),

sont rationnelless par rapport aux paramétres o,,, 7,. Pour cela I’éventuelle partie
irrationnelle de ¥, et &, doit s’éclipser par différence.
On en déduit que:

¢ =C+E (=12..n,
¥Y;=D,; + E
ou C; et D; sont fonctions rationnelles et E; est I’éventuelle partie irrationnelle
de &; et ¥;.
Fixons un point M sur W: ce comporte: C; = C et E; = E (C et E = constants).

En variant le point N sur Z, il s’ensuit que, pour que la difference ¥; — &,
soit toujours rationnelle, il faut que E, résulte toujours égal a E, c’est 4 dire: E; =
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= constant. Analoguement, si nous ténons fixé ¥, et nous faisons varier di, sur W,
on obtient le méme résultat.

Mais si E; est constant dans les deux variétés, il n’est plus irrationnel. Pour
cela &; e ¥, sont rationnelles, comme il fallait démontrer.

Supposons maintenant que ¥ soit irréductible. Si h est sa dimension, puisque
ses cordes sont co?* chaque corde posséde co! points.

On obtient:

2h - 1=r

c’est A dire:

il s’ensuit que r est nécessairement impair.
En répétant le raisonnement, que nous avons fait précédemment, choisissons
deux points M(xg, X1, ..., X,) € N(¥g, Y1, --.5 ¥,) sur cette variété.
Ecrivons les équations de ¥ en forme paramétrique:
Xo = 1, X1 = @1(0’] 35025 c0ey 0',_1), Xy = @2(0’1, 02y 00y O',._l), ceey Xp =
2 2
= 9,(0'1, G250 0;—1)’.)’0 o= l’yl S @1(11’ Tas ooy Tr—1)ay2 = @Z(Tls T2y eney
2 2
cons Tpmg Yy suny Pp = O T1s Tasvns Tymy o
2 2

Les premiers p;, résultent:
Por = O4(t1, T2, .03 Tpy) — 04(64,05,...,0,_1)
2 2
Poz = 03(ty, T35 .00 Tp—1) — 03(04,0,,...,0,_4)

Dor = O3, T25.003Tp—1) — O04, 03,..., ai)
2 p)

En répétant les considérations précédentes, nous pouvons fixer le point M et
par conséquent les O(0,,0,,...,0,-,) et faire varier le point N sur toute la
variété. 2

Par le raisonnement précédent, puisque les po, (k = 1, 2, ..., r) résultent ration-
nelles, les @; aussi seront ratipnnelles, comme il fallait démontrer.

Soit maintenant le syst¢me L,,_,(r — 1 < d) irréductible. Entrecoupons ce
systéme par un hyperplan. D’aprés un théoréme bien connu de Terracini (voir:
[7])s on obtient un systéme de quadriques irréductible de S,_; ayant la méme di-
mension et le méme rang.

‘Indiquons ce systéme par Lg,_,. Puisque I’espace qui le contient a dimension
r — 1, ce systéme satisfait & 1a démonstration précédente et sa variété est une des
suivantes: .
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I. un point double de S, _,:
II. une variété réductible de S,_,, qui posséde deux sub-variétés rationnelles
de dimensions h, et r — h; —2(1 < h; <r — 3):

IIL. une variété irréductible de S,_; de dimension it (r = nombre pair).

Telles variétés sont évidemment les sectionis hyperplanes de la variété base du
systéme L;;,_;.

Puisque on obtient un tel résultat dans un S,_; quelconque, il s’ensuit que la
variété base de L,,_, est une des suivantes:

I. une droite doublé de S,. (En effet un hyperplan générique de S, coupe dans
un seul point double seulement une droite double).

IL. Une variété réductible, qui posséde deux sub-variétés radionnelles de dimen-
sions: h=h; +1 et r —h=r — hy — 1. (Les variétés sont nécessairement
rationnelles parce que leur sections avec un hyperplan générique sont rationnelles.
Si, en effet, une seule coordonnée, par exemple x,, = @,(0, 63, ..., 044,) était
fonction irrationnelle des parameétres, la section hyperplane x, = 0(s # m,0 < s <
< r) serait irrationnelle, contre la démonstration précédente. Les dimensions de
cette variété, sont évidemment h; + 1 et » — h; — 1, pour que les sections hyper-
planes résultent de dimensions h, et r — h; — 2.)

III. Une variété rationnelle irréductible de dimension % (cette variété doit

A . "~ . . . . . . r
étre rationnelle pour les mémes motifs susdits et elle doit avoir dimension 7

2

Soit maintenant le syst¢éme L,,_,(r — 2 < d). En sectionnant ce systéme avec
un hyperplan, on obtient un syst¢éme Lj,_,(r — 2 < d) de S,_,, qui par rapport
4 S,_,, se trouve dans les mémes conditions du systéme L,,_, par rapport a S,.
Pour cela les conclusions précédentes sont valides et la variété base de L,;, -, est
une des suivantes:

pour que la section hyperplane ait dimension i )

I. Un plan double;
IL. ‘une variété réductible, qui posséde deux sub-variétés rationnelles de dimen-
sionshetr—h+1=r—-—h+2-1;
r+1

III. une variété rationnelle irréductible de dimension 3

(r = nombre
impair). '

Soit maintenant le systéme L, -3(r — 3 < d). En sectionnant ce systtme par
un hyperplan et en répétant le raisonnement précédent on trouvera que le variété
base sera une des suivantes: ' '
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I. Un S; double;
II. une variété réductible, qui posséde deux sub-variétés rationnelles de dimen-
sionshetr—h+2=r—h+3-1;
IIL. une variété rationnelle irréductible de dimension - ;: 2
Ainsi poursuivant il est évident 'qu’on parvient a démontrer le théoreme.

(r = nombre pair).

20
Donnons maintenant des exemples significatifs.
1°) Dans S5 il existe un systéme linéaire de quadriques Ls;s, dont la variété
base est constituée par une ¥ rationnelle de S, et par un plan, ayant en commun
avec la V3 une génératrice.
Les équations canoniques de V3 sont:

celles du plan:
Xo — x; =0, Xy — X =0, X3 — X, =0, xs = 0.
Et le systéme devient:

Qo(XoXz — x3) + @1(xoXs — X1X3) + 02(x1 X4 — X2X3) +
+ 03(xo — x1) x5 + a(x; — X3) x5 + 05(x3 — Xx3) x5 = 0.

2°) Si la V3 est constituée d’une quadrique de S, et d’un plan de S, d’équations:
(1) xO—x1=0’ xz"x3=0, x5=0s

qui posséde en commun une génératrice avec la quadrique:

X X
) : -2-=——2—, Xe=x5=0
X1 X3

on obtient trois quadriques de S,:
XoX3 — X1X; = 0, X4(.xo = X1) =0, x4(x2 - x3) =0.

Nous pouvons considérer un plan de S, qui a en commun avec la V3 réductible,
c’est 4 dire avec la quadrique (2), une autre génératrice:

Xo — X =0, x3 —x; =0, x4 =0
et de cette maniére on obtient le systéme linéaire de Ss:

Qo(XoX3 — X1X3) = @1(Xo — X1) X4 = Q2(X2 — X3) X4+
+ 03(xo — x3) Ry = Qa(X3 — X4) X5 + @5x4xs =0

qui est un Ly,s de S.
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30

Dans S considérons le systéme linéaire Ls.s de Sg:
00(XoX3 — X1X3) + 01(XoXs — X1X4) + Q2(x2X5 — X3X4) +
+ 03X1X6 + Q4X3Xg + 05X5Xs =0

qui a pour base la V$ rationnelle de Ss:

et I’ §; d’équations:
x1 = X3 =S xs = 0,

ayant en commun avec la V3 le plan:

xo=x1=x3=x5=0.

Si d’un point P nous projetons S; nous obtenons un S, qui coupe la V3

réductible, constituée d’une V3, qui se trouve sur le plan intersection et d’une
droite s. Le point P et la droite s individualisent un plan de cordes de la variété
base, qui sorte de P. Pour cela le rang de la Jacobienne du systéme est:

6 —1=>5.
40

Considérons la variété de Segre individualisée par les couples des points de deux
plans de Ss: ¢
- Yop = XoXp»
Yi1p = X1Xps »=3,45),
b2} ;, = X3Xp.

En éliminant x,, x,, X,, Xo, On obtient las équations:

YorVin — Yok — 0,
YorVzn — Yowvax — 0, - (kK # h = 3,4,5),
YiYan — Yinbae = 0.

11 s’agit de neuf quadriques de Sg, qui forment un systéme Lg;;, dont la variété
base est donnée par:

3 Yoz _ Y13 _ Va3 . Yos _ Vi3 _ Y23 . Yoa _ Yia _ J’zt'.‘
Yoa J1a Y24 Yos Y1s Yas Yos Y15 -, Yas -
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Les équations paramétriques de cette variété sont:

Yos =1, Y13 =V, Y23 =0, Yos =T, Y14 = VT, Y24 = 0T,
Yos = @, Y15 = VO, Y25 = 0.

Il s’agit d’une ¥,: oo! cordes de cette variété contenues dans un plan passent
par chaque point de Sg. Donc le rang de la Jacobinne du systéme est 7.

50

Le précédent systéme en génére un autre. Si aux trois groups de fractions (3)
on égalise respectivement les rapports suivants:
Y33 Y33 Y3a

b 3 ’

Y3a Y3s Yas
on obtient un L, de S,,, qui a pour base une V3% de S, qui résulte une variété
de Segre, individualisée par les couples de points d’'un S, et d’un S, de S;.

Le rang du systéme est 11 et par un point P de S|, il passe une seule corde de la
variété base.
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Abstract. In this paper-we prove some fixed point theorems for local antimorphisms which need
not be either isotone or antitone mappings. We give, in a way necessary and sufficient conditions
for the existence of fixed points on partially ordered sets. We also introduce the concepts: inf,
sup-antimorphisms, and, in connection with that we also have some additional results. With such
an extension, a general fixed point theorem is obtained which includes a recent result of the author,
and also contains, as special cases, some results of Abian, Shmuely, Kurepa, Metcalf and Payne,
and some others. ' g
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1. INTRODUCTION AND COMMENTARY

Let P be a partially ordered set. A function f from P to P is order-preserving
(or isotone or increasing) if for all x, y e P, x < y implies f(x) < f(y). If f satisfies
the condition that for x,ye P, x < y implies f(y) < f(x), then f is said to be
antitone (or decreasing). P has a fixed point under f if f(x) = x for some x € P.
P has the fixed point property if it has a fixed point under all order-preserving
functions. )

An ordered set P is said to be complete provided any non-void subset X of P
determines its own infimum inf X € P and supremum sup X € P.

Several authors have treated the problem of characterizing posets with the fixed
point property: Abian A., Abian and Brown, Davis A., Edelman, Hoft H. and
Hoft M., Kurepa D., Rival, Smithson, Tarski, Taskovi¢, Ward and Wong, among

" others.

Tarski [12], Abian and Brown [2], and others have studied fixed points of
isotone mappings on partially ordered sets. In [1] and [11] fixed points of certain
antitone mappings are studied. :

In a poset P functions f are considered such that, for any nonempty 4 = P

1) S(sup A) =inf f(4), where f(4) = {f(a)|ae 4}. :
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A function f'in a poset P satisfying (1) is referred to as a join antimorphism. One
considers also mieet antimorphism satisfying, for any nonempty 4 < P,

2 f(inf A) = sup f(4), where f(A4) = {f(a) | ae A4}.

It is easily seen that every function f, defined on a complete poset (lattice) L,
satisfying (1) or (2) is also antitone, that is, join or meet antimorphisms are antitone
mappings. On the other hand, it is easy to construct an antitone mapping on
a complete poset (lattice) which is neither a join antomorphism nor a meet anti-
morphism. Namely, let L be the lattice on the Figure 1 and f: L — L defined by

L J

1

0 °
fig. 1 fig.2

f(0)=f(b)= f(a) = 1, f(c) = a, (1) = 0. Evidently, fis antitone, but f(sup {a, b}) =
= f(c) = a # inf {f(a), f(b)} =inf{l, 1} = 1. The mapping f is not a join
antimorphism. If we define g: {0, a,b, 1} - {0, 4, b, 1}, g({a, b, 1}) = {0} and
g(0) = 1, then g is antitone, but not a meet antimorphism (Fig. 2.).

Sufficiency for antimorphisms. Let P be a complete partially ordered set(poset)
and f : P — P an antitone mapping satisfying the conditions: f(x) < x or f*(x) < x
for all xe P. Then f is a meet antimorphism.

The analogous statement for join antimorphisms is also valid, when x < f(x)
or x < f(x) for all x e P (see [11]).

Proof. Let 4 = P be a nonempty set, f(x) < x(x e P) and i = inf A. Then
Sf(x) < f(i) for every x € A. Thus, f(i) is an upper bound for f(A). Let s = sup f(4),
and then s < f(i). Assume s < f(i). From f(x) < s (x € 4), it follows that s <
< f(i) < iand hence s < f(i) < f(s), i.e., s < f(s)-contradiction. That is /(i) = s,
i.e., f(inf 4) = sup f(4). . ‘ '

When f?(x) < x, x € P we have s < f(i). From f(x) < s, x € 4, it follows that
J©) < f3(x), i.e., f(s) < x, x€ A. We conclude that f(s) is a lower bound for A.
Then f(i) < s, which implies f(i) = s, i.e., f(inf 4) = sup f(4). This completes
the proof of sufficiency for antimorphisms.

In this paper we examine fixed points of mappings f: P — P which are com-
parable to the identity mapping ip : P — P, in the sense that forany xe P, f(x) < x
or x < f(x). For any f: P — P it is natural to consider the following sets

Pl:={x|xePA x s f(x)}, . P;:={x|xePA f(x) < x}.
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If f: P> P is any mapping of P into P, let I(P, f) be the set of all invariant
points of P relative to f; i.e., I(P,f) := {x| x€ PA f(x) = x}.

In this paper we prove some fixed point theorems for local antimorphisms which
need not be either isotone or antitone mappings. We give, in a way, necessary
and sufficient conditions for the existence of fixed points on partialy ordered sets.

Inf, Sup-antimorphisms. We also introduce the concepts: inf, sup-antimorphisms,
and, in connection with that we also prove a result.

Let P be a poset. The mapping f: P — P satisfying, for nonempty sets P/,
P, c P, the condition

f(inf P/) = inff(P,), where f(P)) = {f(x) | x € P},
is called an inf-antimorphism. Similarly, if f satisfies the condition
.f(sup P)) = sup f(P;), for@ # P/,P, c P,

then such an fis said to be a sup-antimorphism.

2. FIXED POINTS OF LOCALLY MEET AND LOCALLY JOIN
ANTIMORPHISMS

We start with a statement on join or meet antimorphisms.

Theorem 1. Let (P, <) be a partially ordered set and f a mapping from P into P
such that: E .

(A) The set P’ is nonempty, the point s := sup P’ exists and satisfies f(s) < s,

(B) s is a lower bound (minorant) for the set f(P'),

(C) (Locally join antimorphism) f(sup P’) = inf f(P/).

Then:

(1.1.) The set I(P, f) := I is nonempty,

(1.2.) Neither of the conditions (A), (B), (C) can be deleted if (1.1) is to be valid.

Dually, if

(A’) The set P, is nonempty, the point I, := inf P, exists and satisfies I,, <
< ),

(B’) I, is an upper bound (majorant) for the set f(P,),

(C") (Locally meet antimorphism) f(inf P,) = sup f(P;);
then the set I(P, f) is nonempty and neither of the conditions (A’), (B"), (C) can be
deleted if (1.1.) is to be valid.

Proof. By the assumption (A), the set P/ is nonempty, the point s = sup P/
exists and f(s) < s. From (B), we have, for all x e P/ is s < f(x), which using (C)
implies s < inf f(P') = f(sup P’) = f(s). Our conclusion follows from (A) and
s < f(5), that is f(s) = s and thus s € I(P, f), i.e., the set I(P, f) is nonempty. This
completes the proof of (1.1).
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(1.2). Now we prove that the conditions (A), (B) and (C) cannot be removed.
We show that by the following examples (1, 2, 3).

Example 1. (Fig. 3.) Let P be the set (interval) [0, 2] and define f: P — P by
f(x) =2 for xe[0, 1] and f(x) = 1 for x e (1, 2], where P is totally ordered by
the ordinary ordering <. Then conditions (B) and (C) are satisfied. Condition (A)
is not satisfied (f(s) = f(1) = 2 = 1). The set I is empty.

0 1 D 1
fig 3 fi1g.4

Example 2. (Fig. 4.) Let P = [0, 2] and define f: [0, 2] — [0, 2] by f(x) =1
for x € [0, 1) and f(x) = O for x € [1, 2], where P is totally ordered by the otdinary
ordering <. Condition (A) is satisfied (f(sup P/) =f(s) =f(1) =0 <1 =3),

_condition (B) is satisfied (s = 1 is a minorant for the set f(P’) = {1}), but condi-
tion (C) is not satisfied (f(sup PY) = f(1) = 0 # 1 = inf f(P’)). Again I = 0.

c d e d e
b a [ a b
&1
g
,// 2 9
fig 5 fig.®

Example 3. (Fig. 5.) Let the poset P = {a,b,c,d, e, 8,8, (n=1,2,3,...)}
be ordered by the order relation < sothata<c,a<d,b<e,b<c,g<e g<d,
£<¢8 <8 8+1 < g (neN), and if the elements a, g, b are incomparable,
then the elements c, d, e are also incomparable. Define f: P — P by f(a) =d,
B =e, fd)=fle)=r)=g f@)=g and f(g) =81 (1=12..).
Condition (A) is satisfied (P = {a, b}, f(supP’) =f(c) =g < c=sup P/ =
= sup {a, b} = s), condition (C) is satisfied (f(sup P¥) = f(c) = g = inf f(P’) =
= inf {d, e} = g), but condition (B) is not satisfied (s = sup P/ = cis not minorant
for the set f(P/) = {d, e}). Furthermore, f does not have a fixed point.

By dual considerations onie proves the part of the Theorem which concerns the
point I =inf P,. It sufficies to make the following substitutions: sup —» inf,
P’ > P, < — 2. This completes the proof of the Theorem.
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Some corollaries. Now we shall apply the results above by considering the
following consequence. They bring into connection the results (sufficient condi-
tions) which were obtained in the case when the set I(P, f) is nonempty.

Corollary 1. (Kurepa [6]) Let P be a nonempty right conditionally complete set
and f a decreasing selfmapping of P such that for at least one member x € P we have

x < f(x) or f(x) <x, ie., T(VxeP, x| | f(x)).

Let us assume that

1. f(sup A) = inf f (A),

2. Each point of P is comparable with each point of P’,

3. If s := sup P’ € P exists then f(s) < s.

Then the set I(P, f) is nonempty and f(s) = s = inf P,.

Proof. Let us prove that the sufficient conditions of this statement implies
the validity of the sufficient conditions (A), (B) and (C). First, direct condition 1)
implies (C), because 1) is valid for each 4 = P, also 4 = P’. Otherwise, as the
set P/ is bounded (from condition 2)) then according to conditional completeness;
has the supremum denoted by s := sup P/, and from 3) we have f(s) < s, i.e., our
condition (A) is valid. ‘

We prove that the condition (B) is valid, i.e. that s is a minorant for the set f(P”).
From 2) also each point of P/ is comparable to each point of P;. So, the sets P,
and P/ have minorants and majorants respectively. But, the set P is conditionally
complete and so these sets of minorants and majorants have a supremum and
infimum denoted by s and i. Also, from the conditions of the Corollary f': P —» P
is an antitone mapping, so f(P’) < P, and as s is a minorant for P,, s will be
a minorant for f(P’),i.e.,the condition (B) is valid. It means that Corollary 1 is
the consequence of our Theorem 1.

Corollary 2. (Taskovié [14]) Let (P, <) be a partially ordered set and f a mapping
Jrom P into P such that (A), (C) and

@ x,ye P’ Ax <y =f0) < f(x),
(b) P/ is a totally ordered set.

Then the set I(P, f) is nonempty. _
Proof. Since f: P — P is a decreasing mapping on P/ (from (a)) and the condi-
tion (b) is valid, condition (B) is satisfied. This, with (A) and (C) proves Corollary 2.
In the following (P, <) will denote a nonempty partially ordered set P with
partial order <. A subset 4 of P is a toset (chain) just in case A4 is totally ordered.
ForxePand A c P,defne L(x) = {y:yeP,y < x}, Mx) = {y : ye P, x < y},
and M(A) = V{M(x) : x e A}.
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A partially ordered set (P, <) is a mod if and only if the following hold:

(1) For all x, y € Psup {x, y} exists,

(2) For all x e P, L(x) is a toset,

(3) Each nonempty subset of P which is bounded above (below) has a supremum
(infimum) in P,

(4) If x < y, then there is a ze P such that x < z < y.

A function f': P — P is nonoscillatory from above if and only if for each non-
maximal x and maximal toset 4 = M(x)\{x}, n{f[x, u]) : ue A} = {f(x)}. The
function f is nonoscillatory from below if and only if for each nonminimal x,

{f([w x]) s u < x} = {f()}-

Corollary 3. (Metcalf and Payne [7]) Let P be a totally ordered mod. Suppose
that f: P — P is a function satisfying:

(5) If x < y and f(3) < f(x), then [f(), f®)] < f([x, y].

(6) The function f is either nonoscillatory from above or from below.

(7) There exists a, b € P such that a < b, a < f(a), and f(b) < b.

Then f has a fixed point.

Proof. First, let us prove that our condition (A) of Theorem 1 is satisfied,
i.e., that f(s) < s. The whole situation we observe on the interval [a, b], according
to condition (3) of Corollary 3. So, let us adapt pur signs for P/ and P, for this
situation, and let the corresponding set P/ be denoted by

Al :={x:xe[a,b] and t<f(f), forall 1e(a, x]}.

By the assumptions of the Corollary, the set A/ is nonempty, and the point
s := sup A’ exists. It will first be shown that f(s) < s. Suppose, to the contrary,
that s < f(s), and let

Ap:={x:5 < x < f(s) and f(x) < x},
so that s = sup 4/ = inf A,. Then, for x€ 4;, f(x) < x < f(s), so that condi-
tion (5) of Corollary 3 yields
[x /)] = [f(x), f(9] = f([s,x]), for all x€ 4.
For x € A, the sets [x, f(5)] are increasing as x is decreasing, while the sets f([s, x])
are decreasing as x is decreasing. Thus,’

(5, /(9] = xg [x,/(s)] DA F([s x]s

however, the intersection on the right hand side has at most one element, since f
is nonoscillatory from the right, which contradicts s < f(s). Thus, f(s) < s, i.e., the
" condition (A) is satisfied. On the other hand, in an analogous proof of Corollary 1
we prove that the conditions (B) and (C) are satisfied. This proves Corollary 3.

We next demonstrate that the following condition introduced by Abian [1]
-is a form of continuity. '
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Abian’s conditions. Let f: P — P where Pis a mod. If A c Pis a tosét, then
f(inf A) = sup f(A4) and f(sup 4) = inf f(A4) whenever both sides of the equalities
exist. ' ‘

Corollary 4. (Abian [1]) Let f: P — P where P is a totally ordered mod. If f is
decreasing and satisfied Abian’s condition, then f has a fixed point.

Proof. Since Abian’s conditions imply our condition (C), because f(sup 4) =
= inf f(A) for all 4 = P, we also have 4 := P’. In the other hand, the set P is
a totally ordered set and mod, thus the point s := sup P/ exists; and as s is
a minorant for f(P’), because s is a minorant also for the set P,. Also, from Abian’s
conditions we have f(s) = f(inf P;) = sup f(P;) < sup P/ =:s,i.e, f(s) < s It
means that Abian’s statement is the consequence of our Theorem 1.

Corollary 5. (Taskovi¢ [13]) Let P be a totally ordered conditionally complete set
and f: P — P antitone mapping satisfiing the conditions (4) and (5). Then f has
a fixed point.

Proof. Evidently, the proof of this statement is analogous to the proof of the
preceding statement of Abian.

Corollary 6. (Shmuely [11]) Let L be a complete atomic lattice and let f: L — L
be an antitone mapping satisfying the conditions:

(@) x < f*(x) for every x€ L,
(b) a < f(a) for each atom a € L.

Then f has a fixed point.

Proof. Since f: P — P is an antitone mapping and x < f(x) for every x€ L,
we have from sufficiency for antimorphism, that our condition (C) is satisfied.
In this paper P/(A) denotes the family of all subsets 4 of L satisfying sup 4 <
< f(sup A). Notice that {0} € P/(A) and P/(A) is ordered by set inclusion. Here we
use the following statement of Shmuely [11]:

Lemma (Shmuely [11]) Under the assumption of Corollary 6, P’(A) ordered
by inclusion, has a maximal element.

Now, let 4, = L be a maximal element of P/(A) and put s:=sup 4,(=sup P/(4)).
Obviously, s < f(s). Assuming s < f(s) we can find an atom reL and r ¢ 4,,
such that r < f(s). Also, s < f(r), because f is antitone- and (a) is valid. This
together with » < f(r) yields, from (C),

f(sup {r, s}) = inf {f(r), f(s)} = sup {r, 5},
contradicting the maximality of 4,. Thus f(s) = s, i.€., obviously f(s) < s, and s
is minorant for the set f(P’), because s = f(s) = f(sup P/(A4)) = inf f(P’(4)). It

means, the conditions (A) and (B) are satisfied and thus Shmuely’s statement is
the consequence of Theorem 1.
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3. FIXED POINTS OF INF, SUP-ANTIMORPHISMS

Theorem 2. Let (P, <) be a partially ordered set and f a mapping from P into P
such that:

D) The set P’ is nonempty, the point s := sup P/ exists and satisfies s < f(s),

(E) s is an upper bound (majorant) for the set f(P;),

(F) (Sup-antimorphism) f(sup P/) = sup f(P,).
Then: (2.1) The set I(P, f) is nonempty, (2.2) Neither of the conditions (D), (E), (F)
can be deleted if (2.1) is to be valid,

Dually, if

(D) The infimum of the set P, defined by I, = inf P, exists and f(I,) £ I,

(E’) I, is a lower bound (minorant) for the set f(P’),.

(F’) (Inf-antimorphism) f(inf P;) = inf f(P’),
then set I(P,f) is nonempty and neither of the conditions (D), (E’), (F’) can be
deleted if (2.1) is to be valid. ‘

Proof. The set P/ being, by assumption, nonempty, the point s = sup P/
exists, and from (D), s < f(s). From (E), it follows that s is an upper bound for
the set f(P,) and thus we have x € P, f(x) < s, i.e., sup f(P,;) < s, which implies
f(s) = f(sup P’) = sup f(P,;) < s. Our conclusion follows from (D) and f(s) < s,
that is f(s) = s and thus s € I(P, /), i.e., the set I(P, f) is nonempty. This completes
the proof of (2.1).

(2.2). Now we prove that the conditions (D), (E) and (F) not be removed. We
show that by.the following examples.

Example 4. (Figure 6) Let P be the lattice (poset) on the Figure 6 and let f: P — P
be defined by f(a) = f(b) = f(c) = 1, f(d) = f(1) = a, f(0) = a, f(e) = 0. Condi-
tions (D) and (E) are satisfied (P/ = {0, a, b, ¢}, s = sup P/ = ¢ < f(s) = f(c) =
=1, s=c is majorant for the setf(P,) =/f({d,e, 1}) = {f(d),f(e), f(1)} =
= {0, a}) but condition (F) is not satisfied (f(sup P’) = f(c) = 1 # a = sup f(P))).
Furthemore, f does not have a fixed point.

Example 5. Also, neither of the conditions (D) and (E) can be deleted if (2.1)
is to be valid, which is illustrated by the following examples for P = [0, 2] and
f: P — P, defined geometrically by

2 2f

fig.7 fig. 8
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In Figure 7., conditions (D) and (F) are satisfied but condition (E) is not.
Further, in Figure 8., conditions (E) and (F) are fulfilled, but condition (D) is not,
and f (Fig. 7. and 8.) has not fixed point.

(2') By dual considerations one proves the part of Theorem 2. ((2.1), (2.2))
which concerns the point I, = inf P; it sufficies to make the following substi-
tutions: s — I,,, P/ » P, sup —» inf, < - >.

REFERENCES

[1] A. Abian, 4 fixed point theorem for nonincreasing mappings, Boll. Un. Mat. Ital. 2 (1969),
200—-201.
[2] S. Abian, A. Brown, A theorem on partially ordered sets with applications to fixed point
theorem, Canad. J. Math. 13 (1961), 78 —82.
[31 A. Davis, A characterization of complete lattice, Pacific J. Math. 5 (1955), 311—319.
[4] P. H. Edelman, On a fixed point theorem for partially ordered set, Discrete Math. 15
(1979), 117-119.
[5] Dj. Kurepa, Fixpoints of monotone mapping of oredered sets, Glasnik Mat. fiz. astr. 19
(1964), 167—173.
[6] Dj. Kurepa, Fixpoints of decreasing mapping of ordered sets, Publ. Inst. Math. Beograd
(N. S.) 18 (32) (1975), 111 —116.
[7]1 F. Metcalf, T. H. Payne, On the existence of fixed points in a totally ordered set, Proc.
Amer. Math. Soc. 31 (1972), 441 —444.
[8] H. and M. H6ft, Some fixed point theorems for partially ordered sets, Canad. J. Math. 28
(1976), 992 —-997.
[9] 1. Rival, 4 fixed point theorem for finite partially ordered sets, J. Combin. Theory Ser. A 21
(1976), 309 —318.
[10] R. Smithson, Fixed points in partially ordered sets, Pacific J. Math. 45 (1973), 363 —367.
[11] Z. Shmuely, Fixed points of antitone mappings, Proc. Amer. Math. Soc. 52 (1975), 503 —505.
[12] A. Tarski, A lattice theoretical fixpoint theorem and its applications, Pacific J. Math. 5
(1955), 285—3009.
[13] M. Taskovig, Banach’s mappings of fixed points on spaces and ordered sets, Thesis, Math.
Balcanica 9 (1979), p. 130.
[14] M. Taskovie, Partially ordered sets and some fixed point theorems, Publ. Inst. Math.
Beograd (N. S.) 27 (41) (1980), 241 —247.
[15] L. E. Ward, Completeness in semilattices, Canad. J. Math. 9 (1957), 578 —582.

[16] W. S. Wong, Common fixed points of commuting monotone mappings, Canad. J. Math. 19
(1967), 617—620.

Milan R. Taskovié

Odsek za matematiku
Prirodno-matematicki fakultet
11000 Beograd, Jugoslavija

. 135






ARCHIVUM MATHEMATICUM (BRNO)
Vol. 25, No. 3 (1989), 137—148

NECESSARY AND SUFFICIENT CONDITIONS
FOR FINALLY VANISHING OSCILLATORY
SOLUTIONS IN SECOND ORDER DELAY
EQUATIONS

BHAGAT SINGH
(Received March 10, 1986)

Abstract. Necessary and sufficient conditions have been found to ensure that all oscillatory
solutios of the equation
(¢)) @ Yy @) + al) g®) =f(1), gt)=t
approach zero. By way of several theorems it is shown that this behavior of equation (1) is asso~
ciated with the presence of nonoscillatory solutions with certain properties.

Key words. Oscillatory, nonoscillatory, asymptotic, delay, forced.

MS Classification. 34 K 25.

1. INTRODUCTION

In [9], this author found conditions on a(?), (), f(f) and g(#) to ensure that all
nontrivial oscillatory solutions of the equation

(1) (@) y' @) + a(?) y() = /()
approach zero asymptotically. It was shown that an oscillatory solution y(r) of (1)
satisfies lim y(#) = O subject to:

t— o

oo 0 o0

f1/r(t)dt < oo, fla(®)|dt < o and J1f(@®)]dt < co.
In section 3 of this work, we would present necessary and sufficient conditions to
achieve asymptotic approach to zero of all oscillatory solutions of (1). This
behavior of the oscillatory solutions of (1) is closely associated with (1) having
a nonoscillatory solution with certain properties. The connection between oscilla-
tion and nonoscillation becomes very interesting under rather restrictive constraint
a(r) > 0, in which case the ratio | f(f) |/a(f) (Wallgren [ 14]) plays a significant role.
This connection is examined in several theorems in this section without the re-
striction that a(z) > 0.
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The proof of [9, Theorem 2] is lengthy and requires a stringent condition that
the retardation g(¢) be slight by requiring ¢t — g(f) < B, B > 0 a constant. We
remedy this situation by giving an alternative proof based on ¢ > g(7) and g(¢) - o
. entirely.

It turns out that we can deduce restrictions on the growth of oscillatory solutions
from growth condition on r(f). We examine this in section 4 and come up with
alternative theorem to ensure asymptotic decay to zero of the oscillatory trajectories
of (1).

Even though a voluminous literature exists about many oscillatory and non-
oscillatory criteria for homogeneous and nonhomogeneous equations such as (1),
the asymptotic nature of nonoscillatory or oscillatory solutions of these equations
has not been so extensively studied, and for that matter the literature is very scanty
with regard to oscillatory solutions. For asymptoticity on nonoscillation, the reader
will find a good account in the works of Hammett [5], Londen [6] and this author
[8, 10, 11, 12]. An excellent reference list is included by Graef [3] and Graef and
Spikes [4] for any interested reader.

Throughout this study, all theorems proven are supported by examples to show
that they are not vacuous. Although the results found apply well to ordinary
differential equations, the presence of retarded term makes application of common
techniques which work for ordinary differential equations a nontrivial matter.
Travis [13] shows how a theorem of Bhatia [1] fails in such passage to retarded
equations (cf, [9]). In what follows all results are easily extendable to the nonlinear
equation

@ (1) y' @) + a()) k() = f().

2. DEFINITION AND ASSUMPTIONS

It will be assumed for the rest of this paper that
@) r@), a(®), g(®, f(#) : R = R and continuous; R is real line,
(i) r(f) > 0, F'(t) = 0, g(f) > 0 on some positive half real line R*.

(iii) g(r) - o0 as t — o0, g(¥) < t and g'(¢) > O for t = t, where ¢, > 0.

We call a function Q(#) € C[t,, o0) oscillatory if it has arbitrarily large zeros
in [#,, 00). Otherwise Q(¥) is.called nonoscillatory. In this work, the term “‘solution”
applies to those solutions (of equations under consideration) which can be extended
to the right of some positive point on R, say ¢,.

3. MAIN RESULTS
Theorem (1). Suppose
3 Jla(®)|dt < o,
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O] f| f(®)|dt <
and
(% ' f1/r(H)dt < oo,

than all oscillatory solutions of (1) approach zero as t - .
Proof. Let y(f) be an oscillatory solution of equation 1. Let T > ¢, be large
enough so that

(6) ' jl a(t)|dt < 1/4

and

@) ';[olf(t)ldt < 1/4.

Suppose to the contrary that limsup | y(f)| > d > 0. Let T, > T be so large
that g(T,) = T and y(T,) = 0. Til-;:e is T' > T, > T, such that y(T,) = 0 and
®) Max{|y(): T <t <T'}=|yT)| >d>0.

Let [x,, x,] designate the smallest closed interval containing 7" such that y(x,) =
= y(x,) = 0. Designate M = Max {| y(f)| : x; < ¢ < x,}. Note that T, < x,.
It is clear that M = d and

¢)) Iyl <M
and
(10 lyEe@®) | <M

for t€[x,, x,]. Also let Ty €[x,, x,] be such that M = | y(Ty) |. Now
Tm
M= | y(t)dt,
x1
which gives
. T™m
(11) M< [1y(®]adt
X1
also
Tm
which gives
x2
(12 MZ [ly@®]|de.
Tm
From (11) and (12) we get

x2

ML [Iy@lde= 1y 120 1yOD @)~ dr.
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 s.smom
By Schwarz’s inequality

a3 n* < (J1r a) (0 y @) Yo dn,
Integration by parts yield ’

a4 aM? < (3'1/:(:) dt)(—:f(r(t) y(0)y(6) d9).

From (14) by using equation 1 we have

15) aM* < | 1/r(0)dr( | a(e) y(e() y(0) At — § ¥(0) 1) d).

From (9), (10) and (15)

45 (FUran(Jlaw1de+ o 1170140,

i.e.
4 11
(16) = =7t
f1r()dt -
x1

X2
Unless d = 0, (16) yields a contradiction since [ 1/r(f) df can be made arbitrarily
X1

small by choice of large T. The proof is complete.

Remark (1). The above theorem improves our theorem 2 in [9] by eliminating
the requirement that g(r) = ¢ — 7(¢) with 7(¢#) bounded. If conditions (3) and (4)
hold then condition (5) is necessary as the following example shows.

Example (1). The equation

cos(logt)
T t>0,

) YO + 5 90 = =
has y(#) = sin (log #) as a solution. .
The decomposition of a(f) as a(f) = a,(¢r) + a,(f) can be effectively used by
assuming conditions on a,(f) and a,(7). Our next theorem uses such a decomposi-
tion toward obtaining necessary and sufficient condition for all oscillatory solutions

- of (1) to approach zero asymptotically.

Theorem. (2). Suppose a(t) = a(1) + a,(?), a,(t) > 0, | ay/a, | < k, for some
ky > 0 and large t. Further suppose that | (1) |/a,(f) approaches a limit as t — 0.
Let ’

@ @
f1/n(f)dt <0, and fay(t)dt < .
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Then
lim (| £(2) lfay(6) = 0

is a necessary and sufficient further condition for all oscillatory solutions of (1) to
approach zero as t - o0.
Proof. The sufficiency is obvious. To prove necessity we rewrite (1) as

QORI ax(t) Fio}
18) LOIZ & yeo) + 220 ) = L.
This yields '
19) N el AL O

where y(¢) is an oscillatory solution such that y(f) - 0 as ¢t = 00. Now if

tim inf L/®L 5 o,
t- o0 al(t)

(r@® y'®)
ay(t)
sign making y(f) nonoscﬂlatory This contradiction completes the proof of the

theorem.
Example (2). The equation

oy . 1 —2sin(logt 6 10 .
@y ) + _z(g_)_ y(@®) = e + —ts—(sm (logt) — cos(logt)) +

then is bounded away from zero. Thus (r(¢) y'(?))’ assumes a constant

.2
(20) bt 48‘:; dogt) = 5o,
has y = 1t 25inllosy) as an eventually vanishing solution. Here-all conditions

t3 } .
of Theorem 2 are easily verified. Hence all oscillatory solutions of (20) approach
zZero as t — oo. '

Corollary (1). Suppose a(f) >0, [1/rdt < o, and [a(r)dt < co. Further

suppose ’1_1'12 l—‘({%‘))—l exists. Then a necessary and sufficient condition for (1) to have
all oscillatory solutions approaching zero is lim ——— |/ Eg I =0.
t— o0 ;

Proof. Follows from Theorem 2.
Sufficiency part of the proof of Theorem 2 leads us to the following theorem.

Theorem (3). Suppose a(t) = a,(f) + a,(o), al(t) > 0, az(t)/al(t) bounded for

larget, jal(t) dt < oo, and f 1/r dt < oo. Further suppose that f(f)/a,(t) is bounded.
Then all oscillatory solutions of (1) approach zero as t — co.
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Proof. It is clear that [|a(s)|ds < 0. Since [a,(f) dt < o, and f(1)/a(?)

is bounded as ¢ — oo, we have || f(¢)|d¢ < co. The conclusion now follows by
Theorem 1.

Example (3). Consider the equation
’ ’ l e 2 i 1 t 6
@1 @yy + 125080y 2y

— 1 2
4s1r‘15 (logt) . >0,

+ lt(:—-(sin (logt) — cos (logt)) + .

which has y(t) = 1+2sm(ogt) 28"; (og )

as a vanishing oscillatory solution. In fact, since

all conditions of Theorem 3 are satisfied all oscillatory solutions of (21) tend
to 0 as t — oo.

Remark (2). Theorem 3 and Example 3 show that the existence of the limit

0]

lim ——

t— 01(')
is essential in Theorem 2. In fact, if all oscillatory solutions of (1) approach 0,
then (19) in the proof of Theorem 2 shows that liminf (| /(?) |/a(¥)) = 0. In

f(@) . .. @) .1 f@)]
FYO) is bounded, 111: :an T(f)— = 0 but }:rg a0 does

example 3 we see that

not exist.

Our next theorem gives sufficient conditions when oscillatory solutions do not
have limits.

Theorem (4). Suppose a(f) = a,(1) + a,(f), a;(¥) > 0 and a,(t)/a,(?) is bounded

for large t. Further suppose that lim inf | f(?) |/a,(f) > 0. Let y(t) be an oscillatory
. t— o0 -

solution of (1). Then lim sup | y(¢) | > 0.

t— o
Proof. Suppose to the contrary that y(f) - 0 as ¢z — co. From (1), we get
inequality (19) ‘

[(r@®)y®) | @)
a,() = a, () (I + k)| y(g(®)|  where

| a(1) |
ay(t)
k, > 0. A contradiction is immediately reached, since (r(?) y'(f))’ assumes a constant
sign. The proof is complete. The following example satisfies the conditions and
conclusion of Theorem 4.
Example (4). Consider the equation

ékl’

(22) Y@ +yt—2m) =1
All oscillatory solutions of (22) satisfy lim sup | y(#) | > 0 since all conditions of
t-w

theorem 4 are satisfied. In fact y(f) = 1 + cos ¢ is one such solution.
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@
Remark (3). Note that Theorem 4 does not require [ 1/r(f) < co.

Theorem (5). Suppose a(f) = a,(f) + a,(f), a,() > 0, a,(r)/a,(f) bounded for
large t, [a;(f)dt < oo, [1/rdt < oo, and f(t)/a,(t) is bounded for large t. Then

all solutions of (1) are nonoscillatory if lim inf ' af ((tt))l
t—> o 1

Proof. It is easily seen that [|f(f)|df < oo and [|a(#)|ds < oo. Since

f 1/r(r) dt < oo, by Theorem 1, all oscillatory solutions approach zero. Let now
y(¢) be a solution of (1), If y(¢) is oscillatory then y(f) - 0 as ¢ - co. From (1),
we obtain (in a manner of inequality (19))

(@Y ®)] o 1 f@)]
ay(t) = a,(t) (1 + ki) | ()1,

> 0.

which clearly gives a contradiction by making y(?) nonoscillatbry.
Example (5). The equation

23) —l-tzy'(t) + 1+ smty(t) ___l % 1+ sint ’
2 ¢ i t*

has y(t) = ;_-lz—a nonoscillatory solution. In fact, taking a,(?) = 1/¢2, a,(f) = sin #/3,

r(f) = 1/2¢2 and f(f) = (* + sin ¢ + 1)/¢* we find that all conditions of Theorem 5
hold. Hence all solutions of (23) are nonoscillatory.
Our next theorem generalizes Theorem 2.6 of Wallgren [14].

Theorem (6). Suppose r(tf) is bounded, a(f) = a,(f) + ay(f), a,(f) > ¢ > 0,
| ay(?) |/a (t) < ky, for large t and lim | f(¢) |/a,(!) = oo. Then all solutions of (1)
are unbounded. o
Proof. From equation 1
Oy (1 E ZT) y(E&0) = f@)ay().
Thus

@y @) o DI
a,(?) 2 a, @) A+ k)| ye)].

If y(¢) is bounded, then above inequality shows that &3}2‘(;))—' — 00 ast — 00.
. 1

Since a,(f) = o0 > 0 we get | (r() y'(f))' | = o as t — co0. Since r(?) is bounded

y'(f) - + 0 as t —» . The conclusion follows by contradiction.

Example (6). The equation

4 Y'(#) + 2p(t — n/2) e"? = €2 2(t — m/2),
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has y =¢€'sint + ¢ and y =t as solutions. All conditions of Theorem 6 are
satisfied.

L] 0
Theorem (7). Suppose [|a(f)|dr < oo and [ f(£)dt = oo then all oscillatory
solutions of (1) are unbounded.
Proof. From (1) we get

(25) () y'(t) - n(T) y(T) + i‘ a(s) y(g(s)) ds = i‘ f(s)ds.
If y(f) is oscillatory and bounded then (25) yields

(26) r(0)Y'() = H(T) Y (T) + m g la(s) | ds 2 Tff(s) ds,

where | y(f) | =2 m for t £ T. (26) readily leads to a contradiction which proves
this theorem.

Example (7). The following equation shows that under the conditions of
Theorem 7, bounded nonoscillatory solutions can exist.

2y + Ly = —— - L
27 @"y'®) +3 y(®) WA

has y(#) = —1/t as a solution. ,

Theorem (8). If under the hypothesis of theorem 7 we require r(t) to be bounded,
all other conditions being the same then all solutions of (1) are unbounded.
“Proof. We only need to prove it when y(¢) is nonoscillatory. Following the
proof of Theorem 7, if | y(f)| < m then (26) yields r(#) y'(!) > © as t—> ©
and since r(f) is bounded, we have y'(f) » co-as ¢t = oo which forces y() to be
unbounded. The proof is now complete by contradiction.

4. EFFECT OF LARGE r(f) AND NONOSCILLATION

Example (8). The equation

29) (&Y () +e 2yt —2m) = e *sint — 3e~'cos 1 + e~ sins,

-2t

has y = e *'sin ¢ as an oscillatory solution approaching zero. But this equation

is not covered by Theorem 1 since f1a(s) | dt = oo. However, it will be shown by
our next theorem, that all oscillatory solutions of (29) approach zero as t — 0.
In fact, Theorem 9 measures the growth of solutions of (1) in terms of r(¢). By
taking r(f) large enough, the sizes of a(f) and f(#) can be compensated for. As an
outcome of this approach, we observe that oscillatory trajectories of (1) eventually
vanish if (1) has a nonoscillatory solution satisfying certain properties.
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NECESSARY AND SUFFICIENT CONDITIONS

Theorem (9). Suppose | 1/r(r) dt < oo,

(30) }ol a(x)|( fl/r(s) ds)dx < o0
and
(31) F1761(f U ds)dx < 003

then all oscillatory solutions of (I) tend to zero asymptotically.

Proof. We proceed as in Theorem 1 with y(f) as an oscillatory nonvanishing
solution of (1), and arrive at conclusions (9) and (10) namely | y(#) | < M and
| y(g(®))| < M for te[xy,x;], y(x;) =y(x;) =0. Let xo€[xy,x,] such that
M = | y(x,) |. Integrating (1) for ¢ & [x,, x,], we have

(32) r(®) y'(t) + [a(x) y(g(x)) dx = | f(x) dx,

since y'(x,) = 0. Dividing (32) by r(#) and integrating between [x,, x,] we have

LM = — [1r() | aGx) p(e0) dx dt -+ 1/r(t) | £G) dxdt,

X0

which gives
M= ?I/r(t) flaG)| | y(g(x))| dxdt + }’1/r(t); | £(x)| dx dt.

Since | y(g(1)) | < M for t € [xo, x,] = [x;, x,] we have

x2 X2 1

() 15 [([Urd)lat@dx + - [1 761 (] 1rs) ds)dx,

where, in (33), the integrals have been rearranged by change of order of integra-
tion. Unless M becomes arbitrarily small, (33) leads to a contradiction.

Our next theorem highlights nonoscillation in obtaining some results about
oscillatory solutions. We will need the equation

(34 : () y' () + a(?) y(g(9) = 0.

Theorem (10). Suppose equation (34) has a nonoscillatory solution y(f) such
that sgn (y(1)) = sgn (y'(¢)). Further suppose that a(t) > 0, [1/r(f)dt < © and
J1 /) | (:1/r(r) df) dx < 0. Then all oscillatory solutions of ( 1) approach zero

x

ast—» co. -
Proof. Let T be large enough so that for t=T,y(?) and y(g(t)) are of the same
sign. Without any loss of generality, we can assume that for 7 2 T we have

(35) ¥(0) > 0,y(®) >0,y'() >0 and  y'(g(n)) > 0.
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Dividing by y(g(?)) and integrating between T and ¢ we have

rt)y'®)  n(T)y(T) , ¢ r(x)y'(x)y'(g(x)) g(x)dx
R O CORM. Ye00) *

4
+ fa(x)dx =0.
T

(36) yields on further manipulation

y'(s) _ (7)) y(T) 1 ¢ r(x)y'(x)y'(g(x) g'(x)dxds _
|58 - !” r©ds+ 20 | Fe0) =

37 = —j 1/r(s) _[ a(x) dx ds.
T T

From (35), the first and third term on the left are positive; the second term is
finite. Since the first term on the right hand side is negative, we arrive at the con-
clusion

lim j 1/r(s) ja(x) dxds = hm j'( j' 1/r(s) ds) a(x) dx < oo.
t—o0
The proof is now complete by the application of Theorem 9.
The following example gives an application of this theorem.
Example (9). The equation
12

38 . e:/z It ;+’__e_— ) = 0’
(38) @O + 9
has y(f) = 1 — e~ as a nonoscillatory solution. Hence all oscillatory solutions of
el 9 e
(39) (¢*y'@) + ————y(t) = 4" *'sint — e **cost + ————sint
= 1) 2 2(ef - 1)

approach zero. In fact y = (e~ >/?*sin 1) is one such solution of (39). It is easily
verified that all conditions of Theorem 10 are satisfied. We also note that all
conditions of Theorem 9 are satisfied. Indeed, Theorem 10 is a recapitulation
of Theorem 9 in terms of the nonoscillatory solutions of the homogeneous part
of (1).

Example 9 suggests the following theorem.

Theorem (11). Suppose (1) has a nonosczllatory solution y(f) such that sgn O)) =

= sgn (y'(¢)). Further suppose that a(f) > 0, j 1/r(¢) dt < o0 and j S| (j 1/r(f)d8)dx
< 0. Then all oscillatory solutions of (1) approach zero as t — oo.

Proof. We proceed as in Theorem 10 and arrive at conclusion (35). Dividing (1)
by y(g(#)) and integrating we get
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NECESSARY AND SUFFICIENT CONDITIONS

r)y'® _ r(T)y(T) j' r(x) y'(x) y'(gx) gx) dx

y(g(®)) yegT) r y4(g(x))
+ _fa(x) dx = f i((;()x)) dx.
Since y(g(x)) > y(g(T)) > 0, further integration yields
y() . r(T)y(T) ¢ 7(x) y'(x) y'(g(x)) g'(x) dx ds
Sy ts = - [ as + 1) Y(e(x) s

(40) I 1/r(s) I | f(x)[dxds.

y( (T))
In view of (35) and condition on f(x), (39) yields
tim { gy §

The conclusion follows by Theorem 9.
Example (10). In equation (39), the nonoscillatory solution y(f) =1 — e™* +
+ e™3/2sin ¢ for sufficiently large ¢ satisfies the requirements of this theorem.

a(x)dxds = }oa(x)[}ollr(s) ds] dx < oo.

Theorem (12). Suppbse | 1/r(1)dt < oo and there exist nonnegative functions
H(?), H,(f) such that sgn (H(t)) = sgn (H{(?)), i = 1, 2. Further suppose that H,
and H, satisfy

@4n (r(1) Hy(0)' + | a(t) | Hi(g(1)) < O,
42) (r(f) Hy(1))' 4 | f()) | Ha(g(D) < O.

Then all oscillatory solutions of (1) approach zero as t - oo.

Proof. Following identically the proof of Theorem 10 we obtain (cf. this author
[7, Theorem 2])

{laGo| T dt dt < oo
and ¥
F17e1 T1rt) dt dx < oo,

which are the conditions of Theorem 9.
Our next theorem gives an alternative version of Theorem 4.
‘ ‘.
Theorem (13). Suppose lim inf [(f(® — la(®)|)dt > 0. Then any oscillatory
solution y() of (1) satisfies 11m sup | y(®) | > 0.
Proof. Let y(f) be an oscxllatory solution. Then y’'(¢) is oscillatory. Let T be
large enough so that y'(T) = 0. From (1)
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@) r(®) y'(t) + i‘ la(x)| | y(g(x)) | dx 2 TI J(x)dx.

Suppose to the contrary that y(f) - 0 as t - co. Without any loss we can assume
that T is large enough so that for t = T, | y(g(s)) | < 1. From (43) and this fact

(44 (r() y'®)) 2 (tim inf I () =1 a(x) ) dx) > 0.

But (44) implies that y’(7) is eventually posmve and y(r) is nonoscillatory. This
contradiction completes the proof.
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Abstract. A new operation over matrices is introduced which is a generalization of the Kronecker
(direct) product and its basic properties are derived. It is shown that matrices formed in this way
define a class of the so called fast mixed-radix transforms as a natural generalization of the mixed-
radix fast Fourier transforms. The new operation allows a straightforward and simple derivation
of the appropriate factorization associated with the fast algorithm. The paper will be continued.
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INTRODUCTION

Linear transforms x — y = Ax, where A denotes a fixed matrix and x and y
are data vectors of appropriate sizes, are widely used in various applications.
Multiplication of a vector x by the matrix A may become a crucial operation on
a computer if many such transforms are to be accomplished and/or A is a large
matrix with many non-zero elements. In such a case it is desirable to find for the
given matrix A a “fast” algorithm that reduces the amount of scalar multiplications
and additions accomplishing Ax. One is usually profiting from the knowledge
of the concrete structure of A to find such a factorization A = AMA™-1 AWM
into sparse matrices A) that AVx("1) may be viewed with x = x(® and y = x™
as the i-th step (i = 1, 2, .... m) of a fast algorithm. Product of such matrices is
said to be a fast (linear) transform. '

The above approach is typical in the field of digital signal processing [1 -5, 7, 8],
where the mostly used transforms are orthogonal [3]. Chief among them is the
discrete Fourier transform (DFT). A fast algorithm computing DFT is called fast
Fourier transform (FFT). Discussion of various commonly used FFTs may be
found e.g. in [1-4, 7]. '
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I. J. Good [ 5] shows that the structure of the multidimensional FFT is character-
istic for a class of linear transforms, the matrices of which may be expressed as
Kronecker (direct) product [6], i.e. A=A; ® A, ® ... ® A,,. Then it is easy to
seethat AV =1, ® ... I, ®A; ®I,,; ® ... ® I, defines the i-th step of the
corresponding fast algorithm (I; denotes identity matrices of appropriate sizes)
and thus Kronecker product is a typical operation forming matrices of this class
of (fast) transforms. Similarly another class of linear transforms may be based
on the structure of another FFT, the so called mixed-radix FFT. I. J. Good
develops in [5] the appropriate factors A®) and illustrates a close relationship
between both classes of fast transforms. Hereafter we shall call transforms of the
latter class mixed-radix transforms (MRTs) and the corresponding fast algorithms
fast mixed-radix transforms (FMRTs). '

There arises a natural question whether one can find a simple algebraic opera-
tion over matrices typical for MRTs and having properties admitting the deriva-
tion of factors A®”? of FMRT by simple and easy algebraic manipulations so as
this is in the case of the Kronecker product.

This paper gives a positive answer to this question. In Sect. 2 we define in two
ways a new operation over matrices which may be viewed as a generalization of the
Kronecker product. Several basic algebraic properties of this generalized Kronecker
product are proved which allow the desired easy derivation of the FMRTs.

1. NOTATION AND INTRODUCTORY REMARKS

1.1 Notation

— N... the set of natural numbers.

— Z ... the set of integers.

- Zy=1{0,1,...,N—1}, NeN.

— C ... the field of complex numbers.

— R ... an arbitrary associative and commutative ring with unity, all matrices
and vectors mentioned later on are over R if not stated otherwise.

— If A is a matrix of size N X K (N, K € N), then we shall denote A(n, k) its entry
in (n + 1)-th row and (k + 1)-th column, n € Zy, k € Zg. The set of all matrices
of size Nx K will be denoted as #(NxK). We write A = (A™*1), A™kie
€ M(NyxK,), ny€Zy,, k; € Zg, for amatrix A which is structured into N, x K,
blocks A™* of size N, XK, (N = N,N,, K = K,K,), n, + 1 is the row posi-
tion and k, + 1 the column position of the block A",

— X = (Xgs X1 .-+ Xy-1)Ts N €N denotes a column vector of length N, (T is
transposition).
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FAST MIXED-RADIX TRANSFORMS I.

— | A ... determinant of a square matrix A.

— I, ... identity matrix of order N.

—[i:jl=1{kli<k<j, keZ),ijeZ i<

— Let N,eN for ke[i:j], then N; ;= NN;,,...N;if i <jand N, ;=1
otherwise.

— 055> 0(, j) ... Kronecker’s symbol.

— n|m ...integer nis a divisor of integer m.

— Z(M) ... permutation group of the set M.
We shall not distinguish between a permutation Pe #(Z,) and the corresponding
matrix P e #(N X N), P(n, k) = 5, pg-

1.2 Definition. A mapping A4": [i : j] —» N is said to be a (finite) number system
(NS). We shall write also A~ = (N;, N4y, ..., N;) to visualize the function values
N (k) = N, for ke[i: j]. Alternatively the notation 4", ; will be used instead of A"
to emphasize the index domain [i : j].

1.3 Remark. Combining a NS /"; ; with a permutation p € 9‘([1' :j]), we arrive
at a permuted NS ./V;,jp = (Np(‘), Np(i+l)$ ceny Np(j))’

1.4 Lemma, Let " = (N, N,,..., N,) be a number system associated with
N = N,,,,. Then the mapping [Jy:Zy, X Zy, X ... X Ly, — Zy defined as
[#1, 72y ..., Am)l4 = nyN3,py + n,N3 p + «.. + By (N, + n, = n is a bijection.

Proof. We proceed by induction on m. For m =1 [.]+ is an identical mapping.
Let m > 1. Clearly n = kN,, + n,, with k = [ny,...,n,_,]4, and &' = (N,
N;,..., N,_;). By induction hypothesis 0 < k < N, ,_; —1=0 < kN,, +
+ Ny <N—N,+n, <N—1=>neZy. [, is injective: n=n"=[ny,n;,"..,
coes M1 N + 1y => Ny | (1, — 1) = 1, = m,, in view of 0 < | n,, — 1, | <
< N,, — 1. Hence [ny,ny, ..., Ny_y 14 = [ny, 035 ... npy_,] 4 and by induction
hypothesis n; = n; for each ie[1:m — 1]. n

1.5 Definition. The ordered m-tuple (n,, n,,...,n,) is called a mixed-radix
integer representation of n = [ny,n,,...,n,], with respect to the number
system A".

Hereafter we shall omit the subscript 4 and write simply [n,,n,, ..., n,]
whenever the NS is implicitely determined from the context. In particular the NS
N = (Ny, N,, ..., N,) associated with the factorization N = N,,,, is assumed
if not stated otherwise.

1.6 Lemma. Let N=N,,,, m > 2. Then for each i€[l:m — 1] it holds
(71, nzseosm]s [is 15 Misas oo )] = [R5 125 ooy 7]
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Proof. [ny, ..., n] € Zy, ,, [Pi+1s o> Ny) € Zy,, sm» N = Ny (Nipy,m =
= [[nl, ey h‘], [n‘+1, ooy n,,,]] = [nl, cony ni] N,-+1,m =+ [n(.'.l, ooy n,,,] =
= (nlNz.‘ + n2N3_, + ... + n,) N‘+1'm + n,+1Ni+2.,,, F s + nm = [nl, Nyy aeny
- .

1.7 Definition. Let us have a NS #" = (N,,..., N;) and N = N, ;. We define
a mapping ¢, : P([i:j]) = P(Zy) as follows:
o 4(p) = P, where P([n;,...,n;]]4) = [Mpqiy> - > Moy -

It holds ¢ 4(1) = Iy (here 1 is the identical permutation in #([i :j])). But in
general ¢ is not a homomorphism of permutation groups, e.g. Ny =2, N, = 3,
p(1) =2, p(2) =1 is a counter-example.

1.8 Lemma. Let A;e #(N;xK,) forie[l:m],m>2, N=N,, ., K=K, ,,
N = (Nys ...y Ny) and o = (Ky, ..., K,). If weput A = A; @ ... Q A,
A, =A,)®... ®Aymys Py = @4(p) and Py = @(p) for an arbitrary permuta-
tion p € Z([1 : m)), then it holds A, = P, APY, or equivalently A,(P(n), Px(k)) =
= A(n, k) for each ne Zy and ke Zy.

Proof. AP(P.,-([nl, ceny n,,,]), Px([kl, ceey km])) = Ap([npu), caey nl,(m)]_y‘,,
[Kpctys -+ Kpemlors) = Apc)Tipesys Kpety) -+ Apmy(pemys Kpmy) = As(ny, ky) ...
vo Ap(Nms k) = A([ny, ..., 1), [K1s --.» k) in view of commutativity of multi-
plication in the ring R. §

1.9 Convention. Later on we shall agree on the following notation: p; ; and 1, ;
stand for an arbitrary and identical permutation, respectively belonging to 2([i:j]);
5;,; € @([i : j]) denotes a permutation defined by s; ;(i + k) =j — k, ke [0:j—i].
Similarly P;; = @y, (21, v, = Ow (1) and S ;= @4, (si,;) are the
associated permutations belonging to #(Zy, ). S, ; is called the digit reversal
with respect to the NS 47, ;. Subscripts i, j may be omitted whenever i = 1 and
Jj =m. We shall write also S, to emphasize that S, is the digit reversal with
respect to A,

l.lOT’heorem..LetJV =(Ny,.... N), m22andp = p,,; U piiy,me P([1:m])
Sfor someie[1:m — 1]. Then ¢ 4(p) =P =P, QPiyy m.
. Proof. We are going to verify P = P where P =P, i ®Psy,m Let n=
= [Ryyees )y k = [kyy..., ky] € Zy, .. be arbitrary. Using 1.6 we get P(n, k) =
= P([[nl, ceey n‘], [ni+1, ceey n,,,]], [[kl’ seey k‘], [kl+l’ ceey kll]]) = Pl,i([nl’ veny
cesy n‘], [kl’ sesy k‘]) P‘+1'm([n(+1, ey n,,,], [ki+l’ ceey km]) = 5([)!1, cesy n‘],

[epiictys ooon Kpsard) s 1s eoos )y [Kpyyiomtt+ 139 205 Kpyyy mom]) = 6([ny, ...,
ey n,,,], [k,'(”’ ey k,(m)]) = 6;:.?(&) = P(n, k). ]
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1.11 Corollary. Let p, =p; ;U sy mandp, =1, ;Ypisy mthenp =p; v
UPit1,m = P1P2 = P2P1 and P = @ 4(p) = @ 4(p1) 04 (P2) = @4 (P2) ©4(p,) where
exP) =P i @Iy, 0 @402 =Iy,,, OPis1,m-

Proof. P = (Py,; ® In,,,.) (ny,y @ Pisym) = Iny,y @ Pivy,m) Py, @ .
® Iy,,,,.) is a well-known property of ®. The factors are equal to ¢,(p,) and
o4(p,) due to 1.10 and by (p,,m(l~l,,-) =1y, and @4, (i1, m) = Iy, me B

1.12 Corollary. Letie[1:m—1],m2 2 be arbitrary and S;=@,,,, N1, m()-
Then it holds ¢ 4(sy,m) =S = Si(S1,; ® Sis1,m) = Si+1,m ® S1,) Si.

Proof. It is sufficient to show S =S,P with P = ¢,(p), p = 51,; U Sj41,m
For each n=/[n,,...,n,]€Zy, , we can write in view of 1.6 S,P(n) =
= SiP([n‘, ceey n,,,]) = S,([np(l), cecy np(,,,)]) =S(([ni, Ni gy eeey Ny Ny Ny gy o0s

ooy nt+1]) = St([[nu ceey "1], ["m, ceey ":+1]]) = [[n,,,, ceey nl+l]’ [”:s ceey nl]] =
= [Npyy...,n;] = S(n). Then P =S, ; ® S;4;,n by 1.10 and also S = S,PS[S,
Where SiPSiT = Si+1,m ® Sl,i by 1.8- 1

2. GENERALIZED KRONECKER PRODUCT OF MATRICES

By definition, the Kronecker product A = A, ® A,, A, € #(N, xK,), A, €
€ M#(N, x K,) is a matrix having block form A = (A"*)e #(NxK), N = N,N,,
K = KK, where for each n, € Zy, and k, € Zg,

2.1) A"M = A (ny, k) A,.

Clearly, either of the following two equations is equivalent to (2.1):

2.2) Arekt — A ATk Amuki
== diag (Al(nl ’ kl)’ ceey Al(nl, kl)) € "”(KZ XKZ)’

2.3) Arvkt — K’{""‘Az, Kl;n.lu —
= dlag (Al(nly kl)9 seey Al(nl ’ k1)) € o/((Nz XNZ').

Allowing different elements to enter into the diagonal of A}“* or Afj“*,
a Kronecker product generalized in two ways may be obtained according to the
following definition.

2.1 Definition. Generalized Kronecker product of matrices.

Let N=N,N,, K=KK,, A e #(N,xK,K,), Ae #(N,xK,;), B, e
€ #(N;N,xK;) and B, e #(N,xK,). Then the matrix- A=A, ®z A€
e #M(NXK)(B=B; ®; B, € #(NxK))is said to be a right (left) generalized
Kronecker product of matrices A, and A, (B, and B,) if
A(["n nz]9 [ku kz]) = A(ny, [kn kz]) Ay(ny, k;) and B(["u nz]» [kn kz]) =,
= B,([ny, n;], k,) By(n;, k;) holds for each n; € Zy, and k, € Z, with i = 1, 2.
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Clearly, A = (A""**) where

Ak — A, Am e
2.9 A"’ k¥t — diag (A,(n,, [ky, 0]), 1(n, s[kis 1]seees
Ay(ny, [k1a K, — 1]))
and B, = (B""**) where
’ Bk — Bm le °
2.5) Bk — = diag (B ([nl, 0], k), B ([nl, 1), ky), ooy
, By([ny, N, — 1], ky)).

2.2 Remark. Krox'lecker product ® may be considered as a special case of both
®r and ®, writing instead of A = A; ® A, either A=A, x QrA; or A=
=A;,L ®LA, where A4, g(ny, [kl’ kz]) = A, L([nu "2] ki) = Ai(ny, k).

2 3 Lemma For A, e #(N, xKle) andB1 € ./{(NlNz X K,) it holds A, ®R Ig, =
= Al = (A"‘ kY and B, @, 1y, = Bl = (B’u k1) where A"l kt and B"‘ "k are diagonal
matrices of (2.4) and (2.5), respectively. Moreover Sy, , K,)Alsm, Ky = diag (A o,

A1y ooos A g,-1) and S(N,,Nz)Bls{K‘,Nz) = diag (By,0, By 15 -5 By ny-1)
where Al,kzs By, € M(N; X Ky), Ay 4,(ny, ki) = A(ny, [kn kz]) and
By ny(ny, ky) = By([ny, ny), k,) for each nye Zy, and k;e Zy,, i = 1, 2.

Proof. By definition 2.1, 4,([ny, k;], [ky, k2]) = Ay(ny, [ky, k3]) 824, is
the element positioned in (k; + 1)-th row and (k, + 1)-th column of the block

Ak which says that A7* is exactly the diagonal matrix of (2.4). At the same
time it is the element in ([k;, n,] + 1)-th row and ([k;, k,] + 1)-th column of

S(thz)A S, k> Which means that the only non-zero blocks of size N, x K, are

_those with k, = k3, i.e. A,(n;, [ky, k;]) is the element in (n, + 1)-th row and
(k; + 1)-th column of (k, + 1)-th diagonal block A, ;,. For B, is the argumenta-
tion analogical. §

2.4 Theorem. Duality principle.

Under assumptions of definition 2.1 it holds (A; ®g A;)T = A] ®_ A] and
(B, ®.B,)" = B] ®; B].

Proof. A=A, ®g A; = A"([ky, k], [ny, n.]) = A([ny, n,], [ky, k,]) =
= A,(ny, [k1, k;]) Ax(ns, k3) = A{(ky, k3], ny) A5(k;, n) = AT = AT @ AJ.
BN =B =B, @B, =(B])" ®.(B})" = (B] ®xB3)" = B" = B{ @z B}. 1

We shall prove some basic properties of ®, and ®; analogical to those of the
ordinary Kronecker product ® (cf. [6]). Moreover, these properties of ® are
obtained by 2.2 as-a special case of the corresponding properties of ®x or @
(see 2.5, 26 2.11 and 2.12).
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2.5 Theorem. Either of the operations ®g and ®, is associative and distributive:
1°If A;e #M(N;xK;, ;) and B,e #M(N; 3 xK;) for i =1,2,3 then

(A; ®rA;) ®rAs = Ay Qr(A; ®rAy),
(B; ®. B;) ®, B; =B, ®. (B, ®. B;).
2° If A;, Aje #M(N;XK; ,) and B,,Bie #M(N; ,xK)) for i = 1,2 then
(A; + A;) ®rA; =A; QrA; + Ai ®rA;,
Ay ®r (A, + A;z) =A; QrA; + Ay ®r Az’,
(B, + By) ®. B, =B, @, B, + B, ®. B,
B, ®. (B, + B;)=B; ®.B, + B, ®.B,.
Proof. We shall prove the assertion only for ®y because for ® it follows by
the duality principle.
1° A; € M(N,XK,K; 3), Ay € M(N,; xK; 3) = B~— A, ®r Az € M(Ny,, X
X KK, 3). A; € M(N,XKyK3), Ay € M(N3;XK3) =B = A, Qr Ajye M(N,, 3 X
XK, 3). Hence A = B ®g A; € M(N; ,NyxK, ,K;) and A = A, @ B €
€ M(NN,, 3 x KK, 3)are correctly defined matrices of the same size N, 3 X K; ;.
We are going to prove A = A. In view of 1.6, B([ny, ny], [[k1» k2] k3)) =
= B([nu "2], [k1a [kz’ ks]]) = A(n,, [ku [kz’ ks]]) A;(ny, [kz’ ks])- Thus
A([[nu nz] "3] [[kn kz] ka]) = B(["ls "2] [[kn kz] ks]) As(ny, ki) =
(A (ny, [kl’ [kz, 3]]) Ay(ny, [kz, 3])) As(ny, k) = A,(ny, [kla [k2a 3]])
B([nz ' n3), [z, k3]) = A([n1 s [n25n3]] [y [k25 k3]]) holds by the associativity
of multiplication in the ring R. Using 1.6 once more, we get A([n,, n,, n3],

[kl Ky, ks]) = A([’h s N2, ’13], [kn ki, ka])-‘
2° follows immediately by definition 2.1 and by the distributivity of multiplica-
tion in the ring R. 1 .

2.6 Theorem. Let Aje M(M;XN,;), A;e #(N;xK, ;), B,e #M(N,,xK;) and
Bje M (KX L) for i = 1,2. Then it holds

(A{ ® A;) (A, ®rAz) = A{A; ®p AsA;,

(B, ®.B,) (B; ® B,) =B,B; ®_ B,B,.

Proof. Let us denote A=A ®Ae .,l{(MleleNz), A=A R®r A€
€ "”(NINZ xKle), Al = A Al € u”(Ml XKle) and Az = AZAZ € I(Mz XKz)
We see that C= A'A and C= Al ®r A2 are correctly defined matrices of the

same size M, M, x K, K, . We are going to show C = C. As 4 ([my, my], [ny,n:])=
= A4 (mu ny) Az(mz, ny) by 2.2 and A([n,, nz] [ku kz]) = A(n,, [kl’ kz])

Ni—1Nz~1

. 4,(ny, k,) by 2.1, we have C([m,, mz], [ky, k) = ) Z (AI(m,,n,)

71=0 n2=0
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' ] Ni—1
.. Az’(mzv ny)) (4;(ny, [ku kz]) Ay(ny, k) = ( ZOA;(mls ny) Ay(ny, [kn kz])) .
. Na—1 ny =

(3 Azlmz, ) Aglna, k) = Ay(my, [kys k] Ax(my, ks) = C([my, my]s

n=
[ky, k;]) by 2.1 and in view of commutativity, associativity and distributivity
of multiplication in the ring R.

The assertion for ®, is easy to prove by the duality principle:

(B, ®f, B,) (]3; ®B;) =(B; ® B;),T (B, Q. B'z)T)T =
= ((B,” ® B,") (B] ®z B))" = (B,"B] ®z B;'B})" =
= ((B,B;)" ®x (B;B;)")" = B;B, @, B,B,. I

The associativity of @ and ®; allows one to extend the notion of the generalized
right and left Kronecker product to m factors (m = 2):

2.7 Definition. Mixed-radix transform.

Let N=Ny m» K=K, ,(m=2), Aje #(N;xK,;,,) and B;e A(N; ,xXK)
forie[1: m]. Then the linear transform defined by the matrix A = A; ®z A; ®g...
. QrA,e A(NXK)or B=B; ®.B, ®,... ®,. B, € #(NXK) is said to be
a mixed-radix transform (MRT).

2.8 Remark. It is easy to see by induction on m and in view of 1.6 that A =
=A; QrA; Qg ... Qg Ay iff A([ny, ..., n,], [k1, ..y kp]) = As(ny, [Kys ..o
e k) Ay(ny, [k2s ooy k) oo An(nim, k,,) for each n, € Zy, and k; € Zg,, i €
€ [1:m]. Similarly B = B, ®. B, ® ... ®. B, iff B([n, ..., n,), [ky,-...,
cerskn]) = Bi([ny, ..., nn), k) By([n25 s 1), k2) - .. By(tts k) fOr €ach mye Zy,
and k;eZy,,ie[1:m].

2.9 Theorem. Fast mixed-radix transform. .
If A and B are MRT matrices defined in 2.7 then the following factorizations,
called fast mixed-radix transforms (FMRTSs), take place:
A = AMAC-D AD gnd B = BWBP ... B™ where for ie[1:m]
AV = Ingooy ® (Ay Qrlyy,,,,) € #(Ny,iKis1,mXNy,i-1Ki ) and
‘BY = I, io, @ B ®Lly,,,,) € MKy, -1 Niym XKy, iNis1,m)-

Proof. First we shall prove the factorization of A by induction on m.

Lm=2:APDAM = @y, @ A)) (A; Qrlx,) =IyA; QrAzdy, = A QrA; =
= A is an immediate consequence of theorem 2.6.

2.m>2:A=A;, Qg A’ where A’ = A, ®z ... ®z A,,. By induction hypo-
thesis A’ = A'MA'=1 A2 with AD =1y,  ® A Qr g,y pm)» A =
=0y, ® A) (A; ®r Ix,,) = Ay, ® A) AP and Iy, @ A’ = Iy, ®
® (A'MA' -1 | AP — (I, @ A'™) Iy, ® A™ V) ... (Iy, ® A'®) where
VIN: ® A’(‘) = IN: ® IN:.I—: ® (Al ®R Ix.“,m) = IN,,.-, ® (Ai ®R Ixnn'ﬂ) = Aq)
for ie[2:m]. ' '
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The factorization of B is an immediate consequence of the factorization of A
when putting A = B”, A; = B/ and using the duality principle (N, and K, inter-
change their roles): B = ((B; ®. B, ®y ... ®;B,))T = (BT @ Bf ®¢ ... ®x
Qe BT = (A, Qg A; Qg ... O A)T = AT = (AMA™-D AT —
= AWTADT  AMT where BY = AVT = (I, ® (A; ®g Iy,,,.m)T =
=1k, ® A QL Ly, \m) = Ik, @ (B; ®L Ty, m)- 1 '

Similatly as for FFTs (see [4, p. 88]), still more FMRTs may be obtained by
inserting & factored identity matrix between two factors of the appropriate matrix
product of A or B. E.g., if P,e Z(Zy,,,_,K: ) is not an identity permutation for
all i€ [2: m] then A™ — AMPT AW — P, AWPT, ie[2:m — 1] and AD =
= P,A® define another FMRT. We have A = AMA™=1 AW because PIP,
is an identity matrix which, being inserted between factors A and AY~1), leaves
the matrix product unchanged.

As in fact the factorization of B in theorem 2.9 is obtained by matrix transpose
of A = B”, all FMRTs may be derived from the factorization A = A™A™-D
... A by inserting factored identity matrix and/or by matrix transpose.

Due to 2.3 the structure of the generating factors A®) may be presented in a very

simple form as a block diagonal matrix with N; ;_, identical blocks A; along the
diagonal, i.e. A") = diag (A;, A,, ..., A;) where A,, = A, and forie[l:m — 1]
each A; = (A7"*) e M(NK;4 1 nxK; ) is a matrix with N,x K, diagonal blocks

A?hlk‘ = diag (Ai(nb [kiv 0])9 Ai("i’ [ki’ l])’ GO Al(”h [kb Ki+l,m_ 1]))5
€ MKis1,mXKis1,m)

We shall now derive an important FMRT by inserting identity matrices factored
by the permutation of the digit reversal (see 1.9). The resulting factorization attains
a more compact form if it is applied rather to the modified matrices A~ = S +AST
and B~ = S,BSY obtained by writing rows and columns of A and B in digit-
reversed order than for the A and B themselves. That is why the linear transform
defined by A~ or B~ will be termed digit-reversed MRT (DRMRT) and the cor-
responding fast algorithm fast digit-reversed MRT (FDRMRT). '

2.10 Theorem. Fast digit-reversed MRT.

LetA~ =S ,AST and B~ = S, BS) where ' = (Ny,..., N,), ¥ = (Ky,..., K,)
and A and B are MRT matrices defined in 2.7. Then the following factorizations,
called fast digit-reversed MRTs, are true: A~ = A~ MA- (=1 A~ gnd
B- = BWB™® .. B ™, where A™ = diag (Aiq0) Anaa) s
s Aairg,m-1) ® Iny,io o B = diag By .00 Br,pic1ys -+ B, puissym-1) @
®Ig,,., forie[l:m—-1],A" ™ =A ®1I,, ,and B™ =B, I, _,-
A, . (B, ,) are matrices of size N; X K, associated with A; (B)) according to lemma 2.3,
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_ but arranged along the diagonal in digit-reversed order by a] = ¢ Hert, mSi+1,m) (B T=
= @401, mGi+1,m). For i = m — 1 this ordering is natural because «,,_, and B,,_,
are identical permutations.

Proof. As the factorization of B~ is easy to be derived by that of A~ in view
of the duality principle, we shall be concerned with A~ only. We can write by
theorem 2.9 A~ =S ,AST = A"MA-(m-1) A~ ghere A~ = SU+DADGOT
and S = ¢, (s) is the digit reversal with respect to /' = (N,, ..., N;_,, K, -..,

K,) for each ie[1:m + 1]. A™™ =S+, ~ ® A,)S™T = A, ®
® Iy,,,., by 1.8. Letie [1 : m — 1] be arbitrary and let us denote A", = &), =
= (Kiy ooy Kpp)y N} = ‘/Vg:-nl) = (Ni, Kityq5 ooy Kp) and S, = q’.ﬁ’g(si,m)a S =
= @4i(5;,m) the associated permutations. First we shall prove that A~ =
= S{(A; ®rIx,,,,.) ST ®1Ly,,,.,. For i =1 this is evident because A™‘") =
= S®(A; ®rlx,,,) SV and S® = §; and S = S,. For i > 1 one can split
S¢+1 and SOT into two parts using 1.12, namely S¢+1 = SIS, ;| ®S)
and SWT = (S{,;_; ® S]) ST where SO, = ow,. 1 kum)©)s SIFD =
= @My, -1, NiKis 11, m)(8) and Sl,i i = (P.n,._l(sl i-1)- Hence A_(‘) =

(Hl)(sl i-1 ® S) (y,,,., ® (A; ®rlg,,,,,) (51,i-1 @S] )S“)T = s¢IP.
. (Sl.i 1ST,i-1 ® Si(A; ®r Ix,,,,,) S) ST = S‘(AK Or Ikrr,m) ST ® Iy,
by 1.8. It remains to verify Sj(A; Qglx,,,,,) ST =diag (A; 50)» ---» Ay, aKis1,m1):
S} and ST may be spht using 1.12 once more: S; = (a] ®1Iy) S, and S =
= S'(a, ® Iy,) where S = Py, Kues, m(8) and S, = @ (ke Kis 1, m(S). Hence by 2.3

(al ® Iy) Si(At ®r Ikisy,m) Si (“i ® Ig) = (“t ® Iy) d1ag (Ai0r Aj1s woey
oy Al,K‘“,m—l) (G, ® IK;) = dlag (Ai,ai(O)’ seey Ai,al(KHx,m‘l))’ 1

2.11 Corollary. If /" = X" then
i .
[A]=]A"|= ;ﬂlﬂ Aol A1 eoo | Ap Ny, m-1 |)NM_1, A, o=A,

and

m
|B| =|B_ | =;Ul(| Bt,ol 'Bl,l | |B. N.“....—1|)N""‘a Bm,O=Bm'

In particular A (B) is invertible iff A, , (B, ,) are invertible for each ie[l:m]
and neZy,,,, .

Proof. 4 = xand|S||sT|—1=>|A| IS||A|ST|=|A|=

='1_[l| A-“)I where | A™?| = (| As oy | T A gty | -oe AjaNis1,m—1) |)N"'-l =
=(Aol ALl oo | AN m-1 PNet-1, The same holds for | B|. Finally,

a square matrix over a commutative ring R with unity is invertible iff its deter-
minant is an invertible element in R. 1
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.2.12 Corollary. Let # =X and A (B) be an invertible MRT matrix. Then
A~ (B1) is an MRT matrix uniquely determinedby A~' = A} ®. A} Q. ... @,
QL AY B™! =B} ®z B} Qg ... @z By) where Ai([ny, ..., n,], n) =
= A e s ned@is 1) BF@E, [y s 1) = Bi s onwd 1)) fOr i€ [1:m — 1]
and A}, = A,;' (B), =B, '

Proof. Let A* = A} @, A} @, ... L Ap. As A}, = A[ ) for each ie[1:m]
and ne Zy,,, . (Ak o=Anand A, o = A,), we have A" WA*~@ =T, for each
i € [1:m], which means that A"A*~ =I,. Consequently AA* =STA"SSTA*"S =
= STA"A*"S = STS =1, . A*A = I, follows analogically. The same argumenta-
tion may be applied to B. §

2.13 Remark. As ® is a special case of both ® and ®; in the sense of 2.2,
lemma 1.8 suggests with P, = S, and P, = S, another definition of the so
called digit-reversed generalized Kronecker product ®g- or @®.., namely by
S,AST = A~ where A=A, Qz... @ A, and A™ = A, Qz- ... Qg- A or
by S,BSL, =B~ where B=B, ®, ... ®. B, and B- =B, ®,- ... ®,- B}.
Accepting the symmetrically reversed number systems A4's and X s as the basic
ones, we can adopt A~ ([, -y 11 ], [Kkms +os k1)) = A, k) Ay —1(Bp— 15
[kms km—1]) o AT(ny, [kps . ki]) and B™([np, ey n1]s [kpy ooes ki]) =
= By, (N> k) By — 1([Ps 11> Km—1) -o- By ([P, ..., ny], k;) as the defining rela-
tions for ®. and ®_, respectively (cf. 2.8).

The following relations between ®z and ®z- (®, and ®,.), or more precisely
between A and A~ (B and B™), are easy to establish:

(1) A7 (B;) is obtained by writing columns (rows) of A; (B;) in digit-reversed
order, i.e. A; = ASy, .. (B =S, B); specifically for i =m we get A, =
= Am (Br; = Bm)‘

(2) Let iE [1 m — 1]. Then Al,_k — A‘i,ag(k)’ k € ZKl+hm al‘ld BITII = Bi,ﬂ|(n)’
ne Zy,,,.. where a; and f; have been defined in 2.10, and 4;" ... ... ke, 1 (s k) =
= A; (ny, [kms ooy ki]) and By o, nery (s k) = B ([, .., 1], K.

(3) Letie[1: m— 1]. Then the matrices A; (B;) arise from the family of matrices
{A‘v"}""zk.;‘.;({B"'"}"EZNH,,..) by” grouping all columns (rows) with the same
position in each A;; (B;,) into blocks, more precisely A; = (A; o, Ay, -
Ai kiviom=1) Skikisr,m (B = S(TNg,Nt+hm)(Bi.09 By oo Bi,N.“,,..—1)BT where
BT stands for transposition of whole blocks). . R

On the other hand, the matrices A;" (B;") are obtgined from {Aji}kezg,, ...
({B{n}uezm“m) by placing all A, (B;,) side by side into one row (column),
more precisely Ay = (Ajo, s AL Kiuism-1) B = (B, - BN im-1)"T)

(4) Following the analogy of (2.4) and (2.5), we have form = 2: A~ = (A™™ kay,
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and B~ = (B~"*?) where A~"™* = 4,(n,, k,) A7, and B~"% — B.(n, k,).
. By ,,, which may serve as the starting-point motivation for the definition of
®g- and ®;._, similarly as (2.4) and (2.5) did for ®x and ®,. »

From (4) we get immediately Iy, ®x- A; = diag (A7 ¢, ..., AL x,—1) and I, ®
®y- By = diag (B{ ¢, ---s B x,—1) as an analogy of 2.3. Thus ®z. and ®;-
provide an algebraic method of forming block diagonal matrices with generally
different blocks of equal sizes along the diagonal, which is a natural extension of
Ix, ® A;(Iy, ® B;) where all blocks A} ;,(B; ,,) are equal to A;(B,). Using this
and (2) it is easy to rewrite A~ and B~ of the FDRMRT from 2.10 in terms
of ®g- and ®,- as follows: A™® = (Ix,,, ®x- A)) ® Iy, , ., B? =
= (Iyyom @L-B) ®Ix,,, ., forie[l:m — 1] and A~ ™ = A, @ Iy,..._,»
B~™ =B, ® I, . _, in view of (1).

It is easy to establish properties of ®g- and ® . analogical to those stated by
24-2.6, 2.11, 2.12 for ®g and @, either applying the relations (1) —(2) directly
or paraphrasing the appropriate proofs.

In the sense of lemma 1.8 ®z, ®; and ®z-, ®,. may be viewed as operations
associated with 1 € ([1 : m]) and s € Z([1 : m]), respectively. In general of course
one can associate an operation ®g, or ®, with any permutation p € 2([1:m)])
by the formula P,APy = A®* = Al,) ®z, ... ®g, Al or P,BPy =B =
= Bj1) ®r, --- 1, Bp(m) and derive a fast algorithm by inserting identity matrices
factored by means of P = ¢ ,.,(p) so as this was done in the proof of 2.10
with P = 8™, But for most permutations p a complex structure of the resulting
factors AP or B”™™ is to be expected, which makes the appropriate ®y, and ®,,
less attractive for practical applications. Let us observe that it was exactly the
property 1.12 of the digit reversal that has brought about the neat form of the
factors.

2.14 Remark. Multidimensional MRT.

A=A{®A;®..QA, is said to be a matrix of an r-dimensional MRT
(r 2 2) if each Aje A(N; X K/) is an MRT matrix. Clearly A’ = A'@A'C~D
e AW where AV =1y | @A @Iy, . je[1:r] Bach A’Y may be again
decomposed according to 2.9: Assume N; = Ny ... N,, K = K, ... K, and A} =
=A; Qg --- Qg An, A€ #(N;xK,,) for a fixed j. Then AP =1,  ®
QA™ LAD @I, =A™ .. Al where Af? = Iy, ..., ® (A; ®g
®r kit i, m) ® Ik}, ,,r is one step of the final fast r-dimensional MRT. In view
of 2.3 we can write also A{” =Iy; ,_.v,,., ® A, ®x Ix,,,,mK}s,,r) Where A, €
€ #(N;xK; .K;,, ) is obtained from A, repeating Kj,, ,-times the entry of each
column in A;. In this way steps of fast multidimensional MRT have the same
structure as those of fast one-dimensional MRT. We can proceed similarly if
Aj=B; @, . ®LB,. .

160



FAST MIXED RADIX TRANSFORMS I.
REFERENCES

[1] E. O. Brigham, The Fast Fourier Transform. Prentice— Hall, Englewood Cliffs, New Jersey,
1974.

21 V. Cizek, Diskrétni Fourierova transformace a jeji pouziti. SNTL, Praha, 1981 (Czech).

[3] Eh. E. Dagman; G. A. Kukharev, Bystrye diskretnye ortogonal’nye preobrazovaniya (Fast
Discrete Orthogonal Transformations). Izdatel’stvo ,,Nauka‘, Sibirskoe otdelenie, Novo-
sibirsk, 183 (Russian).

[4] D. F. Elliott; K. R. Rao, Fast Transforms, Algorithms, Analyses, Applications. Academic
Press, New York, London, 1982.

[5]1 I.J. Good, The Relationship Between Two Fast Fourier Transforms. IEEE Trans. C-20 (1971),
310-317.

[6] P. Lancaster, Theory of Matrices. Academic Press, New York, London, 1969.

[7]1 H.J. Nussbaumer, Fast Fourier Transform and Convolution Algorithms. 2-nd ed., Springer-
Verlag Berlin, Heidelberg, New York, 1982.

[8] V. A. Ponomarev; O. V. Ponomareva, A Modification of Discrete Fourier Transform for
Solution of Interpolation and Functional Convolution Problems. Radiotekhn. i Elektron. 29

(1984), No. 8, 1561 —1570 (Russian); translated as Radio Engrg. Electron. Phys. 29 (1984),
No. 9, 79—88.

Vitézslav Vesely

Institute of Physical Metallurgy
Czechoslovak Academy of Sciences
616 62 Brno, Zizkova 22
Czechosloakia

161






ARCHIVUM MATHEMATICUM (BRNO)
Vol. 25, No. 3 (1989), 163—-174

A GRAMMATICAL INFERENCE FOR C-FINITE
LANGUAGES

MILAN DRASIL
(Received September 15, 1986)

Abstract. For any language L, any finite set of contexts C, and any positive integer i we con-
struct a linear grammar FG(L, C, i) generating a language, whose ith fragment coincides with the
ith fragment of the given language. If there exists some positive integer £ such that for any / = k
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1. INTRODUCTION

In special cases of grammars (e.g. regular, linear or context-free ones) non-
terminal symbols can be considered the sets of all words generated by them.
M. Novotny and his collaborators investigate possibilities of constructing
grammars, where the role of nonterminals is played by special sets of words, so
called derivatives and syntactic categories. The noneffective constructions based
on this idea can be seen in [1], [7], [8], [10], the effective ones in [6], [11].
Similar ideas are used in algorithm inferring a linear harmonic grammar, which
has been proposed by K. Tanatsugu [12].

This paper presents an effective algorithm inferring a linear grammar from
a sample called fragment of the language (the set of all words of the language that
are not larger than a given positive integer). The idea of using derivatives as non-
terminals in effective constructions is due to M. Novotny ([9]). -

2. PRELIMINARY DEFINITIONS AND NOTATION

"By N we denote the set of all positive mtegers An alphabet V is a finite set,
whose elements are called symbols. The set of all words over an alphabet ¥V —
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including the empty word A —is denoted by V' *. For any x, y € ¥* we denote by xy
their concatenation and for any P,Q < V* we put PQ = {xy; xe P, ye Q}.
For any a € ¥ a* denotes the word of k concatenated a’s. The lenght of the word x
denoted by | x| is the number of symbols used in its formation. An element
(u, v) e V* X V* is called a context over V or simply a context. We put | (u, v) | =
={u|+|v|. For two arbitrary contexts w, = (u;, v;) and w, = (u,, v,) we
define the operation w, o w, = (u,u,, v,v,) and it is easy to see that (V* X V'*, o,
(4, 4)) is a monoid. Any set of contexts C generates the submonoid in the above
mentioned monoid. By [C] we denote its carrier (i.e. any w e [C] is of the form
W =W;o0...0w, where w;, ..., w,eC). A language L over an alphabet V is
an arbitrary subset of V*. For any Q < V* we put || Q|| = max {| ¢|; te Q}
if Q is finite || Q|| = oo otherwise. A grammar is an ordered quadruple G =
fragment of the set Q. Let. w = (u, v), be a context and Q < V*. Then the set O,
= (S, ¥V, R, s5), where ¥V and S are disjoint alphabets called terminal and non-
terminal ones respectively, R € (V U S)* xX(V u S)* finite set of rules and s, € S
starting symbol. The relation of dzrect derwanon denoted by — and its transitive-
reflexive closure denoted by —*are defined in the usual manner. Grammars are
said to be regular and linear, if their sets of rules are of the form R < SXV* U
USXV*S and R SXV* U SXV*SV* respectively. We put L(G) = {t; te V'*,
5o = *1} and L(G) is said to be the language generated by grammiar G. For any
positive integer i and any Q < V'* the set iQ = {t; 1€ Q, | t| < i} is called ith
fragment of the set Q. Let w = (u, v) be a context and Q = V*. Then the set 0,
= {t; utv € Q} is said to be the derivative of the set Q by the context w. Clearly
(Q5)y = Qy,, for any contexts x, y € V* X V* and any set Q < V'*. For any sets P,
Q0 < V*we set P ¢ Q if and only if there exists some positive integer i such that P
is the ith fragment of Q. Obvxously for any system of sets T < 2"" the pair (T, €)
is a partially ordered set. =

3. CONSTRUCTION OF FG-GRAMMARS

Let L be an arbitrary language over an alphabet ¥, C finite set of nontrivial
contexts (i.e. contexts different from (4, 1)). We set
PG) = {(L)w; we [C], (L), = 9} v {iL}.

(Many constructions in this. paper depend on fixed sets L and C. For the sake of
notation convenience we shall omit them as parameters.)

Clearly (iL),, = 9 for any w € [C] with the property | w| > i, thus the set P(i)
is finite. By M(7) we denote the set of all maximal elements in the ordered set
(P(i), c) Note that 1Le M(i) Let us have a mapping~ of UP(z) into U M)

w1th tho following propertnes
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(i) Q€ P(i) implies O € M(i),

(i) g = O
Any mapping with those properties will be called a C-mapping of the Ianguage L.
Any pair (Q, uQ,v), where Q € M(i), we C and Q,, € P(i) is said to be an FG-rule
of the ith fragment. Now, let us define the mapping ¢ of i9\,{{1} x P(i)} into N in the

following way:
ci, Q) =max {i — |w|; we[C], @ = (iL),}.

An arbitrary FG-rule of the ith fragment (Q, uPv) is said to be suitable if for any
te {u} P{v} — Q the condition || > c(i, Q) holds. Now we can construct the
grammar FG(L, C, i) belonging to the ith fragment of the language L. We put

R, (i) — the set of all suitable FG-rules of the ith fragment,

R,(0) = {(Q, ©); Qe M(i), te Q — {urv; (Q, uPv) € R,(i), r € P}}.
The ordered quadruple FG(L,C,i) = (V, M(i), R,() U R,({), iL) is a linear
grammar, where we suppose without loss of generality that the sets ¥ and M()
are disjoint. In the next section we show that the construction of a gramma,
FG(L, C, i) is relatively independent on mapping ~, the only importance is thag
it has the properties of a C-mapping. .

3L G,
(3L) oo

fig. 1

3.1 Example. (a) Let ¥ = {a}, C = {w = (a, )} and 3L = {4, a*}. The ordered
set (P(3), <)is shown in fig. 1. We have two FG-rules 3L — a(3L),, and (3L),, — a3L
and it is easy to see that both ones are suitable. Thus the grammar FG(L, C 3)
contams the followmg rules

3L - a(3L), | 4,
(3L),, = a3L.
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This grammar generates all even powers of the symbol a. (b) Let ¥ and C be the
same ones as in (a) but assume that the sample {4, a*} is the fourth fragment
of some language. The ordered set (P(4), G) is of the same structure as in (a) but
the rule (4L),, — a4L is not suitable since a* € {a} 4L — (4L),, and c(4, (4L),) = 3.
.Thus we obtain the grammar FG(L, C, 4) with the rules:

4L — a(4L),, | 4,
4L), — a.

This grammar generates exactly the given sample. (c) If the fourth fragment of
some language 4L = {1, a?, a*} and C = {(a, A)}, the construction of the grammar
FG(L, C, 4) leads to the same one as in (a) (up to renaming nonterminals). O

The example 3.1. shows that the grammar FG(L, C, i) generates all words of iL.
Moreover the suitability of FG-rules guarantees that if the grammar FG(C, L, i)
generates some words that are not contained in iL, then they must be larger than i.
Let us prove this fact exactly. In what follows we suppose that we are given fixed
sets ¥, Land C. O

3.2. Lemma Let ie N, Q € P(i) and w € C such that Q, € P(z) Then:

(i) te Qimplies | t| < c(i, Q);
(i) c(i,iL) =i,

(iii) i, @) — | w| < c(i, Qw)-

Proof. The statements (i) and (ii) are trivial, we prove (iii). Let x € [C] be
. a context such that Q = (iL), and c¢(i,Q) =i — | x|. We have c(, Q,) =
= ¢(ly (iL)zow) = max {i — | y |5y € [C], (iL)zow = (L),} > i —|xow|=i—
—|lxl=|wl=c(Q—|w|.O

3.3. Lemma For any i€ N the following assertions hold.

(i) Qe M(i) and te Q imply Q —* ¢ in the grammar FG(L, C, i),

(ii) L(FG(L, C, i)) = iL.

Proof. (i) By induction on lenght of the word ¢.

(a) If | ¢| = 0 (i.e. ¢ = 1), then there exists the rule Q —» 4 in R,(i) since A ¢
¢ {u} P{v} for any rule Q — uPv in R,(i).

(b) Let | 2| > 0 and suppose that the assertion holds for any word r such that
|r| <|t].If Ry(i) does not contain any rule Q — uPv with the property ¢ = urv,
then R,(7) contains the rule Q — . If R, (i) contains some rule Q — uPp such that
t = urv, then P =.(, where w = (u, v), re Q,, and r € P since Q,, is a fragment
of P. Furthermore | r| < | ¢| implies P—*r and Q — uPv— *urv = t completes
the proof of the assertion (i).

(ii) is a consequence of (i). O
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3.4. Lemma For any suitable FG-rule of the ith fragment Q — uPv holds:

c(i, @) — | (W, v)} < c@,P). ;

Proof. Let (4, v) = w. If P = Q,, then by 3.2. (iii) the assertion holds. Assume
that P = J,, # Q,. Then there exists some word ¢ with the property ¢ € P and
t¢ Q,, since Q,, is a fragment of P. Consequently utv e {u} P{v} — Q and this
implies | utv | > c(i, Q) since the rule Q — uPy is suitable. By'3.2. (i) we have
|t| < c@i,P)and c(i, Q) — | w| < | t]| < c(i, P) completes the proof. O

3.5. Lemma For any i € N the following assertions hold.
(i) Q—*t in the grammar FG(L,C,i) and | t| < c(i, Q) imply te Q.
(i) iL 2 iL(FG(L, C, i)).

Proof. (i) By induction on lenght of derivation.

(a) If ¢ can be derived in one step from Q, then there exists a rule Q — ¢in R,(i)
and 7 € Q trivially.

(b) Suppose that ¢ can be derived in n steps (» > 1) and that the assertion holds
for any k < n. Consequently there exists a rule Q — uPv such that ¢t = wrv and r
can be derived from Pin n — 1 steps. We have | t| = |urv| < c(i, Q),i.e. | r| <
<c(i,Q) — | (u,v)| and by 3.4. ¢(i, Q) — | (u,v)| < c(i, P). Thus | r| < c(i, P)
and r € P. Finally ¢t = urv e {u} P{v} and | t| < c(i, Q) implies ¢ € Q since otherwise
we would have a contradiction with the suitability of the FG-rule Q — uPv.

(ii) is a consequence of (i) and 3.2. (ii). O

3.3. (ii) and 3.5. (ii) yield the following resuit.

3.6. Theorem iL = iL(FG(L, C,i)). O

A language L is_said to be FG-grammatizable, if there exists a finite set of non-
trivial contexts C, C-mapping™ and a positive integer k such that for any i = k
the grammars FG(L, C, i) and FG(L, C, k) coincide up to renaming nonterminals. O

4, C-FINITE LANGUAGES, COMPLETE SETS OF CONTEXTS

Let L be an arbitrary language over an alphabet ¥, C a finite set of nontrivial
contexts. We define the equivalence relation R on [C] in the following way:

Forany x, ye [C] xRy if and only if L, = L,. A language L is said to be C-finite
if the set [C]/R is finite (c.f. [10]).

4.1. Lemma (iL), € (iL), holds for any i€ N and any x,y e [C] such that xRy
and|y| < |x|. . :

Proof. If |y| >i or | x| >i g |y|, then the assertion is trivial. Let x =
= (X1, X3), y = (»1, y2) and assume that i 2 | x| = | »|. First we prove (iL), S
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<€ (iL),. For any te (iL), we have x,tx, eiL, consequently x,tx, € L and xRy
implies y,ty, € L. Furthermore |y ty,| < | x.tx,| < i, hence y,ty, €iL and
te(iL),. Now we prove that for any ¢ e (iL), with the property ¢ < max {| r|;
re (iL),} = m the condition ¢ € (iL), holds. Let 7€ (iL), and | 7| < m. Similarly
we have x;tx, € L and clearly m <i — | x|. Thus |x;tx, | = |t+ |x|<m + i —
— m =i and consequently ¢ € (iL), which completes the proof. O

4.2. Lemma Let x, y € [C] be two contexts such that L, is infinite and xRy. Then
there exists k € N such that for any i = k (iL), is not a fragment of (iL),.

Proof. Let x = (x,, x,) and y = (y,, y,). xRy implies that there exists a word
te(L, — L) v (L, — L,).If there exists e L, — L, then x,tx, € Land y,ty, ¢ L.
We put k = | x,x, |. Obviously t € (iL), — (iL), for any i = k, hence (iL), is not
a subset of (/L),. The second subcase t € L, — L, implies that y,ty, € L and x,tx, ¢
¢ L. We put k = | t| sufficiently large such that there exists u € (kL), with the
property | | = | ¢ | (this is possible since L, is an infinite set of words). For any
i 2 k we have te (iL), — (iL), and | | < max {|u|; u € (iL),}. Thus (iL), is not
a fragment of (iL),. O

4.3. Lemma Let x, y € [C] be two contexts such that L, is a finite set. Then there
exists k € N such that for any i 2 k (iL), € (iL), if and only if (kL), € (KL),.

Proof. Let x = (x;, x5), y = (y;,y,) and let us set k = max {| u|; ue L,} +
+ max {| x|, | y |}. Clearly (iL), = L, for any.i = k.

(a) We prove ,,if” part of the assertion. Let (kL), € (kL), and i = k. Obviously
(iL), = (kL), = (kL), = (iL),. Assume that there exists a word te (L), — (L),
(otherwise (iL), = (iL), and ,,if” part of the proof is trivial). If 7 € (kL), then | ¢ | >
> max {| u|; u € (iL),} since (iL), = (kL), C (KL),. If t ¢ (kL),, then | y,ty, | > k,
ie.Jt]| >k —|y]| =max{|u|'ue(iL) } +max{|x| [y} =yl 2 max {|ul;
u e (iL),}.

(b) To prove ,,only if” part of the assertlon let us suppose that (kL)x is not
a fragment of (KL),. If there exists ¢ € (kL), — (kL),, then ¢ € (iL), — (iL), for any
i 2 k since otherwise te (iL), implies |y ty,| >k, ie. |[t|>k—|y| 2=
2 max {| u |;ue (iL),} which would be a contradiction. If there exists ¢ € (kL), —
— (kL), with the property | 7| < max {| u|; u € L,}, then clearly t € (iL), = (kL),
and consequently ¢ € (iL)y — (L), forany i = k. O

4.4. Lemma Let the set {L,; we [C], L, is infite} be ﬁmte Then the set {L,;
we[C), L, is finite} is finite too.

Proof. If L is finite the assertion is trivial, suppose that L is infinite. Let n = 1
be an integer such that for any infinite derivative Q of L by the context from [C] —
— {(4, A)} there exist contexts w,, ..., w, € C such that k < n and Q = L,, where
W ='W; o ... o W. Setting m = max {{0} U {|| L, ||; L, is finite, w = w; o ... o W,
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w;eC for 1 <i < k < n}} we prove that for any finite derivative Q the condi-
tion || Q|| < m holds. Let L,, be an arbitrary finite derivative where w = Wi o0 .t
...o weandw;eCfor1 < i < s.If L, is finite, then clearly || L,, || < || L, || < m.
Assume that || L,, || is infinite and let j be an integer with the following property;
setting x = w; o ... o w; L, is infinite and L,,,, ,, is finite. There exists a context
y=y10...0y, where y;eC for 1 <i<k, k<n and L,=L,. We have
| Leowser 1| = Il Lyows, || < m and clearly || Ly, || < || Leowy,, Il O

4.5. Corollary For any language L and any finite set of nontrivial contexts C the
Jfollowing statements are equivalent:

(i) L is C-finite.
(ii) There exists me N such that card (M(i)) < m for any i€ N.

Proof. By 4.1. (i) implies (ii) since it sufices to put m = card ([C]/R). Conversely
suppose that L is not C-finite. We set D = {L,,; we [C], L,, is infinite} and by 4.4.
D is an infinite set. Furthermore by 4.1. and 4.2. for any two different derivatives P,
Q € D there exist contexts x, y e [C] and an integer k such that P=L,, 0 =1L,
and for any i = k(iL), # (iL), and (iL),, (iL), € M(i). This completes the proof. O

In what follows we show that for any language L and any finite set of nontrivial
contexts C there exists an integer kK and a C-mapping ~ such that for any i = k
the sets of FG-rules R,({) and R,(k) coincide if and only if L is C-finite. The
necessity of this condition follows by 4.5., we show sufficiency. Let L be a C-finite
language and D = {Q,, ..., O,} be the set of all derivatives of L by the contexts
from [C]. We choose the set of contexts ¥ = {yy, ..., y,} < [C] in the following
way: ‘

() Qi=L, for 1 <i<n,
(i) x € [C] and xRy, imply | y;| < | x]|.

4.1. guarantees M(i) = {(iL),; y € Y}. Let us put Co = C U {(4, 4)}. By 4.1., 4.2,,
4.3. and construction of Y it follows that for any contexts x,y€ Y and we C,
there exists an integer k,,, such that for any i > k,,,, (iL),., € (iL), if and only if
(kxwyD)xow € (KyyyL),. We put k = max {k,,,; x,y€ Y, we Co}. We have (iL),, €
€ (iL), if and only if (KL),., € (kL), for any x, ye ¥, we C,. Furthermore if
(iL), = (iL), for some x, y € Y and i = k, then x = y since by construction of the
index k (iL), = (iL), holds for any i = k, i.e. L, = L,. Denoting by X the subset
of Y such that M(k) = {(kL),; x € X} we can estabilish the following assertion.

4.6. Lemma Let L be a C-finite language. Then there exists k € N and a finite set
of contexts X = [C] such that for any i Z k hold:

(i) M(@) = {(L),; xe X}, x, ye X-and x # y imply (iL), # (iL),.
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(ii) (iL),o, € (iL), if and only if (kL)oy € (kKL), for any x,y€ X and any
we[C].
(iii) eti, (iL);) =i — | x|.

Proof. Let Y, X = Y and k be the above constructed sets and index. (i) and (ii)
has been already proved, we prove (iii). Assume that c(i, (iL),) > i — | x | for some
xe X and i 2 k. Consequently there exists a context w € [C] such that (iL), =
= (iL),, and | w| < | x|, by construction of the set X we have xRw. Let ze Y
and y € X be the contexts such that wRz and (iL), € (iL),. We have (iL), € (iL)y =
€ (iL), € (iL), and this implies (iL), = (iL), since (iL),, (iL), € M(i). Thus (iL), =
= (iL),, consequently x = z and we have xRwRz = x which is a contradiction. O

Let L be a C-finite language, X a set of contexts and let k be the least integer
such for any i 2 k the conditions 4.6. (i), (ii) and (jii) hold. Then X is said to be
the principal set of contexts of the language L and k = d,(L, C) is said to be the
first degree of the language L.

4.7. Lemma Let L be a C-finite language, X its principal set of contexts and let " :
P(dy(L, C)) - M(d,(L, C)) be an arbitrary mapping with the property Q ¢ Q. Then
there exists a C-mapping ~ such that hold:

@) 8 =0 for any Q€ P(d\(L, C)).
(i) The sets of FG-rules of the d,(L,C)th and ith fragment coincide for any
izd(LOC).

Proof. By 4.6. (ii) it suffices to put (iL),,,,, = (iL), if and only if (kL),o,, = (kL),
for any i 2 k =d,(L,C), any x,y€ X and any we C. O

4.7. guarantees not only the existence of the C-mapping ~ but also the
independence of choice of restriction ~ on P(i) for any i € N. In other words we
can construct the restriction ~ on P(i) arbitrarily, i.e. effectively. Any mapping
with the property 4.7. (ii) will be called a principal mapping of the language L.
Now we can estabilish the assertion guaranteeing coincidence of the sets R,(i)
and R,(k) for some ke N and any i 2 k.

4.8. Lemma Let L be a C-finite language, X its principal set of contexts and ~
its principal mapping. Let w = (u,v)€ C and x,y € X be the contexts such that
(iL), = u(iL),v is an FG-rule for any i 2 d\(L, C). Then there exists k 2 dl(L 0)
such that the followmg Statements are equwalent

(i) xo wRy.
(i) FG-rule (iL), = u(iL),v is suitable for any i 2 k.
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Proof. (a) We prove that (i) implies (ii) for any i = d,(L, C). Let xo wRy,
i 2 d(L,C) and te€ {u} (iL),{v} — (iL),. Obviously the word ¢ is of the form
t = urv, where re (L), and r ¢ (iL),,,. However xo wRy implies r€ L,,, and
consequently | 7| > i — | xow]|. Thus |t|=|urv| > i — |xow]| + | w]| =
=i — | x| = c(, (iL),) (by 4.6. (ii)).

(b) To prove that (ii) implies (i) suppose that xo wRy. (iL)sow € (iL), holds
for any i = d,(L, C) thus by 4.2. L, is finite. Let m = d,(L, C) be an integer
such that L., € P(i) for any i = m. Furthermore there exists j 2 m and a word r
with the property r € (JL), — (jL)ow Since otherwise we would have a contradiction
with xo wRy. We put k = max {j,| xow| + |r|}. For any i 2 k we have
urv € {u} (iL), {v} — (iL), and |urv| < i — | x| = (i, (iL),) (by 4.6. (iii)), i.e. the
FG-rule is not suitable. O

By 4.8. there exists an integer k such that for any i = k the sets of rules R, (i)
and R,(k) coincide. The least one of these integers denoted by d,(L, C) will be
caled the second degree of the language L.

It remains to estabilish the necessary and sufficient condition guaranteeing the
coincidence of the sets R,(i) and R,(k) for some fixed k€ N and any i = k. Let L
be an arbitrary language, C a finite set of nontrivial contexts. The set C is said to be
complete with respect ‘to L if there exists a nonnegative integer m such that for
any context x € [C] and any word € L, with the property | 7| > m there exists
a context (u, v) € C and a word r € V'* such that ¢t = wurv (c.f. [10]).

4.9. Lemma Let L be a language, C a finite set of nontrivial contexts. Let x € [C]
and t € L, be a word such that there does not exist any context (u, v) € C and a word
r € V* with the property t = urv. Then there exists positive integer k such that the

grammar FG(L, C, i) contains the rule (TL—)-,, — t for any i = k.
Proof. We put k = | x| + | ¢|. Clearly te (iL), and teaf),, for any i = k.
However ¢ ¢ {urv; ((iL,), uQv) € R,(i), r € @}, thus R, (i) contains the rule (iL), — ¢

foranyi = k. O ’
Finally we estabilish the main theorem.

4.10. Theorem Let L be a language, C a finite set of nontrivial contexts. Then the
Jollowing statements are equivalent:
(i) L is FG-grammatizable,
(ii) L is C-finite and C is complete with respect to L.
Proof. By 4.5. and 4.9. (i) implies (ii). Furthermore by 4.7. and 4.8. it follows
that C-finiteness of the language L guarantees coincidence of the sets R,(i) and

R, (k) for some fixed k and any i 2 k. It remains.to prove that C-finiteness of L
and completeness of the set C with the respect to L guarantee coicidence of the
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sets R,(i) and R,(k) for some fixed k € N and any i = k. Let X be a principal set
of contexts, ~ a principal mapping and k = d,(L, C) the second degree of L.
Completness of the set C guarantees that there exists at most finite number of the
words te L, (xe[C]) which can’t be expressed in the form 7 = urv for some
(u, v) € C and by 4.9. for any word ¢ with this property there exists kK € N such

that the grammar FG(C, L,i) contains the rule (iL), — ¢ for any i = k. If the
grammar FG(L, C,j) contains some rule (jL), — t = urv where (4,v)eC and
J 2 k, then this grammar does not contain the rule (L), — u(jL), v. By construction
of the second degrée of L the rule (iL), — u(iL), v is not contained in the grammar
FG(L, C, i) for any i = k. By 4.8. we have xo (4, v) Ry and consequently by 4.2
L,o@,v is finite since by 4.6. (i) (iL)xo(,oy € (iL), holds for any i > k. Thus
there exists at most finite number of the words ¢ = urve L, where x € X and
(4, v) € C such that the rule (jL), — ¢ is contained in the grammar FG(L, C,j)
for some j = k. Moreover the nonexistence of the rule (iL), — u(iL), u implies
that the rule (;L), — t is contained in the grammar FG(L, C, i) for any i = j and
this completes the proof. O .

The conditions ‘“to be C-finite” and “to be complete” are mutualy independent

(c.f. [10]).

4.11. Examples (a) Any finite language is FG-grammatizable since any set of
contexts is complete with respect to any finite language and any finite language is
C-finite for any set of contexts C.

(b) Any regular language is FG-grammatizable. It suffices to put C = {(a, 4);
aeV}. Clearly the set C is complete with respect to any language over the
alphabet ¥ and any regular language is C-finite ([3]). Moreover this construction
leads to a regular grammar. )

(c) Any even linear language is FG grammatizable (i.e. language generated by
a grammar whose rules are either of the form P — vQu where |u | = | v |, or P — ¢).
We put C = {(a, b); a, b € V}. The set C is complete with the respect to any language
and any even linear language is C-finite ([10]). O
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Abstract. The paper deals with the four-point problem u” = f(t, u, &), u(c) — u(a) = A,
u(b) — u(d) = B, where a,b,c,d, A, BER, a < ¢ < d < b. The sufficient conditions for the
existence of solutions of this problem are established.
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The questions of existence and uniqueness of solutions of the two-point boundary
value problem for differential equations of the second order have a long history,
going back to Picard (1893).

The boundary problems
0.1) u' = f(t, u, u'),

2 .
0.2) Y (@ul"a) + bu g ) =¢, i=1,2,
j=1 )

where a, b, a;;, by, c;e (=, +®), a <b, and f is a continuous function or
satisfies the local Carathéodory conditions, are solved for example in [3], [5], [7],
(8], [12],. In [10], [12] the linear conditions (0.2) are generalized for the case of
nonlinear ones.

The three-point problems for differential equations of the second order were
studied in [1], [2], [9], and [11]. The problem of existence of solutions of the
equation

u" = f(t, u),

satisfying the conditions

u(0) = u(a) = u(2a), ae(—oo, +©)
. is solved in [1], [2].
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The theorems of existence and uniqueness of solutions of the equation (0.1)
satisfying the conditons

u(a)=c1’ “(b)=“(’o)+cz, a,b, to’clacze(_w, +w),a<to <b,

are proved in [11] and for the linear differential equation in [9].
I

Our paper deals with the problem of existence of solutions of the equation

1.n u' = f(t,u,u),
defined on the interval [q, b] and satisfying the conditions
1.2 u(c) —u(@) = 4, ud) — u(d) = B,

where 4, Be (— 0, ®0), —o0 <a<c<d<b< +oo0.
We shall use the following notations:
R= (-, +®), R, =[0, +wo), D = [a, b] x R?, D, = [a,b]x R%,

_Jmax{c —a,b - ¢} ford—a>b-c,
" |max{d-ab-d} ford—as<bh-c,

a=B/b-d)—-Alc—a)(b—-c+d—-a)?,
B=(Ab+d))(c—a)—Bc+a))b-d)b-c+d-a)l,
yE€R, ro=max{|g(|:a<t<b}, r =max{gy)|:a=1t=b}

go(H) = at* + Bt + vy, where

AC'(a, b) is the set of all real functions which are absolutely continuous with
their first derivatives on [a, b].

Car,, (D) is the set of all real functions satisfying the local Carathéodory condi-
tions on D, i.e. fe Car,, (D) iff

S(., x,) : [a, b] = R is measurable for every (x, y) € R?,

f(t,.,.) : R > R is continuous for almost every ¢ € [a, b],

sup {| f(, x, M |:1x1 +1p1 < e} € L(a, b) for any ¢ € (0, + ).

Definition. A function u € AC"(a, b) which fulfils (1.1) for almost every ¢ € [a, b}
will be called a solution of the equation (1.1). Each solution of (1.1) which satisfies
the conditions (1.2) will be called a solution of the problem (1.1), (1.2).

In the whole paper we suppose that fe Car, (D) and 1€ {-1, 1}.

Theorem 1. Let there exist r € (0, + ) such that on the set D the inequalities

1.3) ALf(t, x,y) — 2a]sgn x =2 0 for | x| >r,
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(1.4) | x9S ot x],1y])

are fulfilled, where w € Car,(D,) is a non-negative function, non-decreasing with
respect to its second and third variables and satisfying the conditions

(1.5) lim sup% fo(t, o(b — a), 0)dt < 1.

e+ oo

Then the problem (1.1), (1.2) has at least one solution.

Corollary. Let there exist r € (0, + o) such that on the set D the inequalities
(1.3) and "

(1.6) /@, ) =k x] + () |y| + o |x]+1yD

are fulfilled, where h, , h, € L(a, b) are non-negative functions satisfying
b b
1.7 (b—a)[hy()dt + [hy(1)dt < 1

and o € Car,, ([a, bl X R,) is a non-negative function, non-decreasing with respect
to its second variable and satisfying the condition

(1.8) im L4 jw(t 0)dt =

e~ +ow
Then the problem (1.1), (1.2) has at least one solution.
Theorem 2. Let there exist r € (0, + o0) such that on the set D the inequalities
(1.3) and
1.9 x| salxl+alyl+o|x]+1y])
are fulfilled, where a,, a, € (0, + ) satisfy
(1.10) a,(2(b — a)|n)* + a,(2(b — a)/n) < 1

and  is the function from Corollary.
Then the problem (1.1), (1.2) has at least one solution.

Theorem 3. Let there exist r € (0, + o0) such that on the set D the mequalme:
(1.3) and (1.9) are fulfilled, where a,, a, € (0, + ®©) satisfy

(1.11) a;1(b — a) (2/n)* + a,t2/n < 1

and o : [a, b] x R, = R, is a function such that
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‘ (., @) € L*a,b)  foranygeR,,

(1.12) w(t,.) € C(R,) is non-decreasfng,

l fim L (f 0, ¢)dy*? = 0.

e=*+o a

Then the problem (1.1), (1.2) has at least one solution.

II

Lemma 1. ([6], Theorem 256, p. 219). If fe AC(t,, t,), f' € L*(t,, t;) and f(t;) =
=0, where —0 < t; <t < +®, to€[ty, t,], then

.ff’(t) dt = (21, — tl)/n)’j £ dt.

Lemma 2. Let ¢ € (0, + 00) satisfy the inequality

2.1) et(b — a) (2/n)® < 1.

Then the problem

2.2 v" = Aev,

2.3) _ v(c) — v(a) = 0, v(d) —v(d) =0

has only the trivial solution.

Proof. Let v be a solution of the problem (2.2), (2.3). By (2.3), there exist
t, €(a,c), t,e(d,b) such that v'(¢,) = v'(t;) = 0. Therefore, in view of (2.2),
we have #, € (1, 1) such that v"(z,) = v(¢,) = 0. It follows from Lemma 1, that

b b
ef v'3(t)dt < (2/m)? [ v"(p) dt

and

@.4) jvz(t)‘dt < @/m)* (x(b — a))? f () .
Hence, by (2.2), (2.4), we find, that -

. f o"(1) dt S (e(2/m)* ¥(b — a))? f o"(6) dt
and by (2.1) (2.4), we find, that o(f) = 0 for 7€ [a, b].

Lemma 3. Let a,, a, € (0, + ) satisfy (1.10) and hy, h, € L(a, b) be such that
(2-5) |hl(t)l§ah i=l;29 a§‘§b°
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Then the problem
(2.6) v" = h(D)v + hy(D) v,
(2'7) ”(to) = vl(tl) =0, to, 1 € (as l?)s

has only the trivial solution.
Proof. Let v be a solution of the problem (2.6), (2.7). Then, by Lemma 1,
we have

(2.8) fv’z(t) dt £ 2(b — a)/n)? }v"z(t) dt
and
2.9) fu’(t) dt < 2(b — a)/n)* }v"’(:)dt.

Therefore, by (2.5), (2.6), (2.8), (2.9), we obtain
(f o"*(H)d0)'"? < ((a, 2(b — a)/n)* + a, 2(b — a)/x) (} (1) de)' /2.

From the last inequality, éccording to (1.10) and (2.9), it follows v(f) = O for
te[a, b].

Lemma 4. Let g€ Car,, (D) and ¢ € (0, + o) satisfy (2.1). If there exists g* €
€ L(a, b) such that
| g(t, x,y)1 < g*(r)  on D,
then the problem
v" = Aev + g(t, v,0"), .3)
is solvable.
Proof. See [4] or [8], Theorem 2.4, p. 25.

Lemma 5. Let a,, a, € (0, + o0) and let for any h,, h, € L(a, b) satisfying (2.5)
the problem (2.6), (2.7) have only the trivial solution. Then there exists such y e
€ (0, + ), that for any h,, h, € L(a, b) satisfying (2.5), the inequality

0G(t, s)
ot

(2.10) +1Gt )<y, asts=sb

is fulfilled, where G is the Green function of the problem (2.6), (2.7).
Proof. See [8], Lemma 2.2, p. 12.
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I1I
Lemmas for a priori estimates

Lemma 6. Let r € (0, + o) and w € Car,, (D) be a non-negative function, non-
decreasing with respect to its second and third variables and satisfying (1.5).

Then there exists r* € (r, + o) such that for any function v € AC'(a, b) the con-
ditions

3.1 : v(a =v(e), v(d) = v(b),

3.2 W@ sgnov(f) >0  for |v())| > r, te]a,b],
3.3) || 2wt |v|,Lv'|), fora<t<b
imply the estimate

3.4 lo(@®| + @) | £r* foraZlt b

Proof. The condition (3.1) implies the existence of #,, ¢, € (a, b) such that
v'(t) = v'(ty) = 0.If | v(¢) | > r on (a, b) then, by (3.2), v’ has to be strictly mono-
tonous on (a, b) and we get the contradiction. Therefore there exists #, € (a, b)
such that | v(tp) L < r.

Put ¢, = max {| v'(¢Y) |: a < ¢ £ b}. Integrating the inequality | v'(¢) | £ g, from
totot,wehave |v() L < r + (b — a) go. Let t* € [a, b] be such that | v'(t*) | = g¢.
Integrating (3.3) from ¢, to t*, we get

b
(3.5 00 = Jo(t, r + (b — a) g, o) dt.

Hence, by (1.5), there exists 6 > 0 such that .

b
(1 + 8) lim sup—Z— [ o(t, o(b — a), 0)dt < 1.

e+

Consequently there exists ¢* > 0 such that for any ¢ > ¢* the inequalities

. r+eb—-—a)=(1+9ebd-a
and '

(.6) -

b
fo@,(1+68) (B -a)e, (1+dodt<1

Q
are satisfied. By (3.5) and (3.6), we obtain g, < o*. Putting

r*=r+ (b -a+1)eg*
we get the estimate (3.4).

Lemma 7. Let r € (0, + ), a,, a, € (0, + ) satisfy (1.10) and w € Car,,([a, b] x
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x R,) is a non-negative function, non-decreasing with respect to its second variable
and satisfying (1.8).

Then there exists r* € (r, + o) such that for any function v € AC'(a, b) the condi-
tions (3.1), (3.2) and

BN 1Bl alv@] +a |V + o |v]+]0']), 1e(abd)

imply the estimate (3.4).

Proof. From (3.1), (3.2) it follows that there exist ¢y, ,, 7, € (a, b) such that
v'(t) =0v'(t;) =0 and o(f,) = ¢y, Where |co| < r. Put y(f) = v(f) — ¢, for
a £ t £ b and consider the equation

(3.3 V' =h@)y + h()y + ho(D),

where h(f) = a;. k(D) v"(H) sgn v~ V(0),i= 1,2, hy() = w(t, | v | + | V' |) k() v"(?) +
+h()co, k(D) = (ay [ o] + ay | v'| + ot |v] + |0 )" Since | A() | < ay,
i = 1,2, it follows from Lemma 3 that the problem

(3.9 Y =h(®Oy + h(D Yy,
(3.10) yt)) =y'() =0

has only the trivial solution. Consequently, by Lemma 5, the solution
y(@t) = j G(t, s) hy(s) ds
of the problem (3.8), (3.10) satisfies
[yl + 1y'®) | é?jlho(S)ldS§7(l + r)j(lhl(S)I +o,r+]yl+1yD)ds.
Let go = max {| y(f)| + | y'(¥)| : a £ t < b}. Then
(3.11) Q=yr+1) j (I hy(s) | + (s, r + o)) ds.
In view of (1.8) there exists g* > 0 such that for any ¢ > ¢* the inequality
3.12) yd +7r) ;f(| hi(®)| + o(t,r + @))dt < ¢

is satisfied. From (3.11), (3.12) it is clear that g, < ¢*. Putting r* = o* + r,
we get the estimate (3.4).

Lemma 8. Let re (0, + ), a,,a, € (0, + o) satisfy (1.11) and o : [a, b] x
+ R, = R, satisfy (1.12). ’ '

Then there exists r* € (r, + c0) such that for any function v € AC'(a, b) the condi-
tions (3.1), (3.2) and (3.7) imply the estimate (3.4).
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Proof. In the same way as in the proof of Lemma 6 we can find zeros of v”
and the point 7, such that | v(zp) 1 £ r. By Lemma 1 we obtain

(3.13) (f[ V2 d)t? < 2r/n(f v"3() dn)'/?

and a a .
b b

(3.149) (f () — v(te))* dt)"/? < 1(b — a) (2/m)* (§ v"2(t) dB)"/2.

b
Let us put go'= (f v"%(f)df)"/2! Then, by the Hélder inequality, we get

3.15) 10()| = | [ 0'(5) ds | S oo(b — a)'/?
and '
(3.16) 1)1 < | v ds] + 7 < eolb — @)+ 7.

From (3.7) it follows, by virtue of (3.13), 3.14), (3.15) and (3.16)
0;< (ay%(b — a) (2/n)* + a3 21/n) @o + ayr/b — a +

»
+(J @@, T + @o(b — a + 1)?)dn)*/,

In view of (1.11) and (1.12), there exists ¢* > 0 such that for any ¢ > ¢* the
inequality

(a,7(b — a) (2/n)* + a, 21/n) @ + a;rb—a+

b
+(f*(t, r+o(b —a + 1)*d)'? <
is valid and consequently ¢, < o*. Putting —
rt=r+ 0% - a)'* + (b - a)*?),
in accordance to (3.15), (3.16), we get the estimate (3.4).
v
Proofs of Theorems '

Proof of Theorem 1. Let ¢, € (0. + o0) satisfy

: b
4.1) go(b — a)* + lim supl- fa(t, e(d — a),0)dt < 1
B e+ (@ a

and r* be the constant constructed by means of Lemma 6 for the function
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w(t IxLlyD=w(| x|+ re, |y + 1) + 6| x| +2|a|andforﬂ1econstant
7+ro Put

1 for 0 S s =< r*,
x(r*,5) = {2 — s/r* for r* < s < 2r*,
0 for s = 2r*,

gt x,y) = f(t, x + go(),y + &) — 22
gt x,y) = x* 1 x| + |y gt x,)

and consider the equation
(4.2) v" = Aev + g(¢, v, ), g€ (0, gl

Since ¢ and g satisfy the assumptions of Lemma 4, the problem (4.2), (2.3) has
a solution v. Clearly v satisfies (3.1). Let v(f) > r for some ¢ € [a, b]. Then v(f) +
+ go(H) > r and

W) = Axr*, o] + |0 ) (f(t v + go(D), ' + go(1) — 20) + ev(f) > 0.
Analogously, if v(f) < —7, then v(f) + go(f) < —r and Av"f) < 0. Consequently v
satisfies (3.2) with the constant 7. Further

10" | = /(50 + go(0), V' + go()) — 2¢| + e|v(D) | =
So@|vl+r, v +r)+ 2]l +elud]=a@llv],|v).

According to (4.1) there exists > 0 such that
4.3) eo(b — a)® + (1 + 6) lim sup-:— [o(t, o(b — a),0)dt < 1.
e—*+w X

It follows from (4.3) that there exists ¢* > 0 such that for any ¢ > ¢* the in-
equalities

ro+teb—-a)=s(1+deb—-a), ri+es=1+9de
b
go(b — a)? +!% J(@@, (1 +8)edb—a),(1 +8)o) +2|xl)dt <1.

The latter inequality implies that @ satisfies (1.5). Hence, by Lemma 6, the estimate
(3.4) is valid and v is a solution of the equation v" = Aev + g(¢, v, v'). Thus u
= v + g, is a solution of the equation

4.4 u" = Ae(u — go(1) + S, u, ')

and satisfies the conditions (1.2). Therefore for any ¢ € (0, ¢,] there exists a solu-
tion u, of the problem (4.4), (1.2) satisfying the estimate | u, | + || S r* + ry +
+ ryfora < t £ b. From this it follows that all functions of the set {y, : & € (0, &, ]}
are uniformly bounded with their derivatives and so also equi-continuous on
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[a, b). Therefore, by the Arzeld —Ascoli lemma, there exists a sequence (g);=,,

& — 0 for k —» oo, and a sequence (u, );-,; uniformly converging together with

(u, )%, on [a, b] such that uy(f) = lim u,,(¢) is a solution of the problem (1.1), (1.2).
k= o

Proof of Theorem 2. Let ¢, € (0, + o) satisfy the inequality g4(2/7)* (b — @) +
+ a,(2/n)*> (b — @)*> + a,(2/n) (b — a) < 1 and r* be the constant constructed
by means of Lemma 7 for the function w(, | x| + |y]) = o(t, | x| + |y]| +
+ ro + ry) + a;ry + ayry + 2| a| and for the constants a; + &y, a,,7 =r + ry.
Then, using Lemma 7, we can prove Theorem 2 in a similar way as Theorem 1.

Proof of Theorem 3. Theorem 3 can be proved in the same way as Theorem 2,
only by means of Lemma 8.
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I. INTRODUCTION

For description of global transformations of linear differential equations, it is
important to characterize all groups of those transformations that keep a given
equation unchanged, see [5] and [6]. This characterization requires the following
result concerning iteration groups of certain functions.

II. NOTATION, DEFINITIONS AND SOME BASIC FACTS
In accordance with O. Boruvka [2], the fundamental groups &, is defined as
the group of all functions f: R — R given by the formula

atant + b

) = Arctan v a

a,b,c,deR, |ad — bc| = 1, where Arctan denotes this branch of arctan x + k=
that makes function f continuous on R. Then the elements of the fundamental
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group &, are real analytic bijections of R onto R, they are increasing exactly when
ad — bc = 1. The group operation “o” is the composition of functions; for brevity
the symbol o is sometimes omitted.

Consider the following groups, whose elements are some functions of the
fundamental group #,, restricted to an open interval / < R.

fz’ f: (0, w) => (Oa w)!

atant

Flg= Actan btant + 1/a’

ae(0, ©),beR.
F 3. for each posiiive integer m
S+ (0, mn) > (0, mn),

atant

S btant + 1/a’

ae(0, ), beR.
F,,: for each positive integer m |

f: (0, mn — n/2) - (0, mn — n/2),

f(®) = Arctan (atan 7), ae (0, o).

Let the topology on &, be the relative topology on
{(@,b,c,d)eR*; |ad — bc| = 1},

where R* is considered with the usual topology.

Let 4, and ¥, be two groups whose elements are (some) bijections of intervals
I, and I, onto themselves, respectively. We say that the groups ¥, and ¥, are
C*-conjugate (with respect to ¢) for some positive integer k if there is a C*-diffeo-
morphism ¢ of interval I, onto interval I,, i.e. ¢(I;) = I,, ¢ € CX1,), dp(x)/dx#
#0onl,,
such that

9, =90% 009 ! :={pofoe™!;fe¥,}.

If 4, is a topological group the topology on %, is induced by the conjugacy.

Let « be an element of a group. For any integer k define the element a*! as
follows:

f0] is the unit element of the group,

al¥l = ol¥=115 o for positive k,

al®) = (@~ 1)L~H for negative k,
a~! being the inverse to a. Element a!¥! is called the k th iterate of «.

A group is said to be partially (linearly) ordered if the set of its elements is
partially (linearly) ordered and, for each its elements o, f and y, the relation « < 8
implies both xo y < oy and yo a < yo 8.

- A partially ordered group is called archimedean if the following implication
holds:
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if a"l < B is satisfied for some elements o« and B and for all integers n, then o
is the unit element of the group.

The following theorem is due to O. Holder [3]: There exists an order preserving
isomorphism of any linearly ordered archimedean group into a subgroup of the
additive group of real numbers R.

For proof see also for example A. I. Kokorin and V. M. Kopytov [4].

A group is said to be a cyclic group if there exists an element a of it such that
all elements are iterates of . Element « of this property is called a generator of the
cyclic group. If, in addition,

a["'] + oc[n]

for generator o and different integers m and n, then the group is an infinite cyclic
group.

Now, consider an open interval I = R. Let n = 1 be an integer and ¥ denote
a group of some C"-diffeomorphisms of I into I. Moreover, suppose that graphs
of different elements of ¢ do not intersect each other (on I).

III. THEOREM

If 4 is C"-conjugate to a closed subgroup of increasing elements of the group %,
or F,, or Fap, or Fup,

then either 9 is trivial,

or 9 is an infinite cyclic group with a generator h,e C*(I), dh(x)/dx > 0 and
h(x) # x on I,

or 4 is C"-conjugate to the group of all translations {h_; c € R},

h.:R - R, h(x) =x+c.

Proof
Since different elements of the group ¢ do not intersect each other on I, ¥ can
be linearly ordered in the following manner:
for hy, h, € ¥ we write h; < h,,
if either h,(x,) < h,(x,) for some (then any) number x4 € I, or hy = h,.
Moreover, ¥ is archimedean, because for 4 # id; there holds A(x) # x on I an
the sequences

{h[i](xo)}in- 1 and {h['](xo)},:,“’_ 1

converge to both ends of interval I for any x, € I. Due to the Holder Theorem

there exists an order preserving isomorphism of % onto a subgroup & of the
additive group R.
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If @ is trivial then ¥ = {id;} and ¥ = {0}.

Let & be not trivial and 4 = {ie; ie Z, 0 # e e R} be an infinite cyclic group
generated by a nonzero number e. Denote by A, this element of group % that
corresponds to the number e. Evidently h, € C"(I), dh(x)/dx > 0 and h,(x) # x

on I. Moreover,
4 ={ieZ},

h, being a generator of the infinite cyclic group %. ‘
From now, let 4 be not trivial, neither it be an infinite cyclic group.

1. Consider first the case when ¢ is C"-conjugate to a closed subgroup of the
fundamental group &, with respect to a C"-diffeomorphism ¢ of R onto I. Let
he %, h # id;. Then

a;;tanx + a,,

-1
ho(t) = Arctan
¢ (p( ) a;tanx + a,,

eF,

and a,,a,, — a;,a,; = 1 because dh(x)/dx > 0 on L

Case la. Let
-1( @11 A12 _ (b O

b € R, for a non-singular 2 by 2 matrix C = (2“ Z”). Without loss of generality,
21 “22
let det C = 1. Denote by y one of the continuous functions, element of the

group & ,, given by the formula

Y(t) = Arctan %.
It can be verified that

V1o hoy(t) = Arctan (b* tan f) e &, .
Since h(x) # x on I, we have

¥~ 'o thoy(0) = kn

= 1 1
c-1(%1 %12\ o _ = J )’
(au azz) ( 0 +1
det C = 1 and y € F, be defined as in case 1a. Then

¥ '¢ " 'hoy(s) = Arctan (tan ¢ + 1) e &,,
V19" thoy(n[2) = nj2 + kn

for some integer k # 0.
Case 1b. Let
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for some k € Z \{0}, otherwize h intersects id;.

Case lc. Let
c-1(%1 92\ _( cosom sin wn
as; a,,) ~ \—sinwrn coson)’
weR\Z,det C = 1 and ¥ be defined as above. Then
Vv lo T thoy(t) =t + one F,.

Now, let h and g be two different elements of the group ¥ that do not belong
to the same infinite cyclic group. Denote

h1:=(p‘1htp65"’1 and g,:=(p-1g¢€-9"-1-
Suppose first that

Yi'h Y () = Arctan (b3 tanf),  case la for h,
and
Y;'g¥,(H) = Arctan (b3tan ),  case la for g,

hold for suitable elements y, and ¥, of the fundamental group &#,. Due to the
initial values of y; 'h,¥, and ¥ 'g,¥, at 0, and with respect to the fact that the
relation

VY(t + nn) = Y(f) + nn,
holds for every increasing element y of &, there exist integers n, and n, such
that either Al"! and g!" coincide and then h and g belong to the some infinite
cyclic group, or A"} and g{" intersect each other, the same being true for A1

and gi"21. However both cases were excluded from our considerations.
The same argument shows that neither the situation when

Vi h,(f) = Arctan (tan ¢ + 1), case b for A,
and
¥;'g¥,(f) = Arctan (tanz + 1), case Ib  forg,

nor the case when

Yi'h Y, (f) = Arctan (b® tanf), casela  forh,
and

¥:'gW,(f) = Arctan (tant + 1), caselb  forg,

can occur.
If one of the functions, say A, is of the form described in case Ic, i.e.

vith () =t+ o, oeR\Z,
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t

hen g cannot be of the form in case la
Y3 lgW,() = Arctan (b*tant)  for k # 1,
or of the form of the case 1b
Y3 'g1¥,(f) = Arctan (tan 7 + 1),

because then there again exist integers n, and n, such that A1 and g™-intersect
each other.

Hence in this case 1 when the group ¥ is C"-conjugate to a closed subgroup of the
whole fundamental group &, it remains to consider only the situation when

Yy, () =t + oym, o, eR\Z
and either

Vs 'g1¥,(f) = Arctan (tan 1),
or

Vrlgw,() =t + w,m, @, eR\Z.
In the first of these cases
Y781y =t + kyn ~ for some k, € Z \{0}

due to the initial value of this function at 0. Since

Tiga () = W)™ Wag ¥ ' Wayy) (O

and Y,y is again an increasing element of the fundamental group &, i.e.
Vol (¢t + kn) = Y,0,(f) + kn, we have

Vitga(® = W)™t Wafhu () + kn) = t + kn, ke Z

Hence o, is an irrational number, otherwise h; and g; belong to the same infinite
cyclic group and the same is true for the functions 4 and g, that was already exclud-
ed. However, when w, is irrational, then the union of graphs of functions A{™!
and g'"? for all n, and n, from Z is a dense set in R%., Now we have

h=y,06Gd + 7)o~ 'Y;'  and g = y,06d + kn) @ Y[,

where Y, ¢ is a C"-diffeomorphism of R onto I. Since the group ¥ is closed, we
conclude that it is C"-conjugate to the group of all translations

tet+ec, for all ce R.
Now, let :

wl‘"h,wl(t) =t + wm, w;, eR\Z, case Ic for A,
and

Vvi'gw () =t + wym, @,€R\Z, case Ic for g.
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Then L ‘ oo
K@) = ¢, (07 () + nyoym), .
g0 = ¥,(¥5 (D) + nyw,m)

and the condition A")(7) # g™"2)(¢) on R implies

Yi(t + nyjoym) # Y3(0) + nz“’zv7t

for ¥3: = Y7 'Y, € &, otherwise ™! coincides with g"! that shows that 4, and g,
belong to the same infinite cyclic group, the case already excluded from our con-
siderations. Since

Yt + ) = Y5() + m,
we have
Y3() =t + p(d),
where p is a n-periodic function: p(t + ) = p(f) € C*(R). Hence
t+ nom + p(t + njomr) #t+ p(t) + nyw,m,
or
pt + njom) — p(t) # (0, — nyw,),

for all rte R and all n,, n, € Z, n> + n2 # 0.
If n,w, — nyw; = 0 for some n, and n, then either

p(t + njo,m) > p(o) on R,
or

p(t + njo,m) < p(f) on R.

Neither of these cases is possible for any continuous periodic function p.
Hence n,w, — n;w, # 0 for all integers n, and n,, n} + n3 # 0, that means
that w, and w, are rationally independent. Then for each number #, € R the set

{g"o W")(to); ny, ny € Z}

is dense in R, because for different couples (n,,n,) and (n},n}) the values,
g™lo hlM(t,) and g2 o AlM)(2,) are different, there are infinite number of coumples
(ny, ny) satisfying | n,0, + n,w, | < & for any given ¢ > 0 and, moreover, V¥,
and y, are C"-diffeomorphisms of R onto R for any n € N satisfying

Vi@ =+ 00, Wat) = £ + pa(D),

with zn-periodic functions p, and p,.

Since ¢ is a C"-diffeomorphism of R onto I, and the group ¥ is archimedean
and closed, the union of graphs of all its elements is the whole square I?. In such
a situation we may apply Theorem 1 of G. Blanton and J. A. Baker:({1} which
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states: “Each group whose elements are C"-diffeomorphisms of an interval I
onto I and such that to each point (x,, o) € Ix I there exists just one element h
of the group satisfying h(x,) = y,, is formed by functions

17 (x) + o),

where y is a C"-diffeomorphism of R onto 7 and ¢ ranges through the real numbers”.
In our case we may write

G = yoh,o x4,
where h.: R —» Z, h,(t) =t+c,ceR.

2. Now, suppose that

&2 Lt ol
@ *ho(f) = Arctan —2> Ll

btant + 1/a ’ L

aeR,, beR, is an element of the two-parametric group &, of increasing func-

tions. Since lim ¢~ 'hg(f) = 0, we have
-0,

@ ‘ho(n) = =,

hence ¢~ 'hp = idg, that is excluded from our considerations.

3m. If

@~ *ho(t) = Arctan —2 tan f

btant + 1/a ’ @~ 'ho; (0, mm) — (0, mn),

t=04 t-x-

acR,,beR, then lim ¢"'he(t)=0 and lim ¢ 'he(f) = n,

because s as well as ¢~ 'hp are increasing functions. Hence m = 1, otherwise
h = id; that contradicts to our assumptions. However, if @ # 1 and b # 0 then
the equation

atant

arctan et + ija "

ie. .
atant = (btant + 1/a) tan ¢
is satisfied for ¢, € (0, ) where

da =1
ab

This case is excluded from our considerations. Even the case b = 0 impossible

192

tan tl =



ON ITERATION GROUPS OF CERTAIN FUNCTIONS

© " 'ho(f) = arctan (a? tan ?)
intersects id g, ., at n/2.
If a = 1 then

tant

-1 _
@ "he(t) = arctan Banr il

1+ btant
tan ¢

= arccot (cot ¢ + b), te (0, n),

= arccot

hence h is conjugate to x + x + b, x € R for a fixed b € R by means of the function
¢@o arccot : R — I.

Now, let & and g be two different elements of the stationary group ¢ that do not
belong to the same infinite cyclic group. Then

Y hY(x) + x + b, and Y lgY(x) = x + b,

on R where Y = ¢@o arccot € C*(R), and b, /b, is irrational. Since the union of the
graphs of functions ’

X £ X + nby + nyb, foralln,,n,eZ

is dense in R?, and the group ¥ is closed, it is C"-conjugate to the group of all
translations:

{x+x+c, ceR}L

4m. Finally, if
¢~ 'ho() = Arctan (atani), a> 0,
@~ the: (0, mn — n/2) -» (0, mn — n(2),
then limo~'ho(t) =0 and lim ¢~ 'ho(t) = n/2,

t—=04 t—ox/2 -
and hence m = 1. In this case & is conjugate to the function x - x + Ina, xeR
by means of the C"-diffeomorphism ¢ o arctano exp: R — I.

Now, analogously to case 3m, if & and g are two different clements of 4 that
do not belong to the same infinite cyclic group, they are C"-conjugate to x + b,
and x + b,, respectively, with respect to the some C"-diffeomorphism, the quotient
b,/b, being irrational. Hence the group ¥ is C"-conjugate to the group

{x »x+ c;ceR},

that finishes the proof of the theorem.
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IV. REMARK

The present paper gives technical details of the proof of Theorem 6.3.5 in the
monograph [6], where main steps of the proof were outlined.
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Abstract. Asymptotic properties of the solutions of an equation z = G(t, z) [h(z) + £(t, )]
with real-valued function G and complex-valued functions 4, g are studied. The technique of the
proofs of results is based on the modified Liapunov function method. The results are applied
to the generalized Riccati equation z = g(z, z) — p(¢) z2.

Key words. Asymptotic behaviour, Liapunov function, Riccati equation.

MS Classification. 34 D 05, 34 D 20.

1. INTRODUCTION

Consider the equation
z = h(2),

where 4 is a holomorphic function in a simply connected region £ containing zero
_ which satisfies the conditions A(z) = 0«2z =0, K(0) =0 (j=1,...,n = 1),
h®™(0) s 0, where n > 2 is an integer. The paper is concerned with the asymptotic
behaviour of the solutions of the perturbed equation

1.1 z = G(t,2) [H(2) + g(1, 2)],

where G is a real-valued function and h, g are complex-valued functions, ¢ or z
being a real or complex variable, respectively. The general results for the equa-
tion (1.1) are formulated in Section 2. The last section is devoted to the applica-
tion of these results to the equation
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1.2 = q(1, 2) — p(t) 22

This application gives the generalization of some results of M. R4b [6]. The
technique of the proofs is based on the Liapunov function method with “Liapunov-
like” function W(z) defined in [1].

The case n = 1, which is qualitatively different from the case n > 2, was
investigated in several papers; for the list of these papers see [1] or [2]. The
asymptotic behaviour of the solutions of the Riccati equation

(1.3 : 2 = q(1) — p(1) 2%,

which is a special case of (1.2) was studied by M. R4b and Z. Tesafovd. Some
results dealing with the asymptotic properties of the solutions of (1.1) under the
assumption n = 2 were published in [2] or [3]. Unfortunately, the assumptions of
these results make necessary the existence of the trivial solution of (1.1).
Moreover, the inequalities of the type (2.3) were assumed to be satisfied at
some points arbitrarily close to the point z = 0. This fact is very restrictive and
the results are not applicable to the equations (1.2), (1.3). In the present paper
and in [4] we attempt to remove this limitation.

In contradistinction to the present paper the paper [4] deals with the sufficient
conditions assuring the existence of the solutions z(7) of (1.1) for ¢t - oo and
(1.4) liminf | z(t)| £ 0,

t— o0
where 6 = 0 is a given nonnegative number. Then the conditions which guarantee

(1.5 limsup | z(t) | <

t— o0

for any solution z(#) of (1.1) satisfying (1.4) are obtained. Even though these results
generalize several results of [8], they do not allow to get the results of the type of
Theorem 3 and 4 of the present paper.

In the whole paper we use the following notation:

C — set of all complex numbers

N — set of all positive integers

R — set of all real numbers

I — interval [t,, o©)

Q — simply connected region in C such that 0 € 2

c(r) — class of all continuous real-valued functions defined oh the
set I’ ot

o). . — class of all continuous complex-valued functions defined on
the set I
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H(Q) — class of all complex-valued functions holomorphic in the
region

Int — interior of a Jordan curve with the geometric image I

Cilr — closure ofasetI' = C

Bdr — boundary ofasetI' = C

k, W(2) — see [1, pp. 66 —67]

Av AT+, 77,0 — see[l, pp. 73—74]

B(0, 6) — theset {zeC:|z| < é}.

Let $*e T */p and ¥~ € T ~/p be fixed. Then ¥+ = {K(A):0 <A < i, },
&~ ={R(A): A- < A < o}, where K(1) are the geometric images of Jordan
curves such that: 0e K(4), the equality W(z) = 1 holds for ze K(1) — {0} and
K(1,) — {0} cInt R(4;) for 0 <A, <A, <A, or K(A;) — {0} = Int R() for
A_ < Ay < A3 < 0. Define

KG,d) = U R —{0} for0<i <i, <4,
Ar<p<iz
and
K@, A) = U Rw—{0) for i_ 4, <A <

A2<u<ay

n
8

2. MAIN RESULTS

Suppose G(t, z) [h(z) + g(t, 2)l e CUx Q), Ge C(Ix (R — {0})), ge CUx(Q —
— {0})), he #(2). Assume that h(z) = 0<>z =0 and K’0)=0(j = 1,2,...,
n — 1), hg) # 0, where n = 2 is an integer.

Theorem 1. Let 6 = 0, 9, > 0, 3 < A, . Suppose there is a function E(t) e C(I)
such that

2.1 sup iE(f) dé =x < o,
toSsSt<o s

2.2 9, < 9

and

(2.3) G(t, z) Re {kh{':,’, (1 + %;l)} < E()

holds for t = t,, ze K(84,9), | z| > 6.
If a solution z(1) of (1.1) satisfies

z(t,) € C1K(0, ),
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where t; 2 15,0 < ye* < 3 and
2(¢) ¢ B(0, 6) — K(0, 9,)
forall t = t, for which z(tj exists, then
z(DeClK(0O,B) fort=1t,,

where f = €* max [y, 9,].
Proof. Let # = {t 2 ¢, : | z(f) | > 6, z(¢) € K(9,, 9)}. For t € A we have

W) = Gt, 2) W(z) Re{khgg)[l i gl(lt(,z ;)]}

where z = z(7). Using (2.3) we obtain
(2.4 | W(z() < E(1) W(z(1))

for te . Suppose there is a * > ¢, such that z(¢*) e K(B, 9). Without loss of
generality it may be assumed that z(¢) € K(0, 9) for 7€ [z, t*]. There exists a y,
such that B < y,e* < W(z(t*)). Obviously 9, < y, < W(z(t*)), y, > y. Put t, =
= sup {te[ty, 1*]: z(¢) e C1 K(0, y,)}. From (2.4) it follows that

t
L e exp[- [EQT SO0, teln, ]
t2
Integration over [¢,, 1*] yields

W (z(t*)) exp [_:I E(s) ds] — W(z(t,)) < 0.

Using (2.1) and W(z(t,)) = y,, we get
t*

W(z(t*)) < y, exp [ | E(s) ds] < 7,€" < W(z(t*))
t2
and we have a contradiction. Therefore
2()e C1K(0,B)  for t = t,.

Theorem 2. Let 9, >0, 3 < A,, .s,eI, 6; 2 0 for je N. Suppose there are
Junctions E(f) € C(I) such that

fE,(s) ds = —o0 (G=23,..),

t
sup - [EOdé=n,<0 (i=1,2,..)

3)SsSt<w 3

(2.5 ' 9, <9  (j=12,..),
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and,

(2.6) G(t, z) Re {khg‘,))[l + %(;tT’z;l SE®)

holds for t 2 s;, ze K(9,,9), | z| > &;, je N. Denote
9* = inf [9,e™].
JjeN
If a solution z(?) of (1.1) satisfies

z(t,) € K(0, Se™*),
where t; > s, and

2.7 z(f) ¢ B(0, 6;) — K(0, 3))
for all t = t, for which z(t) exists and all j€ N, then to any ¢, 9* < ¢ < A, there
isa T > 0 such that

z(t) € K(0, ¢)
fort =2t + T.

Proof. Put #; = {t 2 5;: | 2(t) | > §;, z(1) € K(9;, 9)}. For t € #; we obtain

W(z) = G(t, z) W(z) Re {khg}, [1 + %i—) ‘
Using (2.6) we get ,
(2.8 W(z(1)) < E(f) W(z(r)).

By Theorem 1 we have z(f) € K(9) for # = ¢,. Letg, 3* < ¢ < 1, be given. Without
loss of generality it may be supposed that ¢ < 3. Choose a fixed positive integer j
such that

9,e™ < e.
Put ¢ = max [s;, #;]. Let T > | s; — s, | be such that

t
&
;!EJ(S)dS < lnﬁ

fort>1t, + T.Clearly t; + T > o.
We claim that z(¢) € K(g) for ¢+ = 7, + T. Ifit is not the case, there exists a t* >
= t; + T for which

2.9 z(t*) ¢ K(e).
Using Theorem 1 we have
2(f) € K(ce™™, 9) U [K(ce™™) — {0}] = K(9;, 9)

for 1€ [, 1*]. In view of (2.7), | (#) | > &;. The inequality (2.8) is equivalent to
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d t
i {W(z(t)) exp [—;[ Efs)ds]} £0, te#,.
Integration over [a, t*] yields

W(z(t*)) exp [ - j'"E () ds] — W(z(0)) < 0.

Therefore
W(z(t*) < W(z(0)) exp [fE,(s) ds] < s% - % <e,

which contradicts (2.9) and proves z(f) € K(¢) for t > ty + T.
Analogously we can prove the following two theorems corresponding to the
case 3 = A_:

Theorem 1'. Let 6 =0, 9 > A_. Suppose there is a function E(t) € C(I) such that

sup [ E@©)dE = x < o,

HSsSt<w s

9" < 9, < ©
and

—G(t, ) Re {khg?, [1 + % < E(t)

holds for t = ty, ze K(9,,9), | z| > 4.
If a solution z(t) of (1.1) satisfies

z(t,) € Cl K(0, v),
where t; 2 t,, 8 < ye™* < 0 and
2(f) ¢ B(0, ) — K(o0, 9,)
Jor all t = t, for which z(t) exists, then
A)eClK(co, f)  for t = 1,,
where f = e™* min [y, 3,].

Theorem 2'. Let 3 = A_, 9;<0,s5;€l, 6,20 for je N. Suppose there are
Junctions E(f) € C[to, o) such that

fE,(s)ds = —00 (G=23,..),
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sup [E§)dé=x<0 (j=12,..),

$)SsSt<w s

9e® < 9, G=12..)
and,

—G(t,z) Re {khg',’, [1 + %)- SE[)

holds for t = s;, ze K(9;,9), | z| > &;, j€ N. Denote

9* = sup [9,e7].
JeN

If a solution z(t) of (1.1) satisfies

2(t,) € K(o0, 3¢*),
where t; = s, and
Z(t) ¢ B(O’ 5]) - K(wv '91)

Sor all t = t for which z(¢) exists and all je N, then to any ¢, A < ¢ < 3*, there is
a T > 0 such that

z(f) € K(0, €)
fort =1t + T.

3. APPLICATION TO THE EQUATION 2 = g¢(t, z) — p(f) z*

Supposing that ge C(Ix C), pe C(I) and a e C, a # 0, the equation

3.1) z = q(t,2) — p(1) 2*
can be written in the form
(32) Z= G(t’ Z) [h(Z) + g(t’ Z)],

where h(z) = —az?, G(t,z) = 1 and g(t, 2) = q(¢, 2) + az®> — p(f) z>. In view of
[1, Example 1], where Q = C, b = —a, we get h'(z) = —2az, h"(z) = —2a,
n=2 W(z) = exp[Re(2az™")], 44 = A_ =1, k = —a. The sets K(4), where

O0<Al<iy=1lorl=A_<2a< oo, are circles with centres and radii

a
i
——I{ﬂr’f(o’ 1) = {ze C: Re(az) < 0}, K(w0, 1) = {ze C: Re (az) > 0}.

ForaeC,a#0,4>0,B >0, 66(0,%]denote

Q, 5(a) = {ze C: — A Re [a*Z*] — B|Im [a*2%]| > 0},
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Qa(a)={z=ﬂe"1ﬂ€R—{0},Arg&+%—6<<p<Argiz‘+g-+6}.

Obviously,
Q4,8(a) © Q4(a) = {ze C: Re (a’2%) < 0}

for .any A, B > 0, and, to any 4, B > 0 there exists a d, € (O, %t-) such that

Qs(a) = Q4,p(a) for 6 € (0, d,].

First we shall prove the following lemma:

Lemma 1. Assume there are a€ C and C = 0 such that

(3.3) Re[ap()] >0  fortel,

(3.9 liminf Re[ap(1)] >0, limsup|Im [ap(1)]] < oo,
(3.5) Re[ag(t,2)] 2 —C|1Im [a®Z2®]|  for tel, ze Q,4(a)
and

3.6) q(t,0) # 0 for tel

Then every solution z(t) of (3.1) satisfying at t, = t, the condition Re [az(t})] = 0
Sfulfils Re [az(?)] = O for all t > t, for which z(t) exists.

Moreover, Re [az(1)] > O provided z(r) # 0.

Proof. Choose 4, B > 0 so that

Re[ap(D] 2 |al* 4, |Imap()]| < |a|*(B - C)
%) with the property Q,(a) = Q, y(a). For

t = t; such that z = z(f) € Q,,(a) we obtain

for t = t;. There exists 606(0,

Tdt_ Re [az(t)] = Re [az(t)] = Re [aq(t, z)] — Re [ap(t) z*] =

= Re [ag(t, 2)] — | a|~? Re [ap(1) a*2%] =

= Re [ag(1, 2)] — | a|~* {Re [ap(1)] Re [a*z?] —

— Im [a@p(#)] Im [a%z%]} = —C | Im [a®2?]| — 4 Re [a?2%] —

— (B - C)|Im [a*2?]| = —A Re[a%z?] — B | Im [a?Z?]| > O.

If z(f) = 0 we have
—(%—Re [az(t)] = Re[aq(t,0)] > C
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or

X))

T Re[az(t)] = Re[aq(t,0)] = 0.
Because of (3.6) we conclude that

ditlm [az(t)] = Im [aq(t, 0)] + O
in the case (3.7). In view of the fact that Re [az] = 0 implies z € Q,,(a) U {0}, we
get Re [az(r)] = 0 for all + = ¢, for which z(¢) is defined. Clearly, Re [az(£)] > 0
if z(r) # 0.

Remark. If the condition (3.6) of Lemma 2 is replaced by Re [agq(z, 0)] > O,
we get the assertion Re [az(7)] > O for all ¢+ > ¢, for which z(¢) exists.

The next lemma will be useful in our further considerations.
= (al =k a2)/2s
3.8)

Lemma 2. Let 6 > 0, a,, a, € C and let ay, a, be linearly independent. If a =

l<a<exp|d ! min (|a,]
m=1,2
and .

Im 23=m )]
Re [a,z] > 0 (m=1,2), then z ¢ B(0, 8) — K(o0, o)
\\ Imz
\
\\ \

2

Rela;z1~0
tj=1,2)
ela,21=0

Proof. Since Re [a,z] > 0 (m = 1,2) implies Re [az] > 0, it is sufficient to
the line Re [a,z] = 0.

prove that § < min [| z, |, | z, |], where z,, # 0 is the intersection of K(«) with
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Supposing
W(z,) = exp {Re [2az,,']} =« and Rela,z,] =0,

there exists a t,, € R such that

Zpy = i@pTp and Re =Ina.
13T,
Hence
= ds-
T = [Ina]™! Res2="
id,
and
idm ds—m iﬁ,,, A3-m
Z, = Re = — Im -
" Ina ia, Ina apn
Therefore
I I = I am' I a3—m
= |Ina| an,

In view of (3.8) we obtain 6 < min [| z, |, | z |].
Applying Theorem 2’ and using Lemma 1 and Lemma 2 we obtain

Theorem 3. Suppose there are a,, a, € C linearly independent such that the
Jollowing inequalities are fulfilled for m = 1, 2:

3.9 Re [a,p(D] >0  for tel,

(3.10 lim inf Re [a,p(t)] >0, limsup |Im[a,p(1)]| < oo,
3.11) Re[a,q(t,2)l 20 for tel,zeC,

3.12) Re [a,4(1,0)] >0  for tel

Assume there exists D(f) e C(I) such that

lg(t,z)| S D(t) fort21,,zeC
and

(3.13) lim D(f) = 0.

L ind -]

Then any solution (1) of (3.1) satisfying Re [a,z(t,)] > 0 (m = 1, 2), where t; = t,
satisfies the condition

lim z(t) = 0.

t=*

Moreover, Re [a,z(1)] > 0(m = 1,2) fort 2 t,.
Proof. Put a = (a; + a,)/2. Choose 8 = A_ = 1,5, = t,,
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max D(t)

6=2 [la]—L —, §,=j1 i=23..),

! ! Imin Re[ap(?)] 1=J U . )
tel

9; =exp {6; ' min[| a, | | Im (a3_,a™ ) |1}, %, =0, E(r) =2 | a| 67 2D(1) —
— 2 Re [ap(?)]. For j = 2 let S; 2 1o be such that E(r) <0 for 7 2 s;. Then
—G(t, 2) Re {kh"(O) [1 + %]} = 2 Re [az"%q(1, 2)] — 2 Re [ap(?)] < EH
fort25;,z€K(9;,9),]z] > ;. Further it holds that 9 < 9;and §* =sup §; =

JeN
= o0. In view of Lemma 1 and following Remark we have Re [a,z(f)] > 0 (m =

= 1, 2) for all t 2 ¢, for which z(7) exists. By use of Lemma 2 we infer that
z(7) ¢ B(0, 9;) — K(0, 9)

for all # = ¢, for which z(7) exists and all je N. Applying Theorem 2’ we find out
thatto any e, 1 < e < oo thereisa T > 0 such that z(f) € K(o0, ¢) for ¢ = ty + T,
which implies ‘

lim z(¢) = 0.

t—

The replacement of the condition (3.13) by

3.19) pf D(t) dt < o
to
leads to the following theorem:
Theorem 4. Let the assumptions of Theorem 3 be Sulfilled with the exception that

(3.13) is replaced by (3.14). Then the conclusion of Theorem 3 remains true.
Proof. Seta = (a, + a,)/2, 9 =4_ = 1,5 =1,

6,=0 /2|a|jD(t)dt,
to

5] = n:inz [I alll IIm (as—na;l) I]/j (j - 2, 3: "-)9

8 =exp {8 min[|an| IIm(@s-paz)l} G =1,2,..)

/2|a | fp(z)dt

min [|a,| |Im(a;_wan") ]| "

m=1,2

where

(315 o =2max|In"2 w(z(t,),

For j 2 2 let 5; 2 ¢, be such that

2|al| sup j'D(I.‘)dC <47

8)S8St<ow 8
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E(t) = 2| a| 6;D(t) — 2 Re {ap()],

t
;= sup [Ej(&)d¢
s)SsSt<w 8

Then 9¢*' < e* " < 9,, 9" =e“ <e<9;(j=23,..),

9* = sup[s e ™2 sup[9,e M=supe!™' =
jenN

and

—G(t, z) Re {kh"(O) [1 + 862 ]} = 2 Re [z 2q(t, 2)] — 2 Re [ap(t)] < E,(1).

h(z)
In view of (3.15) we have W(z(1,)) > ¢ °, whence z(t,) € K(o0, 9¢**). Analogously

as in the proof of Theorem 3 we infer that Re [a,z(7)] > 0 and z(f) ¢ B(0, ;) —
—K(00, 9;) for all ¢+ = ¢, for which z(f) exists. The application of Theorem 2’ yields
the desired result.

Remark. In a special case p(7) = 1, g(¢, z) = q(¢) the conditions (3.9)—(3.12)
are reduced to Rea, > 0, Re[a,q(Y)] >0 (m = 1,2) and we can put D(1) =
= | q(#) |. Thus we get some results of M. Rab [6].
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The method of upper and lower solutions has been firstly used to solve the
-nonlinear boundary value problems (for short BVP-s) in a noncritical case (see
e.g. [7]). In the last time some papers have appeared they use this method, sometimes
with other arguments, in a critical case (e.g. [S], [2], [6]).

Here on the basis of this method combined with apriori estimates the solution
of the differential equation

(l) ' x" = f(t’ X, x,)
is searched for which satisfies one of the following boundary conditions
2y) x'(a) = 0, x(b)=0," a<b (Neumann’s conditions)

(2;) x(a) — x(b) = 0, x'(@) — x'(b) =0, a<b,
(periodic conditions),

(23) x'(@) =0, x(b) — x(c) = 0, a<c<hb,
(three point conditions),
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(2, x(c) — x(a) = 0, x(b) — x(d) = 0, a<c< £d<b,
(three or four points conditions).

We shall assume that fe C([a, b] x R?, R) and we shall show that all BVP-s (1),
(2))j=1,2,3,4, have similar properties. Besides the existence, the problem of
uniqueness of a solution to the BVP (1), (2)) is studied together with the case that
the set of all solutions to that problem is connected in the space C([a, b], R) provided
with the sup-norm (Peano’s phenomenon). Further a BVP with a parameter is
investigated and finally the theory of isotone and antitone operators (see [1], [8])
is applied to the investigation of a special case of the BVP (1), (2)),/j = 1,2, 3, 4.

In what follows j will be an arbitrary, but fixed number, from the set {1, 2, 3, 4}.

LINEAR PROBLEM

The eigenvalue problem x” = Ax, (2;), has an eigenvalue A = 0 and the cor-

responding eigenfunction x4(f) = ¢ # 0. This problem has no positive eigenvalue
as the following lemma indicates.

Lemma 1. Let K < 0. Then the problem (2)),
(&) x"+ Kx =0,

has only the trivial solution.

Proof. Here and in the sequel only the case (3), (2,) will be proved. In the other
cases the proof is similar. By (3), each nontrivial solution x(f) of (3) has neither
a positive local maximum nor a negative local minimum.

Let x(a) > 0. Then x(7) possesses a nonnegative local minimum in [a, ¢] and
hence x'(c) =2 0, x"(¢c) > 0. This implies that x(#) > 0, x'(f) > 0, x"(¥) > 0 in
(c, b] and hence the second of conditions (2,) is not fulfilled. In case x(aq) < 0
we come to contradiction, too. If x(a) = 0, then x(¢Y) = 0 in [q, c] and by the
considerations as above we get that x(f) = 0 in [c, b], too.

Lemma 2. Let K < 0. Then there exists the Green function G(t, s) of the problem

(3), (2)). This function is continuous in [a, b] x [a, b] and aa—(: is continuous in the

trianglesa§t_S_s§b,a§s=<__t§b.

Proof. Let g(t) € C([a, b], R) and let C(¢, 5) = [eV K¢~ _ o~V-KC-9/2 [ZK)
be the Cauchy function for (3). Then the general solution of the equation x" +
+ Kx = g(f) is of the form
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4) x()=c, e F 4 c,e VR4 jt C(t, 5) g(s) ds

and

t
X)) =K,/ ® —c,e V7 F) 4+ | ac—gt’s—)g(s) ds, astgh.

By substituting x(#) into (2,) for ¢,, ¢, we get the system of two conditions

cl(e‘Fx‘ - e‘FK“) + cz(e"/:Kc - e"/:T“) = —[ C(c, s) g(s) ds,
b
c,(e‘/ﬁ" =e"E 4o ~ e"/:x‘) = —[ C(b, s) g(s)ds +

+ fC(d, s) g(s) ds.

With respect to Lemma 1 this system has a unique solution (¢,, ¢,). Putting this
solution into (4) we get that

x() = |6, )g()ds, astsh,

with a uniquely determined function G(tz, s) and this function has all required
properties.

Lemma 3. Let K < 0. Then the Green function G(t, s) for the problem (3), 2,
satisfies the inequality

%) G(t,5) £0, asts<bh.

Proof. If suffices to show that for each function x(#) € C*([a, b], R) satisfying
the boundary conditions (2;) the following implication holds:

If
(6) x"() + Kx() 20 in [q, B),
then
@) x(H£0 for each ¢ € [a, b].

Again only the problem (3), (2,) will be considered. The solution x(f) of (6)
has the following property: If x(¢,) > 0, x'(t,) = 0 for a ¢, € (a, b), then x(¢) > 0,
x'(f) > 0, x"(£) > 0in [#,, b], while in the case x(t5) > 0, x'(t5) < 0 we have that
x(® > 0, x'(f) <0, x"(£) > 0in [a, t,].

If x(a) > 0, then x'(a) = 0 leads to the inequalities x(¢) > 0, x'(¥) > 0, x"(f) > 0
in (a, b] which contradicts the second condition in (2,). If x(a) > 0, x'(a) <0,
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then x(c) > 0, x’(c) = 0 and again we get contradiction with the second condition
in (2,). Hence x(a) £ 0, x(¢) < 0 and clearly x(¢) £ 0 in [a, c]. This implies that
there is no point ¢, € (a, b) with the property x(z,) > 0, x'(t,) < 0. Hence if
x(tp) > 0 in (c, b), then x'(f) > 0 in (¢,, b] and again we come to contradiction
with the second condition in (2,). Therefore (7) is true.

PEANO’S PHENOMENON

Lemma 4. Assume that

(i) f(t,.,») is nondecreasing in R for each (t, y) € [a, b] X R,
(ii) for each r > O there is an L, > 0 such that

|f(f,X,y) -f(t,x,z)l é Lrly - Z|,
for each pair of points (t, x, y), (t, x,z) € [a, b x [—r, ] x [—r, T].
If x(1), y(t) are two solutions of (1) on [a, b] and x(f) — y(f) 2 0 in [t, t,] < [a, b],
x'(t)) — (1) > 0(x'(¢y) — y'(t,) = 0), then _
x(0) — y(©) > 0, x'(t) = y'(6) > 0in (¢, b) (X' () — y'() = 0in [t,, £,]).
Proof. Denote v(f) = x(f) — y(¢) in [a, b]. Then

®) v"(t) = [f(t, x(8), x'(0) — f(t, y(1), X' ()] +

+ [f(t’ }’(f)’ x,(t)) - f(ta y(t)s yl(t))] in [a: b]'

Consider the case v’(t;) > 0 and v(f) = 0 in [#, #,]. Then there is a maximal
t3,1; < t3 S bsuch that v'(f) > 0, v(¢) > 0in (¢, #3). If v'(t3) = 0, then from (8)
we would have ’

©) () 2 — LAt YD), X(O) = £t YD, YO | = — Lp'(t)
in [t;, t;] with a suitable » > 0 and hence,
V(1) 2 v'(ty) exp [~ Ly(ts — 1)] > 0,

which gives that v’(f) > 0 must hold in [¢,, b] and thus, v(f) > 0 in (¢, b]. If
v'(ty) = 0, then from (9) we only get that v'(f) = 0 in [#,, 1,].

Remark 1. By this lemma, there are no two solutions x(#), y(#) of (1) on [a, b]
such that x(¢,) = (1)), i = 1, 2, and x(¢) > »(¢) in (¢,, t;). Hence, if x(¢;) = y(¢t,),
X'(t;) = y'(t,) and there are points #, = t; + as n — o such that x(z,) > y(z,),
then x(¢) > y(1), x'(©) > y'(¢) in (¢, b].

Theorem 1 (Peano’s phenomenon). If the conditions of Lemma 4 are satisfied,
and x(1), y(1) are two solutions of (1), (2), then

210



SOME NON-LINEAR BOUNDARY VALUE PROBLEMS

(2) x(1) — y(f) = ¢ = const in [a, b];

(b) if ¢ > 0(c < 0), then for each ¢, ,0 £ ¢; < ¢ (0 2 ¢; 2 ¢) the function () +
+ ¢, is a solution of the problem (1), (2;).

Proof. Only the case (1), (2,) will be considered. Denote v(f) = x(f) — y()
in [a, b]. By properly denoting the solutions x(#), y(f) we may assume that v(a) = 0.
By Lemma 4 the case v(a) = 0, v’(a) > 0 would lead to contradiction with (2,).
If v(a) > 0, v'(a) = 0, then by this lemma »(f) is a nondecreasing function in
a maximal interval where v(f) 2 0, hence in [a, b]. If v'(t,) > O for a ¢, €(a, b),
then v(f) would be increasing in [t,, b] which contradicts the second condition
in (2,). Thus u(f) = v(a) > 0. Since v(c) = v(a), the case v(a) > 0, v'(a) <O
would imply that there is a point fy, a < t, < c, such that v(t5) > 0, v'(#,) > 0
and, in view of Lemma 4, we again come to contradiction with (2,). The case
v(a) = 0, v'(a) < 0 can be inverted to the case v(a) = 0, v'(a) > 0 by relabelling
the solutions x(#), y(¢). If v(a) = v'(a) = 0, then either »(f) = 0 in [a, b], or by
Remark 1, there is a point f,, a < t, < b such that v(r) = 0 in [a, t,] and either
o(f) > 0, v'(£) > 0 in (£, b] or v(f) < 0, v'(f) < 0 in (¢, b]. In the last two cases
we come to contradiction with (2,). The statement (2) is completely proved.

To prove (b), suppose that ¢ > 0 and 0 £ ¢; < ¢. Then (1) + ¢3)" = Y () =
= f(t, (1), y'(D) = f(t, p(1) + ¢;, (1) + ¢,)) for each 1€ [a, b], since x"(t) =
= &, y() + ¢, y'(0) = f(t, y(0), y'() = y'(1) in [a, b] and f(t, -» y) is non-
decreasmg in R.

Theorem 2. If f satisfies the strengthened condition (i)

(i) f(1, ., y) is increasing in R for each (t, y) € [a, b] x R, then there exists at most
one solution of (1), (2;).

Proof. Only the case (1), (2,) is proved. Suppose that there are two SOlUthDS
x(1), y(1) of (1), (2,) and that the function v(z) = x(f) — y(1) has a positive local
maximum at #,. If a < t, < b, then v(t,) > 0, v'(,) = 0, v"(t,) < 0. On the other
hand, by (i') v"(t) = x"(to) — y"(t0) = f(to, x(to), X'(t)) — f(to, ¥(to), X'(t5)) > 0
which gives a contradiction. If 7, = a or ¢, = b, then v attains a positive local
maximum at ¢ or at d, and hence the same conclusion follows.

METHOD OF LOWER AND UPPER SOLUTIONS

The notion of a lower and upper solution can be defined for the problem

(D, (2).

Definition 1. We say that a(f) € C?([a, b], R) (B(?) e C*([a, b], R)) is a lower
solution for (1), (2;) (an upper solution for (1), (2)) if
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(1) 2 f(t, a(D), (1)),  (B"(D) < f(1, B(0), B'(1))  for every 1€ [a, b]
and in case (2,)
an “@=z20, a® =0 (Ba=07p(0)=z0);
in case (2,)
(12) «(@) — a(b) =0, o'(a) —'(t) 20 (B(a) — B(b) =0, B'(a) — B'(b) = 0);
in case (2;)
(13) (@ =0, ad)—ac)<0 (B(@=0p0) - ) = 0);
in case (2,)
(14) a(c) —a(@) =0, ad) —a@d =0 (B(c) — Ba) = 0, f(b) — B(d) 2 0).
Remark 2. If we denote '
g = a’() — f(t, a(®), €'(1), h() =B"() — f(1, B(1), (1)), t€la b,

and o(f) (w(?)) is the solution of (3) for K < 0 which satisfies the same boundary
conditions as a(?) (B(7)), e.g. in case (2,)

v(c) — v(a) = alc) — a(a), v(b) — v(d) = a(b) — «(d),
w(c) — w(a) = B(c) — Bla),  w(b) — w(d) = B(b) — B(d)),
then

(15) gt)20, h(r) =0 in [a,b]

and by using the identita (x(f) x'(f))’ = —Kx%(#) + x'*(r) which is true in [a, b]
for each solution x(7) of (3) we get that

(16) u(f) =0, (w(H) 2 0) in [a, b].

Hence if G(t, 5) is the Green function for the problem (3), (2;), then the lower
solution a(f) and the upper solution B(f) for that problem satisfy the relations

y
() = v(t) + [ G(t, ) [f(s, «(s), «'(5)) + Ka(s) + g(s)]ds,

b
B = w(®) + | G, 5) [f(s, B(9), B'(8)) + KB(s) + h(s)] ds,
and in view of Lemma 3, (15), (16), we have
(17 a() £ Ta(r), P =2 TR, telab),
where T: C!(la, bl, R) = C*([a, b], R) is the operator defined by
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(13) Tx(t) = fG(t, s) [f (s, x(s), x'(s)) + Kx(s)] ds, ast=sbh.

The meaning of T is based on the equivalence of the problem (1), (2)) to the integro-
differential equation

b
19 x(t) = [ G(t, ) [f(s, x(s), x'(s)) + Kx(s)]ds, a=<t=<bh.
The existence of the BVP (1), (2;) will be proved by using the method developed
by K. Schmitt in [7]. First we shall deal with a modified problem (2)),
(20) x" + Kx = F(t, x, x'),

where K < 0 and F is continuous on [a, b] x R,

Lemma 5. Let there exist a constant L > 0 such that
| F(t, x,y) | S L

Sor all (t, x, ) € [a, b] x R%. Then the BVP (20), (2;) has a solution.
Proof. Let C' = C!([a, ], R) be endowed with the norm || x ||; = sup | x(¢) | +
astsd

+ sup | x'(¢)|. Then (C%, ||.||,) is a Banach space. Define the mapping T},:
astsh

C!' - C! by setting for each x e C!
b
Tyx(t) = [ G(t, s) F(s, x(s), x'(s))ds, a=<tZh,

where G is the Green function for (3), (2)). If

N= sup |G@#,s)|(b—a), N;= sup 964,8)
[a,b1% [a, 5] to,b1x0a,57|  OF

then we have that | T x(f)| £ NL, | (Tyx)' (¥) | £ N,L. Therefore T; maps the
closed, bounded and convex set

(b - a)!

B, = {xeC':|x(0)| S NL,|¥()] S NL,a <t < b}

into itself. Furthermore T,B, is compact. Hence, by the Schauder fixed point
~ theorem T has a fixed point in B,. This is a solution of (20), (2)).

Lemma 6. Assume that the assumption of Lemma 5 is fulfilled and that there
exist a lower solution a(t) and an upper solution P(f) of the problem (20), (2;) such
that a(f) £ B(f), a < t < b. Then there exists a solution x(f) of (20), (2;) with the
property

(21 a(f) £ x() < p(t),  for every t € [a, b].
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Proof. Define the function H(t, x, y) on [a, b] x R? by setting

F, B0, ) + = 2= PO 5 55 gy,

2 14 x
H(t, x, y) = {F(t, %, y) if a(t) = x < (1),
F(t, (1), y) + % "1 ;“:g) if x < a(f).

Since - F is bounded, H is also bounded. H is, together with F, continuous on
[a, b] x R%. Hence, by Lemma 5, there exists a solution x(f) of x” + Kx = H(t, x, x'),
(2;). We now show that (21) is true. Denote v(f) = x(1) — (), t € [a, b). If v(£) £ 0
on [a, b] were not true, then there would exist a point 7, € [a, b] at which v(?) attains
its positive absolute maximum in [a, b].

If ty € (a, b), then v(t,) > 0, v'(¢y) = 0, v"(f,) < 0. On the other hand, v"(z,) =
= x'(t) — B'(t) = —K(x(tg) — Blt)) + = XU =BUo) _ ¢ Lrich is a con-

214 x%(t)

tradiction. The case t, = a or t, = b also leads to contradiction, since the condi-
tions (2)), (11)—(14) imply that there is an inner point ¢, €{a, b) at which v(7)
attains its positive absolute maximum.

Similarly x(f) = «(f), a < t £ b, can be proved. This completes the proof of
Lemma 6. ' v

Definition 2 ([2], p. 174). We say that the function f satisfies a Bernstein —
Nagumo condition if for each. M > 0 there exists a continuous function hy,:
sds

———= 00 such thatforallx,| x| £ M,
hy(s) &

[0, ) — [ay, ) with ay > 0 and |
allte[a, bland all ye R

Lemma 7 ([3], p. 503, [2], p. 174). Let f satisfy a Bernstein— Nagumo condition.
Let x(1) be any solution of (I) on [a, b] satisfying the condition | x(f)| < M,a < t <
< b. Then there exists a number N > 0 depending only on M, hy; such that | x'(1) | <
< N on [a, b). More exactly, N can be taken as the root of the equation

N sds

—— = 2M.
2M/(b—-a) hp(s)

_ Theorem 3 (Compare with [5], pp. 20—30). If (), B(¢) are lower and upper
" solutions for the BVP (1), (2;) such that a(f) < B(¢) on [a, b] and f satisfies a Bern-
stein— Nagumo condition, then there exists a solution x(f) of (1), (2;) with a(f) =
Sx()sp(),astsh
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Proof. Let M = max [sup |a(f)|, sup | B(¢)|]. By Lemma 7, there exists
te[a,b] te[a,b]

an N > 0 such that for each solution x(f) of (1) the implication holds: If | x(¢) |
< M on [a, b], then | x'(f) | £ N on the same interval. Let N be such that N >
> |a'(D) |, N> | p@2)| for every t € [a, b].
Define F(t, x, y) on the set wx R where w = {(t, x) e R*: a(t) S x < B(), te
€ [a, b]} by setting
f(t, x, N) + Kx, if y> N,

F(t, x,y) = {f(t, x,y) + Kx, if |y| =N,
- U, x,—N)+ Kx, ify<—N

and extend to [a, b] x R* by the relation

F(, B(t), ), if x> B(®),
E(t, %, y) = {F(t, #(.g), i < olf).

Then F is bounded and F(z, a(?), a'(2)) = f(t, (1), &'(2)) + Ko(2), F(¢, B(2), B'() =
= f(t, B(), B'(1)) + KB(2), hence «(f) is a lower solution and B(¢) is an upper solu-
tion of (20), (2;). By Lemma 6 there exists a solution x(f) of that problem such
that a(?) £ x(¢) £ B(?), te[a,bl. In view of the definition of the function F,
x(?) is the solution of the equation x” = f,(, x, x’) where

(f(,x,N),  if y> N,

filt, %, 9) = {8, %, ), if -N<ys<N,
f(tax9 —N)’ lfy < -—-N

and

| fit, x, )| S hy(lyl)- forallte[a,b],|x| <M, ad |y|=N.

By Lemma 7, each solution z(7) of the equation x” = f;(#, x, x") satisfying | z(¢) | <
< M fulfils | Z(f) | £ N and thus x(7) satisfies the inequality | x'(f) | < N in [a, b]
which implies that x(f) is a solution of (1), (2;). The theorem is proved.

Denote

22) ¢(c) = min f(t, c, 0), ¥(c) = max f(t ¢,0) for each ceR.
asStsb asts

The functions ¢, Y are continuous and (p(c) < Y(c) for every c € R.
A necessary condition for the existence of a solution to (1), (2;) is given by the
lemma. .

Lemma 8. The following statements are true:

1. x(f) = ¢, a £t £ b, is a solution of (1), (2)) if and only tfrp(c) ¥(c) = 0.
2. If there exists a solution x(1) of (1), (2;), then L
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(23) Y(c3) 2 0, p(cs) £ 0,
where ¢; = min x(t), ¢, = max x(t).
astsh astsh

3. If Y(c¢) < 0 in an interval [c,, c,] or ¢(c) > 0 in that interval, then there is no
solution x(1) of (1), (2,) such that

(24) ¢t S x(f)<c, forallte]a,b).

The proof of the statement 1 is trivial. The second statement follows from the
fact that for each solution x(¢) of (1), (2;) there exists a point ¢, € [a, b] such that
x(?) 2 x(to) = c3 (x(¥) = x(ty) = c,) for every te[a, b] and x'(t,) = 0, x"(¢y) =
2 0(x'(#p) = 0, x"(#y) = 0). The third statement follows from the second one.

A sufficient condition for the existence of a solution to (1), (2)) is established
in the following corollary to Theorem 3.

Corollary 1. If f satisfies a Bernstein— Nagumo condition and there exists a pair
¢y S ¢, such that
(25) ¥(c,) £ 0 = o(cy),

then there exists a solution x(t) of (1), (2)) satisfying (24).

Proof. By (10)—14), f(f) = c,, a < t < b, is an upper solution of (1), (2)) iff
Sf(t,¢2,0) 2 0in [a, b] and a(f) = ¢, t€[a, b], is a lower solution of (1), (2)) iff
f(t,¢4,0) < 0 in the same interval. Both inequalities are satisfied in [a, b] when
(25) is true.

Corollary 2. If f satisfies a Bernstein— Nagumo condition and there exists
a sequence of pairs {cy}, {cu}, k = 1,2, ..., such that
Cix S C2;s Cak < Crsk+1> Y(ei) £ 0 = olean)s k=1,2,...,

then there exist infinitely many solutions of (1), (2)).

BOUNDARY VALUE PROBLEM WITH A PARAMETER

Consider the problem (2)), ‘
(1) x"=f{t, x,x) + s,

with a real parameter s.
Then the following statements are true:

1. If B(¢) is an upper solution of the problem (1,), (2,), then B(7) is a.lso an upper
solution for (1,), (2;) for each s = s;.

2. If a(¥) is a lower solution for the problem (1,), (2;), then a(7) is also a lower
solution for (1,), (2;) for each s < s,.
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3. Let f(z, ., y) be nondecreasing in R for each (¢, y) € [a, b] x R. Then the follow-
ing statements holds: If () is an upper solution and «(f) a lower solution of (1,),
(2;), then for each ¢ > 0 the function f(#) + ¢ is also an upper solution and
a(f) — c is a lower solution for the same problem.

4. Let f(4, ., y) be nondecreasing in R for each (¢, y) e [a, b]x R. If s; < s, and
there exists an upper solution f,(¢) for the problem (1,,), (2;) and a lower solution
a,(?) for the problem (1,,), (2;), then for each s, 5; < s < s,, there exists a lower
solution a(f) and an upper solution f(#) of (1), (2)) such that a(f) < A(¢) on [a, b].

Proof. By the statements 1 and 2, f, is an upper solution and «, is a lower
solution of (1,), (2;) for each s, s; £ 5 < s5,. Then by taking sufficiently great
¢ > 0, on the basis of the statement 3, we get that a(f) = «,(f) — ¢ and B(¢) =
= By(f) + ¢, a = t £ b, are a lower and an upper solution for (1,), (2,) with the
desired property.

Let ¢(c) and y(c) be defined by (22). Then the following statements hold:

5. B(f) = ¢, a <t £ b, is an upper solution for (1,), (2;) for each s = —¢(c).
o(f) = c,a £t £ b, is a lower solution for (1), (2;) for each s < —y(c).

6. If ¢, < ¢, and Y(c,) < ¢(c,), then for each s such that

—(c;) S 5 = =Y(cy),

¢, is a lower solution, c, is an upper solution for (1,), (2;).
On the basis of the last statement we prove the theorem.

Theorem 4. If f satisfies a Bernstein— Nagumo condition and is such that there
exist two sequences

€1 >C>..>C> ... > —0, d<dy<dy<..<d,<..—>»

as n — oo where ¢, < d, and there exists a number s, with the property
(26) —'(P(d,,)< 5 < —W(Cn), h = l’ 2, ceey

then the set of all s for which there exists a solution for (1,), (2;) is an interval contain-
ing s, as an inner point.

Proof. Since c, is a lower solution and d, is an upper solution for (1,,), (2)),
there exists a solution x,,(f) to (1,,). (2;). Clearly s, can vary in the open interval
(—@(dy),—¥(c,)). Suppose that 5.< s, and that there exists a solution x3(#) to
(13), (2). Then for 5,5 < 5 <5y, x3(f) is an upper solution to (1,), (2)) and, in view
of the statement 6 and (26) c, with sufficiently great n, is a lower solution whereby
¢, < x3(¢) for each te[a, b]. Hence by Theorem 3 there exists a solution x,(¢)
of the problem (1,), (2;). Similar considerations for s > 5 > s, can be carried out.
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Corollary 3. If f satisfies a Bernstein— Nagumo condition, f(t, ., 0) is rondecreasing
in R for each t € [a, b] and there are numbers ¢, < d,, s, such that

27) —o(dy) < 5, < =¥lcy),

then the conclusion of Theorem 4 is true.

Proof. Since both functions ¢(c), Y(c) are nondecreasmg, the inequalities (27)
imply the inequalities (26) and the result follows. ,

Remark 3. In the proof of Theorem 4 we have shown the following implications:
. If s £ 5 < sy, then for each solution x3(7) of (13), (2;) and each constant c, <
< x3(f), a £ t £ b, satisfying (26), there exists a solution x,(¢) of (1), (2 ;) such that

S X(NSa3(r), astsh

If 5, < 5 <5, then for each solution x3(7) of (13), (2;) and each constant d, >
= x3(f), a = t £ b, for which (26) is true there exists a soiution x,(#) of (1), (2))
with the property . : .
xx(=xH=<d, ast=bh

By this remark and by Corollary 3 we get the following theorem. In this theorem
the Banach space C' = C!([a, b], R) is provided with the same norm as above.

Theorem 5 (Comparison theorem), If f satisfies a Bernstein— Nagumo condition,
f(t, ., ) is increasing in R for each (t, y) € [a, b] X R and the condition (27) is fulfilled,
then there exists an interval I such that for each s € I there exists a unique solution
x,(?) for (1,), (2;) whereby

(28) 5y < S, implies that x,(t) 2 x,,(t) in [a, b] for any two s,, s, € I

and the solution x,(f) continuously depends in.C* on se I.

Proof. The existence and uniqueness of the solution to (1,), (2;) for each s from
an interval I follows from Corollary 3 and Theorem 2. The last remark gives the
implication (28). ‘

Fix a constant K < 0 and denote G(#, u) the Green function for (3), (2;). Then
for each s € I the solution x,(f) of (1,), (2)) satisfies the integral equation -

@) x) = J 6l u) [ x5, x) + Kxu) + 5] du =

o = + fG(t, u) tf(u, x,(u), x,(u)) + Kx,(u)] d“, | ast=<bh
Then ‘

G0 = | 2o 26w [f, %), xw) + Kx@]dy, astsb.

218



SOME NON-LINEAR BOUNDARY VALUE PROBLEMS

Let {s,} be a nonincreasing sequence in I converging to s I. Then x,(7) is
a nondecreasing sequence converging to a function x(7) < x,(¢) pointwise in [a, b].
Further both sequences {x, }, {x; } are uniformly bounded on [a, b]. The uniform
boundedness of {x,(f)} follows from the inequalities x,,(f) < x, () < ... £ x,(¢f)
for each n = 1, 2, ..., and each f€ [a, b]. The uniform boundedness of {x;"(t)}
follows on the basis of the Bernstein — Nagumo condition from that of {x, (f)}.
As x; (1) = f(t, x, (1), x;,(1)) + s,, the sequence {x; (¢)} is uniformly bounded on
[a, b], too and hence, by the Ascoli theorem, there is a subsequence {x,, (1}
such that {x, , (1)} converges uniformly to x(#) and {x] ,,()} to x'(¥) on [a,b].
From (29), (30), by the limit process for s = 5,4, we get that

b
x(t) = 2 + [ 6t w) [f (4, (), W) + Kx(w) +s]du, a<t<b.
This implies that x(¢) is a solution of (1,), (2;) which, on the basis of the uniqueness
result, gives that x(f) = x,(f), a £ t £ b, and the proof in this case is complete.
Similarly we can proceed when {s,} is a nondecreasing sequence. In both cases
the whole sequences {x,(f)}, {x; ()} converge uniformly (to the function x(f)
and x(7), respectively). Since any convergent sequence {s,} < I contains a mono-
tonic convergent subsequence, the proof by contradiction gives that also in the
general case {x,(f)} converges uniformly on [a, b] to x,(#) and {x; (£)} to x,(¢)
what we had to prove. ' '

Theorem 6. If f satisfies a Bernstein— Nagumo condition and is such that there
exist two sequences

S <8 <o 5 < oo 200, S_g>8.5>...>8.,> ... —00,
asn— oo with s_; < s, and the sequences
d<dy<..<d,<...> o, C1 5 C3 > e >0 > oo =+ —m,
as n — o where c; < dy, with the property
E3) S YD) s,z -ed), n=12..,

then the problem (1,), (2;) has a solution for each s € R.

Proof. By (31), and the statement 6, for each s € [s_,, s,] ¢, is a lower solution
and d, is an upper solution of (1,), (2;). Hence by Theorem 3, there exists a solution
x(#) for (1,), (2)) such that ¢, £ x,(f) < d,,a<t < b.
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A SPECIAL CASE OF f

When f = f(t, x), then this function satisfies a Bernstein — Nagumo condition.
Now the functions ¢(c), ¥(c) will mean

(32) ¢(c) = min f(t, c), Y(c) = max f(t, c).

astsb astsbh

Consider the case
f(¢,.) is nondecreasing in R for each ¢ € [a, b].

Then ¢(c) and Y(c) are nondecreasing, too. Since the conditions of Lemma 4 are
fulfilled, Peano’s phenomenon can occur for the problem (2)),

(33) : » = flt, %)

Further, by the statement 4, if there exist a lower and an upper solution for (33),
(2)), then there exist a lower solution a(#) and an upper rolution f(7) for that problem
such that a(f) < B(¢) on [a, b] and by Theorem 3 we get the following theorem.

Theorem 7. If f(t,.) is nondecreasing in R for each t€ [a, b] and there exists
a lower solution «(f) and an upper solution p(t) for the problem (33), (2;), then there
exists a -solution x(f) of that problem satisfying

() —c=x() =P +c, as=t=sh

for a ¢ 2 0 such that a(t) — ¢ < B(¢) + c for all t € [a, b].

Now we shall apply the theory of antitone operators (see [8]). Consider the
vector space C = C([q, b], R) with the sup-norm. Then C is a Banach space which
can be ordered by the rule x < y iff x(7) < y(t) for every ¢ € [a, b] for two func-
tions x, y € C. C with this ordering is an ordered Banach space. The positive cone
in this space is made of all nonnegative continuous functions on [a, b]. P is normal.
If « < B are two points of C, then the subset [¢, f] = {ze C: a < z < B} is called
an ordered interval.

Suppose that K < 0 is a constant and consider the operator T defined by (18).
Since ‘

(34 Tx(t) = f G(t, ) [f(s, x(s)) + Kx(s)]ds, a=t=<bh,

T: C - C. We can easily show that T is a completely continuous operator. If the
function f(¢, x) + Kx is nondecreasing in x € R for each fixed ¢ € [a, b], then T is
antitone, which means that for any two elements x, ye C, x < y implies that
Tx = Ty. By Theorem 1 in [8], p. 533, we get the following theorem (compare:
with Theorem 10 in [8], p. 552).
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Theorem 8. Let there exist two numbers K < 0 and c, € R such that the function

(35 f(t,x) + Kx £ ¢ for each (¢, x) € [a, b] x R,
or
f(t, x) + Kx =2 ¢4 for each (t, x) € [a, b] x R
and let the function f(t, x) + Kx be nondecreasing in x € R for each t € [a, b]. Then

there exists a unique solution of (33), (2)).

Proof. Since G(¢,5) < 0 for all (¢, s) € [a, b] X [a, b], the inequality f(¢, x) +
+ Kx < c, implies that

b
Tx(f) 2 [ G(t, 5) ¢y ds = fl—é— for all x(t) e C.

Similarly in the second case of (35) T is bounded from above. Then the existence
of a solution to (33), (2;) follows from Theorem 1 cited above. As f(z, .) is increasing
for each ¢ € [a, b], the uniqueness of that solution is implied by Theorem 2.

In cale

the function f(¢, x) + Kx is nonincreasing in x € R for each ¢ € [a, b],

the operator T given by (34) is isotone, i.e. if x, y e C and x < y, then Tx £ Ty.
By Corollary 2.2 ([1], p. 369) we get the following theorem.

Theorem 9. Let there exist a number K < 0 such that the function f(t, x) + Kx
is nonincreasing in x € R for each fixed t € [a, b] and let there exist a lower solution a(t)
and an upper solution () of the problem (33), (2;) whereby a(t) < (1), a < t < b.
Then there exist a minimal solution u(f) and a maximal solution v(t) of (33), (2;)
in the order interval [a, B]. Moreover, the sequences {a,};_o, {B,}p=0 defined by

<ZO(I) = a(t)’ ap+1(t) = T(Zp(t), ﬂo(t) = ﬁ(t)’ ﬁp+ l(t) = Tﬂp(t)’
ast=<h, p=0,12...,

are such that

wo) S 0D S SHOS . SUDS oD S . SFD S ... S
=< Bi(0) £ Bo(D), ast=sb,

and lim o, (f) = u(?), lim B,(f) = v(¢) uniformly on [a, b].

P~ P~
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results for self-adjoint 2n-order functionals.
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1. INTRODUCTION

The theory of singular quadratic functionals as introduced by Morse and
Leighton [11] and followed by [12, 13] involves the study of functional

) Ty 51,521 = | [00) y20) — a(®) Y] dt,

a<s; <s,<bas s >a, s, >b and y belongs to the prescribed class of
“admissible arcs” defined on (a, b). Morse and Leighton [11] discovered a con-
dition termed the ,,singularity condition* which with the classical condition
(disconjugacy of the corresponding Euler equation) yields necessary and

sufficient condition for singular functional to be nonnegative, i.e. liminf J [y;
s1—a 32-b
51, 8,] = 0. Comprehensive bibliography concerning the problem may be found

in [16].
In this paper we solve the problem of minimizing of the singular quadratic
functionals corresponding to linear Hamiltonian systems. The principal idea we
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use is the application of the transformation theory of linear Hamiltonian systems
and corresponding quadratic functionals. In particular, we establish results for
singular functionals in terms of a singular condition similar to that of [11, 17]
and for regular functionals in terms of a phase matrix. In the case of the second
order linear differential equation this approach was originally proposed by
J. Krbila [10] for associated regular functionals (on the compact interval) and
later in [8, 9] for singular functionals (1). However, the result in [8, 9] is incorrect
as provides the counter example in [5].

Statement of the problem. We suppose the second order variational problem
corresponding with the linear Hamiltonian system

Yy =B@®y+ C@)z
(¥) . 2 = —A({)y — B"()) z,

where A(?), B(#), C(t) are nx n matrices of real-valued functions continuous on the
interval I = [a, o), the matrices A(f), C(f) are symmetric.

We suppose (1) to be identically normal on 1, i.e. the trivial solution (y, z) = (0, 0)
is the only one solution of (2) for which y(#) = 0 on a nondegenerate subinterval
of I.

We consider the functional
b
A3) Iy, z; a, b] = [ [27(8) C(#) 2(r) — y" (1) A(t) y(1)] dt,

a < b < . Integrals employed throughout are Lebesgue integrals and their
extensions.

We say that vector functions y(f), z(f) are admissible curves on I = [a, o) with
respect to (2) if

i) z(f) is (Lebesgue) measurable on I and y(f) is a solution of y' = B() y +
+ C(1) z(?) a.e., satisfying boundary conditions y(a) = 0, lim y(f) = 0;

=

b
ii) [z"®z()dt <0  for every b,a < b < 0.

We seek conditions under which

4) lim inf J[y, z; a,t] 20

1=

for all admissible functions y(f), z(#) on [a, o©0) with respect to (2). Whenever (4)
holds for the admissible class of curves we say that [a, c0) affords a minimum
limit to J.
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Remark 1. Some special cases of the problem have been investigated in the past.
If n =1, C(f) # 0 then (2) and (3) corresponds to the second order equation
(PO y) + q()y = 0 and to (1), respectively (Case I). If B(r) = 0, C(7) being
invertible then we have quadratic functionals of n dependent variables correspond-
ing to the second order linear system

b
fOTC™Yy — yTAy)dt > (CT'Y) + AY =0,

investigeted by Tcmastik [17, 18] (Case II).

The condition of the identical normality of (2) eliminates pathologies in the
investigation of conjugate points present in an abnormal differential system (2),
see [16]; in the terminology of [4] this condition is called “‘controllability condition”.

The introduced definition of admissible functions agrees with that of [4, 16]
for the compact interval and with that of [17, 18] for Case II.

2. PRELIMINERIES

Corresponding to (2), we have the matrix equation

Y =B Y + CO) Z,

@* Z' = —A(H)Y - B"(1) Z.

In accordance with [4, 16] we use the following notation. We say that (¥ (), Z(7))
is a solution of (2)* if Y(¢), Z(f) € L ¥(I) (absolutely continuous) and (2)* satisfy
a.e. on I If (Y(9), Z(f)) is a solution of (2)* then Y'(¢) Z(r) — ZT(1) Y(1) = K,
where K is a constant nxn matrix. If K = 0 then (¥(7), Z(¢)) is called conjoined
(an alternate terminology for this concept is isotropic; see [4]). Two points a,be R
are conjugate with respect to (2) if there exists a non-trivial solution (y(?), z(¢))
of (2) such that y(a) = 0, y(b) = 0. (2) is disconjugate on I if there exist no two
distinct points from I that are conjugate with respect to (2).

Let be (2) disconjugate on [a, ). Then there exists a conjoined solution
(Yo(2), Zo(£)) of (2)* such that the matrix Y(f) is nonsingular on (a, o) and

lim [} Yo' C@)(¥e) ™' 1] =0.

The solution (Y(7), Z,(r)) with these properties is called principal at infinity.
A principal solution (Y,,Z,) at a is defined similarly; one can verify that this
solution satisfies the initial condition Y,(a) = 0, Z,(a) = N where N is a non-singu-
lar matrix. A solution (¥(f), Z(¢)) of (2)* is called antiprincipal at infinity if it
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is conjoined, ¥(¥) is non-singular for large 7 and

lim [f Ylmewy o]t =

where M is a non-singular matrix.

If (Y(¢), Z(?)) is a solution of (2)* such that Y(¢) is invertible for all ¢ then
W(t) = Z(¢) Y~'(¢) is a solution of the Riccati equation

(5) W' + A(t) + WB() + BI(&) W + WC() W = 0.

The solution (¥(?), Z(f)) is conjoined if and only if the corresponding solution W(¢)
of (5) is symmetric. If (Y ,(¢), Z,(?)) is the principal solution at a then the solution
W () = Z,(?) Y '(¢) of (5) is called the distinguished solution at a.

Our method will be based on the transformation of linear Hamiltonian system
given in the following two theorems.

Theorem A. [1, Theorem 6.3]. Let D(f), E(f)e A 4(I) be nxn matrices D(f)
being non-singular, for which D"(t) E(t) = E"(f) D(?).
Then the transformation

y = D() u,

©) z=Efu+ D" (H)v

transforms (2) into the system

) u = By(H)u + Co(H) v,
v = —Ay() u — BY(D) v,

where By(f) = D~ (=D’ 4+ BD + CE), Cy(f) = D™'CDT™?, Ay(f) = D"(E' +
+ AD + B'E) + (=D’ + BD + CE).

Remark 2. The transformation (6) keeps the identical normality, disconjugacy
on the given interval /, and a principal (antiprincipal, conjoined) solution is trans-
formed into that of the same type.

Obviously, the transformation (6) with E(f) = 0, D' = B(¢) D transforms (2)*
into the “off-diagonal” system

) U =Ccov,
: V' = —A() U,

where C(t) = D"CDT‘I, A = DTAD.

Theorem B. 5, Theorem 1). There exist nxn matrices D(1), E(f) € #%, D(1)
bemg nonsmgular, such that the transformation U=D(1) Y,V =E(f) Y + D" () Z
transforms the system (8) into the system
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¥ = Q) Z,
© Z = -Q0) Y,

t
where Q(f) = D™*CD"~'. The matrix A(t) = | Q(s) ds is called a phase matrix
of the system (2)*. a

3. TRANSFORMATION OF FUNCTIONALS
AND SINGULARITY CONDITION

The symbol y € D[a, b] : z will denote those functions y € &¥|a, b] for which
there exists a z(f) measurable, satisfying condition ii) from the definition of admis-
sible functions and such that y' = B(?) y + C(?) z(f) a.e. on [a, b].

Theorem 1. Let y € 9[a, b] : z. Then functions u, v given by the transformation (6)
satisfy

b b
[ (@TCz — y"Ay)dt = [ ("Cov — uTAou) dt + [y"ED™'y]s.

Proof. According to Theorem A it holds «' = By(f) u + Co(f)vand u = D™ 1y.
Using the transformation (6) we get

b b .
(10) [(z"Cz — yTAy)dt = [[(u"E" + v"D™') C(Eu + D"~ 'v) — u"D"ADu] dt =
b
= ((@"™D~'CcD" 'v + u"E"CEu + v"D™'CEu + u"E"CD""'v — u"D"ADu) dt.
Further it holds (") = u"Bf + v"C, = u"(—~D" + D"BT + E'C) D™™' +
+ vTD~'CDT !, thus

(u"D"Eu) = u"(— D" + D"BT + ETC) D" 'DTEu + v"D"'CD""*D"Eu +
+ u"DTEu + u"D"E'u+ u"DTED~'(—D' + BD + CE)u+ u"D"ED~'CD" v =
= "D 'CEu + u"TETCDT v +
+ u"(—DVE + D"B"E + E'CE + DE + D'E' — E'D' + E"BD + ETCE)u =
= "D 'CEu + «"ETCDT v +
+ u"(D"E' — E'D' + D"B"E + 2ETCE + E"BD) u.

Integrating the last equality we get
b
(11) { W"ETCEu + v"D"'CEu + u"E"CD" " 'v)dt = [u"D"Eu]} +

b
+ f[~u"(D"E’' — E'D’' + D"B'E + E"CE + E"BD)u] dt.
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Finally, by substitution (11) into (10) we have
b b
[(z7Cz — y"Ay)dt = [[v"Cov — u"(D"AD + D"E’' — E'D’ + D"B"E + E"CE +
a a
. b
+ E"BD)u]dt = [ (v"Cov — u"Aqu) dt + [u"DTEu]’ =

W Cov — uTAqu)dt + [y"ED"'y].. B

S o

We can use Theorem 1 to have a non-negativity of functionals. In the following
if C is symmetric nx n matrix (i.e. CT = C), C = 0 means that C is non-negative
definite.

Theorem 2. Let C(f) =2 0 on [a, ©). In order that (4) holds for all admissible
Sfunctions y(t), z(f) on [a, ) with respect to (2) it is necessary and sufficient

i) (2) is disconjugate on [a, ), '

ii) singularity condition is satisfied, i.e. for all y(t), z(f) admissible on [a, o)
with respect to (2) such that

t
liminf [ (z7Cz — yTAy)dt < 0.

t— o0 a

it holds
lim inf () W) ¥(1) 2 O,

t— o

where W (1) is the distinguished solution of (5).
Proof. I. Note that if y(), z(#) are admissible functions with respect to (2) then
y € D[a, b] : zand by virtue of the boundary condition at a it holds [y"ED ™ 'y],-, =
= (. q
Let (2)* be disconjugate on [a, o0) and (Y, Z) be a principal solution of (2)*
at a. Then W, (t) = Z(¢) Y~ !(¢) is the distinguish solution of (5) at a and the
transformation (6) with
| D() = Y(1),  E() = Z(1)
yields
By =Y Y (-Y +BY+CZ)=Y (—BY —CZ + BY + CZ) =0,
Co = Y_lCYT—l,
Ay =Y (Z' + AY + B"Z) = YT(—AY — B"Z + AY + B"Z) = 0.

By Theorem 1

® b
[@"Cz — yTAy)dt = [ (v"Cov) dt + [y W,y])i=s
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holds for all corresponding couples of functions y(¢), z(f) and u(?), v(f). From the
inequality

b t
liminf [ (z'Cz — y"Ay)ds 2 liminf [ (v"Cov) dt + lim inf y"W,y,
t—o0 a t*0 a t—> 00
it follows the sufficiency of the singular condition.
II. We now follow a method which was used in the scalar case by Morse and
Leighton [11]. Suppose there exists a couple of admissible functions y, z such that
liminf J[y, z;a,t] < oo and the singularity condition is not satisfied for this

1=

couple i.e., lim inf y™() W, (¢) y(f) = —k?, where W ,(¢) is the distinguish solution
t= o

of (5) at a and k is a real constant. Let e € (a, 00). We construct a couple of vector
functions

_ @, z() for te(e, ),
0D, 20) = {(Y;(t) ¢, Z,(t)c) for te(a,e],

where (Y,, Z,) is the principal solution of (2)* at a, ¢ is a constant vector such
that (y(e), z(e)) = (Y, (e) ¢, Z,(e) ¢). It holds
.

t e t R
[(zICz, — yIAy)ds = [ c"(Z,CZ, — YTAY,) cdt + [ (z7Cz — yTAy)ds =
t
= —c"Y(e) Wi(e) V() ¢ + [ (z"Cz — yTAy)ds =

= YN W) () + [ (7Cz — yTAy) ds.

t
Since lim inf (—y"(f) W, () y(9)) = —k?* and lim inf j'(zTCz —yTAy) ds < o

t—> t—o00

choosing e sufficiently large, we have —yT(e) W, (e) y(e) < —2k*/3 and
lim inf j' (2TCz — yTAy) ds < k2/3

=00
Consequently, we have lim inf j' (zfCz, — y,Ay,) dt < —k*/3 which is a con-
tradition. |l e

Remark that in special Cases I and II (see Remark 1) the singularity condition
complies with that one introduced in [11] and [17], respectively.

The following theorem gives sufficient condi ions for singularity condition to be
satisfied. Since every system can be transformed to “off-diagonal” form (see
Remark 2) we suppose B(f) = 0 in (2)* without loss of generality.
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Theorem 3. Let B(f) = 0, C(f) 2 0 on [a, ). If the system (2)* is disconjugate
on (a — g, ) for some ¢ > 0, j'C(s) ds < 0 and jmax | a;j(s) | ds < o then

[a, ) affords a minimum limit to J.

Proof. Let (Y,, Z,) be a principal solution of (2)* at a. In the light of the fact
that W = W, = Z,¥; ! is a solution of the Riccati equation

W'+ A(f) + WC(t) W = 0,
it holds

W(t) = W(b) — f W(s) C(s) W(s)ds — j‘A(s) ds, a<b<t
b b
and using the symmetry of W(f) we get
(12) W(t) = W(b) — fz,y;lcyf ~17Tds — j'A(s) ds.
b b

The fact that (¥,, Z,) is a principal solution and disconjugacy of (2) on (a@ — &, ©)
for some & > 0 imply that (Y,, Z,) is a antiprincipal solution of (2)* at infinity.
: t
Thus { Y. !'CY"7 ! ds is bounded as well as Z,(1) = — [ AY, ds.
b

Now, we use the followihg lemma [17, Lemma 6.3].

: t
Lemma. If Q(?) is a positive definite matrix on [a, ), | Q(s) ds is bounded and
' a

t
A(?) is bounded matrix then | A"(s) Q(s) A(s) ds is bounded.
a

According to this Lemma the first integral in (12) is bounded and thus W(7) is
bounded. Hence lim y™(7) W(?) y(f) = Oi.e., the singularity condition is satisfied. |l
o]

In the following, we denote /,(Q) the maximal eigenvalue of the matrix Q(7).
4

If | (@) <= then (9) is disconjugate on [a, 7] (see e.g. [16, p. 366]). This fact together
a

with Theorem 3 is used in the following example.

Example 1. Let Q() 2 0 on [a, ) and [/,(Q) < n. Then it holds
a

lil'r_l’ glf § () 2() () — ¥™(5) Q(s) ¥(s)) ds 2 O,

for all y(1), z(?) admissxble on [a, o) with respect to (9) i.e. y, z e L€ such that
¥ = 0z, y(@) = 0 = lim y(7).

t= o
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This example corresponds in the scalar case to the well-known fact that

b b
fq() (* — y») dt > 0, y(a) = 0 = y(b), y # 0, whenever [q(f)dt < =.

Till now we have used transformation of the functional (3) into the functional
b
§ (@"Cyv) dt which is allways non-negative (if C 2 0). Now we use another method
[ ]

consisting in the fact that every system (2) can be transformed into the system (9)
whose solutions are the so called trigonometric matrices (see [2]). This method
follows the idea of [8, 9, 10] consisting in the fact that the equation (p(?) y')’ +
+ q(f) y = 0 can be (globally) transformed into the equation %" + u# = 0 whose
solutions are the sine and cosine functions.

The following statement sketches the application of this idea.

Corollary 1. Let A(f), C(f) € €[a, b], B(t) = 0 and Q(?) be a derivative of the
b
phase matrix of (2)* satisfying [1(Q) < n. Then

b
J (27(s) C(s) 2(s) — y"(5) A(s) ¥(s)) ds = O,

for all y(©), z(¢) admissible on [a, o) with respect to (2).
Especially, if n = 1 we get results of [10].
Proof. It follows immediately from Remark 2 and Theorem B.

4. SELF-ADJOINT FUNCTIONALS OF HIGHER ORDER

Consider a self-adjoint linear differential equation of the 2n order

(13) T (—1)* [p() u®I® = 0,
k=0

where p,(7) € €¥[a, ©), k = 0, ..., n and p,(t) > O for tel = [a, ).
Putting

14) y=@ v, ... u" ), z=(z,..,2), zn= 12“(—1)’ oI,

we can write the equation (13) as a linear Hamiltonian syStem (2) where
4= —dlag [Po,P1, ---:pn—l]a C= pn—l dlag [0’ grey 0, 1]
15)

i=j+1,

1
B=(y, by=<{  iherwise
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It is easy to verify that C(f) = 0 and the system (2) with A4, B, C given by (15)
is identically normal. In accordance with [4] we call points a, b conjugate with
respect to (13) if there exists a nontrivial solution of (13) having zeros of multi-
plicity n at a and b. We say that (13) is disconjugate on I if there exists no couple
points from I conjugate with respect to (13).

The equation (13) is Euler — Lagrange equation for quadratic functional

Js(u) = f[pn(“("))z o pn—l(u(n-l))z + ...+ Po“z] dt-

The functional J,(u) will be investigated on the class of admissible functions u(f)
on [a, ) ie. ue®¥"!, U eA¥, ua)=0=I1imu®@, i=0,....,n -1,
]

(P ™)® are measurable and [ (pu™)® (pu™)P < oo for every b > a; k, j =
=0,...,n— 1. a

Note that admissible functions defined in such a way are admissible functions
- of the corresponding system (2) with matrices (15) as well as the definition of

conjugate points with respect to (13) corresponds to that one of (2). Hence, we
can apply Theorem 3.

Corollary 2. If the equation (13) is disconjugate on (a — ¢, o) for some ¢ > 0 and

(-] [« ]
[Pl 2dt <o, [lp@®]" 2Vt <0, i=0,..,n—1,
a a

then

timinf | 3, p()[u®(©)] ds 2 0

t+0 a k=0

for all admissible functions u(f) on [a, o).

Proof. Using Theorem A and Remark 2 we transform (2) with matrices (15)
into ‘“‘off-diagonal’’ system (8). The equation D’ = BD yields

0 i > j,
D=(d,), d;= <,j—i/(,- —i)! l;;;

Then

- 3 i>j
DT =@y, 4= <?_ DHIYG—i) isj

and by a straightforward computation we get C(r) = D™'CD""! = (g;;) and
Z(f) = DTAD L (du)

14 aaiod min {4, j} 2k—i=J
W=V s % & aoerg—mr 2@
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Now, Theorem 3 can be used to obtain the desired result.

Example 2. Consider the self-adjoint equation of the fourth order
(16) POy +4q9y=0 te(0, ),
where p(f) > 0, p e ¢* and (i) ¢(¢) < O for t € (0, 0),

(ii) ft’q > — oo,
1

(iii) ft?p~ < o0. o
1

@
Assumptions (i), (ii) and [p~' < co ensure disconjugacy of (16) on [a, )
where a is sufficiently large (see [7]). Hence, according to Corollary 2 it holds

lim inf j(p(s) u”? + q(s)u’)ds 2 0,

[ 2nd ] a

for all admissible functions u(f) ie. ue €>[a, ), u("(a) =0, limu®(r) =0,
i=0,1 t>wo
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Abstract. We prove that a generalized version of a semi-Fredholm principle for the existence of
periodic solutions for forced systems with homogeneous nonlinearities recently obtained by
Lazer and McKenna can be proved by a simple homotopy argument, which answers a ques-
tion raised by those authors.
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1. INTRODUCTION

In a recent paper, Lazer and McKenna [1] have proved the existence of T-periodic
solutions for systems of the form

) u'(f) + V'(u(t)) = p(0),

when ¥ € C*(R", R) is positively homogeneous of degree two, positive semidefinite
and p € C'(R, R") is T-periodic. They use Leray — Schauder degree theory together
with two perturbations arguments through systems of the form

©)) u'(f) + e (1) + V'(u(®) = p(0),
with ¢ > 0 and V positive definite and
A3 u'(f) + ou(t) + V'(u(®) = p(d),

with 8 > 0 and V positive semidefinite. They remark that it does not seem possible
to prove the theorem more directly by connecting (1) rather (2) to a linear equation
by a homotopy.
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We show in this paper that it is indeed possible and, without further complica-
tion, we can deal with a more general system which may also depend non-
linearly of u'.

I1. A SEMI-FREDHOLM PRINCIPLE FOR PERIODIC
SOLUTIONS OF FORCED SYSTEMS WITH HOMOGENEOUS
NONLINEARITIES

Recall that a function W : R" - R is said to be positive (resp. negative) semi-
definite if W(x) = 0 (resp. W(x) < 0) for all xe R", and is said to be positively
homogeneous of degree k = 0 if W(tx) = t*W(x) for all # > 0 and xe R". We
shall call W semidefinite if it is either positive or negative semidefinite. Recall also
that if W e C'(R", R) and positive homogeneous of degree k = 1, then Euler’s
identity implies that

(x, W' (x)) = kW(x)

for all x € R". Of course, W’ denotes the gradient of W and (x, y) the inner product
of x and y in R".

We may now state and prove in a direct way a semi-Fredholm principle in the
sense of Lazer — McKenna for a larger class of systems.

Theorem 1. If U and V are in C'(R", R), positive homogeneous of degree two,
semidefinite and such that the system

) @)+ UW@@) + V(@) =0,
has no T-periodic solution other than 0, then for each p € L'(0, T; R") the problem

u'()) + U'W(®) + V(@) = p(),

) u(0) — u(T) =) —4'(T) =0

has at least one solution.

Proof. Let a= +1 and b = 11 be such that aU and bV are positive semi-
definite. Observe that the linear system '

(6) u"() + au'(t) + bu(r) = 0,

has no T-periodic solution other than 0, because if » is any T-periodic solution
of (6), then, taking the inner product of (6) with '(¢), integrating over [0, T] and
using the periodicity, we get

T
aflu@®Pdt=0,
0
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so that u is constant, and this constant must be zero as shown by integrating (6)
over [0, T]. Consequently, it follows from one version of the Leray — Schauder’s
continuation theorem (see e.g. [2], Theorem IV.5) that (5) will have at least one
solution if we can find » > 0 such that for each 1€ [0, 1] and each possible solu-
tion u of the problem

) w(n) + (1 = 4 (a'(5) + bu(®) + AU'W (1) + V'@(®)] = ip(2),
u(0) — w(T) = u'(0) — u(T) = 0,

one has || u||; < r, where

luily = max |u(f)| + max |u'(t)].
te[0,T] te[0,T]

If it is not the case, we can find sequences (4) in [0, 1] and (%) in C'([0, T], R")
such that ||, ||; > k and u, is a solution of (7) with 4 = 4, (k e N*). Letting
W, = /|| w ||y, so that || w, ||, = 1, for all k e N, and using the positive homo-
genity of degree one of U’ and V', we get

wi(®) + (1 — A) (awi(t) + bw(2) + LIU' (wi(D) + V'(u(D)] =
®) = L@/l w 1y),
Wi0) — wi(T) = wi(0) — wi(T) = 0,

for all k e N*, which immediately implies that the sequence (|| wi |[z) is bounded
independently of k. Hence, the sequences (wy) and (wy) are equibounded and
equiuniformly continuous on [0, T], and Ascoli— Arzela’s theorem implies the

existence of subsequences (45) of (&), (w;,) of (w) and of we CY([0, T], R")
verifying

() w(0) — w(T) = w'(0) — w'(T) =0

and such that w;, — w and w; — w' uniformly on [0, T] and A;, — A* for some
A* € [0, 1]. Therefore, if we take the integrated form, from 0 to ¢, of the differential
system in (8) for k = j, and let k — oo, we see that

w(t) — w'(0) + j {1 = 2% (aw'(s) + bw(s)) + A*[U'(w'(s)) + V'(w(s))]}ds =0

for all 7€ [0, T), and hence w’ is absolutely continuous on [0, T'] and satisfies the
differential equation

(10) W) + (1 — A% (aw'(r) + bw(D) + A*[U'(W'(D)) + V' (w(D))] = O.

If A* = 1, it follows from the assumption on (4) that w = 0, a contradiction with
[lwlily = 1. If 0 < A* < 1, then, taking the inner product of (10) with w'(%),
integrating over [0, T'] and using the conditions (9), we get
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(1-2%a jr| w(t)|>dt + A* jT(U'(w'(t), w'(t))dt = 0,
0 1]
ie.

a-i» fl w'(t) > dt + 2ai* f Uw'(t))dt = 0,
(V] 0

which implies, by the positive semidefiniteness of aU that
T

flw'(®)|*dt =0,

0
and hence that w is constant on [0, T'], say w(f) = w for all 7 € [0, T']. But then (10)
implies, after an inner product with w,

(1 =2%blw|* + AX(V'(W), W) = 0,
ie.
(1 =A% | ®|* + 2A*aV(w) = 0,

so that w = 0, as al is positive semidefinite, and hence w = 0, a contradiction
with || w||; = 1. Hence, the proof is complete.
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