

Werk

Label: Article **Jahr:** 1982

PURL: https://resolver.sub.uni-goettingen.de/purl?311067255_0018 | log32

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

ARCH. MATH. 4, SCRIPTA FAC. SCI. NAT. UJEP BRUNENSIS XVIII: 193—200, 1982

ON SOME SHEAVES OVER A DIFFERENTIAL SPACE*

W. SASIN, Z. ŻEKANOWSKI (Received November 17, 1981)

INTRODUCTION

Let C be a non empty set of real functions defined on a set M. The set M will be interpreted as a topological space with weakest topology τ_C in which all functions from C are continuous.

It is known ([7]) that the set C is called the differential structure on M iff the set C is closed with respect to the lokalization $(C = C_M)$ and C is closed with respect to the superpositions with the smooth functions on R^n .

It is easy to show that if C is the set of real functions on M closed with respect to the superposition with the smooth functions on R^n then C is a linear ring over R containing all constant functions and that topological space (M, τ_C) is a C-regular ([7]).

The pair (M, C), where C is a differential structure on M is called the differential space.

Similarly as in theory of differential manifolds we define a tangent vector to the differential space (M, C) at the point $p \in M$ as well as the smooth tangent vector field on (M, C) ([7]).

The set M_p of all tangent vectors to differential space (M, C) at the point $p \in M$ has a natural structure of linear space over R and the set $\mathfrak{X}(M)$ of all smooth tangent vector fields on (M, C) has a natural structure of C-module.

In this paper by \mathfrak{C} we shall denote the sheaf of all smooth real functions on (M, C) and by \mathfrak{X} we shall denote the sheaf of all smooth tangent vector fields on (M, C).

A sheaf \mathfrak{R} over differential space (M, C) is called the sheaf of \mathfrak{C} -modules ([2]) if

- (i) $\mathfrak{N}(U)$ is $\mathfrak{C}(U)$ -module for every open $U \in \tau_C$,
- (ii) $\varrho_V^U(\alpha \cdot \xi) = \alpha \mid V \cdot \varrho_V^U(\xi)$ for $\alpha \in \mathfrak{C}(U)$ and $\xi \in \mathfrak{R}(U)$, where $V \subset U$ and $\varrho_V^U : \mathfrak{R}(U) \to \mathfrak{R}(V)$ is restricting homomorphism in the sheaf \mathfrak{R} .

^{* (}Delivered at the Joint Czech-Polish-G.D R. Conference on Differential Geometry and its Applications, September 1980, Nové Město na Moravě, Czechoslovakia.)

2. THE SHEAVES OF C-MODULES OVER A DIFFERENTIAL SPACE

Let \mathfrak{R} be an arbitrary sheaf of \mathfrak{C} -modules over a differential space (M, C). It is not difficult to prove.

Lemma 1. If $U \in \tau_C$ and $\eta \in \mathfrak{N}(U)$ then for any point $p \in U$ there exists an open neighbourhood $B \in p$ and $\bar{\eta} \in \mathfrak{N}(M)$ such

$$\varrho_B^U(\eta) = \varrho_B^M(\eta),$$

or equivalently, as we will write usually

$$\eta \mid B = \bar{\eta} \mid B.$$

Now let $\mathfrak{N}_1, \ldots, \mathfrak{N}_k, \mathfrak{N}_{k+1}, k \in \mathbb{N}$ be any sheaves of \mathfrak{C} -modules over a differential space (M, C).

We introduce the following definition

Definition 1. Any map

$$f: \mathfrak{N}_1(U) \times ... \times \mathfrak{N}_k(U) \to \mathfrak{N}_{k+1}(U)$$

satisfying the condition:

(LF) if
$$\eta_i \mid V = \eta_i' \mid V$$
, $\eta_i, \eta_i' \in \mathfrak{N}(U)$, $i = 1, 2, ..., k, V \subset U$ and $V \in \tau_C$ then

$$f(\eta_1, ..., \eta_k) \mid V = f(\eta'_1, ..., \eta'_k) \mid V$$

will be called the *LF*-mapping of $\mathfrak{C}(U)$ -modules $\mathfrak{N}_1(U)$, $\mathfrak{N}_2(U)$, ..., $\mathfrak{N}_k(U)$ into $\mathfrak{C}(U)$ -module $\mathfrak{N}_{k+1}(U)$.

The set of all LF-mappings of $\mathfrak{C}(U)$ -modules $\mathfrak{R}_1(U)$, ..., $\mathfrak{R}_k(U)$ into $\mathfrak{C}(U)$ -module $\mathfrak{R}_{k+1}(U)$ will be denoted by $LF(\mathfrak{R}_1(U), ..., \mathfrak{R}_k(U); \mathfrak{R}_{k+1}(U))$.

Evidently this set can be equipped with the structure of $\mathfrak{C}(U)$ -module.

Now we shall give some examples of LF-mappings important in the theory of differential space.

- 1. A smooth tangent vector field on differential space defined as a map $X: C \to C$ satisfying well known condition is of course LF-mapping.
 - 2. For any smooth tangent vector fields X, Y, X o Y is an LF-mapping, too.
- 3. One can easy show that the operator of exterior derivative is also an LF-mapping.
- 4. Likely a linear connection D in a module \mathfrak{N} , treated as a map $D: \mathfrak{N}(U) \to \Lambda^1(\mathfrak{X}(U), \mathfrak{N}(U))$ satisfying the condition

$$D(\alpha \xi) = d\alpha \cdot \xi + \alpha D\xi,$$

for any $\alpha \in \mathfrak{C}(U)$ and $\xi \in \mathfrak{R}(U)$, is an LF-mapping, too.

We shall prove.

Lemma 2. If $f_i: \mathfrak{N}_1(U) \times ... \times \mathfrak{N}_k(U) \to \mathfrak{N}_{k+1}(U)$, i = 1, 2 are the LF-mappings satisfying condition

(1)
$$f_1(\bar{\eta}_1 \mid U, ..., \bar{\eta}_k \mid U) = f_2(\bar{\eta}_1 \mid U, ..., \bar{\eta}_k \mid U),$$

for all $(\eta_1, ..., \eta_k) \in \mathfrak{N}_1(V) \times ... \times \mathfrak{N}_k(V)$, where $U \subset V$, $U, V \in \tau_C$ then $f_1 = f_2$. Proof. Let $(\eta_1, ..., \eta_k) \in \mathfrak{N}_1(U) \times ... \times \mathfrak{N}_k(U)$ and let there be an open covering of U such that for any $B \in \mathfrak{B}$ there exists $(\xi_1^B, ..., \xi_k^B) \in \mathfrak{N}_1(V) \times ... \times \mathfrak{N}_k(V)$ such that

$$\eta_i \mid B = \xi_i^B \mid B,$$

for any i = 1, 2, ..., k. Hence if f_i , i = 1, 2 are LF-mappings then

(2)
$$f_1(\eta_1, \dots, \eta_k) \mid B = f_2(\xi_1^B \mid U, \dots, \xi_k^B \mid U) \mid B,$$

and

(3)
$$f_2(\eta_1, ..., \eta_k) \mid B = f_2(\xi_1^B \mid U, ..., \xi_k^B \mid U) \mid B.$$

From (1), (2) and (3) we get

(4)
$$f_1(\eta_1, ..., \eta_k) \mid B = f_2(\eta_1, ..., \eta_k) \mid B,$$

for all $B \in \mathfrak{B}$. From (4) and definition of sheaf we obtain

$$f_1(\eta_1, ..., \eta_k) = f_2(\eta_1, ..., \eta_k),$$

for any $(\eta_1, ..., \eta_k) \in \mathfrak{N}_1(U) \times ... \times \mathfrak{N}_k(U)$ or equivalently

$$f_1=f_2.$$

Lemma 3. For any LF-mapping $f: \mathfrak{N}_1(U) \times ... \times \mathfrak{N}_k(U) \to \mathfrak{N}_{k+1}(U)$ and for any open set $V \subset U$ there exists one and only one LF-mapping

$$f_V: \mathfrak{N}_1(V) \times \ldots \times \mathfrak{N}_k(V) \to \mathfrak{N}_{k+1}(V),$$

such that

$$f_{V}(\eta_{1} \mid V, ..., \eta_{k} \mid V) = f(\eta_{1}, ..., \eta_{k}) \mid V,$$

for all $(\eta_1, \ldots, \eta_k) \in \mathfrak{N}_1(U) \times \ldots \times \mathfrak{N}_k(U)$.

Proof: Let $(\xi_1, ..., \xi_k) \in \mathfrak{N}_1(V) \times ... \times \mathfrak{N}_k(V)$ and \mathfrak{B} be an open covering of V such that for any $B \in \mathfrak{B}$ there exists $(\overline{\eta}_1^B, ..., \overline{\eta}_k^B) \in \mathfrak{N}_1(U) \times ... \times \mathfrak{N}_k(U)$ such that

$$\xi_i \mid B = \bar{\eta}_i^B \mid B,$$

for i = 1, 2, ..., k.

Now, let $f: \mathfrak{N}_1(U) \times ... \times \mathfrak{N}_k(U) \to \mathfrak{N}_{k+1}(U)$ be an LF-mapping. Let us consider a family

(5)
$$(\varrho_B^U(f(\overline{\eta}_1^B,\ldots,\overline{\eta}_k^B)))_{B\in\mathfrak{B}},$$

of an elements of $\mathfrak{C}(B)$ -modules $\mathfrak{N}_{k+1}(B)$ for $B \in \mathfrak{B}$.

Of course the elements of family (5) depend upon the choice of $(\xi_1, ..., \xi_k) \in \mathfrak{N}_1(V) \times ... \times \mathfrak{N}_k(V)$.

Now we shall show that the elements of the family (5), are agreeable on the intersections of sets of the covering. Indeed, let $B, B' \in \mathfrak{B}$ and $B \cap B' \neq \emptyset$. Then evidently

$$\xi_i \mid B \cap B' = \overline{\eta}_i^B \mid B \cap B' = \overline{\eta}_i^{B'} \mid B \cap B',$$

for any i = 1, 2, ..., k.

As the map f is the LF-mapping then

$$(f(\overline{\eta}_1^B, \dots, \overline{\eta}_k^B)) \mid B \cap B' = (f(\overline{\eta}_1^{B'}, \dots, \overline{\eta}_k^{B'})) \mid B \cap B' =$$

$$= (f(\overline{\eta}_1^B, \dots, \overline{\eta}_k^B) \mid B) \mid B \cap B' = (f(\overline{\eta}_1^{B'}, \dots, \overline{\eta}_k^{B'}) \mid B) \mid B \cap B'.$$

From here and from definition of the sheaf follows that there exists one and only one element $f_{\mathfrak{B}}(\xi_1, ..., \xi_k) \in \mathfrak{N}_{k+1}(V)$ such that

$$f_{\mathfrak{B}}(\xi_1, \ldots, \xi_k) \mid B = f(\bar{\eta}_1^B, \ldots, \bar{\eta}_k^B) \mid B,$$

for any $B \in \mathfrak{B}$.

Now, let us put

(6)
$$f_{\mathcal{V}}(\xi_1, \ldots, \xi_k) := f_{\mathfrak{R}}(\xi_1, \ldots, \xi_k),$$

for an arbitrary $(\xi_1, ..., \xi_k) \in \mathfrak{N}_1(V) \times ... \times \mathfrak{N}_k(V)$.

We shall show next that the definition (6) does not depend on the choice of the covering \mathfrak{B} of the set V.

To this end let us take other open covering $\mathfrak A$ of V such that for any $A \in \mathfrak A$ there exists point $(\eta_1^A, \ldots, \eta_k^A) \in \mathfrak R_1(U) \times \ldots \times \mathfrak R_k(U)$ such that

$$\xi_i \mid A = \bar{\eta}_i^A \mid A,$$

for i = 1, 2, ..., k.

By definition (6) we have

(7)
$$f_{\mathfrak{A}}(\xi_1, ..., \xi_k) \mid A = f(\bar{\eta}_1^A, ..., \bar{\eta}_k^A) \mid A,$$

for any $A \in \mathfrak{A}$.

Now, let $\mathfrak{A} \vee \mathfrak{B} = \{A \cap B : A \in \mathfrak{A} \wedge B \in \mathfrak{B}\}$. Of course $\mathfrak{A} \vee \mathfrak{B}$ is an open covering of V, refinement of a covering \mathfrak{A} and \mathfrak{B} . From (6) and (7) as well as definition of LF-mapping it follows

$$f_{\mathfrak{A}}(\xi_1, \ldots, \xi_k) \mid A \cap B = f(\overline{\eta}_1^A, \ldots, \overline{\eta}_k^A) \mid A \cap B =$$

$$= f(\overline{\eta}_1^B, \ldots, \overline{\eta}_k^B) \mid A \cap B = f_{\mathfrak{R}}(\xi_1, \ldots, \xi_k) \mid A \cap B,$$

for all $A \in \mathfrak{A}$ and $B \in \mathfrak{B}$ such that $A \cap B \neq 0$.

From here and definition of the sheaf we obtain

$$f_{\mathfrak{A}}(\xi_1, ..., \xi_k) = f_{\mathfrak{B}}(\xi_1, ..., \xi_k),$$

for any $(\xi_1, ..., \xi_k) \in \mathfrak{N}_1(V) \times ... \times ... \mathfrak{N}_k(V)$.

The verification that f_v is LF-mapping satisfying the condition

$$f_{V}(\eta_{1} \mid V, ..., \eta_{k} \mid V) = f(\eta_{1}, ..., \eta_{k}) \mid V,$$

for all $(\eta_1, ..., \eta_k) \in \mathfrak{N}_1(U) \times ... \times \mathfrak{N}_k(U)$ is not difficult.

Lemma 4. Let B be an open covering of U and

$$\{f^B: \mathfrak{N}_1(B) \times \ldots \times \mathfrak{N}_k(B) \to \mathfrak{N}_{k+1}(B)\}_{B \in \mathfrak{B}},$$

family of LF-mappings such that

$$f^B \mid B \cap B' = f^{B'} \mid B \cap B',$$

for all $B, B' \in \mathfrak{B}$ such that $B \cap B' \neq \emptyset$. Then there exists one and only one LF-mapping

$$f: \mathfrak{N}_1(U) \times ... \times \mathfrak{N}_k(U) \to \mathfrak{N}_{k+1}(U),$$

such that

$$f \mid B = f^B$$

for any $B \in \mathfrak{B}$.

Proof: Let $(f^B)_{B \in \mathfrak{B}}$ be a family of LF-mappings of the form

$$f^B: \mathfrak{N}_1(B) \times \ldots + \mathfrak{N}_k(B) \to \mathfrak{N}_{k+1}(B),$$

satisfying the condition

(8)
$$f^{B} \mid B \cap B' = f^{B'} \mid B \cap B',$$

for all $B, B' \in \mathfrak{B}, B \cap B' \neq \emptyset$. Let $(\eta_1, ..., \eta_k) \in \mathfrak{N}_1(U) \times ... \times \mathfrak{N}_k(U)$ and let us take under consideration the family

$$\{f^B(\eta_1 \mid B, \ldots, \eta_k \mid B)\}_{B \in \mathfrak{B}},$$

of the elements of $\mathfrak{C}(B)$ -module $\mathfrak{N}_{k+1}(B)$.

From our assumption (8) it follows that

$$f^{B}(\eta_{1} \mid B, ..., \eta_{k} \mid B) \mid B \cap B' = f^{B'}(\eta_{1} \mid B', ..., \eta_{k} \mid B') \mid B \cap B',$$

for any $B, B' \in \mathfrak{B}, B \cap B' \neq \emptyset$. Now, from here and from the fact that \mathfrak{R}_{k+1} is a sheaf it follows that there exists an element $f(\eta_1, \ldots, \eta_k) \in \mathfrak{R}_{k+1}(U)$ such that

$$f(\eta_1, ..., \eta_k) \mid B = f^B(\eta_1 \mid B, ..., \eta_k \mid B),$$

for any $B \in \mathfrak{B}$ and $(\eta_1, ..., \eta_k) \in \mathfrak{N}_1(U) \times ... \times \mathfrak{N}_k(U)$.

Hence there exists one and anly one LF-mapping

$$f \in LF(\mathfrak{N}_1(U), \ldots, \mathfrak{N}_k(U); \mathfrak{N}_{k+1}(U)),$$

such that

$$f \mid B = f^B$$
,

for any $B \in \mathfrak{B}$.

Let $\mathfrak{N}_1, \ldots, \mathfrak{N}_k, \mathfrak{N}_{k+1}, k \in \mathbb{N}$ be an arbitrary sheaves of $\mathfrak{C}(U)$ -modules over a differential space (M, C). Let us denote by $LF(\mathfrak{N}_1, \ldots, \mathfrak{N}_k; \mathfrak{N}_{k+1})$ the category whose objects are $\mathfrak{C}(U)$ -modules $LF(\mathfrak{N}_1(U), \ldots, \mathfrak{N}_k(U); \mathfrak{N}_{k+1}(U)), U \in \tau_C$, of the LF-mappings.

The above proved lemmas imply the theorem

Theorem 1. The three-triple $(LF(\mathfrak{N}_1, ..., \mathfrak{N}_k; \mathfrak{N}_{k+1}), F, \tau_C)$ is a sheaf over a differential space, where F is a contravariant functor from the category τ_C into category $LF(\mathfrak{N}_1, ..., \mathfrak{N}_k; \mathfrak{N}_{k+1})$.

For the arbitrary sheaves $\mathfrak{N}_1, \ldots, \mathfrak{N}_k, \mathfrak{N}_{k+1}$ over a differential space we shall denote by $LF(\mathfrak{N}_1, \ldots, \mathfrak{N}_k; \mathfrak{N}_{k+1})$ the sheaf $(LF(\mathfrak{N}_1, \ldots, \mathfrak{N}_k; \mathfrak{N}_{k+1}), F, \tau_C)$. This sheaf will be called the sheaf of LF-mappings.

Now we shall give some examples of the most important sheaves of LF-mappings over a differential spaces.

Of course, one of the fundamental sheaf of LF-mappings over a differential space is a sheaf of the tangent vector fields on a differential space which we denote by \mathfrak{X} .

Now, let $\mathfrak{N}_1, \ldots, \mathfrak{N}_k, \mathfrak{N}_{k+1}, k \in \mathbb{N}$ be the sheaves of $\mathfrak{C}(U)$ -modules over a differential space (M, C) and

$$\omega: \mathfrak{N}_1(U) \times \ldots \times \mathfrak{N}_k(U) \to \mathfrak{N}_{k+1}(U),$$

 $U \in \tau_C$, $\mathfrak{C}(U)$ -k-linear map. It is not difficult to show that ω is an LF-mapping. Consequently the triple

$$(L_{\mathfrak{A}}(\mathfrak{N}_1,\ldots,\mathfrak{N}_k;\mathfrak{N}_{k+1}),F,\tau_C),$$

is a sheaf of LF-mappings on a differential space, where F is a contravariant functor from the category $L_{\mathbb{C}}(\mathfrak{N}_1, ..., \mathfrak{N}_k; \mathfrak{N}_{k+1})$ of $\mathbb{C}(U)$ -modules $L_{\mathbb{C}(U)}(\mathfrak{N}_1(U), ..., \mathfrak{N}_k(U); \mathfrak{N}_{k+1}(U))$ of $\mathbb{C}(U)$ -k-linear mappings into the category τ_C . This sheaf is also denoted by

$$L_{\mathfrak{A}}(\mathfrak{N}_1, \ldots, \mathfrak{N}_k; \mathfrak{N}_{k+1}),$$

and called the sheaf of smooth tensor fields over a differential space.

Evidently in the particular case when $\mathfrak{N}_1=\mathfrak{N}_2=\ldots=\mathfrak{N}_k=\mathfrak{X}$ we have a sheaf $L^k_{\mathfrak{C}}(\mathfrak{X},\mathfrak{N}_{k+1})$ of \mathfrak{C} -k-forms on the differential space with a value in the \mathfrak{C} -module \mathfrak{N}_{k+1} . The sheaf of all exterior form on differential space is denoted usually by $\Lambda^k(\mathfrak{X},\mathfrak{C})$.

BIBLIOGRAPHY

- [1] Bredon G. E.: Sheaf theory, New York 1967.
- [2] Godement R.: Topologie Algebrique et Theorie des Faisceaux, Paris 1958.
- [3] Kobayashi S., Nomizu K.: Foundations of differential geometry, New York, v. I 1963, v. II 1969.

- [4] Mostow M. A.: The differentiable space structures of Milnor classifying spaces, simplicial complexes and geometric realizations, to appear in J. Diff. Geom.
- [5] Sikorski R.: Abstract covariant derivative, Coll. Math. 18 (1967).
- [6] Sikorski R.: Differential modules, Coll. Math. 24 (1971).
- [7] Sikorski R.: Vstęp do geometrii różniczkowej PWN, Warszawa 1972.
- [8] Spanier E. H.: Topologia algebraiczna, PWN, Warszawa 1972.

Z. Żekanowski ul. Marszalkowka 140m 88 00-61 Warszawa Poland

.