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SOME REMARKS ON TRIANGULATING A d-CUBE
Johannes Bohm

To Professor Dr. Otto Kxotenheerdt on his 60tR birthday

Abstract. For simplicial approximation of fixed points of con-
tinous mappings moxe efficientkalgorithms are 1mpo:%ant for op-
timal work. This requires to find geometrical -decompositions
into simplices with a minimal number of tiles. This note is
concerned with discussing triangulations of the d-cube. We give
three methods to obtain vertex preserving facet-to-facet trian-
gulations. The first method gives the standard decomposition of
the d-cube into the maximal number d! simplices. The second
method is due to J.F.Sallee[:6] . The third method is new. The
last two methods give the same numbers of simplices for d £5
being the least possible values. For d = 6 the third method
gives lower values. For example, for d = 6 we get 324 while the
second method gives 364 simplices. Finally for arbitrary trian-
gulations of the d-—cube we establish formulas for the numbers of
simplices as a function of special simplex numbers for d=2,3,4,
5 and 6. :

1. Let a d-cube C4 (d ® 2) in the Buclidean d-dimensional space
be given. We consider triangulations of cd, that means total de-
compositions oi Cd into d-simplices SJ, J=15ee0y,8. Wo assume
that these triangulations are vertex preserving and facet-to-
facet ones. Topological results for Cd remain true for triangu-
lations of a parallelepipedon, since we can map the d-cube into
that parallelepipedon by a homeomorphism (affine transformation).
Without loss of generality C; oan be assumed to be a unit ’
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cube so that the verticaes of the cube have the coordinates
(x1,...,xd) with xjez{b,1}. A simplex of a triangulation is
given by its coordinate matrix the lines of which are the coor-
dinates of the vertices of that simplex. A triangulation

T = {51,52,...,85} of an arbitrary polyhedron is called"opti-
mal", iff its number s of simplices is minimal. Optimal trian-
gulations of the d-cube were given for d = 3 and 4 = 4 by P.S.
Mara[5:]and R.W. Cottle [4] . These triangulations are essen-
tially unique. For d >4 J.F.Sallee [ 6 |and later W.D.Smith[ 7]
have given important contributions to this subject. In case

d = 5 the author could show that there are essentially three
different types of optimal triangulations of the 5-cube into 67
simplices (cf.[i}] D). :

An-important instrument in decomposing a convex d-dimensional
polytope is the method of coning off this body P to one of its
vertices. Let pevert P and let ? = {F‘l""’Fn} be the set of
all (d-1)-dimensional facets of P with p¢Fj £0r 3 = 1404030
We call F, a facet opposite to p. Then the cones PJ = conv({gﬂ
Fj) give always a decomposition of P by {P1,...,Pﬁ} . We say
this decomposition is gensrated by coning off P to the vertex
p. If we first triangulate the facets Fj and then cone off to
p, we get a triangulation of P. :

2. Now we first describe a method of (vertex preserving) trian-
gulating a d-cube into as many simplices as possible. We work
inductively.

For d = 2 the triangulation of a quadrangle is essentially
uniqua. By drawing a diagonal of the quadrangle we dissect it
into two triangles. Since there exist two diagonals of a
quadrangle, we have aexactlytwo different triangulations of it.
But these ones are not essentially different, because we can
find a mapping of the quadrangle onto itself which also maps
the one triangulation onto the other one. -

For d = 3 we choose the vertex p = (0,0,0). There are three

opposite facets of the 3—cube to p. We triangulate these ones.
Ther we cone off the 3~cube to p. Thus we get a triangulation
into 6 tetrahedra. For obtaining a unique solution we triangu-
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late the three facets in such a manner that all the dissecting
diagonals of the three guadrangles contain the vertex (1,1 ,1).

Now assume that in this manner we have triangulated ths (a-1)~-
cube into (d-1)! simplices such that the intersection of all
simplices of this triangulation is a body diagomal of the (d-1)-
cube of length Yd-1. Then in the d-cube we triangulate the d
facets opposite to (0,...,0) such that for each facet the
common body diagonar of the (d-1)! (d-1)-simplices contains
the vertex (1,...,1) of Cy. Thus this trlangulation of the
d-cube consists of exactly d! simplices. The intersection of
all these simplices 1s the body diagoaal E (0 eis550) 5 (150

sie sy 1) ], the simplices are mutually congruent and evexry
simplex is an orthoscheme. The volume of each simplex is 1/dl.
Since the lsast volume of a d-simplex with all d+1 vertices
being vertices of the d—cube is 1/d! and the volume of the unit
d-cube 1s 1, the maximal number s of simplices of a triangula-
tion of the d-cube with the properties described above is d!.
This triangulation is called standard triangulation of the
d-cube. Therefore we have

Theorem 1., The standard triangulation of a d-cube consists of
dl pairwise congruent simplices. This is a vertex preserving
and facet-to-facst triangulation of a d-cube with the most
simplices. |

For d 2 3 there are other vertex preserving triangulations of
a d-cube into d! simplices which are essentially different fram
the standard triangulation. We get these triangulations, if we
choose the common body diagonal of the simplices of the stan-
dard triangulation of at least one r—facet, »<d, in such a
way that it does not contain the vertex (1,...,1) which lies
opposite to the vertex (0,y...,0) to which we cone off. For
example in case d = 3 we have 4 essentially different triangu-
lations -of this kind into & tetrahedra where the three trian-
gulated facets (quadrangles opposite to the vertex (0,0,0))
ars coned off to (0,0,0). This follows from the fact that if
the diagonals of exactly r of these quadrangles contain the
vertex (1,1,1), then the other (3-r) gquadrangles do not. Since
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r = 0,1,2,3, we have these 4 types (cf. [1, p.24] ).

3. The next method for getting a vertex preserving trianguls-
tion of the d-cube has been given by J.F.Salles [ s Very ;
clearly described 1n[:7] - The conjecture that this trianguls-
tion is an optimal one of the d-cube could be rejected by
Sallee himself who claimed to have an example for d = 6 with
less simplices (344).

A vertex V3 of a polytope Q is called neighbouring to a veztaxé
i of Q, iff vj and jk are joined by an edge of Q. We say ws
have cut off the vertex v of C,, 1ff we can decompose C, into
_the two polytopes P, = conv (vert Cd\-{v} ) and S = conv{v':
vi=v v v'is neighbou:ing to v} and cancel S such that )
remains., Now in Cy we out off all the %. 28 . 201 Lertices

v = (x1,xz,...,xd) of Cy with ig; e 1 (mod 2). The re-
maining polytope is the truncated d-cube Z‘1 After triangula-
ting the facets of Z; opposite tc the vertex v, = (0 0,...,0)
we cone off Z to the vertex v 0* )

g has 29 d-1 = 2971 yertices, 24 facets of type Z,;_, and

2d =1 simplicial facets (for 4 2 3). In particular, Z, 1s a

regular simplex. Constructing Z2 analogously we get an edga.

Let P(d) be the number of simplices which arise by the trian-
gulation now being described. Then Z, can be triangulated into
P(d)—2d simplices. Bach vertex of Zd does not touch d facets
(of type Z;_,) of Z, and (2%1-3) simplicial facets of Z..
Therefore, coning off Z; to v, we obtain d(P(d—1)—2d'2)
+(2d'1-d) simplices. Thus we get the equation

P(d)-zd‘1 = a(p(a1)-28"2)+(2%14) ox

P(d) . ap(a- 1)-d2d_2+2d-d . | ™)
Phis recursion formulae is valid for d 2 3. For d = 1 we can
fix P(1) = 1 so that for 4@ = 2 we get the only and right value
P(2) = 201-2.2°+2%-2 = 2. This 1s Sallee's recursion formula
for d>1 with the initial value P(1) = 1. From (1) we gst an
explicit representation of P(d) in the form
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- - 1
P(a) = - %d!+ 2% 4+ a1 3_6?1 + g;ﬁl + 32%1 + cee
82_ &)
T @D
Cot. [11)

and the asymptotic formula
pay v ale(ge® - e -3 (ez. [7]).

Equation (2) can be obtained by giving the-general solution
Ph(d) = c,d! of the homogeneous part of (1), adding a special

a 2714 7 2%+
solution of (1), for exampla, P;(d) = 2" + dl(S%— + S5 +
211 23724
+ 57 4+ - l) and applying the initial value
1 i
R(1)=1 which gives ¢, = -5 - '

Therefore we have

Theorem 2. By cutting off all vertices of the d—cube being
mutually not neighbouring ones and then coning off the remain-
ing truncated d-cube Zd to a vertex, we get a triangulation of
the d—cube into P(d) simplices.

For the first values of d we have
P(1) = 19 P(Z) = 2’ P(B) = 5, P(“) — 16, P(5) = 67,
P(6) = 364 .

Thus for d € 5 this triangulation is an optimal one (cf.[:4]_

and[BJ.).

4. Seeking for further general methods: of triangulating a
d-cube in order to get lower simplex numbers and to approach to
an optimal triangulation, we present a third method for d 2 3,

The vertex v =~(y1,...,yd) of.the d-cube with
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lies in the hyperplane HI

3=

We are especially interested in the hyperplanss HI ’ HI +q and

o o

E with »_ := gel For even d we have r = % and £
2,1 o[ 2]" 0= 3 or odd 4

d+1 ) a

we have r = =5+ . In the hyperplane Hz there are exactly (I )
o o

vertices of Cy. Now we aissect ¢4 by the hyperplane H_ into
: o

»two polytopes Pg and Pg with

fd—1

Y. S |
g To i= Eo O P1€HIO and

a
v, 1= (OpeensDEEL, ¥y dm (1,000,008

Further we cut off all vertices which lie im H _,4 (belonging
)

d

to P%) and in HIO_'_1 (belongin; to Pg). Let Q

and Q be the

d

remaining polytopes. For even d the two polytopes Po

d
and P1

(and also Q% and Q%) are alwaxf congruent ones. — For coning
off Qg to vo we triangulate the facets of Qg opposite to Voo
Some of these facets of Qg are simplices. We get those ones by
cutting off the above vertices. The~furthe: facets fj
(3=1yee0,4) of Q% lie in that facet of C,; belonging to the
" hyperplane xj— 1 = 0. They can be triangulated by an inductive

method because fj is congruent with a (d-1)-polytope 02—1 .

d-1

Therefore we only have to consider triangulations of fo
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The vertices of fg_1 are those onas of the d-cube whose sum of
its coordinates is To. For coning off we choose the vertex ;o

as apex with the coozdinates x1-...—xd_r = 0, » Xgeq +1—...-xd

=1, i.6. v = (ﬁ,...,O' ...,?) In fd 1 the opposite facets of

v_are of two types. The first one con51sts of d—r facets

(o]
Ty9eeer fd_ro which are the intersectioms fj._HIOxw £y . The

second type consists of r  facets 5 RUEIILE ) which are

the intersections 15 := Hron fa where f' is a facet of Q which
4is contained in the hyperplane x. = O. The t:iangulation of Q
gives topologically identical results for even d. For odd d the
rasults can be obtained in a similar manner: The facets of Q?
opposite to v, firstly are the simplices arising after cutting
off the vertices in the hyperplane Hro+1. Secondly they

are facets fg—1 and f'. For odd 4 (> 5) the facets f5 are also
congruent with that ones which arise in the following way: In
C, we cut off those vertices which lie in Hr _pe Thus we get
i. After the decomposition of Cj imto 8% a8a @ vy the hyper
plane E _1 with v oE Q we consider the facets fd of ag lying

in the bype:plane xj_1 The facet i& is congruent with f&.

~Ad-1

Therefore in case of odd d we have to work with Q being con-

gruent with f .

For our calculation we need triangulations of the intersection
Cdr1H with r = +1, T +2,...,d—1 or r = —1 b4 —2,...,1
These iutersections are always congruent for tha paizs of r
(1,d-1), (2,d-2)y... . Let fo 1.2 ro+1f‘°d . Our triangula-
tions of'rg—1 and ?%_1, inductively obtained, may consists of
p(d) and P(d) simplices, respactively. Then we can establish

Lemma 1. For d 2 4 we have
d-p(d-1) if d is even,

p(d) = d-1
-

p(3) = p(4) = B(5) =
201

-p(a-1) + 1 .B(a—1) - if a 1s odd,

p(2)



~

Proof. In fg'1we cone off to the vertex ?oz =
- ¢

A0
(Oyeees0ylyeesyt). Let d be even. Then there exist r, facets
of C; containing thedvertex ¥, Whose intersections with Id'1
are congruent with f s and T, facets of Cd containing the
vertex v, whose intersections with f are also congruent
with fg é. We see this, for example, 1£ we cut fd'1 with the

hyperplane x1-1 Then in this hyperplane.there remains the

convex hull of the cube vertices (1,x2,x3,...,x ) with

& x; = 2,~1 . This 1s an intersection of a (d-1)-cube with
J:Z

the hyperplane H r, . Thexefore, there exist axa?tly 2:0 =4

facets of fg_1 being congruent with fg_z . Thus we have p(d)
= dep(d-1) for even 4 « — If 4 is odd then there -exist z,
facets of Cd containing the vertex ¥ whose intersections with

d—1 2d-2
1 (o]

£, are congruent with , and (:0—1) facets of C; con-~

. taining the vertex vy whose intersections -with 13-1
d-2 A :
£, "+ We have p(d) = r -p(a-1) + (10—1).p(d_1),

The initial values for p(2), p(3), P(4) and $(5) are 1, becau-

are con-

gruent with

t t, £2 £
se fo is a segment, o 1s a-triangle o-is a tetrahedron and

?ﬁ is a 4-simplex. (All these simplices are regular ones.)
This proves the lemma.

In this manner we can also caloulate p(d). More generally we
consider the intersection

2
*q

_1.
?g 2= Cyn H, » zora<d .

A
.

°q
If r +q = d-1 then ?g’1 is a regular simplex. An inductive

<
.

«q
triangulation of fg'1 by coning off to a vertex of it gives

.
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:q
ﬁ(d) simplices. Therefore initial values are

v0e)

<
°q

q
p(2g+2) = P(2g+43) =1 .
Then we have

Lemma 2. Let g> 0. For d ¥ 2q+4 we have

4 . e
29 4
% .d_;ﬂ.ﬁ(d—ﬂ + %Z—Q--ﬁ(d—‘l) if d is even,

A
cq+1 <

A
:q
4-29=1 . F(a-1) + Qi%s:l.é(a-1)1f d is odd,

2 <
:q :q
p(2q+2) = P (2¢+3) =1 .
The proof of lemma 2 runs analogous];i to that of lemma 1.

Now we can recursively calculate the values for p(d). The
first values for 2 £ 4 € 11 are

p2)=p(3) =1,
p(4) = 41 = 4, B(4) = 1,°

p(5) = 2+4 + 31 = 11 , B(5) =

-

’

S

p(6) = 6°11 = 66 s £(6) = 2¢11 + 4¢1 = 26 , 3(6) =1 ,
D(7) = 3466 + 4226 = 302 , B(7) = 2426 + 5+1 = 57 , B(T) = 1,
p(8) = 8°302 = 2416 , D(8) = 34302 + 5+57 = 1191,

2(8) = 2457 + 6-1 = 120,
D(9) = 422416 + 5-1191 = 15 619 , B(9) = 3+1191 + 6+420 = 4293,
p(10) = 1015649 = 156 190 , D(10) = 4+15619 + 64293 = 88 234
p(11) = 54156190 + 688234 =1 310 354 .
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After these triangulations of the facets of Qg and 03 being
opposite to s and \PE) raspectively, we can cone off to these
two Yertices. For low dimensions we get the following results.

d=3 (z°=2): fi is a (regular) triangle (p(3)=1), Qg is a
(zegular) tetrahedron, 03 is thq empty set. We have 3 vertices
in Hz°-1 and 1 vertex in Hr°+1‘ Therefore the triangulation

donsists of s = 1+0+3+1 = 5 tiles.
d=4 (:°=2): fg is an octahedron (p(4) = 4), Qz and Q: are con-

gzuent.'Coning off Q4 to v, we get 4 tiles and coning off Q¢
to v, we also get 4 tiles. Together with the 8 vertices lying
in the two hyperplanes H and H3 and being cut off we obtain
24 + 8 = 16 tiles.

d=5 (x —3) f4 can be triangulated with p(5) 11 tires. The
simplex numbez for 05 is p(5) + 5.p(4) + (5) 41 and for Q?
it is p(5) = 11. The number of the vertices in H, and H, being
cut off is (3) + (3) = 15. Thus for this triangulation the
number of simplicss is s = 41 + 11 + 15 = 67.

[}

d=6 (z _3) f5 car ba triangulated with p(6) = 66 tiles. The
simplex numbaz for Q (and also for Q ) is p(6) + 6p(5) + ( )
= 147. The number of the vertices being cut off in Q  is (g)
= 15. Thus for this triangulation the number of simplices is
2(147+15) = 324.

In this manner we get for
a=7: o p(7) + 7p(6) + T+6+2(5) + 7(3) + (1) = 1366
1. p(7) + 7+5(6) + (2) = 505"
numbex of vertices being cut off: (7) + (7) = 563s = 1927.

d=8: Q2 (and @3) : p(8) + 8-p(7) + 8- 7-5(6% + 8(7) + (8)- 6512 *
numbez of vertices being cut off: 2. ( )= 112
s = 13 136.

d=9: 02= p(9) + 9-p(8) + 9+8+p(7) + '9~s-7-§(e) ¥ 9-8-(3) 4
+9+3) + () = 74 353
02: p(3) + 9+5(8) + 9+8-(T) + 9-(3) + () = 30 778
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pumber of vertices being cut off: (2) + (g) = 210
s = 105 341.

g=10: 01%ana ]9z p(10) + 10+p(9) + 10-9-5(8) + 10-9-8+5(7)
+ 10:9.(D)+ 10+(5) + (3 = 464 180

number of vertices being cut off: 2-(10)'= 420
s = 928 780.

To give another proof of these simplex numbers we add the volu
mes of the simplices of these triangulations. If the numbers
given above are.right, we” obtain volume 1 of the cube. Multi-
plying the volume of each simplex of that triangulation of the
d-cube by d! we obtain the weight of that simplex. This is a
value w which is a natural number. In our case we have 1§w§E°:
We can show this by induction. But we remark that there are
simplices triangulating a cube with w>r (cf. section 5; for
‘example, in case d = 6 we have w £ 9 and there exist simplices
with w = 93 cf. also ['7] , appendix 1). Here the sum of the
weighted simplices must be d!. We show this for half of the
cube Plo. In the -first line of table 1 we have the numbers of
special simplices and in the second line we find the weight

of these simplices.

A A 1
simplex number: | p(10) 10-p(9) 10.9.2(8) 10+9.8-p(7) (40)

weight: 5 4 ~ 3 2 1

simplex number: (10) 10-(2) 10-9»(2)

weight: 3 2 1

Table 1

The sum of these weighted values is 1 814 400. Indeed, it is
2+1814400 = 3628800 = 10! . Also, the proofs for d<10 give
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the right numbers d! . For d € 5 these values agree with those

ones of Sallee and Smith (cf.[&] ,[7] ). They are less than

those ones for 4 >5. Because of the recursion formula (1), for

a lower value P(d-1) we also obtain a lower value for P(d)

(cf. table 2)._Especially for 4 = 6 Sallee's formula (2) glves

P(6) = 364 and the method demonstrated in this section gives

s = 324. This numbexr is even less than Sallee's number 344 men~
" tioned above. Therefore we have - '

Theorem 3. For a 6-—cube there 1is 324 an upper bound for the
simplex number of an optimal triangulation.

dimen- simplex number simplex number ob~- optimal sin:
sion @ via formula (2) tained in this section  plex number

2 2 : 2 : 2
3 5 ~ 5 - 5
4 16 16 16 = 42
5 67 ; Y A 67.
6 364 324 = 182
7 2445 1927 '
8 19296 13136
9 173015 105341
10 1728604 928780
Table 2

5. In this last section we will establish formulas for the
number of simplices in an arbitrary vertex preserving triangu-
lation T of the d-cube (d £ 6, also cf. [1],[ 2] ). Let sfd)
= s(d)(T) be the number of the simplices in the triangulation
T, let sgd) be -the minimal number of.s(d) (for an optimal
triangulation) and let k be the number of simplices in T with
special properties described in the corresponding tables. Ve
call a facet £ of a simplex of T an exterior facet, if f lies
in a facet of the d-cube. For simplices of T having d exterior
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facets we use the following assertion established 1n[:1]
(also cf. [5] ), here formulated as

Lemma 3. In a vertex preserving triangulation of ihe d—-cube -
there exist at most Zd—1 simplices each possessing d exterior
facets.

Now we classify the simplices of T by the numbers of.their
exterior facets and by their weight. Let k : = kj (0% 3 £4)
be the number of simplices in T with j exterior facets. Then

lemma 3 means

0fk, 2077, » (3

To obtain a formula for s(da as a function of simplex numbers
k we establish some equations.

(i) We use the fact that s(d) is the sum of all kj, i. 8.

(@ <
s = k . , 4)
By

k simplices of T may have the weight w. Then the balance of
the volumes of the simplices of T and of the volume of the unit
cuba gives

%(Zw-k)ﬂ ) 5)

In seotion 2 we saw that s<30¢ ai. Together with (4) and (5)
we get an equation of the kind ’

S 4y - Z (w=1)k € a1 , (8

(ii) Using the knowledge that the d-cube possesses 2d facats
being (d-1)-cubes and assuming that the minimal number ;gd) is

known, then the balance of the numbers kj gives the equation

a
JEERTE 2d-sgd_1) +a; - (N
=
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ad(éo) is the excaess of the (d-1)-simplices over the minimal
" number in the- facets with

2d ‘
&g = Z -a’éﬂ%
=

and dﬁjz (2 0) is the excess of simplices over the minimal
number in each facet J (j=1,...,2d).

(1ii) Comparing with the minimal number sgﬁ) equation (6)
gives

Sg&)éd!_z (w=1)+k . (®

We apply inequation (8) for the facets of the d—cube, i.e. we -
use (8) for each of the 2d facets((d—1)-cubes) in the form

2 (w10 @D L @y 1-s(@Do oD

Therefore we have for the sum of all the 2d facets

S5 (=0 2 2acca) 1=y . ()

We can establish analogous equations with respect to facets
of the cube with lower dimensions than d-1.

In this way we now discuss the dimensions d = 2,3,...46 &

d=2

This case is trivial. We only have simplices (triangles) with
weight 1cf.table 3). Because of (3) we have k, £ o1y,
. Because of (4) and (5) we can

kza Ko %1 k2 yrate s(® ks ske 21 = 2,
gumber of ex= ]| O 1 , Because of a2=0 and sgl)-'l equa-
terjor facets tion (7) gives k,+2k,= 4. There-
weight 1 1 1 fore we have to consider the two
’ equations

Table 3
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ko + k1 + k2 = 2
Eliminating k2 we obtain .
2k°+ k1 =0

and therefore we have ko = k1 = 0 and kz = 2. That also means-
that there are no triangles with zero or with one exterior
facet. Thus our desired formula is

. -2 T

(]
o
.

In addition to this we have sgz) =2 and a

N~

d=3

Let k be the number of simplices with the propertiés given in
table 4. Only the sim-

k:= ko k1 k2 k3 plices with no exterior

facets have weight 2.
number of ex-| O 1 2 3 These ones are always of
terior facets . the same type (they are
weight 2 1 1 1 even congruent). We call
type U

o this type Uo' Because of

(3) we have k3§22=4.
Table 4

Becausa of (4) and (6) we can write 5(3) = k°+k1+k2+k5 = 31—
-k, % 6. Because. of si = 2 and aj= 0 equation (7) gives
k,+2k,+3ky = 12, For this dimension equation (9) gives the
identity O = 6+(21 —= 2) — 0 = 0. Therefore we have to copsi-
dexr the two equations <

2k, + kg + Kk, + kj = 6 (12)

k1 + 2k2+ 3k3= 12 (13)

Eliminating k3 we obtain
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1
2k + 5(2k +k,) = 2 | (14)

and therefore we have O £ ko £4 ., Thus our desired formula
is . )

Sides k/ £ 4 the last equation implies 5 £ 3(3) € 6. The valus
sga>= 5 can only be zealiz.gd by k, = 1. Because of (14) then we
have k1=k2=0, (43) gives k3'= 4. Such a tridngulation of the
3-cube exists and is unique (cf. [:1] 5 [2] . [5] ). Of course,
our methods in section 3 and 4 also give this triangulation.

Therefore we can write s*°7 = 303 +ajy=>5+a} (0 £ ay £1);

or because of the above formula fox 5(3)

we obtain
‘ o 3 * ' (15)

d=4

Let k be the number of simplices of T with the properties
gilven in table 5. )

k= xéEék’:k'k’fkkk

number of ex-— 0 0 0 1 -1 2 3 4
terior facets z

weight 3 2 1 2 1 1 1 1
type Wo W1 W2 Uo
Table 5

It is k = kc'>+k-8+k’; » K, = kj+k; . Because of (3) we have
k4 € 8, The weight of a simplex with no exterior facets is at
most 3. Simplices of type Vlo are congruent with W§4), those of

type W, are congruent with W14 « Simplices of type Uo contain

210



a facet which is congruent with 03 The coordinate matrices of

°°
these simplices are

0000 0000 s0d
0111
¥ o [q011 ], w® = (o], o (0},
° 1101 1101 150
’ 1110 1110 .

(of. [15 (13), (19)]; there the combinatorical method for
getting these results is given). Since (4) and (6) we can
4 - - “Frk' £ o4,
write s = k otk Ho+kork = 41 - 2k} EB k} & 24. Because of

* =
sg3)= 5 equation (7) gives k%+k1+2k2+3k3+4k4=40 + 34(0éh4§§).
Bquation (9) gives ki=8 - a, because of (15). In the last two
equations we eliminate a, and get 2k;+k§+2k2+3k3+4k4=48. Thus

we have a system of linear equations for k; and k4:
; 3*
2ky + k, = 24 - 3k} - 2E! - K - K -k, ky (16)

2kj + 4k, = 48 - E§ - 2k, - 3k; . an

The determinant of the coefficients is 6 # 0. So we gat

8- 50Ky + 2By + W - FOKE + 2k, + k)

a3
n

1 . ) _1
8 + 5(3k° + 2k + k§) 5(k, + 2k3) 5
Substituting k; into the equation

- g{4) oy o -
s = 24 ?ka ké : k; (18)

we obtain
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3(4) = 16 + %(EB + 2k§) +° B(ka + 2k, + k3) .

2

At once this formula gives 5(4) 16. For s<4) = 16 there is
only one arithmetical realization: First we get

—k k*- k,=k,=0. Then with these values we have k'_8-2k' and
k4—8+k'. Because of k4 = 8 we have k'—O and therefore k'-k
A geometrical .realization i1s that ona described in sections 3
- and 4 (also cf. [4]and[5] ). Since 16 is the least value of

(4) from (18) we can imply

2k +El+k) £ 8 = 24K +kivay . - (19)

a! (O—aA‘B) is the excess of 4—simplices over an optimal trlan-
vulation of the 4-cuba.
d:é

Let k be the numbexr of simpl&ces of T with the properties gi-
ven in table 6.

. (o] = ¥ ' -

k:= k! k! kr ki ko k) . k: K
‘number of ex-— 0 0 0 0O - O " 1 1 1 2
terior facets
weight 5 4 3 2 1 3 2 il 2
type o

Xo Xo X1 X2 Wo Wﬁ Uo Zﬂ%

k:= ¥k k, k

number of ex—{ 2 3 4 5
terior
weight 1 1 1 1

Table 6
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o o = = * _ *
It is k = RiHkiELRGHG o ky=lieky el T, ko= kg,
Because of (3) we have k5 % 16. The weight of a 51mplex with
no exterior facets is at most 5. Simplices of type X are con-—
gruent with X<5) having the coordinate matrix

00000
00111

01011
25 = | 40011 .
11101 :
11110

For simplices of .type X there exist 5 different sorts being
not mutually congruent. For simplices of type X there exist
9 such different sorts (cf. [3] Je

Since (4) and (6) we can write s(5> ke ek, + 3+-k4+k5_ 51 -

—4k' —3k'-2E'—k'—2k'—E'—k"—k" Because of s 4)— 16 equation

(7) gives k4+E%+k%'+ k1+2ké'+ 2k*®. +3k3+4k4+5k5

£80).(9) gives 2k4+E;+kf +2k5+a5-80 bacause of (19). Thus we
have a system of linear equations for kq ’ kg and k5:

= £
= 160+a5 (Oth5

[o}
2kq+2k§+k5=120—5k3—4k' 3k'-2kv-k*—}k;-zﬁg-k’—kz-kB-k4 (20)
3* * ’
k;+2k5+5k5=16o+a5—k;—E;-k1—2k2—3k3—4k4 (21)
KJ+2k3 =80—a5-2k;—E; . (22)

-

The determinant of the system is -10 # O . Therefore we have
a unique solution

[o] = 1 -
24 - (5k!+4k!+3E1+2k! +ic7) ~ 5(4k1+3k§42k3+k4)

K =
1 145k 3
5(6kj+5E) + za,
- 1 o = __
ki = 28 + 5(5k6+4k8+3§8+2k6+k§) + (4k +3k +2k +k4) +
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~ 2 _ 4
551~ 5%
- 2 dend P
ky = 16 + 58, + 3k} 5(&? 243k +4k,)  ( £16) .
Substituting k,',' and ka into
(o] =
s(3). 120 - 4k8—3k3-2fafka—2k;—E;-kq—k; (23)

we obtain

s(5>= 68 — %(3§3+2k¢')+E' J » —(5]: +4k 31(*-:-21: +k4) +

1
+ §(a5'2k4)

For 3(5) of this formula the first therm 68 i1s obtained from
68 = 36 + 2- 83 4

In [:Jjwe have shown that sg5)= 67. Therefore from (23) we ocan
imply )

[s] = E
4k +3k )+ 2K+ +2k ] -+ +k]+kcf £

0. = - .
53 = 4k5+3ké+2ﬁ5+k:}+2k.‘l+k.'l-.i-k!|'+k5+aé ~ - (24)

aé(oéaééﬁ) is the excess of 5-simplices over an optimal tri-
angulation of the 5-cube,

The two methods presented in the sections 3 and 4 giving an
optimal triangulation with 67 simplices yield the following
simplex numbers:

via section 3: k°=ké=‘|, k,=kj3=20, k2=k§,=30, k3=k4= 5316
via section 41 k =E!=6, k,=7 (kj=5, kj =2), k,=k}=29,k;=10,
k4=0, k5=1§ .
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These two trilangulations are essentially different. There

exist further triangulations of the 5-cube into 67 simplices

which are also essentially different from these two ones

(cf.[B] ) .
d=6
Let k be the number of simplices of T with the properties
given in table 7.
i e B B OB ELE R R K kK ED K
R o "o o 070 "0 0 (4] [} 1
number of ex-|0 O O O 0 0 0 O o 1 1 1
terior facets
weight 9 8 7 6 5 4 3 2 1 5 4 3
type ¢ 11 Y2 13 24 Y5 Y6 Y7 xo x1 x2
ki= BB K Ky B B oKy K
pumber of ex-|1 1 1 1 1 2 2 2 2
terior facets
weight 2 3 2 2 1" 3 2 2 1
type X Wo W1 Uo 21!6 2:!& };ﬁo

o 1’
k:= k k’; k, Ik kg
number of ex- 3 3 4 5 6
terior facet
weight 2 1 1 1 1
type on
Table 7
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R‘Il [1']]

It is ko=k")+E'+k'+k'+k'+ o k’E y ko =kj+Hk+H] +g +

r,"l| wn

E'+E"+k_i+k’ )y ky = E'+k“+ké+ 1{3--1':3+1~:3 . )
Because of (3) we have k¢ £ 32, The weight of a simplex with
no exterior facets is at most 9 (ef. [ 7. » appendix 1), A ye-
presentant of type Y " is the simplex YO bhaving the coordina-
te matrix

000000
000114
001110

¥ (& _ | 011001 .
101004
110010
110100

Because of (4) and (6) we can write

() _eE, S = £ =
=k +k +k2+k3+k4+k5+k6- §| -ak'—7E-—sk' 5kt ~4k!-3k!-2k! E'-
—4k;-3§4-2k:'=-kq"—2E4—Eq—k;-zﬁé-kg-ké-ki - (25)

Because of 325)= 67 equation (7) gives i_ﬁﬁqﬁi!‘" +§!"" +E,§+E3" +
+k;+kf+22é+2ﬁg+2k5+2k§+3k5+3k§+4g4+5k5+6k6=12-s§5)+a6=804+ ag
(0 € a, £ 12.53 = 636). Equation (9) gives 4i;+3iq+aiq¢§qn+

2(E_}+2§é)+(i;!+@)+k;+2ké+3k5 = 12-(120—585))—3.6 = 636 - a,

bacause of (24). With respect to the 4-facets of the cube

equation (9) gives 2(E'+2E')+( "+2E")+(k'+3k'+6k') = 12.80-a}
= 960 - ap (0 £ a® < 1280 = 960) because of (22) (and (19)).
ag is the excess of the 4-simplices .over an optimal triangula-
tion of the 4-cubes. Thus we have a system of linear equations

for k1 ,kz,ké and k6:
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2k +2ky+2k e 2

3tk = 720

k;+2ké+3k5+6k6= 804 + ag - B
k;+2ké+3k5 = 636 - ag — C

= - am -
ki+3ké+6k5 = 960 a6 D .

We obtain A,B,C,D from the above equations. Therefore it is

A = ok!+8E} +7k 46k +5k 1 +4k +3E+2k' +k’*+5k ! +41c" +3k"' +2k" LIRS

+3k'+2§"+k’+3§ +2E"+k§+k +e e

i ;+k1+k'" k'"'+k' +k""+k’+2E +2E"+2k’!+3k*+4k 4K

o
]

5
C = 1-;1+3k"+2k +k'_;"+2E4+E:|'+4Eé+2E2

D= 2k 1 +k'v1'+4ﬁé+2E5

The determinant of the system is 12 # O. Thus we have a unique
solution for k:,' ,k k3,k6. Especially we get

kj+Hoy+k) = 346 - —(54k'+4sEv+42k'+36k-+30k-+24k-+1a 4

+12E! +6k"+3312-+26k"+1 9k“' +12ky"+19Kk1+1 2En+51r‘
+20k'+12En+4f'+3k"+2k +k5) .

Substituting this sum into the representation (25) of 3(6) w
obtain-

3(6) = 374 - z(7k'+6E'+5k'+ =k - %(BI__C i E'")

1 1
: - T3(SEIHEY) + p(6IH5I+AIG 3T+ 2k +k5) + 32y
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For s{®of tnis formula the first texm 374 1s obtained from
7 5 5
374 = 240 + 2s;77 with 8.7/ = 67,
The two methods presented in.the sections 3 and 4 yield trian-
gulations into 364 and 324 simplices, respectively, with the
following simplex numbers:

() k=0, ky = 132 (Rj=12,K] = Zi?’ kp=ky = 120, ky=k} = 80,
k4=k5=0, k6=32, a6=a6‘=0, 8~ /= 364 ;.
(11) k=0, k=132 (§$E72,E;=6o)g k,=kj=24, ky=ki=108,

k,=30, k=0, k=30, ac=0, dgé120, 5(6)= 324

4 5

We obtain these simplex numbers recursively. The coordinate
matrices of the simplices of the corresponding triangulation
are given 1nl:2:[and[3:l .
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