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1. Introduction

In Euclidean 3-space let 52 denote the two-dimensional unit
sphere. We shall only consider closed subsets of 52. A closed
set on S2 is said to be convex if it contains, whith each pair
of its points, the small arc or a semicircular arc of a great
circle determined by them. Throuéhout we shall assume that the
non-empty convex set C is a proper subset of 82 and different
from a great circle. Such a set C is contained in a closed hemi-
sphere. The intersection of the closed hemispheres of Sz, the
centres of which are the points of C, is also a (closed) convex
set C*, the polar set of C. As is well known, the polar of c* is
C. The perimeter of C and the area of C* satisfy the relation

p(C) + a(c’) = 2m. . (1)

A convex- proper subset of 82 with interior points will be called

a convex cap. If a and p denote the area and the perimeter of a
convex cap, we have the isoperimetric inequality

(2ﬂ-a)2 + p2 2 4n? (2)

with equality only for the circular caps. A convex k-gon (k21)
is a convex cap, which is the intersection of at most k closed
hemispheres. The boundary of a convex k-gon P consists of at
most k arcs of great circles, the sides of P. By a regular k-gon
(k22) we mean a regular polygon with exactly k sides. If a and p
denote the area and the perimeter of a convex k-gon (k22) then
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cos — § ——— (3)
2k 2m-a
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with equality only for the regular k-gons.

Let P be a regular k-gon, where k22. We round the corners of p
off by k congruent circular arcs, each touching two sides of P.
The convex cap C which is bounded by these k arcs- and k segments
on the sides of P will be called a smooth regular k-gon with

case P. The smooth regular k-gons with given case P form a pencil
joining P with its in-circle. It is convenient to consider the
in-circle of P as a degenerate smooth regular k-gon.

Let P* be the polar k-gon of P. C*, the polar cap of C, arises
from P by joining each two consecutive vertices of p* by con-
gruent'circular arcs. We shall call C* a reqular arc-sided k-qon
with kernel P*. The regular arc-sided k-gons with given kernel P*

*
form a pencil joining P with its circum-circle.

We shall deal with the approximation of convex caps by convex
polygons. There is a wide range of literature concerning the
approximation of convex bodies by polytopes iﬁ Euclidean spaces
(see [7]). But little is known about the analogous problems in
non-Euclidean spaces ([2],[4],[5], ]:8]) . In this paper some results
obtained for plane convex discs ([1],[3],[6]) are extended to the
2-sphere. We shall see that the situation in §” is in a way more '
satisfactory than that in the plane.

We restrict the mutual position of a cap C and an approximating
polygon P by supposing that either P O C or P < C. That means
that P is approximating C either from the exterior or from the
interior. There are several methods of mehsuring the deviation
between two convex caps X and Y, where X € Y. Two of the most
usual methods are given by the area deviatidﬁ between X and Y

& x,Y) = amw - a® . (4)

and by the perimeter deviation

F(x,v) = p(¥) - p(x), - (5)

" where a(M) and p(M) denote the area and the perimeter of®the set
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M respectively.

Throughout this paper we use a and p to denote positive constants
jess than 27 and satisfying the isoperimetric inequality (2).

Let E’(a,p) be the class of all convex caps with area not less
than a and perimeter not greater than p, and 1etf?k be the class
of all convex k-gons. Two measures for the "nearness" of the caps
from ff(a,p) to convex k-gons are given by the functions

A §
A2 (a,p,k) = min&®(C,P), (6)
e 1P [c c P]

g(mpm)=mmaﬂaph (7)

where the minimum extends over all caps C from f?(a,p) and all
convex k-gons P containing C. (The subscript "e" refers to approx-
imation from the exterior.) The existence of the minima follows
from the Blaschke selection theorem. Both functions are interest-

ing only if
P cos %
cos — > —m——— (8)

2k 2r-a "
cos ¢

which means that p is less than the perimetgr of a regular k-gon
of area a. Otherwise f?(a,p) would contain a k-gon, so that

A2 = aP = 0. In addition to A® and A¥ the functions
e e e e
A B _ - .
me(a,p,k) = mina(P), ) (9)
[cep] -

mz(a,p,k) minp(P), (10)

will be consideréd, where the minimum is taken over all caps C
from ?f(a,p) and all convex k-gons P containing C. In a similar
way we define four further functions A?, AE, M?, ME by replacing
in (9) and (10) the minimum by the maximum and extending the
extrema over all caps C from Q?(a,p) and all k-gons P contained

in C.

2. Theorems

We are now in a position to state the following theorems.
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THEOREM 1. Let k22 be an integer and let a and p be positive
constants less than 27 and satisfying the inequalities (2) angd
(8). If C c(g(a,p] and P ‘?k with C € P satisfy one of the
conditions '

1) & c,p)

A2 (a,p,¥), or

(ii) a(P) meA (a,p,k), or

(iii)  p(P) mz(a,p.k); or v

iv) & (C,P) = 4, (a,p/k),

then C is a smooth regular k-gon of area a and perimeter p, and p
is the case of C.

THEOREM 2. Let k23 be an integer and let a and p be positive con-
stants less than 2mand satisfying the inequalities (2) and (8).
If C € ?(a,p) and P € yk with P € C satisfy one of the conditions

(1) & (r,0) = 4] (a,p,k), or

(i1)  p(®) =M (a,p,k), or

v® (a,p,k), or

(iii) a(p)

1
(iv) s*@,0 = o} @p.x),

‘then C is a regular arc-sided k-gon of area a ;nd perimeter p,
and P is the kernel of C. ’

Note that- Theorem 2 follows from Theorem 1 by spherical polarity,
so that it suffices to prove Theorem 1. Two analogous theorems
for plane convéx discs are. contained in the papers [3] and [1].

3. Proofs

Proof of Theorem 1. Let us assume that C€ ??(a,p) and P631 with
-C € P satisfy condition (i). In the following 10 lemmas the
properties of C and P are developed, the last showing that C and
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P correspénd with the assertion of Theorem 1. First we observe
that C lies in some open hemisphere and that at least one vertex
of P is outside C. Otherwise C would be a k-gpn in contradiction

to (8).-

LEMMA 1. The midpoint of ‘every side of P lies on the boundary
of C. ) )

Proof. By a segment on S2 we mean always an arc of a great circle
of length less than w. Let M be the midpoint of the side A1A2 of -

P, and suppose that C and the segment MA2 are disjoint. A small
rotation of A1A2 about a point of A1A2 near to M reduces a(P)
without changing a(C). This, however, contradicts condition (i).

LEMMA 2. P has exactly k sides. : -

Proof. Let A1 be some vertex of P outside C. If P has fewer than
k sides, we can reduce a(P) by cutting off from P a small triangle -
with vertex A1.

From the lemmas 1 and 2 it follows that the'boundary of C con-
sists of k segments (possibly points) on the sides of P, and

j arcs b1,...,bj (1's j £ k), each having its endpoints on two
adjacent sides of P.

LEMMA 3. bi is a circular arc {possibly of spherical radius w/2),
for 1 £ i s j.

Proof. Let V1 and V2 be iﬁ? two distinct points in the relative .
_interior of bi‘ The arc V1V2 lies entirely in the interior of P
and has a positive distance p from the boundary of P. We cover
6:32 by a finite number of its subarcs in such a way that each
has a length less than p and overlaps the following. It suffices
to show that each of these subarcs, say ﬁ:§2 = 8, is a circular
arc. If this is not so, we replace s by the circular arc § of the
same length, say A, which joins W1 with w; and ligs on the same
side of the great circle through W1 and Wz. Because )X < p, the set
D = (C\convs)V convs is contained in P and in some open hemi-
sphere.
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We proceed to show that
a(convs) < a(convs). (11)

S is a subarc of the boundary of a circular cap C of radius

r < 7/2. Let s' denote the complementary subarc of bd C. The
curve s U s' is the boundary of a closed set T with p(T) = p(Q).
We observe that T is a subset of some open hemisphere. Indeed:

if s' is at most a semicircle, then T is contained in the interior
of P. If s' is larger than a semicircle, then consider the hemi-
sphere H concentric with &. It is easy t> show that, for any point
X on the boundary of H,

iﬁ1 + iﬁz 2 2 arccos (sinrcos %) > asinr = 3},

where o < 7 is the cemtral angle of S, whereas

§ﬁ1 + fﬁz S A
for any point Y € s. Thus T is contained in the interior of H.
Since's # s and p(T) = p(E). it follows from the isoperimetric
inequality that a(T) < a(C), which implies (11). From (11) we
deduce that a(C) < a(D) s a(convD). Because convD < P and
p(convD) £ p(D) = p(C), we have a contradiction to assumption (i).
Thus s is, in fact, a circular arc, and Lemma 3 is proved.

LEMMA 4. The arcs b1,...,bj have the same radius, say r.

Proof. Suppose that b1 and b2 have different radii. -Let sy and
.S, be two subarcs of b1 and b2 contained in the interior of P
and corresponding to two chords <4 and Cy of the same length. We
interchange the positions of the circular segments convs, and
convsz. That means we cut them off from C and join them to c2
and <, respectively, By this process we obtain a non-convex set D
which is~contained in P and in some open hemisphere when <4 is
sufficiently small. Since p(D) = p(C) and a(D) = a(C) we have

a(convD) > a(C) and p(convD) < p(C) contradicting assumption (i).

LEMMA 5. Every vertex of P is exterior to C.

Proof. Let A1 be a vertex of P on the boundary of C. We may
clearly assume that A, is outside C. By Lemma 1 there is an

isosceles triangle A = A1V1V2 < C with apex A and V1 and V

N

17 2on
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the segments A1A2 and A1Ak respectively. Let s = w1w2 be a -
subarc of the circular arc rounding off the coraer of P at A,
where the segment v1v2 and the chord W1W2 have the same length.
similarly as in the proof of Lemma 4 we interchange the positions
of A and convs obtaining a disc D with p(D) = p(C) and a(D) =
= a(C). If A is sufficiently small, then D is non-convex and
contained in P and in some open hemisphere, which again leads

to a contradiction to (i).

By the lemmas 3, 4 and 5, the‘boundary of C contains k circular
arcs b1""’Pk of the same radius r. We next prove that C has a
smooth boundary. That means in particular that r < /2.

LEMMA 6. Through every boundary point of C there passes just one
supporting great circle.

Proof. The boundary of C intersects the side AiAi'+1 of
P = A1"'Ak in a segment Ui1Ui2 for i = 1,...,k. Let bi be the
circular subarc of the boundary of C joining Ui—1,2 with Ui1'

Let t be the great circle tangent to b2 at U12. To prove Lemma 6
we have to show that t coincides with the great circle determined
by the side A1A2 of P. Suppose that this is not true. We prolon-

gate the arc b2 beyond U12 and choose two points X and Z on bz

12X = U1ZZ° The

gréat circle XZ intersects the boundary of C at a point Y between

X and Z. We denote the convex hull of iﬁ:;i by S1, the angle:
between XY and the arc.iﬁTé by 9X, and the angle between the
segment ¥X and the arc fﬁ;z by 9 Y. Let VYW be a subarc of b2
contained in the interior of P and such that VW = XY. Write S

2
for the convex hull of GW.,By exchanging the positions of s1 and

and on the prolongation respectively,such that U

52 we obtain a non-convex set D. If ZX is sufficiently small,
the following conditions are satisfied:

dX<4%Y;
S1 and S, are disjoint, both in the original and in the exchanged
positions;

S1 is in the new position contained in the interior of P.

Then 52 in the new position is contained in C. Obviously, we
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have D < P, p(D) = p(C), a(D) = a(C). Hence a(convD) > a(C),
plconvD) < p(C). By the assumption on C and P, this is impossible,
y ‘

LEMMA 7. AiUi1 = Ul2 1#1,for i=1,.,k.

Proof. Let M and M' be the midpoints of A1A2 and U.”U.12 respec-
tively, and let us assume that 1&1011 < U12A2. Then M' lies be-
tween A, and M. By Lemma 1, we have MF.U11 12 and thus U, # Use
A rotation through:.a small angle ¢ about a po:.nt X of the segment
MM' transforms A1A2 into a new position A1A2,. where A € Az 3
A A intersects b, at a point Y. When X = M then ¥X < XU”, and

wl11ex21 X = M' then ¥X > XU,, (use Lemma 6) . Thus, for a sufficiently
small angle ¢, there exists a point X between M and M' such that
¥X = XU”. Moreover, X approaches M' as ¢ tends to O. Let S be
the set bounded by the segments YX, XU12 and the arc U1 2! We

cut S off from C and rejoin it to C such that XY coincides with
XU,|1 . The non-convex disc D obtained by this process has the
properties a(D) = a(C), p(D) = p(C), D< P', where P' is the
convex k-gon A A2 A3... AkA Since X is near to M' we have

a(P') < a(P). Again, this contradicts the assumption on C and P.

LEMMA 8. p(C) = p. =
Proof. Supposing p(C) < p, we choose a point X € P\ C near the

boundary of C. For C' = conv (CV {X}) we have a(C') > al(C),
p(C') < p and C'< P, which is impossible.

LEMMA 9. al(C) = a.

Proof Suppose that a(C) > a . When k 2 3, choose A (3 A1A2

near A1 and let P' be the convex k-gon A1A2 rets AkA When k = 2,

let P' € P be a digon with vertices A1, A2 and sides near those
of P. In any case, we have for C' = C np'

a(c') > a, ptc’) < p, §*(C',P') < & (C,P),

which contradicts the assumption on C and P.

The following lemma completes the proof .of Theorem 1 under the
assumption (i).
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LEMMA 10. P is regular.

proof. From Lemma 4, 6 and 7 it follows that P is an equiangular
k-gon and that the circular arcs b1,'. .o ,bk on the boundary of C
are congruent. Thus we can assume k 2 4. We denote the interior
angle of P by 2¢, and the central angle of bi by 2y. Comparing
the two representations 6f. a(P)

a(P)
a(P)

2k¢ = (k-2)m, (12)
a + 2k¢ + 2kycosr - km

we obtain ; .
a + 2kycosr = 2m. (13)

{13), together with_

siny = £25¢ . (14)
implies
_ _27m-a (15)

sin ¥ "_ 2kcos¢ °

By use of (14) we find for the perimeter of P

S ; i, COS ¢
p(P) = p-2ksinr arcsin ——=

+ 2k arcsin (tanr cot ¢). (16)

Suppose that P is not regular. Let P be the reg{llar k-gon with
a(P) = a(p). . (17)

If the area of the in-circle of P is at most a, then there is

a smooth regular k-gon C with case P and a(C) = a. By (12) and
(17), the interior angle of P is equal to 2¢. (15) and (14) show
that the circular arcs on the boundary of € have central angle .
2y and radius r. Thus, applying (16) to P and C we find

N . . cos
p(P) = p(C) gk sinr arcsin E‘s’% (18)
+ 2k arcsin (tanr cot ¢).
By (17), we have p(P) < p(P). Hence, by (16) and (18)
p(C) < p. (19)

Since a(C) = a and a(F) = a(P), the convex cap EE(G(a,p) satis-
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fies the condition 8°(C,B) = Ab(a,p,k). But (19) contradicts
Lemma 8.

If the area of the in-circle of P is greater than a, then there
is a circle C of area a in the interior of P. Becauseé p(C) € p,

T is from & (a,p). Since & (@E,P) = Ag(a,p,k), we have a contradic-
tion to Lemma 1. Thus the supposition that P is not regular wa
wrong and Lemma 10 is proved. . .

Let now (ii) be satisfied. From a(P) = a(C) + §(C,P) it follows
that a(P)<attains its minimum if a(C) and 6A(C,P) are minimal,
that is in the indicated case. Moreover, we see that

m: (a,p,k) = a + Ai‘ (a,p/k).

(iii) By the isoperimetric inequality (3), p(P) attains its mini-
mum if P is regular and a(P) minimal, as required. Moreover, we
have

m (a,p,k) 21 -n) (a,p,k) m
cos ————— = cos — ‘.
2k 2k k

ces

(iv) From 6F(C,P) = p(P) - p(C) it follows that & (C,P) is mini-
mal if p(P) is minimal and p(C) maximal, in accordance with Theo-
rem 1. Furthermore, we have

© P P
Ay (a,p,k) = m (a,p,k) - p.

This completes the proof of Theorem 1.

Let k22 and the constants a,p with O0<a,p <27 be given such that
the inequalities (2) and (8) are satisfied. We conclude the paper
by showing that a smooth regular k-gon is uniquely determined by
the parameters a(C) = a and p(C) = p.

A regular k-gon P is the case of a smooth regular k-gon of perim-
eter p if and only if

(a) p<p(P), and

(b) p 2 perimeter of the in-circle of P.

Let 2¢ be-the interior angle of P. A straight forward calculation
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shows that the conditions (a) and (b) are satisfied exactly if

™
cos I =
arcsin — ¢ ¢ S arccos ( /1~ (_22#2 sin%). (20)
cos ¢

Each of these values ¢ determines uniquely a smooth regular k-gon
of 'perimeter p and case P. The corresponding value of r follows

from

Q

os

Ea el

(P) _
e 22—1:__ ~ sin

©

or, by (16), from

f(r,¢) = '2216' sinr arcsin S25 ¢ 4 arcsin (tanr cot ¢)

cos r
cos‘%

- arccos = O. (21)
sin ¢

It is easy to show that the equation f(r,¢) = o has exactly one
solution r = r(¢) contained in the interval

O<rs r; = arccos cos ¢ ( = in-radius of P) (22)
sin =
k
with equality if and only if ¢ = arccos (v 1- (p/21’r)2 sin n/k).
Note that by (13) and (14) 4

cos

a(C) = 2m - 2kcosr(¢) arcsin S -% ¢) -

Making use of (21) and (22) we finally obtain

I~ 5 s
da(C) _ 2k _cosz¢ cosk—coscp tan r
—_— = = ( 1= =. ) 20
o =in ¢ coszr / 2 2T
sin“¢-cos” —

k

with equality if and only if ¢ = arccos (V1- (p/21r)zsin n/k) .
Observe that

cos
a(C) » 27 - 2karccos
cos

';E’»rv w1

‘and

cos (n/k)
s(p ¥ ’

as ¢ -+ arcsin
co
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a(c)=21r(1-/1—(%)2)2a )

for ¢ = arccos (71 - (p/27) sin n/k). Hence, there is exactly one
¢ in the interval given by (20) such that a(C) = a. The corre-
sponding value of r is the (unique) solution of the equation
f(r,¢) = O. This proves.the statement of uniqueness.

~
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