

Werk

Titel: Approximation of spherical caps by polygons

Autor: Florian, A.

Jahr: 1989

PURL: https://resolver.sub.uni-goettingen.de/purl?301416052_0029|log37

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

APPROXIMATION OF SPHERICAL CAPS BY POLYGONS

August Florian

To Professor Dr. Otto Krötenheerdt on his 60th birthday

1. Introduction

In Euclidean 3-space let S^2 denote the two-dimensional unit sphere. We shall only consider closed subsets of S^2 . A closed set on S^2 is said to be <u>convex</u> if it contains, whith each pair of its points, the small arc or a semicircular arc of a great circle determined by them. Throughout we shall assume that the non-empty convex set C is a proper subset of S^2 and different from a great circle. Such a set C is contained in a closed hemisphere. The intersection of the closed hemispheres of S^2 , the centres of which are the points of C, is also a (closed) convex set C^* , the polar set of C. As is well known, the polar of C^* is C. The perimeter of C and the area of C^* satisfy the relation

$$p(C) + a(C^*) = 2\pi.$$
 (1)

A convex proper subset of S^2 with interior points will be called a <u>convex cap</u>. If a and p denote the area and the perimeter of a convex cap, we have the isoperimetric inequality

$$(2\pi-a)^2 + p^2 \ge 4\pi^2$$
 (2)

with equality only for the circular caps. A convex k-gon (k≥1) is a convex cap, which is the intersection of at most k closed hemispheres. The boundary of a convex k-gon P consists of at most k arcs of great circles, the sides of P. By a regular k-gon (k≥2) we mean a regular polygon with exactly k sides. If a and p denote the area and the perimeter of a convex k-gon (k≥2) then

$$\cos \frac{P}{2k} \le \frac{\cos \frac{\pi}{k}}{\cos \frac{2\pi - a}{2k}}$$
 (3)

with equality only for the regular k-gons.

Let P be a regular k-gon, where k≥2. We round the corners of P off by k congruent circular arcs, each touching two sides of P. The convex cap C which is bounded by these k arcs and k segments on the sides of P will be called a smooth regular k-gon with case P. The smooth regular k-gons with given case P form a pencil joining P with its in-circle. It is convenient to consider the in-circle of P as a degenerate smooth regular k-gon.

Let P* be the polar k-gon of P. C*, the polar cap of C, arises from P* by joining each two consecutive vertices of P* by congruent circular arcs. We shall call C* a regular arc-sided k-gon with kernel P*. The regular arc-sided k-gons with given kernel P* form a pencil joining P* with its circum-circle.

We shall deal with the approximation of convex caps by convex polygons. There is a wide range of literature concerning the approximation of convex bodies by polytopes in Euclidean spaces (see [7]). But little is known about the analogous problems in non-Euclidean spaces ([2],[4],[5],[8]). In this paper some results obtained for plane convex discs ([1],[3],[6]) are extended to the 2-sphere. We shall see that the situation in S² is in a way more satisfactory than that in the plane.

We restrict the mutual position of a cap C and an approximating polygon P by supposing that either $P \supset C$ or $P \subset C$. That means that P is approximating C either from the exterior or from the interior. There are several methods of measuring the deviation between two convex caps X and Y, where X \subset Y. Two of the most usual methods are given by the area deviation between X and Y

$$\delta^{\mathbf{A}}(\mathbf{X},\mathbf{Y}) = \mathbf{a}(\mathbf{Y}) - \mathbf{a}(\mathbf{X}) \tag{4}$$

and by the perimeter deviation

$$\delta^{\mathbf{P}}(\mathbf{X},\mathbf{Y}) = \mathbf{p}(\mathbf{Y}) - \mathbf{p}(\mathbf{X}), \qquad (5)$$

where a(M) and p(M) denote the area and the perimeter of the set

M respectively.

Throughout this paper we use a and p to denote positive constants less than 2π and satisfying the isoperimetric inequality (2). Let \mathcal{C} (a,p) be the class of all convex caps with area not less than a and perimeter not greater than p, and let \mathcal{C}_k be the class of all convex k-gons. Two measures for the "nearness" of the caps from \mathcal{C} (a,p) to convex k-gons are given by the functions

$$\Delta_{\mathbf{e}}^{\mathbf{A}}(\mathbf{a},\mathbf{p},\mathbf{k}) = \min \delta^{\mathbf{A}}(\mathbf{C},\mathbf{P}), \qquad [\mathbf{C} \subset \mathbf{P}]$$
 (6)

$$\Delta_{\mathbf{p}}^{\mathbf{p}}(\mathbf{a},\mathbf{p},\mathbf{k}) = \min \delta^{\mathbf{p}}(\mathbf{C},\mathbf{p}), \qquad (7)$$

where the minimum extends over all caps C from G(a,p) and all convex k-gons P containing C. (The subscript "e" refers to approximation from the exterior.) The existence of the minima follows from the Blaschke selection theorem. Both functions are interesting only if

$$\cos \frac{p}{2k} > \frac{\cos \frac{\pi}{k}}{\cos \frac{2\pi - a}{2k}} ,$$
(8)

which means that p is less than the perimeter of a regular k-gon of area a. Otherwise \mathcal{C} (a,p) would contain a k-gon, so that $\Delta_e^A = \Delta_e^P = 0$. In addition to Δ_e^A and Δ_e^P the functions

$$m_e^A(a,p,k) = \min_a(P),$$
 (9)

$$m_{e}^{P}(a,p,k) = \min_{P}(P), \qquad [C \subset P] - (10)$$

will be considered, where the minimum is taken over all caps C from \mathscr{C} (a,p) and all convex k-gons P containing C. In a similar way we define four further functions $\Delta_{\mathbf{i}}^{\mathbf{A}}$, $\Delta_{\mathbf{i}}^{\mathbf{P}}$, $M_{\mathbf{i}}^{\mathbf{A}}$, $M_{\mathbf{i}}^{\mathbf{P}}$ by replacing in (9) and (10) the minimum by the maximum and extending the extrema over all caps C from \mathscr{C} (a,p) and all k-gons P contained in C.

2. Theorems

We are now in a position to state the following theorems.

THEOREM 1. Let $k \ge 2$ be an integer and let a and p be positive constants less than 2π and satisfying the inequalities (2) and (8). If $C \in \mathcal{C}(a,p)$ and $P \in \mathcal{F}_k$ with $C \subseteq P$ satisfy one of the conditions

(i)
$$\delta^{\mathbf{A}}(\mathbf{C},\mathbf{P}) = \Delta_{\mathbf{e}}^{\mathbf{A}}(\mathbf{a},\mathbf{p},\mathbf{k})$$
, or

(ii)
$$a(P) = m_{\alpha}^{A}(a,p,k)$$
, or

(iii)
$$p(P) = m_e^P(a,p,k)$$
, or

(iv)
$$\delta^{\mathbf{P}}(C,\mathbf{P}) = \Delta_{\mathbf{e}}^{\mathbf{P}}(a,\mathbf{p},\mathbf{k}),$$

then C is a smooth regular k-gon of area a and perimeter p, and P is the case of C.

THEOREM 2. Let $k \ge 3$ be an integer and let a and p be positive constants less than 2π and satisfying the inequalities (2) and (8). If $C \in \mathcal{C}(a,p)$ and $P \in \mathcal{F}_k$ with $P \subset C$ satisfy one of the conditions

(i)
$$\delta^{P}(P,C) = \Delta_{i}^{P}(a,p,k)$$
, or

(ii)
$$p(P) = M_i^P(a,p,k)$$
, or

(iii)
$$a(P) = M_i^A(a,p,k)$$
, or

(iv)
$$\delta^{\mathbf{A}}(\mathbf{P},\mathbf{C}) = \Delta_{\mathbf{i}}^{\mathbf{A}}(\mathbf{a},\mathbf{p},\mathbf{k}),$$

then C is a regular arc-sided k-gon of area a and perimeter p, and P is the kernel of C.

Note that Theorem 2 follows from Theorem 1 by spherical polarity, so that it suffices to prove Theorem 1. Two analogous theorems for plane convex discs are contained in the papers [3] and [1].

3. Proofs

<u>Proof of Theorem 1.</u> Let us assume that $C \in \mathcal{C}$ (a,p) and $P \in \mathcal{T}_k$ with $C \in P$ satisfy condition (i). In the following 10 lemmas the properties of C and P are developed, the last showing that C and

P correspond with the assertion of Theorem 1. First we observe that C lies in some open hemisphere and that at least one vertex of P is outside C. Otherwise C would be a k-gon in contradiction to (8).

LEMMA 1. The midpoint of every side of P lies on the boundary of C.

<u>Proof.</u> By a <u>segment</u> on S^2 we mean always an arc of a great circle of length less than π . Let M be the midpoint of the side A_1A_2 of P, and suppose that C and the segment MA_2 are disjoint. A small rotation of A_1A_2 about a point of A_1A_2 near to M reduces a(P) without changing a(C). This, however, contradicts condition (i).

LEMMA 2. P has exactly k sides.

<u>Proof.</u> Let A_1 be some vertex of P outside C. If P has fewer than k sides, we can reduce a(P) by cutting off from P a small triangle with vertex A_1 .

From the lemmas 1 and 2 it follows that the boundary of C consists of k segments (possibly points) on the sides of P, and j arcs b_1, \ldots, b_j (1 \leq j \leq k), each having its endpoints on two adjacent sides of P.

<u>LEMMA 3.</u> b_i is a circular arc (possibly of spherical radius $\pi/2$), for $1 \le i \le j$.

<u>Proof.</u> Let V_1 and V_2 be any two distinct points in the relative interior of b_1 . The arc V_1V_2 lies entirely in the interior of P and has a positive distance ρ from the boundary of P. We cover V_1V_2 by a finite number of its subarcs in such a way that each has a length less than ρ and overlaps the following. It suffices to show that each of these subarcs, say $W_1W_2 = s$, is a circular arc. If this is not so, we replace s by the circular arc s of the same length, say s, which joins s0 with s1 and s2. Because s3 of the set s4 of the great circle through s5 and s6. Because s6 of the set s7 conv s8 is contained in s8 and in some open hemisphere.

a(convs) < a(convŝ).

(11)

 \hat{s} is a subarc of the boundary of a circular cap \hat{C} of radius $r < \pi/2$. Let s' denote the complementary subarc of bd \hat{C} . The curve s \cup s' is the boundary of a closed set T with $p(T) = p(\hat{C})$. We observe that T is a subset of some open hemisphere. Indeed: if s' is at most a semicircle, then T is contained in the interior of P. If s' is larger than a semicircle, then consider the hemisphere H concentric with \hat{C} . It is easy to show that, for any point X on the boundary of H,

 $\widehat{XW}_1 + \widehat{XW}_2 \ge 2 \arccos{(\sin{r}\cos{\frac{\alpha}{2}})} > \alpha \sin{r} = \lambda,$ where $\alpha < \pi$ is the cemetral angle of \hat{s} , whereas

$$\widehat{YW}_1 + \widehat{YW}_2 \leq \lambda$$

for any point Y $\$ s. Thus T is contained in the interior of H. Since $s \neq \hat{s}$ and $p(T) = p(\hat{C})$, it follows from the isoperimetric inequality that $a(T) < a(\hat{C})$, which implies (11). From (11) we deduce that $a(C) < a(D) \leq a(convD)$. Because $convD \subset P$ and $p(convD) \leq p(D) = p(C)$, we have a contradiction to assumption (i). Thus s is, in fact, a circular arc, and Lemma 3 is proved.

<u>LEMMA 4.</u> The arcs b_1, \ldots, b_j have the same radius, say r.

<u>Proof.</u> Suppose that b_1 and b_2 have different radii. Let s_1 and s_2 be two subarcs of b_1 and b_2 contained in the interior of P and corresponding to two chords c_1 and c_2 of the same length. We interchange the positions of the circular segments convs₁ and convs₂. That means we cut them off from C and join them to c_2 and c_1 respectively, By this process we obtain a non-convex set D which is contained in P and in some open hemisphere when c_1 is sufficiently small. Since p(D) = p(C) and a(D) = a(C) we have a(convD) > a(C) and p(convD) < p(C) contradicting assumption (i).

LEMMA 5. Every vertex of P is exterior to C.

<u>Proof.</u> Let A_1 be a vertex of P on the boundary of C. We may clearly assume that A_2 is outside C. By Lemma 1 there is an isosceles triangle $\Delta = A_1 V_1 V_2 \subset C$ with apex A_1 , and V_1 and V_2 on

the segments A_1A_2 and A_1A_k respectively. Let $s = \widehat{W_1W_2}$ be a subarc of the circular arc rounding off the corner of P at A_2 , where the segment V_1V_2 and the chord W_1W_2 have the same length. Similarly as in the proof of Lemma 4 we interchange the positions of Δ and convs obtaining a disc D with p(D) = p(C) and a(D) = a(C). If Δ is sufficiently small, then D is non-convex and contained in P and in some open hemisphere, which again leads to a contradiction to (i).

By the lemmas 3, 4 and 5, the boundary of C contains k circular arcs b_1,\ldots,b_k of the same radius r. We next prove that C has a smooth boundary. That means in particular that $r < \pi/2$.

LEMMA 6. Through every boundary point of C there passes just one supporting great circle.

Proof. The boundary of C intersects the side A, A, of $P = A_1 ... A_k$ in a segment $U_{i1}U_{i2}$ for i = 1, ..., k. Let b_i be the circular subarc of the boundary of C joining U 1-1,2 with U 11. Let t be the great circle tangent to $\mathbf{b_2}$ at $\mathbf{U_{12}}.$ To prove Lemma 6 we have to show that t coincides with the great circle determined by the side ${\rm A_1A_2}$ of P. Suppose that this is not true. We prolongate the arc b2 beyond U12 and choose two points X and Z on b2 and on the prolongation respectively, such that $U_{12}X = U_{12}Z$. The great circle XZ intersects the boundary of C at a point Y between X and Z. We denote the convex hull of XU12Y by S1, the angle between XY and the arc \overline{XU}_{12} by $\Rightarrow X$, and the angle between the segment YX and the arc \widehat{YU}_{12} by \widehat{Y} . Let \widehat{VW} be a subarc of b_2 contained in the interior of P and such that VW = XY. Write S2 for the convex hull of VW. By exchanging the positions of S, and S, we obtain a non-convex set D. If ZX is sufficiently small, the following conditions are satisfied:

4 X < 4 Y;

 \mathbf{S}_1 and \mathbf{S}_2 are disjoint, both in the original and in the exchanged positions:

 \mathbf{S}_1 is in the new position contained in the interior of P. Then \mathbf{S}_2 in the new position is contained in C. Obviously, we

have $D \subset P$, p(D) = p(C), a(D) = a(C). Hence a(convD) > a(C), p(convD) < p(C). By the assumption on C and P, this is impossible.

<u>LEMMA 7.</u> $A_i U_{i1} = U_{i2} A_{i+1}$, for i = 1, ..., k.

<u>Proof.</u> Let M and M' be the midpoints of A_1A_2 and $U_{11}U_{12}$ respectively, and let us assume that $A_1U_{11} < U_{12}A_2$. Then M' lies between A_1 and M. By Lemma 1, we have $M \in U_{11}U_{12}$ and thus $U_{11} \neq U_{12}$. A rotation through a small angle ϕ about a point X of the segment MM' transforms A_1A_2 into a new position A_1A_2 , where $A_2 \in A_2A_3$. A_1A_2 intersects b_2 at a point Y. When X = M then YX < XU₁₁, and when X = M' then YX > XU₁₁ (use Lemma 6). Thus, for a sufficiently small angle ϕ , there exists a point X between M and M' such that YX = XU₁₁. Moreover, X approaches M' as ϕ tends to 0. Let S be the set bounded by the segments YX, XU₁₂ and the arc U_{12} Y. We cut S off from C and rejoin it to C such that XY coincides with XU₁₁. The non-convex disc D obtained by this process has the properties a(D) = a(C), p(D) = p(C), $D \subset P'$, where P' is the convex k-gon A_1 A_2 A_3 ... A_k A_1 . Since X is near to M' we have a(P') < a(P). Again, this contradicts the assumption on C and P.

LEMMA 8. p(C) = p.

<u>Proof.</u> Supposing p(C) < p, we choose a point $X \in P \setminus C$ near the boundary of C. For $C' = conv(C \cup \{X\})$ we have a(C') > a(C), p(C') < p and $C' \subset P$, which is impossible.

LEMMA 9. a(C) = a.

<u>Proof.</u> Suppose that a(C) > a. When $k \ge 3$, choose $A_1 \in A_1 A_2$ near A_1 and let P' be the convex k-gon $A_1 A_2 \dots A_k A_1$. When k = 2, let P' \subset P be a digon with vertices A_1 , A_2 and sides near those of P. In any case, we have for $C' = C \cap P'$

$$a(C') > a, p(C') < p, \delta^{A}(C',P') < \delta^{A}(C,P),$$

which contradicts the assumption on C and P.

The following lemma completes the proof of Theorem 1 under the assumption (i).

LEMMA 10. P is regular.

<u>Proof.</u> From Lemma 4, 6 and 7 it follows that P is an equiangular k-gon and that the circular arcs b_1,\dots,b_k on the boundary of C are congruent. Thus we can assume $k \geq 4$. We denote the interior angle of P by 2ϕ , and the central angle of b_i by 2ψ . Comparing the two representations of a(P)

$$a(P) = 2k\phi - (k-2)\pi,$$

 $a(P) = a + 2k\phi + 2k\psi \cos r - k\pi$
(12)

we obtain

$$a + 2k\psi \cos r = 2\pi. \tag{13}$$

(13), together with

$$\sin \psi = \frac{\cos \phi}{\cos r} , \qquad (14)$$

implies

$$\frac{\psi}{\sin\psi} = \frac{2\pi - a}{2k\cos\phi} . \tag{15}$$

By use of (14) we find for the perimeter of P

$$p(P) = p - 2k \sin r \arcsin \frac{\cos \phi}{\cos r}$$

+
$$2k \arcsin (\tan r \cot \phi)$$
. (16)

Suppose that P is not regular. Let \overline{P} be the regular k-gon with

$$a(\overline{P}) = a(P). \tag{17}$$

If the area of the in-circle of \overline{P} is at most a, then there is a smooth regular k-gon \overline{C} with case \overline{P} and a(\overline{C}) = a. By (12) and (17), the interior angle of \overline{P} is equal to 2ϕ . (15) and (14) show that the circular arcs on the boundary of \overline{C} have central angle 2ψ and radius r. Thus, applying (16) to \overline{P} and \overline{C} we find

$$p(\overline{P}) = p(\overline{C}) - 2k \sin r \arcsin \frac{\cos \phi}{\cos r}$$

$$+ 2k \arcsin (\tan r \cot \phi).$$
(18)

By (17), we have $p(\overline{P}) < p(P)$. Hence, by (16) and (18)

$$p(\overline{C}) < p.$$
 (19)

Since $a(\overline{C}) = a$ and $a(\overline{P}) = a(P)$, the convex cap $\overline{C} \in C(a,p)$ satis-

fies the condition $\delta^{A}(\overline{C},\overline{P}) = \Delta_{e}^{A}(a,p,k)$. But (19) contradicts

If the area of the in-circle of \overline{P} is greater than a, then there is a circle \overline{C} of area a in the interior of \overline{P} . Because $p(\overline{C}) \leq p$, \overline{C} is from C (a,p). Since $\delta^{A}(\overline{C},\overline{P}) = \Delta_{e}^{A}(a,p,k)$, we have a contradiction to Lemma 1. Thus the supposition that P is not regular was wrong and Lemma 10 is proved.

Let now (ii) be satisfied. From $a(P) = a(C) + \delta^{A}(C,P)$ it follows that a(P) attains its minimum if a(C) and $\delta^{A}(C,P)$ are minimal, that is in the indicated case. Moreover, we see that

$$m_e^A(a,p,k) = a + \Delta_e^A(a,p,k)$$
.

(iii) By the isoperimetric inequality (3), p(P) attains its minimum if P is regular and a(P) minimal, as required. Moreover, we have

$$\cos \frac{m_e^P(a,p,k)}{2k} \quad \cos \frac{2\pi - m_e^A(a,p,k)}{2k} \quad = \cos \frac{\pi}{k} .$$

(iv) From $\delta^P(C,P)=p(P)-p(C)$ it follows that $\delta^P(C,P)$ is minimal if p(P) is minimal and p(C) maximal, in accordance with Theorem 1. Furthermore, we have

$$\Delta_{e}^{P}(a,p,k) = m_{e}^{P}(a,p,k) - p.$$

This completes the proof of Theorem 1.

Let $k \ge 2$ and the constants a,p with $0 < a,p < 2\pi$ be given such that the inequalities (2) and (8) are satisfied. We conclude the paper by showing that a smooth regular k-gon is uniquely determined by the parameters a(C) = a and p(C) = p.

A regular k-gon P is the case of a smooth regular k-gon of perimeter p if and only if

- (a) p < p(P), and
- (b) $p \ge perimeter of the in-circle of P.$

Let 2ϕ be the interior angle of P. A straight forward calculation

shows that the conditions (a) and (b) are satisfied exactly if

$$\arcsin \frac{\cos \frac{\pi}{k}}{\cos \frac{p}{2k}} < \phi \le \arccos \left(\sqrt{1 - \left(\frac{p}{2\pi}\right)^2} \sin \frac{\pi}{k} \right). \tag{20}$$

Each of these values ϕ determines uniquely a smooth regular k-gon of perimeter p and case P. The corresponding value of r follows from

$$\cos \frac{p(P)}{2k} = \frac{\cos \frac{\pi}{k}}{\sin \phi}$$

or, by (16), from

 $f(r,\phi) = \frac{p}{2k} - \sin r \arcsin \frac{\cos \phi}{\cos r} + \arcsin (\tan r \cot \phi)$ $-\arccos \frac{\cos \frac{\pi}{k}}{\sin \phi} = 0. \tag{21}$

It is easy to show that the equation $f(r,\phi) = 0$ has exactly one solution $r = r(\phi)$ contained in the interval

$$0 < r \le r_{i} = \arccos \frac{\cos \phi}{\sin \frac{\pi}{k}} \quad (= \text{in-radius of P})$$
 (22)

with equality if and only if $\varphi=\arccos\ (\sqrt{1-\left(p/2\pi\right)^2}\sin\pi/k)$. Note that by (13) and (14)

$$a(C) = 2\pi - 2k \cos r(\phi) \arcsin \frac{\cos \phi}{\cos r(\phi)}$$
.

Making use of (21) and (22) we finally obtain

$$\frac{\mathrm{da}(C)}{\mathrm{d}\phi} = \frac{2k}{\sin\phi} \left(\sqrt{1 - \frac{\cos^2\phi}{\cos^2 r}} - \frac{\cos\frac{\pi}{k}\cos\phi \tan r}{\sqrt{\sin^2\phi - \cos^2\frac{\pi}{k}}} \right) \ge 0$$

with equality if and only if $\phi = \arccos (\sqrt{1-(p/2\pi)^2}\sin \pi/k)$. Observe that

$$a(C) + 2\pi - 2k \arccos \frac{\cos \frac{\pi}{k}}{\cos \frac{p}{2k}} < a$$

as $\phi + \arcsin \frac{\cos(\pi/k)}{\cos(p/2k)}$, and

$$a(C) = 2\pi \left(1 - \sqrt{1 - \left(\frac{p}{2\pi}\right)^2}\right) \ge a$$

for $\phi = \arccos\left(\sqrt{1-(p/2\pi)^2}\sin\pi/k\right)$. Hence, there is exactly one ϕ in the interval given by (20) such that a(C) = a. The corresponding value of r is the (unique) solution of the equation $f(r,\phi) = 0$. This proves the statement of uniqueness.

REFERENCES

- [1] FEJES TOTH, G., and A. FLORIAN: Covering of the plane by discs. Geom. Dedicata 16 (1984), 315-333.
- [2] FEJES TÓTH, L.: Triangles inscrits et circonscrits à une curbe convexe sphérique. Acta Math. Acad. Sci. Hungar. 7 (1956), 163-167.
- [3] FEJES TOTH, L.: Filling of a domain by isoperimetric discs. Publ. Math. Debrecen 5 (1957), 119-127.
- [4] FEJES TÓTH, L.: Annäherung von Eibereichen durch Polygone. Math.-Phys.Sem.-ber. 6 (1959), 253-261.
- [5] FEJES TOTH, L.: Research Problem 43. Period. Math. Hungar. 19 (1) (1988), 91-92.
- [6] FEJES TOTH, L., and A. HEPPES: Filling of a domain by equiareal discs. Publ. Math. Debrecen 7 (1960), 198-203.
- [7] GRUBER, P.M.: Approximation of convex bodies. In: Convexity and Its Applications. Birkhäuser Verlag, Basel-Boston-Stuttgart 1983, 131-162.
- [8] MOLNÁR, J.: Konvex tartományok beirt és körülirt poligonjairól. Mat. Lapok 6 (1955), 210-218.

Manuskripteingang: 13.4.1989

VERFASSER: August Florian

Institut für Mathematik Universität Salzburg

Hellbrunnerstraße 34, A-5020 Salzburg