

Werk

Label: Figure **Jahr:** 1986

PURL: https://resolver.sub.uni-goettingen.de/purl?301416052_0021 | log18

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

Fig. 1

itself.

then each $U_r(X)$ or $\widetilde{U}_r(X)$ for which X is the point (1,-1) contains at least two members of the orbit O^B . Hence we ask how new conditions must formulated? Are B(q) and $B(\underline{i})$ certain 'discontinuous' notion groups if we suppose that one of the conditions which follow

 $\forall \exists \operatorname{card}(\overline{v_r}(x) \cap P^B) \leq 2$

 $V = \operatorname{card}(\mathbb{U}_{\mathbf{r}}(\mathbb{X}) \cap \mathbb{P}^{b}) \le 2$ $V = \operatorname{card}(\mathbb{U}_{\mathbf{r}}(\mathbb{X}) \cap \mathbb{P}^{b}) \le 2$ $P_{\bullet}\mathbf{I} = 0$ (2º)

is true? Under which condition is (3) or (3)

fulfilled? We will give the answer in Section 3. Now we will concentrate on two cases: normed plane and pseudo-Ruclidean plane.

2. The discontinuous motion groups of the normed plane It is well known that a distance function is given in every normed plane \mathbb{R}^2 . So we can regard the unit circle k which is the gauge line (Richfigur by H. MINKOWSKI [14] - see Fig. 3). On the other hand, the norm $\|.\|$ of the normed plane \mathbb{R}^2 is determined completely by k. Futhermore, every symmetric and convex curve which intersects each half-line by the point O just at one point

has just one norm. The isometries of R^2 called motions. For instance, the translations and the reflections in points are such transformations. Each motion of the plane \underline{R}^2 is affine (see MAZUR and ULAM [13]) and a product of a motion for which 0 is a fixed point and of any translation. It is therefore sufficient to describe the subgroup Go of such motions which have the fixed point O. These motions map k onto

For each norm there is a unique Euclidean metric. In fact, there