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Lattice Generation Program for Computing a Vector Space Lattice

LENNI HaAPASALO and PERRA NIEMISTO

Introduetion

We consider a sesquilinear space!) (E, @) of countable dimension; the form @& is
assumed to be nondegenerate and orthosymmetric. By the orthostable lattice
HFy, ..., F,) generated by the given subspaces Fy, ..., F, of E we mean the smallest
sublattice of Z(E) containing F, ..., F,, (0) and E and such that X! € # whenever
X € 9. The importance of these orthostable lattices, which have taken a central
role in the theorems of Witt type, can easily been illustrated by the following
example: Given two families (Fy, ..., F,) and (F}, ..., F,) of subspaces of £ we can
ask if there exists an isometry 7':E — E such that TF; = F; for each 7. Such an
isometry — if it exists — induces a lattice isomorphism 7 : (¥, ..., F,) >&(F,, ..., F,)
which commutes with orthogonal complementation. Furthermore, this ortho-
isomorphismus preserves indices, i.e. dimensions of quotient spaces X/Y of neigh-
bouring elements X, Y € . If the space is alternate, these indices form a complete
set of orthogonal invariants for a subspace F' of E. This can be proved by applying
the remarkable theorem of Gross (theorem IV.1 in [2]) to the well known lattice
of KapLaNSKY with fourteen elements. The same theorem gives us, in some special
cases, an immediate answer to the question asked above; namely whenever the
lattice &(F,, ..., F';) happens to be finite and distributive, there exists an isometry
T:E — E which has the property TF; = F; for all 7. Generally,” however, the
lattice ¢ is infinite and nondistributive — such is the case even with the lattice
generated by two subspaces. Now there arise questions of following kind: How does
one know when the lattice attached to the problem will be finite and what can be
said about its diagram? These questions have no easy answer. For some special
classes of subspaces it has been possible to solve the problem of orthogonal classi-
fication without computing the lattice explicitely (for example in case the two
subspaces can be separated orthogonally in E). In most cases, especially in non-
distributive cases, a thorough knowledge of the lattice is necessary. One then has
to make a plan for computing the lattice that belongs to the problem as “‘econo-
mically”’ as possible. By this economizing we mean a method which takes at each
step of the calculation information from the indermediate states as much as possible.
This principle is particularly useful if the lattice has some finite indices, because the
orthostability can then in several cases be omitted (see [3]).

This paper is concerned with an effort to compute the orthostable lattice H(Fy, ..., F,)
with a computer. The program will give a possibility to switch off orthogonalization,

1) We remark that the terminology used here is found in [2].
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if orthostability is supposed to be omitted. We wish to remark that no attempts have
been made to generalize the method for non trace-valued forms even when there
was such a possibility.

The authors are indebted to H. Gross for suggesting the study of nondistribu-
tive lattices which has inspirated our computational methods.

1. A survey of the program structure

In this section the principle of the used PL/1 lattice generation program is briefly
described. We do not pay here any attention to a detailed explanation of the reso-
lution rules, say programming of set theoretic deductions etc.

As an input to the program any subspaces F, ..., F', of E with the necessary as-
sumptions can be given. We call them basic spaces because of the fact that the given
information on them is carried immediately on to the data area, which we call here
throughout data base. The spaces are represented all the time during the process
by consecutive integers as follows: 1: =(0), 2: = E, 3: = Fy,...,n+ 2: =F,, ...
ete. By input it is possible, of course, to give storeable information about the spaces
n+ 3, n + 4, ... to be generated, as well as to switch off the operation | or to
fix the maximal number of the spaces to be computed.

As an output the program lists the operation matrix (i.e. a matrix with the sum
spaces in the upper triangle and intersection spaces in the lower one) including a
column of the orthogonal complements, the inclusion matrix and, finally, the
immediate successors among the lattice elements.

1.1. The main program

‘The method of the Lattice Generation Program is based on the fact that the elements
of a finite vector space lattice can be written as a sequence (0), E, Fy, F,, ..., Fy,
Fyi1s ooy Fy s0 that Fy, ..., F; are the basic spaces and for every k < p < n the
subspace F, has some of the following representations

F, = F}, for some 1 < p,
F,=F;+ F;, for some 7, j < p,
F, =F;n Fy, for some 7, j < p.
The program generates a sequence of this kind. During the execution the program
knows a part of this sequence, say (0), E, Fy, ..., F;. Now an element current is
generated, and if it turns out to be a new element, it is inserted into the sequence
as an element F';,;. The program performs the following steps:
A 1. Create the trivial elements (0) and E.
A 2. Read the information on the basic spaces and create these elements.
A 3. If all possible generations are performed, the lattice is ready and the program
stops.
A 4. Generate a space using the existing elements and create a temporary element
_current.

A b. Search, if current exists in data base:
A bB.1. If current is found to exist as an element 4, then move current in-
formation to A and delete current.
A 5.2. Else set current into the data base as a new element.

A 6. Continue from step A 3.
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1.2. The data base and the data base programs

All information of the spaces is collected in the data base, which contains the operation
matriz OPERMAT, the vnclusion matriz INCLUS and the following three vectors:
ORTOG, CLOSE and DIMENS. These data areas deliver information as follows:

the number of the sum space I + J,if I < J
OPERMAT(I, J) = 3 the number of the intersection space I nJ,if I > J

0,ifI =J
INCLUS(Z,J) = 1,if I < J, else 0,
ORTOC(I) = I,
CLOSE(I) = 1, if I is orthogonally closed, else 0,

DIMENS(I) = 1, if I is finite dimensional, else 0.

These data areas are filled during the execution and they are mainly used by the
special subroutines. These recursive subroutines are called data base programs, they
search and update the base. The fundamental set theory logic is included in these
programs. Whenever some information is inserted into the data base, the subroutine
takes care that all the implications of this information are also carried into the data
base. For example, if A — B is noticed, then the subroutine calls another program,
that sets A = A + B; furthermore a later program may call some others etc. Hence,
a small information can make large changes in the data base.

2. Some applications and comments

Let us light up possibilities for applying the program by the following three examples.

Example 1. If F and @ are two subspaces of ¥ with the assumptions

Ft =@+ =(0), (1)

(Fn@tcFna, (2)
and '

(F 4+ (Fo@t)n (@ + (Fn@)L) (3)

is closed, we can ask if there exists an isometry 7': E — E such that TF = F and
TG = Q. In order to solve this problem we first have to compute the lattice #(F, G).
The operation matrix of this is shown in table 1 and the lattice has the form given
in figure 2. It turns out that our problem is solvable if we assume that dim (14/22)
< oo. This requirement could be observed only after exactly knowing #(F, @) so in
this case it is not possible to economize in the computing process.

Example 2. Let be given the two chains F; — F, — F; and F, — Fy = F; of sub-
spaces of E. These chains generate a distributive lattice which has (4 + 4)!/414] = 70
elements (see [1] p. 66), if only the operations + and n are taken. The lattice takes
a form of figure 3.

Example 3. As a third application of the program we wish to point out a situation
which is typical of building the lattice attached to the problem. Suppose we already
have computed a great lattice #, containing an element X which is not orthostable.

2 Beitrige zur Algebra 14
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If we have to combine X+ with the elements of #, it is often advandageous to first

limit the examination to a certain sublattice, instead of trying to compute the whole

lattice at one blow. Let us consider the diagram below:

i
)

e

=

Table 1

Operation matrix:
X X1

3 4 5 6 7 8 9101112 13 14 15 16 17 18 19 20 21 22 23 24 25 26

MFOO~WDO —= N

Al B |
HAVWVW O DY -
N NN N - N

CODVH IO H - H
- [ - AN v N

V=M NODIN =N H
v N NN Ol v 1 v= CU G1 v v O\ v QN w QN

VAW D=NAI=DINOIDODIROHW
i vl v v v v v v v v - [

MDAV NO=IONHHAODO O ®
b= - R I IR - = =

57577137173975007
i v v v v v v e v v v -

LDV OO ONOMNOOOMOH
v~ v - v v v v (I ]

CFH OV WVWODIM=IDMNMHO IO O IO
i o N [ R | - — -

COHONHAOIH A HONONHNNO H H
v - - P R ] e Ra R RS

MMMMMMMMMMNOIHAID O~ O =M
Yol v v v v v v v v - v v v v v e O O O NN

4 23 1

2 12 21 22 18
22 15 23 23 10 23 23 22 22 0 24 24 23

4 14 15 24 23 16 24 24 256 22 23 0 24 24

22 12 22 22 10 22 2
5 22 12 25 22 18 25 25 25 22 22 26 0 25
6 26 26 26 26 26 26 26 26 26 26 26 26 O

2
2
2

31311_1310214547890523 0 ©
vl v vy v - v v v vt O v v w=i N OY O Y NN

MV OONAIOCOPDOOPLOOOOOOOQLOOD
- v - - R R i I B I IR R A |

NN COCONRNHIDDOMNM OO wAM Y ©
] i O vt o N EHANNNNNNNN

D=HMDOVXONVOONOHNHFNOHDOAANN AN D
v v i v v v v O v v NN -GN

34560777777777777777777%

OHH VO T LD D LDOVDODODOLOLDOLDOLOLOOLLOD

2

VVWOOVEEHDODOIANA O HID OO H =AM OO
v v v v - o v v v = N NNNANN N

2

1

VOHOrP A OHNFN O OHFOHIONNIDWON D
v - i v v - v v v v v v O
COMOVIPTOMNMONOMOOVMNMOVDDDMODWD D
b= v = v v v - v v v v O

v v v L 00 P> v I vl I vl P €O v v D vl D v I O O
N N N 222%
34567890123456789%123456
v v v v v v v v v v AN
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If we want to join an element 17 such that 5— 17 and 3 + 17 =4 + 17 = 2,
it is difficult to imagine at once the form that the resulting lattice is going to have.
Figure 4 shows, that the result is quite complicated.

At first our program was planned for computing orthostable lattices only. However,
after the innovation that orthostability could be omitted, applications of the type
of examples 2 and 3 arise very often. It would therefore be reasonable to change
the program in many ways. For Univac 1100 computer it takes only some minutes to
compute a lattice about 30—40 elements, but the execution time grows very fast
for greater lattices.

Fig. 4

The reliability of the program can be proved only “in one direction”’. Namely, if
the program stops at step A3, the operation matrix contains at least the elements
we want. However, it is difficult to prove that the program could always identify
at step Ab a space which has two different representations. One then has to check
in unclear cases the neighbouring elements of the diagram by hand. All the ex-

periences thus far show that, if the program stops in A3, the resulting lattice is the
right one.
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