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Groups and Join Spaces

LorHAR TESCHKE and JURGEN MADLER

1. Introduction

In [4] W. PrENOWITZ and J. JANTOSCIAK systemize common properties of ordered
and partially ordered linear, spherical, and projective geometries by the concept
of a join space. The theorems appearing there are similar to ideas in group theory
where linear sets in a join space play the role of normal subgroups in a group. This
is completed by the hint in [4] that each abelian group gives rise to a join space.
First of all however homomorphic and- isomorphic theorems given in [4] indicate
that the connection between the theory of join spaces and the group theory is
explained incompletely by abelian groups, that on the contrary the essential relations
between the two theories just exist to not necessarily commutative groups.

A first association between a join space and an arbitrary group @ is given by the
proof that the set of classes of conjugate elements from G form a join space with a
join operation induced by complex multiplication. More general we show that this
faot is also valid for those classes of G, which are invariant with reference to a sub-
group U of the automorphism group of G containing the group of inner automor-
phisms. We get further join spaces forming the factor space of this join space with
respect to a ll-invariant subgroup of G in the sense of [4].

Finally an application to the group theory is described by a construction of normal
subgroups, which appear when central series are formed.

2. Join spaces

Let V = {a, b,c, ...} be an arbitrary nonemty set, subsets of which are denoted
A, B,C,... A join operation ,,0 in V is a mapping of ¥ X V into the family of
subsets of V. If (a, ) is an element of ¥V X V, its image under o is denoted a o b.
Such join operation induces an inverse operation / by

a/b:= {x|a€boua.
The join operation and its inverse are extended to subsets of ¥ by defining
AoB:=Uaob, A/B:= U a/b,

where the unions are taken over alla € 4 and all b€ B. If A = @ or B = 4, then
AoB=A/B=2. .
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A pair (V, o) is said to be a join space, if it satisfies the following postulates for all
a,bec,d eV:

I aocb+0, alb+0,

(II) aob=0boa,

(I1II) ao(boc)=(aob)oc,

Iv) afbnec/d =90 implies aodnboc 5 0.

Let (V, o) be a join space. The following concepts and results out of [4] are used in
this paper:

The subset 4 of V is said to be convex if A 0 A S A and linear if A/A < A. Linear
sets also are convex.

Let A be a nonempty linear subset of V. Then a is congruent to b modulo 4, if
aoAnboB <. This is a congruence relation in ¥, and we let (a), denote the
congruence class of a in V. It holds (a), = a o 4/A. Let V:4 be the set of con-
gruence classes modulo 4, then a join operation * in V: 4 is given by

(@)a* (B)4 == {()a | € @0 b}.

(V:A4, %) is a join space, the so-called factor space V modulo 4. Let (V, o) be a join
space and e € V. Then ¢ is an identity of (V,0) if eca =aoce=aforallac V.
(V, o) is called a join space with identity. b is an tnverse of a if e € a o b. Let the
inverse of a be denoted by a™*. For sets let 471 := (z71 | 2 € 4}. Identity e as well
as inverse a! of @ are unique. Further 4/B = 4 o B~1.

Again let (¥, o) be an arbitrary join space and 4 & V. Then the linear access lin A
of A is the set of all @ € V, if there exists an element b such that a o b & A. This set
was first used by KLER [3] in linear spaces. The properties of linear access in a con-
vexity space, which is a special case of a join space, are given in [1]. If a subset 4 is
linear in a join space with identity, then lin 4 is linear, too.

3. The set of classes of conjugate elements from a group as join space

Let @ = (¢, &, B, 9, ...} be an arbitrary group with the unit ¢ and V = (e, a, b, ¢, ...}
the set of classes of conjugates from G. Then two elements x and # are contained in
the same class of G if, and only if, there exists an inner automorphism of @ such
that « is mapped onto f, or expressed otherwise, if there exists an element 7 € @
such that t~lar = B. Hence any element of G permutable with all elements of G,
thus contained in the center of @, readily forms a class alone. Let e denote the class
containing the unit & of Q.

The two following results concerning classes of conjugates of G are well-known:

The complex product ab of two classes a and b is the union of such classes. (1)
Let a be a class, then the inverse class a™! .= (a1 | x € a} 18 a class, too. (2)

Property (1) shows that complex multiplication in G induces a join operation o in
Let

z€aob:®z Sab. (3)
We have the following

Theorem 1.\ The set V' of classes of conjugates from a group G 18 a join space with
identity with respect to the join operation (3).
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Proof. We have to show that the properties (I), ..., (IV) are satisfied.
(I) Clearly ao b & 0.

Now let be «; a fixed and 8 an arbitrary element out of a and b, respectively. Then
there exists a & € @ such that «; = B£. Let  be the class generated by £. Then for
any « € a there always exists a 7 € G such that « = v1x,7. Hence &« = (z~187) (v7%£7)
and a S bz. Using (3) we have a € b o z, that x € a/b and therefore a/b = 0.

(IT) Each class a is mapped onto itself by each inner automorphism of @. Hence a is
permutable with each element of G. Moreover ab = ba for an arbitrary class b. Thus
using (3) we have the statement a o b = b o a.

(III) This fact is obtained by the associative law for complex multiplication in a
group.

(IV) Assume a/b nc/d == 9. Then there exists a class x such that a € boz and
¢ € doz. Hence there are elements #, € b and & € z to each &, € a such that
&y = f1é; and elements 6, € d and &, € z to each y; € ¢ such that y; = §,&,. Since &,
and &, are contained in the same class, there exists a 7 € G such that 717
= &,. Hence v71(f ;) T = 67'y; and therefore f'«, and 67y, are in the same class
of G. Using (2) and (3) the intersection of b o @ and d~! o ¢ = ¢ o d~! (because of (I))
contains a class y at least. Let u be any element out of y. Then once there exist
elements «, € @ and B, € b such that y = f;'«, and on the other hand elements
¥ € ¢ and 8, € d such that = y,651. But 3%, = 9,65 implies 80, = B4y,, and
we have the desired result acd nboc ¥ .

Finally e = (¢} is the identity of the join space, and the proof is complete.

In this join space (¥, o) there corresponds a subset of G to a subset of V in a natural
manner using the elements of G which are contained in the elements of V. Con-
sidering all nonempty subsets of ¥ we get the so-called invariant complexes of G.
These sets are those nonempty subsets of G exactly mapped onto itself by all inner
automorphisms of G. Conversely a nonempty subset of ¥ corresponds to each
invariant complex of G. Moreover we have

Theorem 2. a) An invariant subsemigroup of G corresponds to each nonempty convex
subset of V and vice versa.

b) 4 normal subgroup of G corresponds to each mmemﬂy linear subset of V and wvice
versa.

Proof. a) If a subset A of V is convex then using 4 04 & A4 and (3), the corre-
sponding invariant complex of @ is closed under multiplication.

b) If a subset 4 of V is even linear, that is 4/4 S A then 4 is convex more as before.
Hence by a) the corresponding invariant complex N in @ is a subsemigroup of G.
Furthermore let a be any class out of 4. e € a/a implies ¢ € A and a™! € ¢/a implies
a! € A. Hence N is a subgroup of G and therefore a normal subgroup of @, too.
The converse statements can be shown without trouble.

4. An application to the group theory

Let (V, o) be the join space of classes of conjugates from the group G. For any
normal subgroup N of @ let Z(G = N) the normal subgroup of @ such that Z(@ - N)/
N is the center of the factor group G/N (Denotion like in [2]). Let 4 denote the
linear set corresponding to N in (V, o) according Theorem 2. Then the linear set
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lin 4 of V corresponds to the normal subgroup Z(G = N) of G. This fact shows the
following theorem giving an interesting characterization of the normal subgroup
Z(G =+ N). This subgroup plays an important role in constructing central series for
instance.

Theorem 3. Let N be a normal subgroup of the group G and let Z(G — N)/N be the
center of the factor group G/N. Then Z(G — N) vs the union of classes a of conjugates
from @ such that there exists a class b with ab & N.

Proof. For any « € G let a be the class of conjugates of @ containing «. Since

" Z(G = N) = (« | («N) (eN) = (oN) («N) for all ¢ € G}
an
(xN) (eN) = (eN) («N) © (¢7'a) N = aN

we have _
« € Z(G = N) & aN = «N. ; (4)

Let T denote the union of classes a of con;ugates from G such that there exists a
class b with ab & N. We have to show 7' = Z(G -~ N):

Let a & Z(G - N ), hence & € Z(G = N) and therefore o~ € Z(@ = N), too. Using
(4) we , have aN — aN and a7 IN = a‘lN Thus (aN) (a 1N) = (ocN) («”1N) and

aa ! & N. Thereforea S T and Z(G —~ N) = T.

To prove the reverse inclusion suppose @ & 7. Then there exists a cliass b with
ab & N. This implies (aN) (bN) = N and (alN) (xbN) = aN. Since a«b S N so
abN = N. Therefore aN = «N and using (4) « € Z(@ ~ N). Thus a & Z(G N)
and T £ Z(Q@ = N), and we have our result.

5. Join spaces and automorphisms of groups

Let 91 be the automorphism group of the group G, ¥ the group of inner automor-
phisms of G and U1 a subgroup of A containing J. Let ¥y denote the set of those
classes of @ satisfying the following property:

Each class is a set of elements of G mapped onto itself by the awmhorphisﬂa of U.

Then the complex product of two classes is also a union of such classes. According
to (3) a join operation o is defined in V. In analogy to the proof of Theorem 1 we
can show that (Vy, o) is a join space with identity. But we use hypothesis ¥ = 1
in order to prove (II) only.
Let N be a subgroup of G being invariant with respect to the automorphisms of 1,
called a U-invariant subgroup. Then in analogy to Theorem 2 we can show, that
a W-invariant subgroup N of @ corresponds to a linear subset 4 of ¥ and vice versa.
Each Ul-invariant subgroup N of G, in case of 1l = g it is a normal subgroup of G,
gives rise to another join space, namely the factor space Vy: 4. Since

(@)gy=ao0Ad/Ad =(acA)o A1 =aoA

* the elements of the join space Vy: A4 are unions of cosets of the U-invariant subgroup
N and have the form of aN.
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6. Problems

a) Suppose G = A u Bu C u :--isa partitioning of the group @ in classes satisfying
the following condition: '

The complex product of two classes 18 a union of such classes.

Look for those partitionings in classes V = {4, B, C, ...} of G'such that V is a join
space with respect to the join operation (3) induced by complex multiplication.!)
The class containing the unit of G is not necessarily a subgroup of G

Let G be the symmetric group of third degree, 4 = {(1), (12), (123)} and B = {(13),
(23,) (132)}, then A and B form a join space of two elements with respect to (3).

Such examples can be stated for abelian groups, too.

b) Realize each join space by a class-partitioning of a group as described in a).
This is true for the 6 isomorphic types of join spaces containing two elements.

REFERENCES

[1] BryanT, V. W,, and R. J. WEBSTER: Convexity spaces I: The basic properties. J. Math.
Anal. Appl. 37 (1972), 206 —215.

[2] HaLL, P.: A contribution to the theory of groups of prime-power order. Proc. London
Math. Soc. 36 (1933), 29—95.

[3] KLEE, V.: Convex sets in linear spaces. Duke Math. J. 18 (1951), 443 —466.

[4] PrENOWITZ, W., and J. JANTOSCIAK: Geometries and join spaces. J. reine angew. Math.
257 (1972), 100—128. .

Manuskripteingang: 26. 3. 1979

VERFASSER:

'Lotaar TescEkE, Halle-Neustadt, und J6rRGEN MADLER, Sektion Mathematik/Physik
der Pidagogischen Hochschule ,,N. K. Krupskaja‘* Halle

1) This problem was established by G. PAZDERSKI.
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