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Strong purity in lattices

GERD RICHTER

1. Infroduction

This paper is thought to be a continuation of the papers [15] and [16]. Since the
notions of this paper may be useful for a larger class of lattices than ZI-lattices we
intend to investigate that larger class.

As we can see in the papers of R. FrITZSCHE [3, 4, 5, 6, 7] und G. RicHTER [7, 13, 14]
the notion of purity, which was first given by T. J. HEap [8] and A. KErTESz [9],
plays an important role in the theory of ZM-lattices, i.e., cyclically generated
modular lattices. But we cannot get similar results neither in the theory of ZI-
lattices nor in the theory of Baer lattices (see [17], [18] and [19]). Therefore we shall
define the notion of strong purity. Note that a strongly pure element is always pure
in an algebraic lattice. )
Further we intend to investigate weakly independent subsets of lattices. In an
algebraic lattice each weakly independent subset is independent and in every lattice
each independent subset is weakly ipdependent. Moreover, we shall show some
connections between the properties of each element of a lattice L being strongly pure
and of L being atomistic.

2. Basic notions

Let L be a complete lattice. If a, b € L and a < b we shall define the quotient
bla .= {z:a <z L b).

An element g € b/a is called inaccessible (from below) (see G. BIREHOFF and O. FRINK
[1] and G. GRATzER and E. T. Scemipr [2]) if

g =V (a,:a, € bla,» € N)
implies '

g=V(a:ve NS N, |N'| < ). .
Further we define Q(b/a) to be the set of all inaccessible elements, K(b/a) to be the
set of all compact elements and V(b/a) to be the set of all join-irreducible elements

of the quotient b/a.
Finally we define

Vi(¥/a) := Q(bla) n V(b/a),
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i.e., V(b/a) is the set of all completely join-irreducible elements of b/a,
Vybla) := {w:xz € V(bla), x=V(v:ive VS V,(bla);
V? arbitrary subset of V,(b/a))},
Vabla) := {z:z = qv V (v;:i = 1, ..., n; v; € Vy(bla)), g € Qbla)},
Vobla) := V,(bla) u Vy(bla),
Qo(b/a) := Q(b/a) n V,(b/a).

To imagine V,(b/a) we look, for instance, at the intervall [0, 1] of real numbers. Then
V4([0, 1)) = (0, 1].

ForE = Q,Qy, K, V, Vy, Vy, Vy, V3 we define E := E(L) and L is called an E-lattice
if for any element a € L the condition @ = V (g¢,:¢, € E, v € N) holds.

A subset U = (u,:u, € bla,» € N} of bja is called independent in b/a, if u, A
V (u,:v € N\ {%}) = a holds for each vy € N. A subset U S b/a is called weakly
independent in b/a, if any finite subset U’ S U is independent in b/a.

If x =V (u:u € U) and U S b/a is independent in b/a, then z is called the direct

join of the elements of U in the sublattice b/a.
w

This fact will be denoted by x = V/, (u:u € U). x = V, (u:u € U) means that x
= V (u:u € U) and that U is weakly independent in 1/a (and in b/a, respectively,
if U < b/a). In this case z is called the w-direct join of the elements of U.

If U = {uy, 4y, -.., uy} is independent or weakly independent, then we write

Uy Vg oo Vgl =\ (wiu € U)
or
w

w w
Uy Vg oo Vo, =V, (u:u € U).

w w

Instead of \/, and V, we simply use \/ and V.

If U S M < bla is either independent or weakly independent in b/a, and U u {z} is
not independent or not weakly independent for each x € M \ U, then U is called
maximal independent or maximal weakly independent, respectively, in M.

Because any independent subset is also weakly independent, it follows that weak
independence is a property of finite character. Therefore any subset M < b/a con-
tains a maximal weakly independent subset.

w
If either b = \/,(g:¢ € B S Q(b/a)) or b = V,(g:¢q € B S Qo(b/a)), then B is called
either a basis or a weak basis of b/a. .
An element s € b/a is called strongly pure in b/a, if for any ¢ € Qy(b/a) there exists
an element r € b/a with the property sv g =svV,r.
Let L be a V,-lattice and denote by F(b/a) the set of all joins of finitely many ele-
ments of V,(b/a).
An element s € b/a is called strictly pure in b/a, if for each f € F(b/a) there exists an
element g € bfa with sv f = 8V, g.
Now let L be a lattice and denote by 7' a subset of L. We say T satisfies the Iso-
morphism Property (I) if for each ¢ € 7 and for each b € L there exists an isomor-
phismg: 2> @(x) =z v b (z € t/b At) of t/b At onto ¢ v b/t such that p~1: y > ¢~ (y)
=y At (y €bvt/b) holds (see also [17, Pefinition 3.1.]).
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3. Q,-lattices

A. KeraEsz proved the following theorem in [9] (Satz 1).

Theorem. Let L be an algebraic modular lattice. A subset B of K 1is a basis of L if and
only if B is maximal independent in K and \/ (b:b € B) vs pure tn L.

Theorem 1 and Theorem 2 are generalizations of this Theorem for Q,-lattices.

Theorem 1. Let L be a complete Qy-lattice, in which @y satisfies the Isomorphism
Property (I). B is a weak basis of L 1f and only if there emsts a maximal weakly vn-

dependent subset By of Qy with B & B, and V (b:b € B) = V (b:b € By) is strongly pure
wn L.

Proof. Let L be a Qy-lattice with a weak basis B. Then B is a weakly independent
set which can be extended to a maximal weakly independent subset B, of ¢,. There-

w w
fore B S Bypand 1 =V (b:b € B) = V (b:b € B,) are satisfied and 1 is always strongly
pure.

Now we assume that there exist a weakly independent subset B of ¢, and a maximal

w w
weakly independent subset B, of Q, with B & B, and s := V (b:b € B) =V (b:b € By)
is strongly pire. If ¢ € @, \ By and s < sv ¢ < 1, then there exists an element a € L
with s v ¢ = 8V a, because s is strongly pure. Since L is a Qy-lattice there is at least
one element p € @y(a/0) with 0 < p. The independence of {s, p} follows from the
independence of (s, a}. Let ¢, € B, with

9~ (V (g: g € B* S By, g0 § B, [B* < 00) Vp) =d >0,
then (I) yields that there is an element p, < p with

V(g: g€ B*¥)vd =Y\ (g:q € B*V p,,

i.e., 0 < py = pAs in contradiction to the independence of {s, p}. Consequently,
B, u {p} is weakly independent. But this is impossible since B, is already maximal
weakly independent. Therefore such an element ¢ € @, \ B, does not exist, i.e., s = 1.

Theorem 2. Let L be a complete Qy-lattice, in which Qy satisfies (1I). B is a basis of L
if and only if B is maximal independent in Qy and\/ (b:b € B) is strongly pure in L.

Proof. If Bis a basis of L, then ¢ < 1 =/ (b:b € B) holds for each ¢ € Q,, i.e., B is
maximal independent in @,. 1 is always strongly pure.

Now we assume that B is maximal independent in @, and s := \/ (b:b € B) is strongly
pure. As in the proof of Theorem 1 we can also show that ¢ < s is satisfied for any
g €Qyie,s=1.

Because of V, & @, any V,-lattice is a Qy-lattice. Theorem 3 asserts that the con-
verse of this fact does not hold.
Theorem 3. There exists a Qy-lattice which is not a Vy-lattice.

Proof. Figure 1 shows an algebraic modular lattice. 1 is not the join of completely
join-irreducible elements, since we have

l=x,vy; (=12..)
and
yi=zavy ([F=71+1L,7+2..).



10 GERD RICHTER

In the definition of a Baer lattice is said that every element of a Baer lattice is a
join of completely join-irreducible elements. Since V; S @ S @, in a complete lattice
holds by definition of V', @, @y, any complete Baer lattice is a V,-lattice, a @-lattice
and a Q,-lattice.

'H Fig. 1

4. Special connections

In [8] HEAD investigated some connections between the intervals of an algebraic
modular lattice L and the whole lattice L. He showed, for instance, that ¢ € K(b/a)
if and only if ¢ = a v ¢, with ¢, € K(b/0). In this paragraph we want to investigate
some similar connections in @-lattices or in Q,-lattices, respectively.

Lemma 4. Let L be a Qy-lattice. a < b and q € Qy(b/0) do mot yield necessarily that
av q € Qybla).

Proof. Figure 2 shows a V;-lattice which is not algebraic and not modular. In any
V,-lattice Q = @, holds since ¥V, = 0 by definition of V,.

We have b = av g, with ¢, € Q(4/0),b =V (y;:7=1,2,...), and for any natural
number 7 the condition b > V (y;:7 = 1, ..., n) holds, i.e., b ¢ Q(bla) = Qy(bla).

Lemma 5. Let L be a Q-lattice.
If q € Q(b/a), then there exists an element c € b0 where ¢ = V (g;:¢; € Q(/0), T =
n)andg=avec.

Proof. Since L is a Q-lattice we can conclude that

q="V(g:9 € Q@/0),v € N).
q € Q(b/a) yields

g=V(@vgve N SN, |N|<o0)=avV(g:v€N').
Now put c =V (g,:» € N').

Theorem 8. Let L be a Q-lattice in which Q satisfies (I). Then g € Q(b/a) if and only
if ¢ = a v c with ¢ € Q(b/0).

Proof. Suppose ¢ € Q(b/0). Then ¢ € Q(b/a A c) also holds and therefore a v ¢ € Q(b/a)
inasmuch asa v ¢/a =~ c/a A c. Assume q € Q(b/a). Applying Lemma b wegetg = a v ¢
where ¢ = V (g;:¢; € Q(b/0), ¢ = 1, .

In the following Lemma 7 we shall show that ¢ € Q(b/0) and then the proof will be
complete.

Lemma 7. If Q satisfies (I), then
c=V(gi:g:€Qi=1,...,n) €Q.
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Proof. We have only to show that the join of the two elements ¢, ¢; € @ is an
element of Q.
Suppose ¢; v ¢; ¢ Q. Then there exists an infinite set Q, S Q(g; v ¢./0) where
Give =VI(ggely),
OVe+EVEgeQ SOxlQ] <o) (a)

Accordlng to the first part of the proof of Theorem 6 we get @1V ¢ € Qv ¢/ar),
ie.,

Ve =qavV(Gg€cQi=3.., )-
Then also ¢; v ¢; € Q¢ v @:/V (gi:¢ = 3,...,m)), i.e
QhVL=BV VIV =¢Y VdaVinnV Vi
where ¢; € Q, for 7 = 3, ..., n in contradiction to (a).

In [8] T.J. HEAD showed that a pure element a of an algebraic modular lattice is
complemented in L if

1=V, (c:c, € K(1/a),v € N).

In modular Q-lattices we are able to prove a similar theorem. Before doing this we
prove

w
Lemma 8. Let L be a modular Qy-lattice,a,b € Lya < b,b = V,(avy,:y, € L,v € N).
w w
Ify,na =0 for each v € N, then b =av V (y,:v € N).

Proof. According to the definition weak independence is a property of finite cha-
racter. We have only to prove that each finite subset of the set {a, y,:» € N} is
independent. a A y, = 0 holds for each index » € N.
Suppose that every subset {a, y,,:t = 1, ..., n, »; € N, n < k} is independent.
Assume 0 < d =y, , A(aVV (g7 = 1 .+ k)) where v, € N for 1 =1,...,k + 1.
Then

a<avd=av(y,,A@@vV@:i=1,..,k)

=(@vy,)AVe@Vy:iti=1..,k=a,

for L is modular and \/, (@ v Yt =1,..., k + 1) exists. Because of a A y,; = 0 we
get a Ad = 0 and therefore d = 0, i.e., {a,y,:v=1,..., k + 1} is an independent
subset of {a, y,:v € N} and {a, y,:v € N} is a weakly independent set.

Theorem 9. Let L be a modular Q-lattice and b a strongly pure element of L.
w w w
If 1 =V, (¢,:q, € Q(1/b),» € N), then 1 =V (g*:q* € Q,v» € N) v b.

Proof. According to Theorem 6 there exists to edch index » € N an element p, € @
such that ¢, = b v p,.

Since b is strongly pure there further exist elements ¢* with b v p, = b Vv ¢¥. ¢, € Q(1/b)
and ¢,/b =05V q*/b >~ q*/0 imply ¢} € Q. According to Lemma 8 we get

w w
1=bvV(g:q €QrEN).
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b. QO-lattices

T. J. HEaD [8] and A. KErTESZ [9] showed that in algebraic modular lattices the
following two conditions are quivalent:

(1) L is atomistic,

(2) every element of L is pure.

In this section we shall get a similar result for Q-lattices. Henceforth L denotes a
Q-lattice.

Lemma 10. Let ¢ € Q. Then there exuists an element c, where ¢y — c.

Proof. Let ¢; < ¢. According to the chain axiom (see G.Sz4sz [20, p. 28]) there
exists a maximal chain C between ¢ and ¢,, containing ¢ and ¢,. Then e := V (d:d
€ C\ |c}) exists since L is complete. If e =c we get c=d,v--- v d, where d; € O\ {c}
forv = 1, ..., n, becausec € Q. But then there exists an index 1, 1 <1 < n,d; < d,
<cfori=1,...,n,ie,c<ec. )

Therefore e < c. If e 4< ¢ there is an element e; such that e < e¢; < ¢ in contra-
diction to the maximality of C.

Hence e — ¢ and the proof is complete.

Lemma 11. Let the covering property (C) hold vn L, i.e., if p is an atom and p A a = 0,
then a — av p. If the set {py, ..., Pu_1; Pa V ¢} 18 an tndependent set where p; are
atoms for v = 1, ..., n then {p,, ..., Pu, ¢} 18 an independent set (see also [10, Lemma 6]).

Proof. Assume p, <c V p, V-V p,,. Because p, £ ¢ there exists an index r
where 1 <r <n — 1and

Pn §C\"pl‘7""7pnpy.$0‘7p1 \./;"\./pr—l-
The property (C) yields ¢V p, Vv ++-V pry — ¢V p, V---Vp, and

CVPLV VP =< (CV PV VP )V Py SV PV Vo,

On that account (CV PV o NP )V P =CV PV NP,y 1€, PPV
V P, V (¢ V p,) in contradiction to the independence of {(c V p,), Py, - -+ Pa-1)-

Similarly we can conclude that ¢ A (p, v --- v p,) = 0. Therefore {p,, ..., ps, ¢} is
independent. '

Lemma 12. Let L be an atomistic lattice satisfying (C), t.e., L is a so-called AC-
lattice.

An element ¢ € L 18 tnaccessible if and only if ¢ = p, V -+ v p, where p; are atoms for
t= 1.0

Proof. Since L is atomistic ¢ = V (p,:p, atom, » € N) holds for each element ¢ € L.
If ¢ is inaccessible then.c = V (p,,:7 = 1, ..., n, »; € N). The finite set (p,,..., p, }
contains an independent subset {p, ..., p,} where v € {»,...,v,} for 1=1,...,7r
ande=p, V-V p,.

Suppose that ¢ = p, V --- V p, where p; is an atom for 7 = 1, ..., n is not inaccessible.
Then there exists a set {p,:» € N, |[N| = oo} of atoms where

c=V(p,,veEN), ¢c>V(p:veN S N, |N'| < o0). (b)

It is evident that there exists an independent subset N* of N with the finite cardi-
nality n.

.
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Then p, <c=p, V---Vp, for e =1,...,n; »; € N*, ie., there exists an index r
with p,, < p, V-V, p, £p V- Vp,, and therefore ¢ =p, Vp, V- -V p,,
V Pra VooV p,. Because p, L p, V---V p, , we get in the same way ¢ = p,, V .-+
Vv p,, in contradiction to (b).

Theorem 13. Let L possess the covering property (C). The following conditions are
equivalent:

(1) L s atomistuc,

(2) Q s an vdeal and L satisfies (C*), )

(3) Q vs an ideal, every element of L is strongly pure and L satisfies (C**).

The conditions (C*) and (C**) are given by the following rules:

{(C*) ¢y — cand c € Q imply that an atom p € L exvsts and co v p = c holds.

(C**) ¢ — ¢ v p tmplies that an atom py, < p exists where ¢ v p = ¢ V p, holds.

(See also [11, Theorem 2]).

Proof. (1) implies (3): Lemma 12 yields that each independent subset of atoms of
the quotient ¢/0 where c is inaccessible, i.e., ¢ = p; V -+ V p,, has a cardinality not
greater than n. Therefore each element of the quotient ¢/0 is inaccessible. The join
of two inaccessible elements is a join of a finite number of atoms and according to
Lemma 12 inaccessible, i.e., @ is an ideal.

Let now ¢ — ¢ v p. Because L is atomistic there exists an atom p, < p and py A c
= 0 holds.

(C) yields ¢ < ¢V py = ¢V p, i.e., L satisfies (C**). Let b be an arbitrary element
of L and ¢ an arbitrary inaccessible element of L. According to Lemma 12¢ = p, V ---
V p, where p; is an atom for v = 1, ..., n. Let g = 0 and suppose that b v ¢,, r < =,
is existing. If p,,; < b\ ¢, then let ¢,,; = ¢, otherwise let g,y = ¢, V Pyiy’

If groy = ¢r V Priy and 0 < d := b A g, then there is an atom p <d < ¢y, p £ ¢,
thus ¢,,; = ¢,.v p and also p,,; < bV ¢q,. ;

Therefore always b A g,.,; = 0. Finally we get bAg, =0 and bV g, =bveg, ie.,
b is strongly pure.

{3) implies (2):

o — ¢, ¢ € @ and ¢, strongly pure imply that there is an element p such that ¢, v ¢
= ¢ v p holds. According to (C**) there is an atom p, where ¢, V py = ¢, i.e., L
satisfies (C*).

(2) implies (1):

In this part of the proof we have only to show that each inaccessible element of L
is a join of atoms.

Let ¢ be an atbitrary inaccessible element. According to Lemma 10 there is an
element ¢, covered by ¢ and since @ is an ideal ¢, € Q holds. In the same way we get
now a descending chain of inaccessible elements:

C> Cp ™ Cy > Cg ™ ++-.

Lemma 11 and (C*) yield ¢ = p, V p, V --- where p; are atoms for v = 1, 2, ...
Because ¢ is inaccessible we get ¢ = p, v --- V p, for a suitable n. Therefore L is
atomistic and the proof is complete.

In [1] (Theorem 2) G. BrkHOFF and O. FRINK showed that a Q-lattice L is algebraic
if and only if L is upper continuous.

In this section we shall give another condition for 4C-lattices.

‘Theorem 14. An AC-lattice L is algebraic if and only if every weakly independent
-subset of atoms ©s tndependent. ‘
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Proof. It is obvious that every weakly independent subset of atoms is independent
if L is algebraic.

Let every weakly independent subset of atoms be independent and denote by ¢ an
arbitrary inaccessible element of L. The first part of the proof of Lemma 12 yields
that ¢ = p, V .-+ ¥ p, where p; are atomsforz =1, ..., n.

Letc =< V(a,:a, € L,y € N). We have only to show that p; < V (a,:v € N; & N, |N;]
< oo)forz =1, ..., n holds.

Inasmuch as L is atomistic we havea, =V (p,,:p,, atom, u € M,), for all v € N.

Let I':= U (M,:» € N). According to our assumption the independence of subsets
of atoms is a property of finite character and hence I" possesses & maximal indepen-
dent subset I'™*. If \/ (p,:y € I'*) < V (p,:y € I')then thereexists an index y, € I' \ I'*
with p,, AV (p,:y € I'™*) = 0. If there is an index y, € I'™* with p,, < p,, vV (p,:y
€ I'*\\ {y,}) then 3

V (py:y € r*) =p7.\7\‘/(py:y €I*\ (n})

follows from (C) in contradiction to p, £V (p,:y € I'*). Therefore \/ (p,:y € I'*)
=V (p,:y € I') holds.

In the same way we can show that the sets {p;, p,:y € I'*}, 7 = 1, ..., n, are indepen-
dent if p; £ V (p,:y € I's}for each finite subset Iy of I'*. But that would be a jcon-
tradiction to p; <V (p,:y € I'*). Therefore there are finite subsets I'f with p;
SV (piyelt)fori=1,...,n.

For each y € I't (1 <1 =< n) there exists an index », € N with p, < a,,. Let N;
= {v,:y € I'?).

ThenrlN ;| < ooand p; £V (a,:» € N;) hold and the proof is complete.

The lattice in Figure 3 shows that this result does not hold in an arbitrary Q-lattice.
That lattice is a V;-lattice which is not algebraic and every weakly independent
subset is independent.

We have y, Vyg=y Vo=y Vo witho =V (z:7=12,..)), V(z;:i=1,..,,7n)
=z, and y; £ ¥, v 2, for any » = 1, i.e., y, is not compact. ,

6. V;-lattices

This section deals with V,-lattices that means with lattices which satisfy the property
that each element has a representation as a join of completely join-irreducible
elements. We shall continue investigations of the preceding section. As we can see
in Figure 4 the assumption of Theorem 13 that L satisfies (C) is very strong.

On the other hand Figure 5 shows that there are atomistic lattices in which not all
elements are strongly pure, since a is not a strongly pure element.

Theorem 15. If every element of a V,-lattice L is strongly pure, then L is atomistic.

Proof. We have to show that every element of V; is an atom. Let » bé an arbitrary
element of V,. According to Lemma 10 there is an element v, — v. Because v, is
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strongly pure and v is inaccessible there exists an element v, € L with v = yov v
= v, V 9;. On account of v € ¥, we get v, = 0 and v; = v, i.e., v is an atom.

0 Fig. 4 Fig. 6

In this paper we are not able to give necessary and sufficient conditions in order
that every element of a V,-lattice is strongly pure. But we found a necessary and
sufficient condition in order that every element of a V-lattice is strictly pure. Note
in any V,-lattice in which V, satisfies (I) an element is strongly pure if and only if
it is strictly pure, and in algebraic V,-lattices purity, strong purity and strict purity
mean the same.

Theorem 16. L s a V,-lattice in which every element is strictly pure if and only +f L
18 atomastic and (X) s satisfied.

(X) a,b,f,peL, p atom, fEF, anb=pAb=0, bvavp=>bvf imply that
there exists an element cwithbvavp =bvf=>bve.

Proof. If L is a V,-lattice in which every element is strictly pure then we can
show as in the proof of Theorem 15 that L is atomistic.

If b € L and f € F then there always exists an element ¢ with bv f = b V ¢ in parti-
cular in that caseif bvf=bvavpwitha A b=pAb= 0 holds.

Let L be an atomistic lattice in which (X)) is satisfied, b an arbitrary element of L
and f an arbitrary element of F. Then f = p, v --- v p, with atoms p; forz =1, ..., n
because ¥, is the set of all atoms of L in that case.

Let now f; :=p, V-V p;. Then f; € Ffori = 1,...,n.

Let ¢o = 0 and f, = 0. Let us assume that we got an element ¢;, 0 < I < n, with b v
a=>bvf.

If pryy < bV g then let ¢,y = .

If pryy £ 0V q,ice., ooy A (bV @) = 0, then on account of (X) there exists an element
Qi With bV gy = bV g v P4y = bV f14; and also an element ¢, withbv g, = b v f,
= b v f exists, i.e., b is strictly pure and the proof is complete.

In a subsequent paper we shall deal with ¥;-lattices in which ¥, satisfies (I). Special
kinds of this lattices are Baer lattices, ZI-lattices, 4C-lattices, cyclically generated
modular lattices. We shall define a similar unary operation as we can find it in the
papers [3, 4, b, 6, 7, 12, 13, 14, 15, 16]. With the aid of this operation we shall be
able to define terms like order and height of an element of ¥;.
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