

Werk

Titel: On generalized connections

Autor: KOLÁR, I.

Jahr: 1981

PURL: https://resolver.sub.uni-goettingen.de/purl?301416052_0011 | log8

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

On generalized connections

IVAN KOLÁŘ

Recently several authors pointed out, [1, 2, 6, 7, 9], that it is useful to study the following generalization of the classical concept of a connection. Given any fibered manifold $Y \to X$, a (generalized) connection on Y is a section $\Gamma: Y \to J^1Y$ (= the first jet prolongation of Y). The classical connection on a principal fiber bundle P(X, G) is determined by additional assumption that Γ is G-invariant, [3]. In this case, Γ is called principal connection, [6]. If E is a vector bundle, one frequently requires $\Gamma: E \to J^1E$ to be a vector bundle morphism; such a connection is called linear, [2, 6]. Even though the curvature of a (generalized) connection on Y was already studied from different points of view, [1, 2, 6, 10], we start the present paper with another original definition of the curvature by means of a general concept of the intrinsic exterior differential. Using a vertical parallelism on Y, we deduce generalized Bianchi formula, which clarifies from a more general point of view how the classical Bianchi identity depends on the invariance property of principal connections. Then we treat the torsion form of a generalized connection on the first order frame bundle of X. Finally we deduce that any connection on Y is prolonged into a connection on the space of all velocities of any order and dimension on Y. The prolonged connection on the tangent bundle of Y is used for a simple construction of the curvature of the original connection on Y.

Our consideration is in the category C^{∞} . All morphisms of fibered manifolds are base-preserving.

1. Consider a vector bundle $E \to B$, a linear connection γ on E and a vector bundle morphism $\varphi: TB \to E$. The exterior differential $d_{\gamma}\varphi: \wedge^2 TB \to E$ of φ with respect to γ is defined by

$$(d_{\nu}\varphi)(\xi,\eta) = \nabla_{\xi}\varphi(\eta) - \nabla_{\eta}\varphi(\xi) - \varphi([\xi,\eta]) \tag{1}$$

for any vector fields ξ , η on B. If $\varphi = \varphi_i^l dx^l$ is the coordinate expression of φ in some local coordinates x^l on B and some linear fiber coordinates z^l on E, then (1) implies

$$d_{\gamma}\varphi \equiv d\varphi_{i}^{\lambda} \wedge dx^{i} + \varphi_{i}^{\mu} dx^{i} \wedge \Gamma_{\mu j}^{\lambda} dx^{j}, \qquad (2)$$

where $\Gamma_{\mu j}^{l}$ are the Christoffel symbols of γ .

Assume that φ has constant rank, so that its kernel K is a vector bundle over B. Formula (2) shows that the restriction of d, φ to K does not depend on φ . Hence we obtain a map $\Phi: \wedge^2 K \to E$ (determined by φ only), which will be called the *intrinsic* exterior differential of φ . Using (1), we find the following geometric interpretation

of Φ . If ξ , η are two vector fields in K, then

$$\Phi(\xi,\eta) = -\varphi([\xi,\eta]). \tag{3}$$

(We shall show in a next paper that the intrinsic exterior differential plays an important role in the theory of semi-holonomic jets of the second order.)

2. Consider a fibered manifold $\pi\colon Y\to X$ and a (generalized) connection $\Gamma\colon Y\to J^1Y$. Let

$$x^{i}, y^{a}, \quad i, j, \dots = 1, \dots, n = \dim X,$$

 $\alpha, \beta, \dots = 1, \dots, m = \dim Y - \dim X,$

be some local fiber coordinates on Y. Every $\Gamma(u) \in J^1Y$, $u \in Y$, is identified with an *n*-dimensional subspace in T_uY of a form

$$dy^a = F_i^a(x, y) dx^i. (4)$$

We shall say that (4) are the equations of Γ . Let T(Y/X) be the bundle of all vertical tangent vectors of Y. The connection morphism $\omega = \omega_{\Gamma} \colon TY \to T(Y/X)$ assigns to every vector $A \in T_{\mathfrak{u}}Y$ its projection into $T_{\mathfrak{u}}(Y/X)$ in the direction $\Gamma(u)$. In coordinates,

$$\omega = dy^a - F_i^a(x, y) dx^i. \tag{5}$$

The kernel K_{Γ} of ω_{Γ} is a vector bundle over Y generated by the subspaces $\Gamma(u)$. Obviously, K_{Γ} can be identified with π^*TX (= the pull-back of TX with respect to π). We now define the curvature morphism $\Omega = \Omega_{\Gamma} \colon \wedge^2 K_{\Gamma} \to T(Y/X)$ as the intrinsic exterior differential of the connection morphism. Using (3), one verifies that our definition is equivalent to that one by Libermann, [6], as well as to the definition of the curvature of an arbitrary Pfaff system by Pradines, [8], and to the construction of the difference tensor of the prolonged section Γ' by Dekrét, [1]. In coordinates,

$$\Omega = (\partial_j F_i^a + F_i^{\beta} \partial_{\beta} F_i^a) \, dx^i \wedge dx^j. \tag{6}$$

Taking into account the projection $h_{\Gamma}\colon TY\to K_{\Gamma},\ h_{\Gamma}(A)=A-\omega_{\Gamma}(A),$ we can also consider Ω as a morphism (denoted by the same symbol of \wedge^2TY into T(Y/X). Let $p\colon E\to B$ be a vector bundle, the standard fiber of which is a vector space E_0 . The space PE of all linear isomorphisms of E_0 into the individual fibers of E is a principal fiber bundle over B with structure group $GL(E_0)$. A parallelism on E is a section $Q\colon B\to PE$. Every $A\in E_0$ defines a section $\tilde{A}\colon B\to E$, $\tilde{A}(x)=Q(x)$ (A), which will be called fundamental Q-section. If A_1 is a basis of E_0 , then Q is determined by the fundamental Q-sections \tilde{A}_1 . Any map $f\colon M\to E$ is transformed by Q into a map $f_Q\colon M\to E_0$, $f_Q(a)=Q^{-1}(pf(a))$ (f(a)), $a\in M$.

A vertical parallelism on a fibered manifold Y is a parallelism on the vertical tangent bundle T(Y/X). Denote by V the standard fiber of T(Y/X), i.e. V is an m-dimensional vector space. If Q is a vertical parallelism on Y, then ω_Q and Ω_Q are V-valued forms. Given a principal fiber bundle P(X, G), we have a canonical vertical parallelism N on P such that the fundamental N-section determined by $A \in \mathfrak{g}$ (= the Lie algebra of G) is the classical fundamental vector field on P determined by A. If Γ is a principal connection on P, then $\omega_N \colon TP \to \mathfrak{g}$ is the classical connection form of Γ .

Let W be a vector space and φ a W-valued k-form on Y. The absolute differential $D\varphi = D_{\Gamma}\varphi$ of φ with respect to a connection $\Gamma: Y \to J^1Y$ is a W-valued (k+1)-form on Y defined by

$$(D\varphi)(A_1,...,A_{k+1})=(d\varphi)(h_\Gamma A_1,...,h_\Gamma A_{k+1}).$$

Proposition 1. For any vertical parallelism Q on Y, it holds

$$\Omega_0 = D\omega_0$$
.

Proof. Let Q be determined by vector fields $a^{\beta}_{\alpha}(x,y) \frac{\partial}{\partial y^{\beta}}$. Then $\omega_{Q} \equiv \bar{a}^{\alpha}_{\beta}(dy^{\beta} - F^{\beta}_{i}dx^{i})$, provided $a^{\alpha}_{\beta}\bar{a}^{\beta}_{\gamma} = \delta^{\alpha}_{\gamma}$. We find directly $D\omega_{Q} \equiv \bar{a}^{\alpha}_{\beta}(\partial_{j}F^{\beta}_{i} + F^{\gamma}_{j}\partial_{\gamma}F^{\beta}_{i}) dx^{i} \wedge dx^{j} = \Omega_{Q}$, QED.

3. To deduce the structure equations of ω_{Q} , we need

Lemma 1. Let η be a vertical vector field on Y and ξ a vector field in K_{Γ} . Then the vector $\omega_{\Gamma}([\eta, \xi]_{\mathbf{u}}) \in T_{\mathbf{u}}(Y/X)$ depends only on the value $\xi_{\mathbf{u}}$ of ξ at $\mathbf{u} \in Y$.

Proof. If
$$\eta \equiv \eta^a(x, y) \frac{\partial}{\partial y^a}$$
 and $\xi \equiv \xi^i(x, y) \frac{\partial}{\partial x^i} + F^a_i \xi^i \frac{\partial}{\partial y^a}$, then
$$\omega_{\Gamma}([\eta, \xi]) \equiv \xi^i \left(\eta^\beta \frac{\partial F^a_i}{\partial y^\beta} - F^\beta_i \frac{\partial \eta^a}{\partial y^\beta} - \frac{\partial \eta^a}{\partial x^i} \right) \frac{\partial}{\partial y^a}, \tag{7}$$

which proves Lemma 1.

We construct a mapping $\delta(Q) = \delta(Q, \Gamma) \colon V \times K_{\Gamma} \to V$ as follows. Let $A \in V$, $\xi_u \in \Gamma(u)$ and ξ be a vector field in K_{Γ} extending ξ_u . By Lemma 1, $\omega_{\Gamma}([\tilde{A}, \xi]_u)$ depends only on ξ_u and there is a unique vector $\delta(Q)$ $(A, \xi_u) \in V$ such that $\omega_{\Gamma}([A, \xi]_u)$ belongs to the fundamental Q-section determined by $\delta(Q)$ (A, ξ_u) . Using (7), we deduce the coordinate form of $\delta(Q)$

$$\delta(Q, \Gamma) \equiv a_{\beta}^{\gamma}(\partial_{\nu}\bar{a}_{\nu}^{\alpha} + F_{i}^{\epsilon}\partial_{\epsilon}\bar{a}_{\nu}^{\alpha} + \bar{a}_{\epsilon}^{\alpha}\partial_{\nu}F_{i}^{\epsilon}). \tag{8}$$

Since $\delta(Q, \Gamma)$ is bilinear, it can be considered as a $V \otimes V^{\bullet}$ -valued 1-form on K_{Γ} , which will be called the *deviation form* of the pair (Q, Γ) . By construction, $\delta(Q, \Gamma)$ vanishes iff $[\tilde{A}, \xi]$ belongs to K_{Γ} for any $A \in V$ and any vector field ξ in K_{Γ} . This means that Γ (as a distribution on Y) is invariant with respect to every fundamental Q-field on Y. For the canonical vertical parallelism N on a principal fiber bundle, $\delta(N, \Gamma) = 0$ iff Γ is a principal connection. Taking into account h_{Γ} , we can also consider $\delta(Q)$ as a 1-form on TY.

On the other hand, for any A_1 , $A_2 \in V$ and $u \in Y$, there is a unique vector $q(u, A_1, A_2) \in V$ such that $[\tilde{A}_1, \tilde{A}_2]_u$ belongs to the fundamental Q-section determined by $q(u, A_1, A_2)$. In coordinates, $q \equiv \bar{a}_0^a a_{i\beta}^a \partial_{|a|} \partial_{|a|} \partial_{|a|}$, provided the square bracket denotes antisymmetrization. Hence q is a mapping $q: Y \to V \otimes \wedge^2 V^*$ called the *structure function* of Q. Consider further $\omega_Q: TY \to V$. Then the natural composition of q and ω_Q defines a V-valued 2-form $q(\omega_Q, \omega_Q)$ on Y. We recall that, for a W_1 -valued r-form $\varphi \equiv f_{i_1 \dots i_r}^a dx^{i_1} \wedge \dots \wedge dx^{i_r}$ and a $W_2 \otimes W_1^*$ -valued s-form $\psi \equiv g_{ai_1 \dots i_s}^a dx^{i_1} \wedge \dots \wedge dx^{i_s}$ (W_1 and W_2 being vector spaces), the exterior multiplication and the tensor contraction determine a W_2 -valued (r+s)-form $\varphi \not \wedge \psi$,

$$\varphi \wedge \psi \equiv f_{i_1\dots i_r}^a g_{ai_{r+1}\dots i_{r+s}}^a dx^{i_1} \wedge \dots \wedge dx^{i_{r+s}}. \tag{9}$$

By direct evaluation, we now deduce

Proposition 2 (Structure equations). It is

$$d\omega_{Q} = -q(\omega_{Q}, \omega_{Q}) - \omega_{Q} \wedge \delta(Q) + \Omega_{Q}. \tag{10}$$

In the case of a principal connection Γ on P, we have $\delta(\Gamma, N) = 0$ and the structure function of N coincides with the Lie algebra multiplication in $\mathfrak{g} = V$. Then (10) are the classical structure equations of a principal connection.

Proposition 3 (Generalized Bianchi formula). It is

$$D\Omega_{0} = \Omega_{0} \wedge \delta(Q). \tag{11}$$

Proof. As $q(\omega_Q, \omega_Q)$ is bilinear in ω_Q , we have $D(q(\omega_Q, \omega_Q)) = 0$. For similar reasons, $D(\omega_Q \bigwedge \delta(Q)) = D\omega_Q \bigwedge \delta(Q)$. Hence we obtain (11) by absolute differentiating (10), QED.

In particular, there are two simple cases in which $D\Omega_Q$ vanishes. If $\Omega_Q=0$, we have the trivial case of an integrable connection. On the other hand, $\delta(Q,\Gamma)=0$ means that Γ is invariant with respect to Q. The latter case gives a generalization of the classical Bianchi identity (the canonical parallelism N on a principal fiber bundle is a very special kind of a vertical parallelism, as the induced parallelism on each fiber is a group parallelism).

4. Let φ be a horizontal W-valued k-form on Y, i.e. $\varphi(A_1, ..., A_k) = 0$ whenever at least one of the vectors $A_1, ..., A_k$ is vertical. We find remarkable to deduce a formula for the second absolute differential $D^2\varphi$ of φ . Obviously, φ can be interpreted as a morphism $Y \to W \otimes \wedge^k \pi^* T^*X$. We recall that, for any vector bundle $E \to X$ and any morphism $\psi \colon Y \to E$, the fiber differential $d_{Y/X}\psi \colon Y \to T^*(Y/X) \otimes \pi^*E$ is defined by differentiating ψ on each fiber of Y separately. In particular, we have $d_{Y/X}\varphi \colon Y \to T^*(Y/X) \otimes W \otimes \wedge^k \pi^* T^*X$, while $\Omega \colon \wedge^2 \pi^* TX \to T(Y/X)$. Similarly to (9), we obtain a well-defined product $\Omega \bigwedge d_{Y/X}\varphi \colon Y \to W \otimes \wedge^{k+2} \pi^* T^*X$, i.e. a horizontal W-valued (k+2)-form on Y. By simple evaluation, we prove

Proposition 4. It holds

$$D^2\varphi = -\Omega \wedge d_{Y/X}\varphi. \tag{12}$$

5. Consider further a special fibered manifold $H^1X \to X$ of all first order frames on X. Local coordinates x^i on X are prolonged into fiber coordinates x^i , x^i_j on H^1X . Let Γ be a generalized connection on H^1X with equations

$$dx_i^i = F_{jk}^i(x^i, x_m^i) dx^k. (13)$$

There is a canonical R^n -valued form Θ on H^1X , the absolute differential $D\Theta$ of which will be called the torsion form of Γ . Let N be the canonical vertical parallelism on H^1X .

Proposition 5 (Structure equations). It holds

$$d\Theta = \Theta \wedge \omega_N + D\Theta. \tag{14}$$

Proof. The coordinate expression of Θ or ω_N is $\bar{x}_j^i dx^j$ or $\bar{x}_j^i (dx_k^i - F_{kl}^i dx^l)$ respectively, provided $x_i^j \bar{x}_k^i = \delta_k^i$. Proposition 5 is then proved by direct evaluation.

There is a canonical identification $J^1H^1X \approx \overline{H}^2X$ (= the bundle of all semi-holonomic 2-frames on X). The following assertion shows that the classical Kobayashi's result on principal connections on H^1X remains to be true even for generalized connections on H^1X .

Proposition 6. The values of $\Gamma: H^1X \to J^1H^1X \approx \overline{H}^2X$ are holonomic 2-frames iff the torsion form of Γ vanishes.

Proof. This follows from the structure equations and Proposition 5 of [5].

6. The space $T_k^r Y$ of all k-dimensional velocities of order r on fibered manifold $\pi: Y \to X$ is a fibered manifold $T_k^r \pi: T_k^r Y \to T_k^r X$. Any connection Γ on Y is prolonged into a connection on $T_k^r Y$ as follows. For $A \in T_x X$ and $u \in Y_x$, denote by

L(u, A) the Γ -lift of A at u, i.e. the vector in $\Gamma(u)$ over A. Hence L is a map of $Y \oplus TX$ (= the fiber product over X) into TY and it is prolonged into $T_k^r L: T_k^r Y \oplus T_k^r (TX) \to T_k^r (TY)$, the latter fiber product being over $T_k^r X$. Let $\varkappa_X: T(T_k^r X) \to T_k^r (TX)$ and $\varkappa_Y: T(T_k^r Y) \to T_k^r (TY)$ be the canonical diffeomorphisms, [4]. (For r = k = 1, \varkappa_X or \varkappa_Y is the canonical involution of TTX or TTY, respectively.) We define a mapping $\lambda: T_k^r Y \oplus T(T_k^r X) \to T(T_k^r Y)$ by

$$\lambda(U,S) = \kappa_Y^{-1}(T_K^r L(U,\kappa_X(S))), \tag{15}$$

 $U \in T_k^r Y$, $S \in T_u(T_k^r X)$, $u = T_k^r \pi(U)$. One verifies by induction with respect to r that $S \mapsto \lambda(U, S)$ is a linear map for every $U \in T_k^r Y$. Hence λ determines a connection $T_k^r \Gamma \colon T_k^r Y \to J^1 T_k^r Y$.

In the special case k=r=1, we get a connection $T\Gamma$ on $TY \to TX$. We shall show that $T\Gamma$ can be used for a simple construction of the curvature morphism of Γ . Let (4) be the equations of Γ and let x^i , y^a , $\xi^i = dx^i$, $\eta^a = dy^a$ be the induced local coordinates on TY. We deduce by (15) that the equations of $T\Gamma$ are (4) and

$$d\eta^a = (\xi^i \partial_i F^a_i + \eta^\beta \partial_\beta F^a_i) dx^i + F^a_i d\xi^i. \tag{16}$$

The $T\Gamma$ -lift of a vector $A = (x^i, \xi^i, dx^i, d\xi^i) \in TTX$ at $U = (x^i, y^a, \xi^i, \eta^a = F^a_i \xi^i) \in TY$ has additional coordinates $dy^a = F^a_i dx^i$ and

$$d\eta^a = (\partial_i F_i^a + F_i^{\theta} \partial_{\theta} F_i^a) \, \xi^i dx^i + F_i^a d\xi^i. \tag{17}$$

On the other hand, construct $T\Gamma$ -lift of $\kappa_X A$ at $(x^i, y^a, \xi^i = dx^i, \eta^a = F^a_i dx^i)$ and apply then κ_Y . We get a vector at U with coordinates $dx^i, d\xi^i, dy^a = F^a_i dx^i$ and

$$d\eta^{a} = (\partial_{i}F^{a}_{i} + F^{b}_{i}\partial_{b}F^{a}_{i})\,\xi^{i}dx^{j} + F^{a}_{i}d\xi^{i}. \tag{18}$$

Subtracting the second vector from the first one, we obtain a vector Z with coordinates $dx^i = 0$, $dy^a = 0$, $d\xi^i = 0$ and

$$d\eta^a = (\partial_i F_i^a + F_i^b \ \partial_\theta F_i^a) \left(\xi^i dx^i - \xi^i dx^j \right). \tag{19}$$

Since $dx^i = 0 = dy^a$, Z belongs to the tangent space $T_U(T_uY)$ of vector space T_uY , $u = (x^i, y^a)$. Hence Z is canonically identified with an element of T_uY . As $d\xi^i = 0$, the latter vector belongs to $T_u(Y/X)$. After this identification, (19) is just the curvature morphism of Γ .

REFERENCES

- [1] DEKRÉT, A.: On a horizontal structure in fibered manifolds, to appear.
- [2] Tong Van Duc; Sur la géométrie différentielle des fibrés vectoriels, Kódai Math. Sem. Rep. 26 (1975), 349—408.
- [3] Kolář, I.: On the torsion of spaces with connection, Czechoslovak Math. J. 21 (96) (1971), 124-136.
- [4] KOLÁŘ, I.: On some operations with connections, Math. Nachr. 69 (1975), 297-306.
- [5] Kolář, I.: Generalized G-structures and G-structures of higher order, Boll. Un. Mat. Ital. (4) 12, Suppl. fasc. 3 (1975), 245-256.
- [6] LIBERMANN, P.: Parallélismes, J. Diff. Geometry 8 (1973), 511-539.
- [7] OUZILOU, R.: Expression symplectique des problèmes variationnels, Symp. Math. 14, Geom. simplett. Fis. mat., Teor. geom. Integr. Var. minim., Convengi 1973, p. 85—98.

34 Ivan Kolář

- [8] PRADINES, J.: Suites exactes vectorielles doubles et connexions, C. R. Acad. Sci. Paris, [8] PRADINES, J.: Sinces exectes vectorienes doubles et connexions, C. Iv. Acad. Sci. 1 ans, Sér. A, 278 (1974), 1587—1590.
 [9] VILMS, J.: Connections on tangent bundles, J. Diff. Geometry 1 (1967), 235—243.
 [10] VILMS, J.: Curvature of nonlinear connections, Proc. Amer. Math. Soc. 19 (1968), 1125
- bis 1129.

Manuskripteingang: 17. 5. 1978

VERFASSER:

IVAN KOLÁŘ, Institute of Mathematics of ČSAV, branch Brno, ČSSR