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On generalized connections

Ivan KoriR

Recently several authors pointed out, [1, 2, 6, 7, 9], that it is useful to study the
following generalization of the classical concept of a connection. Given any fibered
manifold Y — X, a (generalized) connection on Y is a section I": ¥ — J'Y (= the
first jet prolongation of Y). The classical connection on a principal fiber bundle
P(X, G) is determined by additional assumption that I" is G-invariant, [3]. In this
case, I' is called principal connection, [6]. If E is a vector bundle, one frequently
requires I': E — J'E to be a vector bundle morphism; such a connection is called
linear, (2, 6]. Even though the curvature of a (generalized) connection on ¥ was
already studied from different points of view, [1, 2, 6, 10], we start the present
paper with another original definition of the curvature by means of a general concept
of the intrinsic exterior differential. Using a vertical parallelism on Y, we deduce
generalized Bianchi formula, which clarifies from a more general point of view how
the classical Bianchi identity depends on the invariance property of principal con-
nections. Then we treat the torsion form of a generalized connection on the first
order frame bundle of X. Finally we deduce that any connectionon Y is prolonged
into a connection on the space of all velocities of any order and dimension on Y.
The prolonged connection on the tangent bundle of Y is used for a simple construction
of the curvature of the original connection on Y.

Our consideration is in the category C*. All morphisms of fibered manifolds are
base-preserving.

1. Consider a vector bundle £ — B, a linear connection y on E and a vector bundle
morphism ¢: TB — E. The exterior differential d,p: A3TB — E of ¢ with respect
to y is defined by

(d,9) (¢, ) = Vap(n) — Vap(é) — @([&, 1) (1)

for any vector fields £,  on B. If ¢ = g{dx* is the coordinate expression of ¢ in some
local coordinates z* on B and some linear fiber coordinates z* on E, then (1) implies

d,p = do A dat + @} da* A T dof, (2)

where I's; are the Christoffel symbols of .

Assume that ¢ has constant rank, so that its kernel K is a vector bundle over B.
Formula (2) shows that the restriction of d,p to K does not depend on y. Hence we
obtain a map @: A2K — E (determined by ¢ only), which will be called the inérinsic
exterior differential of ¢. Using (1), we find the following geometric interpretation
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of @. If £, 5 are two vector fields in K, then
P&, 1) = —o(l¢ 7). (3)

(We shall show in a next paper that the intrinsic exterior differential plays an im-
portant role in the theory of semi-holonomic jets of the second order.)

2. Consider a fibered manifold z: ¥ — X and a (generalized) connection I': ¥ — J1Y.
Let

z, y*, %ie.=1,..,n=dimX,
B ...=1,....m=dim ¥ — dim X,

be some local fiber coordinates on Y. Every I'(u) € J'Y, u € Y, is identified with an
n-dimensional subspace in T, ¥ of a form

dy* = Fi(z, y) d=*. 4)

We shall say that (4) are the equations of I'. Let 7(Y/X) be the bundle of all vertical
tangent vectors of Y. The connection morphism w = wr: TY — T(Y/X) assigns
to every vector 4 € T, Y its projection into 7T,(Y/X) in the direction I'(z). In coor-
dinates,

w = dy* — Fi(z, y) da. 6)

The kernel K of wr isa vector bundle over Y generated by the subspaces I'(x). Ob-
viously, K can be identified with z*TX (= the pull-back of T'X with respect to x).
We now define the curvature morphism 2 = Qr: A2Kr — T(Y/X) a8 the intrinsic
exterior differential of the connection morphism. Using (3), one verifies that our
definition is equivalent to that one by LiBERMANN, [6], as well as to the definition
of the curvature of an arbitrary Pfaff system by PraDINES, [8], and to the construc-
tion of the difference tensor of the prolonged section I by DEkrET, [1]. In coor-
dinates,

Q = (9;F + F}0,F%) da' A dx!. (6)

Taking into account the projection hp:TY — K, hr(A) = A — wr(A4), we can
also consider £ as a morphism (denoted by the same symbol of A2T'Y into T'(Y/X).
Let p: E — B be a vector bundle, the standard fiber of which is a vector space E,.
The space PE of all linear isomorphisms of E, into the individual fibers of £ is a
principal fiber bundle over B with structure group GL(E,). A parallelism on X is a
section Q: B — PE. Every A ¢ E, defines a section 4: B — E, A(x) = Q(z) (4),
which will be called fundamental Q-section. If 4, is a basis of E,, then @ is determined
by the fundamental Q-sections 4,. Any map f: M — E is transformed by Q into a
map fo: M — By, fola) = Q-1 (pf(@)) f(@)), a € .

A vertical parallelism on a fibered manifold Y is a parallellsm on the vertical tangent
bundle 7'(¥/X). Denote by ¥ the standard fiber of 7'(¥/X), i.e. V is an m-dimensional
veotor space. If Q is a vertical parallelism on Y, then wq and £, are V-valued forms.
Given a principal fiber bundle P(X, @), we have a canonical vertical parallelism
N on P such that the fundamental N-section determined by 4 € g (= the Lie algebra
of @) is the classical fundamental vector field on P determined by A. If I' is a prin-
cipal connection on P, then wy: TP — g is the classical connection form of I.

Let W be a vector space and ¢ a W-valued k-form on Y. The absolute differential
Dg = Dro of ¢ with respect to a connection I': Y — J'Y is a W-valued (k + 1)-
form on Y defined by

(D'P) (4, - Atﬂ) a5 (d'P) (hr'An seey hI‘Ahl)'
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Proposition 1. For any vertical parallelism Q on Y, ¢ holds
Qo = qu.

Proof. Let Q be determined by vector fields a(z, y) % Then wq = a§(dy? — Fidax'),
provided aza? = 5. We find directly Dwg= a3(9;F; + F}9,F?}) da* rdz! = Qq, QED.
3. To deduce the structure equations of wg, we need

Lemma 1. Let 57 be a vertical vector field on Y and & a vector field in K. Then the
vector wr([n, &1.) € TW(Y/X) depends only on the value £, of Eatu € Y.

Proof. If n = %z, ) -53: and & = &z, y)-a%( + Fgf‘aiu“, then

. oF; onp*  omt\ 0
or([n, &) =& (’7" T F? P i 5:-‘) Pt (7)

which proves Lemma 1.

We construct a mapping 6(Q) = 6(Q, I"): V X Kr— V as follows. Let A€ V,
£, € I'(u) and £ be a vector field in K extending £,. By Lemma 1, w([4, £],) depends
only on &, and there is a unique vector 8(Q) (4, &,) € V such that wr([4, £],) belongs

to the fundamental Q-section determined by 6(Q) (4, &,). Using (7), we deduce the
coordinate form of 6(Q)

0@, I'=aj(0a: + F; o,a; + az o,F). (8)

Since 6(Q, I') is bilinear, it can be considered as a V & V*-valued 1-form on K,
which will be called the devintion form of the pair (@, I'). By construction, 8(@, I')
vanishes iff [A4, ] belongs to K for any 4 € V and any vector field £ in K. This
means that I' (as a distribution on Y) is invariant with respect to every fundamental
Q-field on Y. For the canonical vertical parallelism N on a principal fiber bundle,
(N, I') = 0 iff I' is a principal connection. Taking into account kr, we can also
consider §(Q) as a 1-form on 7'Y.

On the other hand, for any 4,, 4, € V and u € Y, there is a unique vector g(u, 4,, 4,)
€ V such that [4,, 4,], belongs to the fundamental Q-section determined by
q(u, 4,, 4,). In coordinates, ¢ = @jaf; d,,jal;, provided the square bracket denotes
antisymmetrization. Hence ¢ is a mapping g: ¥ — V & A2V* called the structure func-
tion of Q. Consider further wqy: 7Y — V. Then the natural composition of ¢ and
wq defines a V-valued 2-form g¢(wg, wg) on Y. We recall that, for a W;-valued
rform ¢= [ idax" A .- Ad2 and & W, ® Wi-valued s-form o= gi, ;dah
A - Adxi (W, and W, being vector spaces), the exterior multiplication and the
tensor contraction determine a W,-valued (r + 8)-form ¢ A v,

@AY= [3 i Tair i 8T A oo A dhres. (9)
By direct evaluation, we now deduce
Proposition 2 (Structure equations). It 78

dwg = —q(wg, wq) — wq I\ 8(Q) + 2. (10)

In the case of a principal connection I" on P, we have 4(I", N) = 0 and the structure
function of N coincides with the Lie algebra multiplication in g = V. Then (10)
are the classical structure equations of a principal connection.
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Proposition 3 (Generalized Bianchi formula). I¢ 7s
DQy = Q9 N\ 4(Q)- (11)

Proof. As g(wq, wg) is bilinear in wq, we have D(g(wq, wq)) = 0. For similar reasons,
D(wq /X 8(Q)) = Dwq /X 8(Q). Hence we obtain (11) by absolute differentiating (10),
QED.

In particular, there are two simple cases in which DQ, vanishes. If 2, = 0, we have
the trivial case of an integrable connection. On the other hand, 8(Q, I') = 0 means
that I' is invariant with respect to Q. The latter case gives a generalization of the
classical Bianchi identity (the canonical parallelism N on a principal fiber bundle
is a very special kind of a vertical parallelism, as the induced parallelism on each
fiber is a group parallelism).

4. Let ¢ be a horizontal W-valued k-form on Y, i.e. ¢(4,, ..., A;) = 0 whenever
at least one of the vectors A4,, ..., 4; is vertical. We find remarkable to deduce a
formula for the second absolute differential D?p of @. Obviously, ¢ can be inter-
preted as a morphism ¥ — W ® A*a* T*X. We recall that, for any vector bundle
E - X and any morphism y: Y — E, the fiber differential dy,;xy: ¥ — T*(Y/X)
® a*E is defined by differentiating ¢ on each fiber of ¥ separately. In particular,
wehavedy;xp: ¥ — T*(Y/X) ® W ® Aka* T*X, while 2: A2x*TX — T(Y/X). Simi-
larly to (9), we obtain a well-defined product 2 X dy;xp: ¥ — W X Ak+t2x* T*X,
i.e. a horizontal W-valued (k + 2)-form on Y. By simple evaluation, we prove

Proposition 4. It holds
Do = —Q Ndyxp. (12)

5. Consider further a special fibered manifold H*X — X of all first order frames on X.
Local coordinates 2! on X are prolonged into fiber coordinates !, x} on H'X. Let I
be a generalized connection on H'X with equations

dx} = Fig(', zh) da*. (13)

There is a canonical R"-valued form @ on H!'X, the absolute differential DO of
which will be called the torsion form of I'. Let N be the canonical vertical parallelism

on H*X.
Proposition b (Structure equations). It holds

6 = 6 X wy + DO. (14)
Proof. The coordinate expression of & or wy isZidx! or Zi(dx} — Fjdx') respectively,
provided z{Z), = 6}. Proposition 5 is then provedl by direct evaluation.

There is a canonical identification J'H'X ~ H2X (= the bundle of all semi-holo-
nomic 2-frames on X). The following assertion shows that the classical Kobayashi’s
result on principal connections on H'X remains to be true even for generalized
connections on H'X.

Proposition 6. The values of I': H'X — J'H'X ~ H2X are holonomic 2-frames
1ff the torsion form of I' vanishes.
Proof. This follows from the structure equations and Proposition 5 of [6].

8. The space T:Y of all k-dimensional velocities of order r on fibered manifold
n:Y - X is a fibered manifold Tin: T%Y — T;X. Any connection I" on Y is pro-
longe(_ll into a connection on T%Y as follows. For 4 € T, X and u € Y,, denote by
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L(u, A) the I'-lift of A at u, i.e. the vector in I'(x) over A. Hence L is a map of
Y @ TX (= the fiber product over X) into 7'Y and it is prolonged into T;L: T:Y
@ THTX) > TiTY), the latter fiber product being over TEX. Let xx: T(T:X)
—TW(TX) and xy: T(T:Y) > Ti(TY) be the canonical diffeomorphisms, [4].
(For r = k = 1, xx or xy is the canonical involution of TTX or TTY, respectively.)
We define a mapping 1: T Y @ T(T:X) - T(T:Y) by

AU, 8) = % (TLL(U, %x(S)), (18)

UeTiY, SeTyTiX), u= Tin(U). One verifies by induction with respect to
r that 8 + A(U, 8) is a linear map for every U € T;Y. Hence A determines a connec-
tion T%I": TY — J\T:Y.

In the special case k = r = 1, we get a connection TI"on T'Y — TX. We shall show
that TI" can be used for a simple construction of the curvature morphism of I
Let (4) be the equations of I' and let 2, y¢, & = dz', n* = dy* be the induced local
coordinates on T'Y. We deduce by (15) that the equations of 7T are (4) and

dn® = (£ 0;F2 4 nf 0pF%)dat + Fode*. (16)

The TTI-lift of a vector A = (!, &, da!, d&') € TTX at U = (2, y*, &, n* = F3¢Y)
€ T'Y has additional coordinates dy* = F¢dx* and

dnt = (O4Fs + Fi0,F3) &ldat + Fidét. (17)

On the other hand, construct TT-lift of xyA4 at (2%, y°, & = da!, n* = Fida*) and
apply then xy. We get a vector at U with coordinates da!, d¢*, dy* = Fidz* and

dn* = (0;F; + F? 9pF%) £'da! 4 Fedét. (18)

Subtracting the second vector from the first one, we obtain a vector Z with coor-
dinates dx* = 0, dy* = 0, d¢* = 0 and

dn* = (F; + F? 9pF%) (¢ldz* — &tdx?). (19)

Since dz* = 0 = dy*, Z belongs to the tangent space T'y(7',Y) of vector space 7', Y,
u = (2%, y*). Hence Z is canonically identified with an element of 7', Y. As dé* = 0,
the latter vector belongs to 7', (Y /X). After this identification, (19) is just the cur-
vature morphism of I'.
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