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Remark on finitly projected modular lattices of breadth two
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To Prof. O.-H. Keller on his 75th birthday

1. Introduction

A lattice L in K is called finitly K-projected if for any surjective f: k + L in K there
is a finite sublattice of K whose image under f is L. These lattices are important by
the investigation of subvarieties of K, namely every finitly K-projected subdirectly
irreducible lattice L is splitting in K, i.e. there is a largest subvariety of K not con-
taining L (see A. Day [1]). So it is important to characterize finitly projected lattices
and splitting lattices in the variety M (i.e. the variety of all modular lattices) and
(in particular) in the modular lattices of breadth two. Our goal here is to give some
characterizations for a lattice of breadth two to be M-projected and M-splitting.

2. Preliminaries

First we introduce some concepts.

We call an ordered five-tuple (o, z, y, 2, u) of elements from a modular lattice a
diamond if these elements form a copy of M; with ¢ and y as the bottom and the top
elements, respectively. If a | b and ¢ | d are quotients in a lattice we writea |b xc|d
and we say that a | b transposes up to ¢ |d if and = b and av d = c. In this case
we also say that ¢ | d transposes down to a | b, written ¢ | d  a | b. We also say that
a|b and ¢ |d are transposes. The quotients a | b, c | d are said to be projective (in
symbol a | b & c | d) if there exists a sequence of quotients a | b = a, | by, @, | by, ...,
a, | b, = ¢ | dsuch that a,|b; and a;,, | by, are transposes foreveryk =0, 1, ...,n—1.
A sublattice K of L is called an 1sometric sublaitice if a prime quotient in K is a prime
quotient in L.

Definition 1.1 (A. MirscekE, E. T. ScamipT, R. WILLE [3]).

(I) The diamond D, = (ay, %1, Y1, Z1, #) i8 said to be translate up to the diamond
D, = (03, 23, Y2, %2, fo) if Ome of the quotients u, | 23, p1 | %1, pu | 21 transposes
up to one of the quotients z, | 03, ¥3 | 03, 22 | 0 and we write D, x D,.
In this situation we also say that D, translate down to D,, written Dy  D;.
(IT) A sequence Dy, Dy, ..., D,_, is called a diamond circle if the followings are satis-
fied:
(i) for every ¢ = 1,2,...,n — 1 D; translate up or translate down to D,,,,
(ii) Dy » D, and D,_, x D, such that 4, | z, transposes up to one of the quo-
tients , | 0y, ¥, | 01, 2, | 0y 8nd g | zy translate up to one of the quotients
Zu-1 | On1s Yn-1 | On-15 Zn-1 | Ou-re V
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Definition 1.2.
(I) We say that a | b transposes up to the diamond D = (g, x, y, z, ) if a | b trans-
poses up to one of the quotients 2 | o,y | 0, z | o, writtena |b » DorDN a | b.
And we write a | b x D dually, if a | b transposes down to one of the quotients
Bl ply,ple
(IT) Let T, be a diamond or a quotient for 7 € I. T, X T, denotes that no T, x T,
and no T, \« T, are satisfied. A sequence T, T, ..., Ty, is called ‘“‘clear” if
fori=1,2,....m — 1
a) Ty x Tiyor Ty Ty,
b) for T, T,,,, T2 where T',, is a diamond T; X T';,, must be satisfied.
(IIT) A sequence D,, D,, ..., D, is called a diamond halfcircle if there exist a | bs
cldand a|b X c|d such that
a) either
a|lbxD, and D,Nc|d
ora|bN D, and D, ~c|d,
b) a|b, Dy, D,, ..., D,, c|d form a clear sequence.

Remark 1. From sequence T, T, ..., T, of satisfying to that either T; » T, or
T~ T,,, we can choose a subsequence 7; = 7', T,,, ..., T; = T, to be clear.

2. From diamond circle D,, ..., D, we can choose a diamond circle to be clear. A
lattice L has a diamond circle if and only if L has a clear diamond circle.

Example.

Fig. 1

The sequence D,, D, Dy, D,, Dq in the lattice L is a diamond circle, but it isn’t clear.
The diamond circle D,, D;, D,, Dy is clear. However the sequence D,, D,, Dy, D,,
D, isn’t a diamond circle.

Beside we introduce a useful so-called Hall-Dilworth construction. The generalization
of this construction is found in [2].

Definition 1.3 (Hall-Dilworth construction). Let L, and L; be two modular
lattices with isomorphic sublattice C =~ C' where C is a filter of L, and C' is an ideal
of Ly. Then L = L, u L, can be made into modular lattice by defining z < y if
and only if one of the following conditions is satisfied: z < y in L, or z = y in L,
orz <cin {y and ¢’ <y in L, where ¢, ¢’ are corresponding elements under the
isomorphism £’ =~ C’. We say that L is the lattice obtained by gluing together L, and Ly
identifying the corresponding elements under the isomorphism C ~~ C’, and we write



Finitly projected modular lattices of breadth two 129

L =1L, + L, (C, Hall-Dilworth) or L = L, 4+ L, (L, n Ly, Hall-Dilworth), or
L = Ll + Lg (Han'deorth)-

Now we can enumerate results.

Theorem 1.1 (A. MitsceKE, E. T. ScamipT, R. WiLLE [3]).

a) Let (o, z, ¥, 2, ) be an 1sometric diamond of finitly M-projected lattice L such that
anrd <y (a, b y) implies that a Ab < 0. Then L' = L\ y* 18 a sublattice of
L, where y* = (t|tv o = y), and the quotients x| ¢ and z | o are not projective
in the sublattice L'. )

b) Let L be a finite modular lattice of breadtl two. If L 18 finitly M-projected, then L
doesn’t contain a diamond circle and a sublattice vsomorphic to M,.

Definition 1.4. We say that lattice L has y-property, if L doesn’t contain a diamond
circle and a sublattice isomorphic to M,.

Theorem 1.2 (E. T. ScamIDT [4]).

a) Let (o, z, ¥y, 2, n) be an 1sometric diamond of a splitting modular lattice L. If y s
double-irreducible then the quotients x | o and z | o are not projected vn the sublattice
Ly, =L\ (y}.

b) A finite subdirectly irreducible planar modular lattice L 3 splitting modular if
and only if L has y-property.

For the Hall-Dilworth construction E. T. ScumipT have given two interesting neces-
sary conditions for a lattice to be M-projected.

Theorem 1.3 (E. T. Scumipr [5]). Let M = L, + L, (C = L, n Ly, Hall-Dilworth)
be a finite modular lattice where C ts a chain. If C has such two different prime quotients
a|band c | d which are projective in L, and Ly, then M isn’t finitly M-projected.

Theorem 1.4 (E. T. Scumipr [5]). Let M = L, 4+ L, (C = L, n L,, Hall-Dilworth)
be ¢ finite modular lattice where C 18 a Boolean lattice. If C has such two prime quotients
a | band c | d which are projective in L, and Ly but no in C, then M 18n’t finitly M-pro-
jected.

Remark. 1. The condition ‘‘two different prim quotients @ | b and ¢ | d”’ in Theorem
1.3 exactly means that a | b and ¢ | d are not projective in C.

2. The lattice C in above theorems is either a chain, or a Boolean lattice.
Generally in the class of all modular lattices for the Hall-Dilworth construction we
only know Schmidt’s Theorems 1.3 and 1.4. There is a question what is the fact

in “‘smaller” class of modular lattices. To answer this question we give related theorems
for modular lattices of breadth two.

3. Results

First of all we prove such theorems for modular lattices of breadth two which are
interesting in itself too.

Theorem 3.1. Let L be a finite modular lattice of breadth two, and let a, | by, p | g,
ay | b, be prime quotients of L such that a; | by x p| g™~ ag | by (or e | b, p | q
X ay | by, respectively) and a, | by X ay | by. Then there exists a diamond ? = (o, z, Y
2, u) for which a, | by x D« ag | by such that a, | by x 2|0, z| 0N ag | v (or a, | b,
N D 7 ay | by such that a, | by | 7, s | z % ag | by, respectively).

9 Beitrige zur Algebra 11
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Proof. We assume that a, | b, #p|q \ a2 | b, and «, | b, X a, | b,. Now let us
consider elements 2’ and z’ such that a, <2’ <P, a; <2’ —< P. If ¥’ =2’ then
a, | by A2 |2 Aq L ay|b,. In this case if p' :=:2" =2 and ¢’ :=:2" A g then
we can consider again elements z'’ and z'’ such that ¢, < 2" —« P, a4, < 2" — P”
and so on. Since a, | b, X a, | b,, so after all by step n we can get elements g :--: x(™
and y :=:2™Agq such that a, | b, # u|y N\ ay|b,, and if a; < x—<pu and
ay < z — pu then z + 2. So z, y, z are different elements. Since L is of breadth two,
soifo:=:2Az2=2xAy =19yAz then g, z, y, 2, u form a diamond such that a, | b,
Ax|lo, 2|0\ ag|b,.

And likewise dually.

b

Fig. 2 Fig. 3

Theorem 3.2. Let L be a finite modular lattice of breadth two and Dy, ..., D, (< L)
form a diamond sequence. 4 sequence Dy, ..., D, is a dvamond circle if and only if
there are quotients a | b, ¢ |d and a |b X c|d such that a |b, D;, ..., D; , c|d and
cld, D .., ..., D, a|b are two diamond halfcircles (see Definition 1.2) satisfying
a|lb2D,,D; ncldandc|d\y D;,,D; Malb.

Im+1?

Proof. 1. Let a sequence D, ..., D, be a (clear) diamond circle. Put « | b :=: g | 2,
andc | d :=: pq | 29, then we get two required diamond halfcircles for which a« | b 7 D,
vvaDpyncld and c|d Dy 7a|db, and obviously a|b= ug|xe X 1ol 2
=c|d. ’

2. Conversely, let a|b ”D;,....,D; c|d and c|d\D; ..., D;, 7alb

Jm+1?

be two diamond halfcircles where a |b X ¢ |d. Since c|d N\ D;_,,,....,D; #a|b
80 by Theorem 3.1 and ¢ | d X a | b there exists such D, for which ¢ | d \{ ..., Dy,
... 7 a|b, and D, satisfies the conditions (IT); of Definition 1.1. So we can get a
diamond circle by fastening the sequencea | b 7 D;, ..., D; \ ¢ | d to the sequence
cld ™\ «..; Dy, ... 7 a|b. This completes our theorem.

Now we can prove further theorems.

Theorem 3.3. Let M = L, + L, (C = L, n Ly, Hall-Dilworth) be a finite modular
lattice of breadth two. If C has such two prime quotients a | b and ¢ | d which are pro-
jective in L, and 1n Ly but no vn C, then M isn’t finitly M-projected.

Remark. A lattice C here is an arbitrary lattice.
Proof of Theorem 3.3. Since a | b and ¢ | d are not projectivein C,80a | b X ¢ | d.
But a | b and ¢ | d are projective in L, and in L,, so by Theorem 3.1 there exist dia-

mond halfcircles separately in L, and in L;. And because of the peculiarity of the
Hall-Dilworth construction (it is that if p| ¢S L,, 7| s < L, then p|lg 7|8
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isn’t never satisfied) we can use Theorem 3.2 from which we get a diamond circle,
and so by Theorem 1.1 this means that M isn’t finitly M-projected. With this we
have proved our Theorem.

We prove a sufficient theorem.

Theorem 3.4. Let M = L, + Ly (C = L, n Ly, Hall-Dilworth) be a lattice where
L, and L, are finite modular lattices of breadth two which have y-property. If C has
no two prime quotients a | b and ¢ | d which are projective in Ly and in Ly but no in C,
then M has also y-property.

Proof. It is obvious that M is a finite modular lattice of breadth two by corollaries
of Theorem 2 and Theorem 3 in [2]. In addition to that if L, and L, don’t contain
sublattice isomorphic to M, then M = L, + L, (Hall-Dilworth) doesn’t contain it.
So if M has no y-property, then M contains a diamond circle D,, ..., D, which is
neither in L, nor in L,. So for instance if Dy < L, then partly there exists a least ¢
such that D; = L, D; § C but Dy, < Lyand D; / Dy, such that u; | 2; / xiy | 044y,
partly there exists a largest j such that D; = Ly, Dj,; = Lybut D, & Cand D; \y Dy,
such that x; | 6; 0 g1 | 2jr- If

ﬂ:::#iVOQEC, b:=:ZiVOZEC,

ci=:pjyVv0€C, d:=:2,,voel

Fig. 4

where o, is the least element of Ly, then u;|z; /7 a|b A x| 04y 80d g | 2j4y
A c|d A x| aj where a | b and c | d are projective in L, and in L,. Moreover a | b
X ¢ | d (namely if @ | b "\ ¢ | d then g, ¢, b would form a sublattice isomorphic to 2%)
and a | b, ¢ | d are not projective in C (or else by Theorem 3.2 a diamond circle would
exist) which is contradiction to the condition in this theorem. This completes our
theorem.

Theorem 3.5. Let M = L, + Ly (C = L, n L,, Hall-Dilworth) be a finite planar
modular lattice where L, and L, are subdirectly irreducible lattices. M s splitting of

9*



132 H. M. Crvoxa

and only if L, and L, are splitting and C has not two prime quotients a | b and c | d
which are projective tn Ly and in L, but not in C. (It is well-known that a planar lattice
18 of breadth two.)

Proof. If M is splitting, then by Theorem 1.2 M has y-property, so L, and L,
also has y-property and so L, and L, are splitting. Moreover the proof of Theorem 3.3
guarantees the another condition. Conversely, if L, and L, are splitting then L,
and L, have y-property and so by Theorem 3.4 M also has y-property. Besides M
is a subdirectly irreducible lattice (namely if L, and L, are subdirectly irreducible,
then M = L, 4 L, (Hall-Dilworth) is also subdirectly irreducible, because a finite
modular lattice L is subdirectly irreducible iff all prime quotients of L are projective
to one another) so by Theorem 1.2 M is a splitting lattice. This completes our
theorem.

I

In Fig. 5

In application of Theorem 3.5, for instance, for T, we can formulate such that 7T,
is constructed by gluing the lattices M, in step n — 1, and since M, is obviously
splitting so T, is also splitting.

Finally we have the following indepentently interesting theorem:

Theorem 3.6. Let M = L, + L, (C = L, n Ly, Hall-Dilworth) be a lattice. M s
a finite modular lattice of breadth two which has y-property if and only if L, and L,
are finite modular lattices of breadth two which have y-property, and C has no two prime
quotients a | b and c | d which are projective vn L, and in Ly but no in C.

Proof. It is obvious by Theorems 3.3 and 3.4 and by corollaries of Theorems 2 and
3in [2].
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