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On the theory of linearly compaect rings I

Pram Ngoc ANH

§ 1. Introduetion and preliminaries

In ring theory the celebrated Wedderburn-Artin structure theorem is of central
significance. It states that a ring with descending chain condition on left ideals is
semasimple if and only if it is a finite direct sum of rings of linear transformations of
finite dimensional vector spaces over division rings. It was LEPTIN [6] who succeeded
in eliminating both finiteness conditions from this characterization; he proved that
lincarly compact semisvmple rings are just complete direct sums of rings of linear
transformations of vector spaces over division rings.

The purpose of this paper is to give various simple characterizations of linearly com-
pact semisimple rings and to apply them to strictly linearly compact rings.

We consider only rings with a multiplicative unit element distinet from the zero
clement (“the zero ring is not a ring””). Homomorphisms are required to preserve the
unit. All modules are unitary, and, unless explicitly stated otherwise, they are left
modules. By a topological ring we shall mean a ring R which is at the same time a
Hausdorff topological space such that the maps R X R — R given by (z, y) > — ¥
and (x, y) — xy are continuous. By a topological R-module we shall mean an R-
module M over a topological ring B which is at the same time a Hausdorff topolo-
gical abelian group such that the composition map R X M — M is continuous with
respect to the product topology. We recall that a topological module is linearly
topologized if the open submodules form a fundamental system of neighborhoods of
zero. A linecarly topologized module is linearly compact if every filter base of cosets
of closed submodules has an adherent point. An R-module M is strictly linearly
compact (i.e. a 8.1.k. module in [6, 7]) if it is the inverse limit of discrete R-modules
satisfying the descending chain condition on submodules, or equivalently if M is
linearly compact and every continuous epimorphism from M onto any linearly
topologized R-module is open. We assume familiarity with basic properties ot
linearly compact and strictly linearly compact modules, discussed in [6, 7] or [2,
Exercises 14—22, pp. 236—241]. A ring R is called linearly topologized, linearly
compact, and strictly linearly compact, respectively, if it is such as an R-module. By
this definition, every continuous isomorphism between strictly linearly compact
rings is always a homeomorphism, i.e. it is a topological mapping.

In what follows, the terms linearly topologized, linearly compact, and strictly linearly
compact will be abbreviated as 1.t., L.c., and s.l.c., respectively.

In a ring R of linear transformations of a vector space ¥ over a division ring we can
introduce a topology as follows. Let L(u,, ..., u,) be the set of all linear transforma-
tions on ¥ which map the elements u,, ..., u, of V into the zero element. If {L(q, ..,
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Up)y Uy, ..o, Uy € V,m=1,2,...} is considered as an open base for a neighborhood
system of the zero element, then this introduces a topology on R, which is called the
finite topology. In the following, if a ring of Kinear transformations of a vector space
over a division ring comes up, we always mean this endowed with the finite topo-
logy.

For non-defined notions or more details on the results in § 1 we refer to [2, 6, 7).
Throughout this paper, J will stand for the Jacobson radical of the ring R.

The l.c. semisimple rings are characterized by the following structure theorems, most
of them due to LErTIN.

(1) [6, Sitze 12 and 13]: A l.c. semisimple ring is a complete direct sum of rings which
are rings of linear transformations of vector spaces over division rings, moreover,
the Le. semisimple rings are s.l.c.

(2) [7, (1.2)]: A Le. ring R is semisimple if and only if every l.c. R-module is a com-
plete direct sum of minimal submodules, hence every l.c. over a l.c. semisimple ring
is s.Lc.

(3) [11, Satz 2]: A Le. ring is semisimple if and only if all closed left ideals of it have
right unit elements.

(4) [7, Satz 15]: A sl.c. ring R is a complete direct sum of indecomposable left
ideals R, = Re, generated by orthogonal idempotents e, :

R =) Re,, ¢,-€,=c¢,-6,.

(B) [6, Satz 1]: Let M be any l.c. module, K be any closed submodule of M. If (N} is
any filter base consisting of closed submodules N, of M, then

NW+K) = (NN, +K.
» W

(6) [1, Folgerung 4]: Let R be a s.l.c. ring. If N\ J* = 0, where J" is the closure of J”,
n=1

then R is an inverse limit of noetherian modules.
Let R be a topological ring and 4 an arbitrary ideal in R. Consider the following
ideals in R:

4, =1, A=1,
A;H-l:Ay'A: AZII"I,
Kt+1 I "
Al’:nA/u A=ﬂ A
u<i A u<i K

if 2 is a limit ordinal, where B denotes the closure of the set B.
If there exists an ordinal & such that A = 0 and 151 = 0, the ideal 4 is said to be

transfinitely r-nilpotent and transfinitely nilpotent, respectively. Since 161 < A; holds
for all ordinals £, every transfinitely r-nilpotent ideal is transfinitely nilpotent.

(7) [6, Satz 9]: The Jacobson radical of a s.l.c. ring is transfinitely r-nilpotent.
As an application of assertion (7) we can prove the following result.

Proposition 1.1. Every closed left ideal L of a s.l.c. ring R with radical J has the
form Re + L n J, with an appropriately chosen (not necessarily non-zero!) wdempotent e.

Proof. Let L be any closed left ideal in R. Then L = (L + J)/J is a direct summand
of the semisimple l.c. ring B = R/J according to (3), and there exists a (not neces-
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sarily non-zero) idempotent e* with L — Re* and e* ¢ L. We may suppose that, for
all ordinals p << A, there are cosets e, + J with e, € L such that M, = e, -+ dJ,
"

"
« < Alisafilter base of idempotent cosets with e, €2*. Since e, € Lholds, L n (e,, + J)
W

+ 1 for every u << A. If 7 is a limit ordinal, then we can choose an element e, €
N (e,, + J ) nL=MnL (here M =N (e,, +J )) and we have the idempotent
u

W<k ® u<i

coset e; + }fgwmgé*.e‘ €L If 2=x-+1, so ¢2=¢,+q with ge LnJ
and hence ¢2€ L n «‘f By setting ¢; = ¢, —2e,g + q€ L, ¢; + -{ is an idempotent

coset and it is contained in &*, too. So we have constructed for every ordinal A an
idempotent coset ¢; 4 { with e, € L contained in &*. Since -EI = 0 holds for some ¢&,
there exists an idempotent e = ¢; + J = ¢; € L, with & = ¢*. This implies the
equality L = Re + L n J. &

If L is a closed left ideal of R, an idempotent ¢ for which L = Re 4+ L n J will be
called a fundamental idempotent of L.

Corollary 1.2. If L s a closed left ideal in a s.l.c. ring R, then L is contained in the
radical J if and only if L contains no non-zero wdempotent.

Proof. Since J; = 0 holds for some ordinal ¢, it is clear that J contains no non-zero
idempotent. On the other hand, the relation L = Re 4 L n J implies that L = J
if L contains no non-zero idempotent.

Corollary 1.3. Let R be a s.l.c. ring, and let I be a closed two-sided wdeal of R. If
I:Re+InJ,thenex—xeeJ/orallx€RandI=eR+InJ.

Proof. Form the ring R/J and let ~ be the canonical map R -> R/J = R. Since
I'+J=Re+ J, we have T+ J = Re. Now I 4 J is a closed two-sided ideal
of R, hence I + J is a closed two-sided ideal of R. By (1) I + J isa complete direct
sum of rings of linear transformations of vector spaces over division rings which
are direct summands of R, therefore I + J has a unit element e*. Since
I+J—=Réand €T+ J, there is an element v € R with vé = ¢*. This implies
¢ = e¥¢ = (v€) &€ = v2® = vé = e*. From this we have ex — ze ¢ J for all z €R.
This in turn yields Re S eR + J, and also Re S eR + I nJ, since I is two-sided.
Hence I =Re +InJ CeR+-1nJ S I, which gives the desired conclusion.

Proposition 1.4. If I is a two-sided ideal of a sl.c.ring R, then I = J if and onlyof T
contains no non-zero idempotent.

Proof. If 7 < J then, as we have seen already, I contains no non-zero idempotent.
On the other hand, if I is not contained in J , then there is a closed maximal left
ideal L which does not contain I. Hence I + L = R. Let e be the fundamental
idempotent of L, then L = Re 4 J. , therefore I 4+ J + Re — R. This implies I 4 Re

= R. Multiplying on the right by 1 — ¢ and recalling that I is two-sided, we obtain
that 1 —e ¢ J.

Proposition 1.5. Let I be a two-sided ideal of R. Any idempotent contained in I + J
s n 1.

Proof. Suppose e is an idempotent in 7 + J. Then R(1 — ¢) + I + J = R, so that
Rl —e) + 1 = R, from which we conclude that e € Re c .
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§ 2. Characterisations of linearly compact semisimple rings

The Wedderburn-Artin structure theorem characterizes artinian semisimple rings as
the finite direct sums of rings, each of which is the ring of linear transformations of
a finite dimensional vector space over a division ring. There are two obvious direc-
tions in which this class of rings may be enlarged: one may drop the requirement
that the sum has only finitely many summands, and one may drop the finite-dimen-
sionality of the vector spaces. Doing both of them, the resulting class of rings is,
according to LEPTIN [6], that of all l.c. semisimple rings, and this has been the sub-
ject of intensive investigations, principally by Jacossox [4], and LerTIN [6, 7).

In this section we give various simple characterizations of rings of this enlarged
class. We begin with the following theorem.

Theorem 2.1. Let R be a l.c. ring. The following conditions are equivalent :
1. R 78 semisimple,
. every discrete R-module is semvsimple,

[

. every discrete R-module vs projective,

. all exact sequences 0 — A — B > C — 0 of R-modules where at least one of B and C
18 a discrete R-module, split.

Proof. 1. = 2.: Let R be semisimple and M be a discrete R-module. Let M, be a
submodule of M, we wish to show that M, is a direct summand of M. A trivial appli-
cation of Zorn’s lemma asserts the existence of a submodule M,, maximal with respect
to M, n M, = 0. What we must show isthat M, +~ M, = M.1fweset N = M, + M,,
the maximality of M, implies that N has the following property: if L is a non-zero
submodule of M then N n L == 0. This is simply seen as follows: if . n N = 0 then
M, n(My + L) = 0, hence L. & M,, while My n L & N n L = 0. Thus we are led to
the verification of N = M whenever N has the property just described.

Let x be any element of M. Since M isdiscrete, N is closed and therefore A = {a € B |ax
€ N} is a closed left ideal in . Since R is semisimple, the closed left ideal 4 has a
right unit element e according to (3). Consider the submodule . = R(1 — ¢) « of M.
If L =0,then1 — e € 4 sothat A = R and x € N. On the other hand, if 5(1 — e)
€ LnN, then b(l — e) € 4 = Re, which clearly shows that b(1 — ¢) = 0. Thus
Ln N =0and hence L = 0 and x € N.

2. = 1.: Let L be any open left ideal of R. Then R/L is a discrete BR-module, hence
R/L is a semisimple R-module by assumption. Let J be the radical of R, we wish to
show that J & L, i.e. J - R/L = 0. Since R/L is semisimple, it is a sum of simple
submodules, and the verification that J - R/L = 0 reduces to its verification in case
R/L is simple. If x is any non-zero element of R/L, then the annihilator of x is an
open maximal regular left ideal K. But J S K, hence Jx =0, or J-R/L = 0.
Since R has a basis of neighborhoods of 0 consisting of such L, it follows that J = 0,
i.e. R is semisimple.

2. = 3.: By assumption, every discrete R-module M is semisimple, i.e. it is a discrete
direct sum of its simple submodules M. Let 2 be any non-zero element of M, then
Rx = M, because M, is simple. The annihilator of z is an open maximal regular left
ideal K of R. Then K is a direct summand of R, therefore M, is a direct summand of R.
This implies that M is a direct summand of a free R-module, i.e. M is a projective
R-module.

3. = 1.: Instead of verifying the implication 3. = 1. we prove the following stronger
statement: )

A complete, l.t. ring R is a l.c. semisimple ring if every discrete R-module is projec-
tive.

W
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In particular, let L be any open left ideal in R. The factor module R/L is a discrete
R-module, therefore ® = L @ R, L. This implies the existence of an element e € R/L
with Re == R/L. Since the factor module Re/K is also discrete for every submodule K
of R/L, Re'K is projective, therefore K is a direct summand of Re. Hence Re is semi-
simple. Now a finitely generated semisimple module is a direct sum of a finite number
of simple modules, from which we easily deduce the descending chain condition on
submodules of Re. This shows that R is a s.l.c. ring. We must prove that even R is
semisimple., For this let M be any discrete R-module, and M, be a submodule of M.
We wish to show that M, is a direet summand of M. Since M is disciete, the factor
module 3 "M, is also discrete, therefore M/M, is projective, i.e. M, is a direct sum-
mand of M. Hence M is semisimple and by 2. = 1. R is semisimple.

Nince 4. is a well-known characterization of semisimple and projective modules,
4. is also equivalent with conditions 1., 2. and 3.

Yemark. For any lLe. semisimple ring, its discrete left ideals are projective, injective,
and semisimple, but the converse is false. For let P denote the ring of all p-adic
integers. If {p"P, n = 1,2,...) is considered as an open base for a neighborhood
svstem of 0 in P, then [p"P, n == 1, 2, ...} induces a L.c. (moreover, a s.l.c.) topology
on P. Asis easy to see, pP is the radical of P. On the other hand, every non-zero ideal
of P has the form p"P for some n == 0. Hence 0 is the unique discrete ideal of P. 0 is
trivially projective, injective, and semisimple, but P is not semisimple.

It is a classical result that an artinian ring is semisimple if and only if all unitary
modules over it are injective. Now we can ask whether a lc. ring is semisimple if
and only if every discrete module over it is injective. The answer is negative. There
are Le. semisimple rings such that they have ideals which are non-injective discrete
modules with the discrete topology. The reason is that a discrete direct sum of injec-
tive modules is not necessarily injective. Nevertheless this is valid for projective
modules.

The following theorem determines the role of artinian semisimple rings in the class
of Le. rings and may be regarded as a stronger assertion of the above mentioned re-
<ult.

Theorem 2.2, A Le. ring R is an artinian semisimple ring if and only if every discrele
R-module is injective.

Proof. The necessity is well known. Conversely, assume that every discrete B-module
s injective. First we prove that R is semisimple. Since every submodule N of a
discrete R-module M is also discrete, it is injective by assumption. This shows that
Vis a direct summand of M, i.e. M is semisimple. So R is semisimple according to
Theorem 2.1. On account of (1) R is a complete direct sum 3 R, of rings R, of linear
ael’
transformations of vector spaces V, over division rings. We must exhibit that, on the
one hand, each V, is finite dimensional and, on the other hand, I" is a finite set. If
I, is infinite dimensional, the left socle S of R, is a proper, dense ideal of R,. It is
casy to see that §, endowed with the discrete topology, which is different from the
relative topology induced by R, on 8, is a topological R-module. By assumption &
is injective, therefore S is a direct summand of R,. Since R, is unitary, S has a right
unit element. This shows that S is a closed ideal of R,, which isinconsistent with 8
being a dense ideal of R,. So each V, is finite dimensional, i.e. each R, is an artinian
simple ring. If I is infinite, then the discrete direct sum RB* of the R,’sisa proper dense
ideal of R, which is a topological R-module with the discrete topology, as is easy to
verify. Hence R* is injective, therefore R* is a direct summand of R, which is a con-
tradiction. This completes the proof.

2 Beitrige zur Algebra 9
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Since a complete direct sum of modules is injective if and only if each summand is
injective, the following theorem is true.

Theorem 2.3. A Lc. ring 18 semisimple if and only if all L.c. modules over i are injec-
tive.

Proof. Necessity: By (1) a l.c. semisimple ring R is a complete direct sum of
rings R, of linear transformations of vector spaces ¥V, over division rings. On the
other hand, each ring K, is an injective left R,-module by [9, Corollary 1.5, pp. 246].
It is interesting to note that if V, is infinite dimensional, then £, is not an injective
right R,-module. By [9, Corollary 1.5, pp. 246] R is also an injective left E-module.
By (2) every l.c. module is a complete direct sum of its minimal submodules. As we
have seen, every simple R-module is isomorphic to a minimal left ideal, therefore to a
direct summand of . So every l.c. module is injective.

Sufficiency: Since every closed left ideal of R is a l.c. R-module, it is injective,
therefore it is a direct summand of R. This implies that every closed left ideal of £
has a right unit element, so R is semisimple on account of (3). This ends the proof
of Theorem 2.3.

Corollary 2.4. A lLc. ring R is an artinian semisimple ring if and only if all exact
sequences 0 — A — B — C — 0 of R-modules where A 1s a discrete R-module, split.

Corollary 2.5. A lc. ring R is semisimple if and only if all exact sequences
0— A — B — C — 0 of R-modules where A i3 a l.c. module, split.

GorpMAN and SaH [3] have introduced the notion of topological injective modules.
We denote by R an arbitrary topological ring. A left R-module @ will be called injec-
tive if it has the following property: if L is an open submodule of a topological E-mo-
dule M and f: L — Q is a continuous R-homomorphism, then f extends to an R-homo-
morphism from M to @, which is automatically continuous.

The following theorem can be regarded as a topological analogon of the well-known
characterization of artinian semisimple rings stating that a ring is a semisimple
artinian ring if and only if each module over this ring is injective.

Theorem 2.6. Let R be a complete, L.t. ring. Then R is a l.c. semisimple ring if and
only if every topological R-module Q s injective.

Proof. Assume that R is a l.c. semisimple ring. Let @ be an arbitrary topological
R-module. Let L be any open submodule of a topological R-module M and let f
denote a continuous R-homomorphism from I into . Since L is open, M/L is a
discrete R-module. Hence M/L is projective according to Theorem 2.1. By a well-
known result about projective modules stating that all exact sequences 0 —~ A" — A4
— P — 0 split for a projective module P, we obtain a decomposition M = L @ M/L.
If we put f(x + y) = f(z) for all z € L and y € R/L, then { is a continuous extension
of f from M into @, i.e. @ is an injective module.

For the sufficiency of the theorem we prove first that R is s.l.c., hence l.c. Let {L,}
be a basis of neighborhoods of 0 consisting of left ideals in E. By the assumption L,
is a topological injective R-module. Since L, is an open left ideal in R, L, is a direct
summand of R by Theorem 3.2 [3], ie. R = L, @ K,, L,n K, = 0. This implies
that K, is a discrete R-module. Since every submodule of K, is again injective and
open in K, it is a direct summand of K, according to Theorem 3.2 [3]. Therefore K,
is semisimple. As K, is a direct summand of R, it is generated by an idempotent,
i.e. K, = Re, holds. Now a finitely generated semisimple module is a direct sum of a
finite number of simple submodules, from which we easily deduce the descending
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chain condition on submodules of K,. This shows that R is l.c. Now let J denote the
radical of R. Since R/L, is a direct summand of a finite number of simple submodules,
L, is an intersection of a finite number of maximal regular left idcals in R. Thus by
the definition of the Jacobson radical, J is contained in any open left ideal L,, which
implies J & N L, = 0, therefore R is semisimple.

The concept of semisimple modules in a topological context was generalized by
GoLpMAN and SaH [3] as follows. Let B be an arbitrary topological ring and N a
topological E-module. We shall say that N is topologically semisimple if for every
submodule M, closed or not, of N there is a submodule K such that M n K = 0
and M 4 K is everywhere dense. We shall say that R is (left) topologically semisimple
if every left R-module is topologically semisimple. It holds namely:

Theorem 2.7. 4 complete, L.t. ring R ¥s l.c. and semvsimple if and only if R s topologi-
cally semisvmple.

Proof. Assume that R is l.c. and semisimple. Let N denote an arbitrary submodule,
closed or not, of a topological R-module M. A trivial application of Zorn’s lemma
implies the existence of a submodule K maximal with respect to N n K = 0. If we
set # = N + K, the maximality of K shows that £ has a non-zero intersection with
every non-zero submodule of M. We must show that E is everywhere dense. Let E
denote the closure of K. For any element z of M denote by A the left ideal
{a € Rlax € E). Then A is closed in R. Because R is semisimple, the left ideal A
has a right unit element e. Consider the submodule L = R(1 — e) x of M. If L = 0,
then 1 — ¢ € 4, so that A = R and x € E. On the other hand, if b1 —e)x e LnE,
then b(1 — e) € A = Re, which clearly shows that b(1 — e) = 0. Thus L n E = 0,
hence L =0and x ¢ E.

Conversely, if R is topologically semisimple, then every left R-module is injective
according to Proposition 7.6 [3]. The previous theorem gives that R is l.c. and semi-
simple.

Proposition 2.8. Let R be any L.c. ring and M be any topological R-module with an
open submodule N. Then M|N is semisimple if and only if JM < N.

Proof. If JM S N, then M/N as an R-module behaves just as it does as an R/J-
module. For if a; = &, mod J, a; + n = a,, n € J, then for any element x of M,
Yol = 0@ + nx = x; mod N, that is, «; and «, produce the same operation on
J/N. But the discrete R/J-module M /N is semisimple according to Theorem 2.1,
since R/J is a l.c. semisimple ring.

For the second part of the proposition, suppose M/N is semisimple, then M /N is a
discrete direct sum of simple submodules. Thus the verification of JM < N reduces to
its verification in case M/N is simple, which is obvious.

Now let M be any discrete module over a s.l.c. ring R. We define for each ordinal x
the submodule “M of M. Let °M be the trivial submod ule of M, consisting of the zero
clement. If a submodule #M is defined, then let #+!'M be the sum of all minimalsub-
modules of M vontaining *M. If #M is defined for all ordinals u < 1 where 1 is a limit
ordinal, then let 2M = U “M. The smallest ordinal ¢ with °M = M is called the

u<a
lnyer number of M. We define the layer number of an arbitrary complete, 1.t. module
a8 the least upper bound of the layer numbers of its discrete factor modules.

Theorem 2.9. Let R be a s.l.c. ring with radical J. If M vs a discrete, faithful R-module,
then we have for all ordinals u :

"M = (z|Jx =0 (J,=R).
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Proof. Put M, = (x|J,x = 0). The statement is valid for ¢ = 0. Assume its validity
for x. From J. **1M < *M it follows by ([7], (1.12)) that

Jery - UM == Jy o J*M S - %M = 0,

hence **M < M 4,. On the other hand, M., is also contained in **1M, because from
J(M, .y *M) = 0 it follows by Proposition 2.8 that M,,, modulo *M is a sum of its
simple submodules. If now *M = M, for all ordinals u << 4 where 4 is a limit ordinal,
then J M == J,;(U *M) = 0, therefore *M S M,, Let x be any element of M, then
ﬂ J x =: 0 holds. This implies that N .J, is contained in the annihilator of .r,

<i

which i m an open left ideal A of R since M is discrete. From (5) we have

A:A+(m'1p) """ m(A

u<<i u<i

Since R is slc., J,+ A = A4 holds for some u <7, ie. x € M, =M < *M.
Therefore *M = M, holds also here and the proof is complete.

Let R be a s.l.c. ring with radical J. Then J is transfinitely r-nilpotent. The smallest
ordinal 7 with J, == 0 is said to be the index of J and R, respectively.

Corollary 2.10. Let R be a s.l.c. ring and M be a faithful discrete B-module. Then the
ndex of R 1s equal with the layer number of M.

Theorem 2.11. Let R be any s.l.c. ring and M be any complete, I.t. faithful R-module.
Then the index of R is equal to the layer number of M.

Proof. If M is a discrete R-module, the statement follows from Corollary 2.10.
Let T be the index of R, J be the radical of R and o be the layer number of M. If A
is an arbitrary closed, two-sided ideal of R, then it is easy to see that (J 4 A4/4),
~J, -+ A/A holds for all ordinals x. For any open submodule L of M, M/L is a
faithful R/C-module where C = (', is the annihilator of L. Theorem 2.9 implies that
the layer number of M/L is at most equal to t since J -~ C/C' is the radical of R/C
according to [6, Satz 14] and (J + C/C), = J, + C/C = C/(" == 0 and therefore
o < 7 is valid. Conversely, it follows from Theorem 2.9 that (J - C/C), = 0, hence

LC =0, ie. J, < C. This shows that J, = N, =0, J, = 0,7 < 0. So the
proof of Theorem 2.11 is complete. b

Remark. We can construct for any ordinal ¢ another subspace M* which can be
regarded as the dual of “M. Let M® = M and assume that we have constructed M*,
then let M#+! be such a submodule of M* that M*/M++! is maximalin the set of the
semisimple E-factor modules of M#. If all M* are constructed for all ordinals g << £
where A is a limit ordinal, then let M* == " M*. It follows from this definition that
u<i
these submodules are unique. For, if 4 = 0, the statement is trivial. Assume that the
statement is true for the ordinal g, then if K and K’ are two submodules of M* such
that M#/K and M*/K' are maximal semisimple modules, then M*/K N K’ is also
semisimple, since by Proposition 2.8, JM* & K'and JM* & K, hence JM* = K N K.
But M*/K n K' 2 M*/K, and as M*/K is maximal, the equality must hold, and this
implies K’ € K. Similarly, K £ K’, i.e. K = K'. If the M* are unique forallu < 7
where 1 is a limit ordinal, then M* = N M* is obviously unique. For *Jf we have

u<i
proved that M = {x € M|J,x = 0} if M is a faithful module, but it is not true for
its dual that M* = J,M as in the case of artinian rings. For this aim consider the
ring P of p-adic integers with p-adic topology, which is the full endomorphism ring
of the quasicyclic group C(p>®). Then C(p*) may be regarded asa faithful discrete
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lLe. (moreover s.l.c.) P-module. As is well-known, {P, = p"P, n == 1,2, ...} are all

the non-zero ideals of P, N P, = 0, P, is the radical of P.
n-1

Furthermore P,C(p~) = C(p™) for all integers n = 1, 2, ... This implies M! = M?

s o0

ce = MO =N\ M" - C(p~). But J,C(p™®) = ( N P,,) C(p™) = 0,i.e. M ==J,,- M.
n =1 n-1

As an application of Theorem 2.1 we prove the following theorem about the semi-

simplicity of endomorphism rings of abelian groups.

Theorem 2.12. The endomorphism ring of an abelian group G is a l.c. semisimple
ring with the natural topology (i.c. the finite topology) if and only of G has the form

G = 2% R ®I® X°Cv) (1)
pJ]
where Ry s the additive group of rational numbers and C(p;) ©s a cyclic group of prime
order p;.

Proof. Assume that G has the form (1). Then the endomorphism ring of G is a
complete direct sum of the endomorphism rings of 3'® 5 and }'® C(p;), respect-
ively. The abelian groups Y §, and }'® C(p;) are vector spaces over the prime
ficlds K and Ky, of characteristics O and p;, respectively. The endomorphism rings
of Y'® §, and }'® C(p;) consist of all linear transformations of these vector spaces,
respectively. Hence they are l.c. and semisimple, and therefore the endomorphism
ring of @ is lL.c. and semisimple.

Conversely, assume that the endomorphism ring R of @ is l.c. and semisimple with
the finite topology. Then @ as an R-module is discrete. According to Theorem 2.1,
(! is a discrete direct sum of simple submodules @;. So @, is a faithful simple R/C;-
module where C; is the annihilator of G;. Let I'; denote the R/C;-endomorphism ring
of G;. By Schur’s lemma I is a division ring. Then G; may be regarded as a vector
space over the division ring I'; for every 7. From this it follows that G has the form
(1), since the additive group of a division ring is of the form }'® C(p;) or 3¢ K.

§ 3. Strietly linearly compact rings

Two natural problems arising in the theory of topological rings are to determine the
consequences of each of the following conditions:

1. every ideal (or left ideal) is closed,

2. every non-zero ideal (or non-zero left ideal) is open.

WaaNER [10] has solved these problems for compact rings (by definition, a topological
ring is always a Hausdorff space). Here we answer them for s.l.c. rings such that

N J* = 0 where J is the radical. For our considerations we need some preparations
n=1

first.

Proposition 3.1. Let M be a l.c. module. Then the topological space M s a Baire
space.

Proof. Let {M,)2, be a sequence of closed sets whose union is a linearly compact
module M. Assuming that no M, contains a non-void open set, we shall derive a
contradiction. Let {L,, x € I'} be a basis of neighborhoods of 0 consisting of open
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submodules L, of M. Since M — M, is non-void and open, it contains a coset x, + L,
for some index u, € I" where «, is an arbitrary point of M — M,. Since M, has no
interior point, the intersection (z, + L,,) n (M — M,) is not empty, i.e. there exist a
point z; and an index u, such that 2, + L, contains x, + L,, and the intersection
(3 + L,,) n M, is vacuous. By repeating the same argument we obtain a sequence
{x, + L,,) of cosets of open (and hence closed) submodules L, with the properties:

Tty + Ly, & @0 + Ly, (xn + L) n M, = 0.

By the linear compactness of M there exists at least one point z for which z lies in
2, + L, for every n. Hence « is in none of the sets M,, therefore also not in the
oo

union U M, = M, contrary to z € M.

n=l
Proposition 3.2. Let R be a s.l.c. ring with radical J satisfying N J* = O where J*
18 the closure of J*. I / U L, 18 closed whenever (L,)3., 18 an tncreasing sequence of closed

(leﬂ) ideals L, 1n R, then there exists a natural number k with L, = Ly for all n > k,
1.e. this sequence breaks off.

Proof. Let L = U L,, Since L is closed, L is l.c. as an B-module, whence L is a Baire

space. As each L 1s closed in L, therefore Lis has an interior point for the relative
topology of L for some k* = 1. Consequently. L;s is open for the relative topology of
L, so L, is open in L for all n = k*. There exists also an open left ideal U in R such
that L n U = Ly, hence Lys & L, n U & L n U S Ly for all n = k*. By the second
isomorphism theorem we have

Ly + UJU 22 LyfLy 0 U = Ly/Lys

as R-modules for all » = k*. By (6) R/U satisfies the ascending chain condition,
hence L,/Lys gets stationary at some k and the proof is complete.

First we shall determine the topology of s.l.c. rings all of whose ideals are closed,
provided the rings satisfy an additional condition on their radicals.

Theorem 3.3. Let R be a s.l.c. ring with radical J satw/ymg n J* = 0 where J* is the

closure of J*. Every ideal of R 3 closed if and only if R satwfze.s the ascendmg chain
condition on ideals and every principal ideal of R is closed. In this case R[J is a semi-
simple artinian ring, hence J 18 open.

Proof. The necessity of the condition is trivial by Proposition 3.2. Conversely,
suppose I were a non-closed ideal of R. Then for any a,, ..., a, € I, I would contain
the sum (a,) + -+ + (a,) of the principal ideals (a,), ..., (2,) properly, as this sum
is closed. Hence there would exist a strictly increasing sequence of ideals contained
in R, a contradiction.

Henceforth we assume that R possesses the equivalent properties mentioned. Every
ideal in R/J is the range of an ideal in R under the canonical homomorphism from
R onto R/J, hence it is closed. Since R/J is a semisimple l.c. ring, by (1) it is a com-
plete direct sum of rings of linear transformations of vector spaces over division rings.
Now on the one hand, R/J satisfies the ascending chain condition on ideals, hence
there can be only a finite number of components in this direct sum, and on the other
hand, all these vector spaces must be of finite dimension, because the socle (i.e. the
sum of all minimal left ideals) of the ring P of all linear transformations on an infinite
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dimensional vector space over a division ring is a proper dense ideal in P, contrary
to our assumption that R, hence R/J, contains closed ideals only. All this proves that
R/J is a semisimple artinian ring, which implies that J is open.

Theorem 3.4. Let R be a topological ring with radical J satisfying N\ J* = 0, where J*
1s the closure of J". The following conditions are equivalent: Wi

1. R is s.l.c. and every left ideal of R s closed,
2. R 1s s.l.c. and noetherian,
3. R 1s s.l.c. and satisfies the ascending chain condition on closed left ideals,

4. R vs noetherian, the topology of R is the J-adic topology, R vs complete for this topology,
and R[J 18 a semisimple artinian ring.

Proof. By Proposition 3.2 condition 1. implies condition 2. Condition 2. clearly
implies condition 3.

3. = 4.: By Proposition 3.2, R is a noetherian ring. By Theorem 3.3 R/J is a semi-
simple artinian ring, hence J is open in R, because every ideal in R is closed. The
rings J*/J™1, n = 1,2, ... may be regarded as left madules over the semisimple
artinian ring R/J. In fact, a,, a; € R, a, — a, € J implies a,u — a,u € J*! for arbi-
trary u € J* ie. a; and a, have the same effect on the elements of J*/J*1. 8o a
subgroup G of J"/J"! is an R-submodule of J*/J"1 if and only if @ is an R/J-sub-
module of J*/J"+!, From this it follows that J"/J*1 satisfies the ascending chain
condition on closed R/J-submodules. By (2) J*/J*+! is the complete direct sum of
simple E/J-submodules with the product topology. Hence there can be only a finite
number of components in this direct sum. This shows that the topology of J®/J"*! ig
discrete. Hence J" is open for the relative topology of J*. Since J is open in R, J*
is open in R for all » = 1.

To show that the topology of R is the J-adic topology, it remains to prove that if L is
an open left ideal, there exists an n = 1 such that J* S L. As L is openand R is s.l.c.,
the R-module R/L satisfies the minimum condition on submodules, hence there
exists a natural number n with J* + L = J* 4 L for all k = n. Now (5) implies

Lz‘mJ‘+L=F§(J*+L)=J»+LaudthuangL.
=1 =1 R

4. = 1.: We prove first that R is s.l.c. as a left R-module. For this end it suffices to
see that R/J" as an R-module satisfies the minimum condition on submodules,
since the topology of R is complete. For n = 1 the assertion is trivial, because R/J
is a semisimple artinian ring. Assume that R/J* satisfies the minimum condition on
submodules. Since (R/J*+1)/(J*/J"1) ~ R/J", we must prove only that J*/J"! isan
artinian R-module. J"/J*1 may be regarded as a left module over R/J. By a known
result stating that each module over a semisimple artinian ring splits into the direct
sum of minimal modules, we obtain a decomposition J*/J*1 = L, + ... + L; where
the L;, ¢ = 1, ..., k, are simple R/J-modules. The finiteness of k is a consequence of
the fact that the maximum condition holds in J #/J*1, This implies that J"/J"+1
satisfies the minimum condition on submodules, i.e. R is s.l.c.

It remains to show that every left ideal of R is closed. Let L be any left ideal in R.
Since R is noetherian, L — Ra, + --- + Ra, with some elements a,,...,a, € R.
The R-module L is the image under the continuous homomorphism (z,,..., z,)
> x4 -+ 4 a,x, from the R-module R® into R, and R* is s.l.c.; therefore the

R-module L is s.l.c., hence complete, and thus closed in E. This ends the proof of
Theorem 3.4.
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Theorem 3.5. If R is a s.l.c. ring satisfying N J* = 0 where J* is the closure of J*,
w1

then every non-zero ideal of R i3 open if and only if every ideal of R s closed, the topo-

logy of R 18 the J-adic topology, and every non-zero prime vdeal of R is a primitive ideal.

Proof. Necessity: It is clear that every ideal of R is closed. By assumption, J" is
open for every n. To show that the topology of R is the J-adic one, it is sufficient to
exhibit that if L is an open left ideal, there is an » = 1 such that J* & L. As L is open
and R is s.l.c.,, the R-module R/L satisfies the minimum condition on submodules,
hence there exists a natural number n with J® + L = J¥ 4 L for all k = n. Now (5)

implies L = mT—}- L= ﬂ (J* + L)y = J* + L and thus J* < L.
=1

Let P be a non -Zero pnme ideal. Then P is open, so P 2 J* for some n = 1. But a
prime ideal containing a product of ideals contains one of them, so J < P. It is then
easy to verify that P/J is a proper prime ideal of R/J. Since R/J is a semisimple
artinian ring by Theorem 3.3, every proper prime ideal of R/J is primitive.
Sufficiency: By Theorem 3.3 R satisfies the ascending chain condition on ideals.
The argumentation of [12, p. 200] can be slightly modified to show that every non-
zero ideal of R contains a, product of non-zero prime ideals. Since every non-zero
prime ideal is primitive, it contains J. Therefore every non-zero ideal of R contains J*
for some n = 1 and hence is open, for the topology of R is the J-adic topology.

Corollary 3.6. Let R be a topological ring with N'J* = 0. The following are equi-
valent: n=1

1. R is a s.l.c. ring, every non-zero ideal of R 1s open and every left ideal is closed,

2. R ©s a noetherian ring, the topology is the J-adic topology, R is complete for this
topology, R|J 13 u semisimple artinian ring, and every non-zero proper prime ideal of R
18 a primitive vdeal.

Now let R be any s.l.c. ring. If 0 is an opex; ideal, then the topology of R is discrete,
hence R is an artinian ring. So we assume that the topology of R is not discrete and

N J* = 0 holds. Then every non-zero left ideal of R is open if and only if every non-

n=1

zero ideal of R is open and every non-zero left ideal contains a non-zero ideal: indeed,
the condition is clearly sufficient, and it is necessary since every left ideal of R is
open, the topology of R is the J-adic topology by Theorem 3.5, so a non-zero left
ideal contains the ideal J* for some 7 = 1, and J* 3= 0 as R is not discrete. Actually,
much more can be said about s.l.c. rings in which every non-zero left ideal is open.

Theorem 3.7. Let R be a non-discrete s.l.c. ring with N J* = 0. Every non-zero left
n=1

wdeal of R 13 open if and only if R.vs a noetherian ring without zero divisors, every non-

zero left vdeal contains a non-zero ideal, the topology is the complete J-adic topology,

R|J s a division ring, and J is the only non-zero proper prime wdeal of R.

Proof. The condition is sufficient by Theorem 3.5 and the preceding remark.

Necessity: We shall first show that R has no zero divisors. Suppose zy = 0 where
2 == 0 and y 3= 0. The left annihilator of y would therefore be a non-zero left ideal
and hence would contain J" for some n = 1 as the topology of R is the J-adic topo-
logy by Theorem 3.5. The right annihilator of J* would consequently be a non-zero
ideal and hence would contain J* for some k= 1. As J* - Jk = 0, J*¥ = 0, so the
topology of R would be discrete, which is a contradiction.
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R is a noetherian ring by Proposition 3.2. By (1) R/J is the complete direct sum of
rings of linear transformations of vector spaces over division rings. As Proposition
1.1 shows, every idempotent & of R/J is the image of an idempotent of R under the
canonical homomorphism from R onto R/J. Since R has no zero divisors, R/J has
only two idempotents, 0 and 1. Consequently, R/J is a division ring. Therefore J is
the only primitive ideal, hence by Theorem 3.5 it is also the only non-zero prime
ideal.

Let f be a homomorphisin from a topological R-module M into a topological R-
module N. The graph of f is the set of all points in the product space M X N of the
form (z, f(x)) with x € M. The following proposition is the analogon of Banach’s
closed graph theorem for strictly linearly compact modules.

Proposition 3.8. A homomorphism f: M — N where M and N are s.l.c. R-modules,
is continuous if and only <f s graph is closed.

Proof. If f is continuous, then the homomorphism x — (x, /(x)) is continuous and
therefore the graph of f is closed, since M and N are s.l.c.

Conversely, if the graph G of f is closed, then G as an R-module is s.l.c. The map p:
G —> M, p((z, f(z))) = z of @ onto M is one-to-one, linear, and continuous. Since @
is s.L.c., this implies that the inverse p-! is continuous. Thus f = jo p~1is continuous,
where j is the projection j: @ — N defined by j((x, f(:c))) = f(z).

§ 4. Projective modules

In what follows let R denote a s.l.c. ring with nilpotent radical J. We give some
results on projective modules over such a ring, giving analogues of results of MoRrITA
— Kawapa — Tacuikawa [8]. '

Theorem 4.1. Let P be a projective R-module with P|JP being a topological R-module
with the discrete topology. Then P has the form 3'® Re, where the e, are primitive tdem-
potents in R. Her

Proof. Since P/JP is a discrete R-module, P/JP may be regarded as a discrete R/.J-
module. By Theorem 2.1 we have :

PJJP = Y® Re,|J(X° Re,).

Let us consider the module 3'® Re,. Since the Re, are direct summands of a free
R-module, therefore 3'® Re, is projective. As P is projective, there exists a homo-
morphism f: P — 3'® Re, with jyof = j, where j,: P — P/JP and j,: X®Re,
— X'® Re,/J(J® Re,) are canonical homomorphisms:

P, plp
Ls
SQ Rep h—’ 20 RCF/J(ZQ Re,,).
This shows that 3® Re, = im f 4 J - 3'® Re,. This implies further that

. 2®Re,=imf+J" 3 Re,, mn=12,...,
since _
2®Re,=imf+ J(im [+ J-3®Re,) =imf+ J2- 3®Re,.
Therefore £ is an epimorphism, since J is nilpotent. Moreover we have P = ker /@ P’
and f': P’ — 3'® Re, is an isomorphism where f' = f/P’. If we put ¢(z) = f-1(z) for
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every x € 3'® Re,, then we have a homomorphism ¢: 3'® Re, — P with j, o ¢ = j,.
This shows that J - 3 Re, == im ¢ = P, hence ¢ is an epimorphism. Thus we have
ker f = 0 and / is an isomorphism, which completes the proof.

Theorem 4.2. Let P be a projective R-module with P|JP being a discrete topological R-
module and L be an arbitrary R-module. For a submodule Ly of L we denote by D, the
set of homomorphisms @ of P into L such that ¢(P) S Ly. If every simple R-module is
1somorphic to a quotient module of P, then we have

=2 ¢(P)
where @ ranges over the set D,.

Proof. Let z, be any element of L, which is not contained in J ¢(P). Then we have
Rzy + 3 ¢(P) = Jao + P ¢(P); otherwise we would have Rz, + } ¢(P) = Jix,
+ 2 ¢(P), 7 = 1,2, ... which is a contradiction, since J is nilpotent. Hence Rx,
+ 3 o(P)[Jxy + Z @(P) is by Theorem 2.1 a semisimple module in which the residue
class {x,) containing x, is not zero. Since this module is finitely generated, it is a
direct sum of finitely many simple submodules. By the assumption on P there
exists an epimorphism ¢ of P onto Rzy + 3 ¢(P)/Jxs + 3 ¢(P). Hence there exists
a homomorphism 7 of P into Rz, + 3 ¢(P) such that in the module Rz, + 3 o(P)/
Jzg + J) @(P) the residue class {7(x,)} containing 7(x,) is the residue class {)
containing 2. This implies that x, — %(xo) € J2o + J @(P), i.e. xy € Jxg + ) (P),
contrary to the assumption that the residue class of x, is not zero. This proves that
Ly < 3 ¢(P). Since by definition we have J ¢(P) & L, the desired relation is proved
hereby.

Theorem 4.3. Let P be a projeciive R-module and let @ and ¥ be the endomorphism
rings of P and P|JP, respectively. If we denote by D, the set of all endomorphisms ¢
of P such that p(P) S JP, then @y 18 a two-sided nilpotent ideal of D and the factor ring
®|D; 13 1somorphic to ¥'; more precisely, if J* = 0, then P} = 0.

Proof. Since P is projective, any endomorphism ¥ can be extended to an endo-
morphism @ of P with ¥ ¢ jo ¢ = j where j is the canonical homomorphism from P onto

/\

» P|JP » P|JP

On the other hand, ¢(JP) < JP for any ¢ € @. Therefore we have a ring isomorphism
®|®; =~ ¥ by the correspondenee @5 ¢ —>§ € ¥ where §(z + JP) = ¢(x) 4 JP.
Since ¢(P) S JP, ¢(J'P) S Jip(P) & J*P holds. This shows ¢(J"'P) =0 for
every @ € @;, because J* = 0. Let ¢;, j = 1, 2, ..., n be any elements of @;. Then
@a(P), ..o @(P) S J*P = 0. Thus we have ¢D" 0. This completes the proof of
Theorem 4.3.
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