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Formulas and ultraproduets in categories!)

HAJNALKA ANDREKA and IsTvAN NEMETI

1. Introduction

This work belongs to the field which is sometimes called “representation of formulas
and their validity as purely category theoretical things”. This field has recently
been receiving an increasing amount of interest among algebraists and model theo-
reticians. See?) e.g. HERRLICH-RINGEL [10], BANASCHEWSKI-HERRLICH [3]. In this
paper we extend the range of investigation from “implicational” classes to “uni-
versally axiomatisable” classes. A systematisation of kinds of axiomatisability is
obtained.

In more detail: The well-known characterisations of the universal classes, quasi-
varieties, varieties and UDE-classes of (total) algebras are generalised to “almost
every” category and to “almost every” possible concept of homomorphic image (H)
and subalgebra (S). Special cases of the same category theoretical result are the
following known theorems:

1. A class of universal algebras is hereditary and ultra-closed iff it is axiomatisable
by universal formulas.

2. A class of universal algebras is closed w.r.t. homomorphic images, subalgebras
and ultraproducts iff it is axiomatisable by “universal disjunctions of equations”
(UDE’s).

The category theoretical result is then applied to partial algebras and other kinds
of structures.

In section 2 the category theoretical concepts used in the paper are summed up.
Section 3 contains the main theorem. Examples and applications are given in
section 5.

2. Basic definitions

Throughout the paper H, #, S stand for classes of arrows (morphisms) of a cate-
gory. They are closed w.r.t. isomorphisms.

Notation. Let M be a class of arrows, then Z*+ means fe€ M. (Le. 2» stands for
an S-arrow or — stands for an H-arrow.)

') The results of this paper are taken from the dissertation of I. NEMETI submitted in August
1976. The arrangement and some of the proofs are different here.

%) Some further works in this line are: SHaraar [21], HATCHER [9], Jou~ [13], MATTHIESSEN
[14], DiERs [4].
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Definition. S is inductive if the directed union of S-subobjects is again an S-sub-
object.

That is, S is inductive iff for any direct system (¢; —“+ ¢;:4,j ¢ I) and cocone
(ui—’—'-» b:i¢ 1) such that s;, fi ¢S for every 47,jc I, also the induced map
Colim a; L» bis in S. In diagram:

J" S 8"

— a;

a;

» Colim ay

implies f ¢ S.

Recall that (#, S) is called a factorisation system iff every arrow has a unique J#’S-
decomposition and # and S are closed w.r.t. compositions. (L.e. for every f ¢ Mor
there is a unique

w7

S
/

and # - H# S H,8-SS8S.)
An object a is called H-projective (cf. MiTcHELL [15], HERRLICH-STRECKER [11]) if

Lo any
a

h
H"

there exists an

(commuting of course).

The class of H-projective objects is denoted by Pj(H).

The category has enough H-projectives (cf. MiTcHELL [15]) if to any object a there
exists an a 72— . ¢ Pj(H).

Now we recall the definition of a strongly algebroidal category (cf. BANASCHEWSKI-
HerruicH [3], HERRLICH-STRECKER [11], 22E).
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An object a is s.small) if hom (a, —) preserves direct limits. This means the following :
An object a is s.small iff for any direct system (h;;: 7, j € I) with colimit (> p:5¢ 1),
conditions (i) and (ii) below are satisfied.

(i) To any a - b there are 7 ¢ T and ¢ such that gh; = f.
(it) To any pair a p:: such that ph; = gh; there exists j € I such that ph; = qh;.
q

A category is s.algebroidal if every object is a direct limit of some s.small objects.
The adjective ‘“algebroidal” was introduced in BANASCHEWSKI-HERRLICH [3] to
refer to the analogy with algebraic lattices. Note that the concept of an s.small
object is a generalisation of the concept of a compact element in a lattice.

a
Notation. S.small objects will be denoted by ®. (Thus © Iy or ® means that
dom (f) is s.small or that a is s.small.)

Example. The category of relational structures (or models) of a fixed similarity
type is s.algebroidal and the s.small objects are the “finite reducts” (of course every
model is the directed union of its finite subreducts).

The following property means that the “‘#-congruences” behave “inductively”.

Definition. A category is S#-arrow-algebroidal if every © L#, is the direct limit

of ® 2, ©-arrows.

More precisely, the condition holds iff for every © LH, there exists a direct
system (G) Ly @:14,5¢ I) with colimiting cocone?®) (f;: ¢ ¢ I) such that f,; € #
for every j € I, and f = f,. See the diagram.

Examples. The category of relational structures is Epi-arrow-algebroidal and also
Strongepi-arrow-algebroidal; the category of algebras is a variety and is Regular-
arrow-algebroidal (Regular = Strongepi in this category), the category of partial
algebras is Regular-arrow-algebroidal and also Surjections-arrow-algebroidal, every

1) s.small stands for strongly small.

2) Recall, that the colimiting cocone is the arrow-part of the direct limit. That is, the direct
limit of (fy;: 4, j € I) is the pair ((f;: ¢ € I), b) where b = cod (f;) for every ¢ € I. If it causes
no misunderstanding, this b is said to be the direct limit.
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regular and algebroidal category is Regular-arrow-algebroidal, every s.algebroidal
category with coequalisers and direct limits is also of such a kind (cf. Corollary 3), etc.

Now, we recall the definition of reduced product and ultraproduct (of objects of a

category) (cf. FAKIR-HADDAD [5], NEMETI [17]).

A reduced product is nothing but a direct limit of (direct) products directed by their

natural projections.

In more detail: Let (a;: 7 € I) be a family of objects. IT(a;: 7 ¢ I) = ]| a; stands for
iel

the (direct) product of these objects. Let F be a filter!) on the pdwerset of I. For

LY
Y ¢ F we define I[Iya 2 M(a;:7¢ Y), and for ¥ 2 X ¢ F define Ilya —% MTya to

be the induced projection. Now, define (/7ya 22 [Ta/F: Y ¢ F) as the direct limit
Y

of the direct system (II,'u X Mya: Y 2 X « F). The object Ila/F is called the
F-reduced product of the system (a;: © ¢ I) or simply a reduced product of it. If F is an
ultrafilter, /7a/F is called an ultraproduct.

Throughout the paper products and direct limits (of sets of objects) are supposed
to exist. Also o/ always denotes a class of objects (of the category under consideration).
Psd, Pod, Upst, Lst, S/ and Ho/ denote the| class of direct products, reduced
products, ultraproducts, direct limits, S-subobjects and H-homomorphic images
of objects of &, respectively. E.g.:

P S (Ha/F: (i€ o F) S o),

Saf = (dom (f):cod (f) € & and [e€ S
=[a:a—s»-e.w'),

H./ o {cod (f): dom (f) € o/ and f¢ H|
= {a:a VAL ).

Above we defined six operations on the class of objects Ob of our category. P, P,
Up, L, S and H are operations which to any class of objects .« correlate another
class of objects P.o?, Hs/ etc.

Note, that these operations are monotonic and extensive, eg. o/ S P It is a
frequently asked question (especially in universal algebra) which combinations of
them are closure operations, i.e. idempotent.

In ANDREKA-MARKI-NEMETI [1] we proved that P* and Up are closure operations
in every s.algebroidal category and also in some others. MATTHIESSEN has shown
that if § = Mono and the category is strongly finitary and s.algebroidal, then
Mono P is a closure operation. In the category of relational structures (or universal
algebras) of a fixed similarity type if H = ‘“Regular-epimorphisms”, § = Mono,
then HSP, HS, SP, HSUp, SPUp, SUp and some others are known to be closure
operations (cf. GRATZER [8]).

In the following we introduce a category theoretical generalisation of universal
axiomatisability. A universal formula will be represented by a cone. A finstary uni-
versal formula will be represented by a ““small cone”.

!) Talking about filters is not important: any family of subsets of I directed downward by
inclusion will do.
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Definition. Let (o, S) be a factorisation system.
1. An HS-cone has the shape:

de Pj(H)

v

that is, an HS-cone is a system of arrows (d, f;)ic;; such that dom (f;) == d is H-pro-
jective and f; € # foralli ¢ I.

2. An HS-cone (d, f;)ic; is small if I is finite and © LAy o for every ¢ ¢ I:
@ F

h
S

: » f n/

o
The class of HS-cones will be denoted by K18, and that of the small HS-cones will
be denoted by K3'5. If there is no danger of confusion, then we shall omit the super-

script “HS”. Note, that K*S contains the “emety cones” as well (the latter are of
the form (d, f,)ica)-

3. A valuation of the free variables of the cone (d, f;)ic; is @ morphism d %5 b. The
cone (d, f;)ics i8 true in the object b under the valuation k iff & factors through the
cone, i.e. k = f;g for some 7 € I and g. See the diagram below.

The notation b = (d, fi)ic; [k] stands for the statement, that “the cone (d, f;)ic; is
true in the object b under the valuation d £y b,

4. The cone (d, f)ic; i8 valid in the object b iff it is true in b under every valuation
d X5 b.

Validity is denoted by b = (d, fi)ics-

Note, that a cone is valid in an object iff the object is injective w.r.t. that cone (cf.
HERRLICH-STRECKER [11]). That is, to any

here exists an

A cone ¢ is valid in a class .27 iff it is valid in every element of it.
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The validity relation |= is a binary relation between the objects and the cones:
= € (Ob x K). This binary relation induces a Galois-correspondence between
objects and cones, familiar from model theory and universal algebra.

KH8g7 (or K{®.a7) stands for the class of HS-cones (or small HS-cones, respectively)
valid in /.

1
KuSe/ S (e KHS: o/ |= q).

Similarly for K§'S.«/.

let T = K be an arbitrary class of cones. Then the “models” of the “theory” T
are those objects in which every cone ¢ € T is valid. The class of these is denoted by
Inj 7. By more category theoretical terms, Inj 7' is the class of the 7-injective
objects.

Lt

Inj 7 4 (b€ Ob:b = ¢ for every ¢ € 7.

Inj K¥8¢/ is the HS-axiomatic or HS-injective hull of 7.
Clearly Inj K¥S and Inj Kg's are closure-operations on classes of objects. We are going
to characterise these closure operations.

cxamples. Let the category be that of all models of a first order language. Let

H = Isomorphisms = Is and § = Strong-monoes (submodels in the strong sense).
Now, K{*S coincides with the set of universal formulas (of the first order language).
This is easy to check since the positive diagram of any s.small model is a finite con-

junction of atomic formulas. By this we also have Inj K.« = SUps/, in this
case.

Remark. Our notions KHS and K{'S generalise the concepts of implications and
finitary implications first introduced by BaxascHEwskI-HERRLICH [3].

3. The main result

Theorem 1. Let the classes H and S of morphisms of a category € satisfy the following
conditions:

L. a. There are enough H-projectives, i.e. HPj(H) = Ob €.
b. Every H-projective object is a direct limit of s.small H-projectives.
There exists an # < Epi such that:
. (o#, S) i3 a factorisation system.

The category vs S -arrow-algebroidal (and 5#-cowell-powered).
c. 8 s inductive.

1o

T e

3. There exists an H such that (3, S) vs a factorisation system and commutativity

of
X

—
H

always vmplies g € H.
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Now,

Al Exactly those classes of objects of € are closed w.r.t. HSUp which are axio-
matisable by small HS-cones, i.e. HSUps/ = o iff Inj K}'Sof = o, for
every o/ < Ob 6. Moreover. Inj K{!®o/ = HSUpUps.

B. If in addition € is s.algebroidal, then Inj K{of = HSUps/, for every

& < Ob €.

Remark on the conditions of the theorem. Conditions 1.a, 2.a state that our con-
cepts of “subobject” (8) and “homomorphic image” (H) are reasonable, while con-
dition 3 states that they are in a certain (fairly loose) connection. The weakness of
condition 3 is important in applications to partial algebras, relational structures and
other unusual situations. (See section 5.) These conditions are sufficient for Inj KHSg/
= HS.«/. See Corollary 4.

The remaining conditions are needed to treat ultraproducts and “smallness”. These
conditions are in connection with the subalgebra and the congruence-lattice-proper-
ties of the total algebras. 2.b is related to the fact that the lattice of all congruences
of an algebra is generated by its compact elements. 2.c generates the fact that the
subalgebras of an algebra form an inductive closed-set system.

Before proving the theorem, we prove a lemma.

Lemma 2. Let (#,8) be a factorisation system, # < Epi. Then conditions (i), (ii)
below are equivalent.
(1) S is inductive.
(ii) The direct limat of H#'S-decompositions is an HS-decomposition, 1.e.:
For any direct system (h;;: 7, j € I and cocone (f;: ¢ € I) commuting over
there is a direct system (e;;:v,j € T) such that everything commules in the

diagram:
. hij > e hy —> .
H 4
&ij -
q

for every v, j € I, where (h;: v € I) and (e;: i € I) are the colimits of (hi: 4,j € I)
and (ei;: v, j € I), respectively. p;q; vs the #S-decomposition of f;.

Proof. (i) = (ii). Suppose, § is inductive and (h;: 3, j € I), (f;: © € I) are as required
in the hypotheses of (ii).
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By factorisation system,

K
P 9¢

S
fe

L4

exists for every 7 and the commutative square

__Iﬁ___;

hijpj g

q; "

has a diagonal fill-in making

Pi

hijpj e" 7

o q4

commute. Thus e;; exists whenever h;; exists. Since p; is epi, the system (e;;: 7, j € 1)
commutes and is a direct system. Let (h;: 7 € I) and (e;: 7 € I) be the corresponding
colimits, and let p and ¢ be the maps induced by (p;e;: 2 € 7) and (¢;: 7 € I). Since #
is closed w.r.t. colimits for any factorisation system (3#,S), we have p € #. By
factorisation system, e;; € S and therefore by inductivity of § also ¢ € S. Now, it is
easy to check that everything commutes in the diagram, as claimed in the statement
of (ii).

(ii) = (i) is obvious by uniqueness of S-decompositions.

Proof of Theorem 1. Let K. denote the class of not necessarily finite cones con-

sisting of © XL © € Pj(H) arrows. l.e. Kyoo & KBS and (a,fi)icr € Koo iff
o Je, © for every 7 € I, and a € Pj(H). (But I is not necessarily finite.)

1. First we prove that Inj K., & HSUp«/.
Let a € Inj Koo/ be arbitrary. By condition 1.a there is an « 2 ¢ ¢ Pj(H). By

Cy Cy
condition 1.b there is a direct system of s.small H-projectives (G) Ly @114, jel

Cy
with direct limit (@ 2yeiie I).
Now, to every ¢ € I we define a cone ;. This cone ¢, is the class of those arrows

¢; L2 © for which a i f[hik]. ie. to which there exists no g satisfying fg = h;h.

By #-cowell-poweredness we can say, that g; isa set. Since ¢; € Pj(H), also ¢; € Kyoo.
But by definition a K ¢;, and therefore &/ H @;. The latter means the existence of
an c; Ay b; € o to every ¢ € I, which does not factor through ¢;, i.e. b; B @ilk;].
Let U be an ultrafilter over I such that [7, o) ud {j € I: h;; exists} € U for every
1 € I. We show, that a is an H-image of an S-subobject of the ultraproduct 77b/U.
To each 7 € I there exists an arrow ¢; — I1[io;)b satisfying min}ﬁ”’ = h;;k; for every
j € [3, 00).
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The following diagram represents these definitions:

9 hij i by ~
Q) &
h
m
a
'."
m
/ +
1’|.‘—\,) .7;':{ — 1[“'00) yre— »> IIb/U

Let (ug: X € U) denote the colimiting cocone of IIb/U. Denote wu; L Ufioo). NOW,
(myu;: 2 € 1) is a commuting cocone for the direct system (hy;: 1, € 1), since hym;
== m;n}jz; by basic properties of products. Thus m exists such that him = myu;
for every i € I.

Let (g;, ;) be the .#S-decomposition of the arrow miu;, e, g;8; = muu; and g; € A,
8; € S.

Now, we claim that to every ¢ € I there exists fi such that g,f;, = hh.

By s#-arrow-algebroidalness, ¢; is the direct limit of some (c; BLUE:. 4 j€ J). It
holds g; = q,j9; if (q;:j € J) is the colimiting cocone. By s.smallness of cod ¢;;, there
s a Z ¢ [7 such that

Ci

l 98
r[[r'oo)

11, — 16U

Uy

commutes. We can suppose, that Z < [¢oo). Moreover, m; - Al — gi;l can also be
supposed, since m; - 15u; = h;m = q;lu, and ¢; is s.small.
Let v € Z. Let
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commute. By #-arrow-algebroidalness ¢ is the direct limit of some (¢, 22% 5 @ :n ¢ M).
Since b, = é8,[k,], also « |= d,[h,h] by the definitionof &, and b,. This means 0,4, = kA
foralln € M. Since # < Epi, the cocone (i,: n € M) commutes over the direct limit
and induces a 84 = h,h. Since (#,S) is a factorisation system, the commutative
square

.

9ij H %

z
hid 8 laf,)
—_—

0 b,

has a diagonal fill-in: ¢;;p = (k;,0). Thus, qij(pA) = hi,hh = hih.

Denote g, < pA. Since g;; is epi, the cocone (p;: j € J) commutes over the colimit, and
induces an arrow g;0 = h;h. Denote f; = o.

The claim is proved: there exists a cocone (f;: 7 € I) such that g;f; = k;k for every
1€l

Let (g, s) be the #8-decomposition of m.

By lemma 2 there exists a direct system (e;;: 7, j € I) with colimit (e;: ¢ € I) such that
everything commutes in the following diagram:

Since g; is epi, the cocone (f;:7 € I) commutes over the direct system (e;;: %, j € I)
and induces an arrow f such that f; = e;f. Now, hik = g.f; = gieif = higf. Since
(hi: 7 € I) is a colimit, this implies 2 = gf. But

’,
g f
3 57

implies f € H by condition 1.c.
We have a «2L . 23, [Tbju € Up o. This completes the proof of 1.

2. Now we prove Inj K, & S Inj K, Ups/.

It is sufficient to prove, that to any (d, f)ier € KooUpoZ there exists a finite I, = 1
for which (d, f)ic1, € Koo K

Let (d, fi)ier € Koo be such that to every finite Iy S I there exists a d — a;, € &/
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for which «a;, =(d, fi)ics, [k1,]- Let J stand for the class of finite subsets of I and let
U be an ultrafilter over this J such that {I, € J:1 € 1y} € D for every 1 € I.

Now, we claim that I1a/U K (d, f,)ic; and thus the latter is not in KooUpst. Let k
stand for the arrow d <+ I(a,,: 1, € J) induced by the cone (k;,: I, € J). That is,

k:rf’,., = kj,. Let (ux: X € U) denote the cocone of the ultraproduct. We prove
Ia|U K (d, fi)ici[kus] by contradiction. Suppose that fig = ku, for some ¢ € I and g.
By smallness of d there exist Z and ¢’ for which g = g'u,. By s.smallness we can
suppose kny = fig', since knjuy = fig = fig'us. Let I, € Zn (IoeJ:1€ 1, be
arbitrary. Now, fi(g'af,)) = k;, contradicting our hypothesis a;, K (d, fi)ier[k1,]-
This completes the proof of 2.

3. Now, we prove HSUpUps/ < Inj Koo/

(1) The proof of Ups/ S Inj Koo/ is straightforward, by using the fact that
if U is an ultrafilter, U X; € U and n € w, thenalso X; € U for some 7 < n.
i<n
(i) Hg/ S Inj Koo/, because the domains of HS-cones are H-projective.

ii1) So/ < Inj K, because the members of HS-cones are elements of 3 and
)
(4, S) is a factorisation system.

4. By 1, 2, and 3 we have proved that Inj Koo/ = HSUpUp«. In ANDREKA-MARKI-
NEMETI [1] we proved that UpUpsZ = Ups#/ in every s.algebroidal category.
This completes the proof of Theorem 1.

Problem. Are the conditions of A sufficient for the statement of B in the above
theorem?

Note that, by the above proof, the theorem also holds if we replace the assumption
of s.algebroidalness by the weaker assumption used in ANDREKA-MARKI-NEMETT [1].

Corollary 3. Let the category be regular and s.algebroidal. Let Is denote the class of
1somorphisms, and let 8 = Mono. Now,

Inj Ki*So/ = SUps,
for every class s/ of objects of the category.

Proof. Let R stand for the class of regular epimorphisms. It is sufficient to prove
that ad 2.b the category is R-arrow-algebroidal, and ad 2.c Mono is inductive. It is
quite straightforward to prove that Mono is inductive in any algebroidal category.
Thus 2.b remains to be shown. Actually, more is true: every s.algebroidal category
with coequalisers and direct limits is R-arrow-algebroidal.

L. It is straightforward to show that for any pair of arrows
® :,,: ©, also their coequaliser: @ <2420, o
q
2. Let ® 4> be regular. Then, by definition, f = coeq (p, q) for some a :p: o-5h.

]
By s.algebroidalness, there is a direct system (@ <4 @: 7, j € I) with direct limit -
d
(o Hyazic I). Define e; = coeq(k;p, kig). If 1 < 7 (i.e. ki exists), then there exists
a commuting
O—E—0

h‘,

O,
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because (k;p) e, = (kiq) e;. Since ¢; is epi, (h;;: ¢, € I) is again a direct system. Let
(h;: 7 € I) denote its direct limit.

By the definition of coequalisers, there exists a cocone (r;: 7 € I) such that e;r; = f.
Since e; is epi, this cocone commutes over the direct system, and thus induces an
arrow r such that (e;h;) r = f.

Using the epi-property of the cocone (k;: 7 € ), it is easy to show that pleh;) = qlek;).
Since f is the coequaliser, fl = e;k; for some L. Clearly ! and r are isomorphisms, by
epi-properties of f and (h;: ¢ € [), and thus f is the colimit of the system

e R

(022 0:ic 1). 0
Let KU and K% denote the classes of those elements (d, fi)ic; of K¥S and K,
respectively, for which / = 1. l.e.
Lo
Kis = {n: XA e Pi(HY}.
Is denotes the isomorphisms.

Corollary 4. Let the category be s.algebrovdal, and let S satisfy condition 2 of theorem 1.
Then

(i) Inj K./ = SUps, Inj K{ESs/ = SPUp/,
Inj K"/ = S/, Inj K1¥o/ = SP./.
(i1) Let further H satisfy condition 1 and 3 of theorem 1. Then

Inj K¥So/ = HS Ups/, Inj K}So/ = HSPUp.,
Inj KMo/ — HS&/, Inj K15/ = HSP</.

Statements (i) 3, (i) 4, (ii) 3, (ii) 4 kold «lso, if we relax all the conditions related to al-
gebroidalness (i.e. conditions 1.b, 2.b, 2.¢).

Proof. (i) clearly follows from (ii) by choosing H = Is, and checking that condition 1
is always satisfied by Is.

To prove (ii) 3 we should repeat the proof of theorem 1 without the “small objects”
considerations.

It remains to prove (ii) 2 and (ii) 4.

Statement (*). An arbitrary cone (d, f;)ic; is valid in P/ iff there exists an ¢ € 1
for which f; is valid in 7.

The proof of this statement is straightforward: one direction is a simplified version
of step 2 in the proof of theorem 1.

The above statement (*) yields (ii) 2 from (ii) 1 and also (ii) 4 from (ii) 3.

Let us see e.g. (i) 2. By theorem 1 (ii) 1 holds, i.e. Inj K/ = HSUp«/. By
statement (*), Inj Ko/ S Inj K{SPo/. Since products preserve K,, we have

HSPUpw < Inj KiSs < Inj KPP/ = HSUpP«/.

UpP« € SPUp«/ will be proved at theorem 6, and thus we have HSUpP«/
S HSPUp«/ completing the proof.

Remark. Corollary 4 consists of 23 statements of the form Inj K%« = Q7. The
presence of H in Q causes the cones in K@ to have H-projective domains. The presence
of P in @ causes the cones in K< to consist of exactly one member. The presence of
Up in Q causes the cones in K9 to be small. K2 is completely determined by the
above three statements as a subclass of K5, i.e. the effects of H, P and Up are
independent of each other. Thus Corollary 4 can be reduced to 3 statements from 23
statements.



Formulas and ultraproducts in categories 145

4. Closure operations (or, on the semigroup generated
by H9 Ss Pa Pr, Up9 L)

Corollary 5. Under the conditions of Theorem 1:

1. HSUp, HSPUp, HS, HSP, SUp, SPUp, SP, § are closure operations.

2. These are the only closure operations in a certain sense: Let the conditions of Theorem 1
together with H 2 1s hold, and let Q be « combination of some of the operations H, S,

P, P, Up such that S occures in Q. Then Q 18 a closure operation iff it coincides with
one of the operations listed in 1.

Some of the conditions can be eliminated from the above Corollary. To prove (i)
and (ii) of the following theorem, the adjective “strong’ can be dropped everywhere,
i.e. “algebroidalness” and “small object” are enough.

Theorem 6. Let the cateqory be algebroidal, let (3¢, S) be a factorisation system, #° < Epi,

and let the cateqory be S -cowell-powered (at least w.r.t. the small H-projective objects).

Then (i)—(iv) below hold.

(i) LSP 25 a closure operation.

(i) If H satifies condition 1 and 3 of theorem 1 (“strongly” can be dropped), then
HLSP s a closure operation.

(iii) If the conditions of theorem 1 are satisfied, then HL.SP = HSLP = HSPUp
= HSP" and therefore LSP = SLP = SPUp = SP".

(iv) In any s.algebroidal category if S = Mono, then SLP = SPUp = SP 13 «
closure operation.

Proof. (i) is a special case of (ii), namely H = Is and thus needs no proof.

ad (ii).

Statement (**). Let the conditions of (ii) be satisfied, and let a be a small H-
projective object. Let ¢ be an arbitrary sequence of the operations H, L, S and P
(e.g. Q@ might be HLSPHLSP).

Now, there is an arrow a % . ¢ SP.o/ “universal over” Q«, i.e. every aly . cQu
factors through » uniquely.

The proof is straightforward (cf. PAszTor [20], GERGELY-NEMETI-PAszTOR [7], or
ANDREKA-NEMETI [2], where u is called ““free #-extension towards o7”).

Let a € Q7. (Here ® denotes a small object instead of s.small.) By condition 1 of

2] 2]
theorem 1, there are an a2t ¢ and a direct system \©® TN ®:1,7€I) with
\ 7

colimit (¢, ¢: 4 € I) such that ¢; € Pj(H) for every ¢ € I.
Let ¢; %y . ¢ SPs/ be the universal arrow of (**) for every i. Clearly, there is a
direct system (k;: 7, j € I) with colimit (k;: 7 € I) such that

his hs
¢ X y c; i v e
h
% u; u\qa
H H H
i

commutes, where % is the induced arrow.

10 Beitrige zur Algebra 8
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Since u; is universal over Q. and « € Q&/, there is a cocone (¢;: 7 € I) commuting
over (k;;:7,j € I) (since u; is epi) such that k2 = u,q;. For the induced arrow this
implies hjug = ukiq = h;h. By “universalness” of (h;: ¢ € I), we have ug = h. Since
the direct limit of J-arrows is again an J-arrow, u € J# yiclding g € II. Now,
b; € SP proves « € HLSP.«/.

ad (iii). First we shall prove the following inclusions:

ISP« < SPUp«Z S SP/ S SLP.«Z & LSP«/.

1. By corollary 4 LSP« S Inj K§iS«/ < SPUps/ since validity of K}i%-cones is
easily scen to be preserved under direct limits.

2. PUpZ € PP o/ and we proved in ANDREKA-MARKI-NEMETI [1] that PTPT = 7.
3. P © LP« hy definition.

4. (i) states, that L.SP is a closure operation, and therefore SLP&/ S LSP.«/.

All these obviously mean HLSP = HSLP = HSPUp = HSP".

ad (iv). The proof is a not very ingenious computation, and therefore we omit it.

H. Examples

(1) Some well-known theorems of model theory and universal algebra are special

cases of corollary 4. E.g.:

— The model classes closed w.r.t. SUp are exactly the universally axiomatisable
ones (Los, MaL’cEV and TARSKI);

— The quasivarieties are exactly the SPUp = SPr closed classes (MAL'CEV);

— Birkhoff’s characterisation of varieties;

— Preservation theorems, for finitary as well as infinitary model theory, the syn-
tactic characterisation of the formulas preserved by HS, S, SP, SP7, HSP for
different choices of H and S. (Some of these are due to KEisLER and LY~NDON,
cf. the recent CHANG-KEISLER monograph on model theory, Sec. 5.2.)

Since cones represent formulas, we shall speak about formulas here.

(2) Consider the category of partial algebras of a fixed similarity type. In the first

order language of partial algebras if r and ¢ are two terms, then 3 v means that 7

is defined, while 7 = ¢ means that both 7 and o are defined, and they are equal

(cf. ANDREKA-NEMETI [2], NEMETI [16] or NEMETI [17]).

Let H,, H, and H, stand for weak homomorphic images (i.e. onto homomorphisms).

strong homomorphic images and closed homomorphic images respectively (cf. HoFT

[12] or ANDREKA-NEMETI [2] ete.).

Let 8y, S, and S, stand for weak subalgebras, relative ones and strong ones (cf. as

above).

All these concepts are defined in the monograph GrATZER [8], p. 80—81, with the

following changes in terminology: S, is called “subalgebras”, H, is called “full

homomorphic images” and H, is called “strong ones” there.

Any combination of the above H and § choices (H,S,, H,S,, etc.) satisfy the con-

ditions of corollary 4. Thus we have 48 different axiomatisability results, which

imply preservation theorems also. (Cf. ANDRERA-NEMETI [2], NEMETI [16] or NEMETI

(171

For example:

— A class (of partial algebras) is closed w.r.t. H,S,Up iff it can be axiomatised by
formulas of the form:

[(Am(@)A---a3 "%(771)] = [t = filoy =) vV oo vV T = fulOn -+ )],
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where 7;, g;; must occure on the left: m;, f; are operation symbols: and 9,7, ... 7;
i8 a repetitionless sequence of variables.
— A class is closed w.r.t. H,S,Up iff it is axiomatisable by formulas of the form

[FIm@E) A ]=[, =0V ],

where the m;’s are operation symbols, and 7, ... 7; is a repetitionless sequence
of variables.
— A class is closed w.r.t. H.S,Up iff it is axiomatisable by formulas of the form

[(Frna-]=>ln=floy...)v-],
where the f’s are operation symbols, and t;, ¢;; must occure on the left.
— A class is closed w.r.t. H,S,Up iff it is axiomatisable by formulas of the form
vy = L@ v - v a, = fu(Fa)]

Similarly. A formula is preserved under both H, und S, iff it is elementarily
equivalent to a finite conjunction of formulas of the form mentioned above:

[Jm(B) A -] =10 = filogy ...) v -]

If P is present, then the right side has exactly one element. A list of all cases can be
found in NEMETI [16].

(3) Models. Consider the category of relational structures, with H,, H,, S,, 8,, defined
similarly to the above.
Here again corollary 4 yields axiomatisability results, e.g.:

— A class is closed w.r.t. HS,Up iff it is axiomatisable by formulas of the form
[Ry(By) A A H,(‘i)',)l =[Py v -],

where P; are prime formulas, R; arc predicate symbols and 7, ... 7, is repetitionless.
— To test generality or applicability of corollary 4, let us try some ad-hoc choice

of H. Let there be only one binary relation symbol R. Let % Z» 8B ¢ H, iff
[f(«)Rb implies the existence of f(b') = b, aRb’].

A class is closed w.r.t. H,S,Up iff it is axiomatisable by formulas of the form
[Bi(@) Ao A By(@)] > [Py v -],

where the relational structure defined over the set of variable symbols by the
left side is a disjoint union of trees each grown from one point.

(4) Commutative cancellative monoids possibly with zero. Consider the category of
those commutative monoids, in which every element is cancellable except the zero
element oo (if it exists).

Let H,, H,, 8,, S, be defined in the usual category theoretical sense. H, has been
defined by PAszTor [20] and investigated in distrubutive lattices in NEMETI [18].
H, is the class of epimorphisms extremal w.r.t. the bimorphisms.

In this example P; stand for formulas of the form r = o or Jz (y + z) = 0.

— A class is closed w.r.t. S,Up iff it is axiomatisable by formulas of the form
[PiA o] > [Ppy v ol

— A class is closed w.r.t. HS,Up iff it is axiomatisable by formulas of the form
[z +r=0nA-]>[Pv--]

10*
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— A class is closed w.r.t. H,S,Up iff it is axiomatisable by formulas of the form
3z +a=0na-]>[ry=0 v v, =0,
(The class of Abelian groups possibly extended with zero is closed w.r.t. H,S,

but not w.r.t. S,.)
Consider the cone (N, f,, f,), where N is the semigroup of natural numbers, N L4 K
is its natural embedding into that of the integers, while f, takes N into the one-
element group extended with a zero (0, o}, taking 0 into 0 and all the others into oc.

Clearly (N, fy, f,) € KH:8: and Inj (N, f,, f,)) = “Abelian groups possibly extended
with zero”.

6. On the conditions of the main theorem
Proposition (Independence of conditions of Theorem 1). Consider the following

conditions:
(i) The category is s.algebroidal.

(i) (s#, 8) is a factorisation system.

(iii) # < Epi'.

(iv) S is inductive.

(v) The category is J#-arrow-algebroidal.

These five conditions are independent of each other in the following sense: no one
of them is implied by the rest.

The proof consists of lengthy constructions of five “counterexamples” and therefore
we omit it.

Note, that conditions (i)—(v) are the ones required for Inj K155/ = SUps/.

Lemma 7. Let the category be s.algebroidal, S -arrow-algebroidal and let (o, S) be a
factorisation system, # < Epi.
Now, conditions (i) and (ii) below are equivalent.

(1) S s inductive.
(ii) K55 defines S in the following sense:

8 € S iff for every (commutative) square

@_h—-*’_; ®

k q

8
>

there exists a “‘diagonal fill-in’ 6 such that hé = k and ds = q.
Remark. Condition (ii) in the above lemma is equivalent to the following:
s€8 iff for every “formula” ® LX © and “valuation” k,
cod (s) = flks] wmplies dom (s) = f[k].

That is, § is the class of those morphisms, which “preserve” a special class (K355)
of formulas “backward”. It is interesting to note, that every subalgebra-concept
introduced so far e.g. in the theory of partial algebras has been defined this way.
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Proof. In the proof we shall use the following observation: By the s -arrow-alge-
broidalness it is not difficult to sec that for every arrow g:

(*) every commutative square

- H

— ¥ 5

has a diagonal fill-in

iff
every commutative square
O——E 4
v q v
—_—

has a diagonal fill-in.
We leave the proof of this to the reader.

Now, let us prove (i) = (ii): Let S be inductive and suppose that g satisfies (*).
We show that g € S.
Let

v 9 »>
be an arbitrary (commutative) square over g.
By factorisation system, it is enough to prove, that this also has a diagonal fill-in.
By algebroidalness, there isa direct system (G) Ly, 0:1,7, € I) with colimit (l) a:t€ I).
Now Lemma 2 can be applied to the cone (hf: ¢ € I) yielding

0} hij — ks — . d <) »
pi pj f g
A H H

p:’]’ A ei I r IS
g 9;

everywhere commuting as in the statement of Lemma 2.
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By hypothesis, the squares
&) Pi A )
h“ qﬂ'

9

have diagonal fill-ins, say k;. By epiness of p;, these form a commuting cocone over
(ei: %, j € I) and induce an arrow e;k = k;. Thus hifk = hit and since (h;:v € I)is a
colimit, this implies fk = ¢.

(ii) = (i): Let (h;;:%,j € I) be a direct system with colimit (k;:7 € I) and cocone
(—°1—b>: 1 € I) commuting over it. Let the induced arrow be s. By (ii) we have to show
that every square

>

has a diagonal fill-in.
By smallness there is a ¢’ and 7 such that ¢'4; = (. Since s; € S, there is a diagonal
fill-in fk = ¢'. Therefore f(kh;) = t completing the proof.
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