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Affine reductive spaces

OLpRICH KOWALSKI

It is well known that a reductive homogencous space yields a complete affine con-
nection, namely the canonical connection of the second kind, on the underlying
manifold. The main goal of this paper is to characterize intrinsically all manifolds
with an affine connection which come from reductive homogeneous spaces in that
way. (We shall call them affine reductive spaces.) Moreover, we shall establish a
natural one-to-one correspondence between affine reductive spaces with a fixed
origin and between special reductive homogeneous spaces called prime ones.

For these purposes we shall define the group of transvections (or displacements) of an
arbitrary manifold with an affine connection. Let us remark that, for an affine
globally symmetric space, our concept has the classical meaning.

1. We shall start with a short exposition of the theory of reductive homogeneous
spaces. The results presented here are essentially known.

Let K be a connected Lie group and H its closed subgroup. Consider the homogeneous
manifold K/H. Then n: K — K[H will denote the canonical projection and o = #(H)
the origin of K/H. Here K is acting on K[/H to the left; we need not suppose that
this action is effective.

Let £, §) be the Lie algebras of K and H respectively. Suppose that there is a subspace
m of ¥ such that ¥ = § 4+ m (direct sum) and ad (k) m = m for every h € H. Then
the homogeneous space K/H is called reductive with respect to the decomposition
f = h + m. The underlying manifold of K/H will be usually denoted by M.

Let us consider the left-invariant distribution {m,, g € K} on K generated by m.
Then the property ad(k)m = mimplies my = (Ln)y me = (RBy)y m, for each b € H.
We shall often identify m with m, (and, naturally, f with £,).

Before going on, let us make a notational convention. Let K be a Lie group acting
on a manifold M to the left. Then we define the action of the tangent bundle 7'(K)

on M as follows: for X € K, and p € M, we put X - p = EdE (exp, tX) (p), where
exp, = L, o exp o (L,1),. 0

Again let M = K/H be a reductive homogeneous space. Consider the frame bundle
L(M) over M ;let & denote the bundle projection. The group K acts on L(M) to the
left and so does the tangent bundle T'(K). Moreover, the structural group GL(n, R)
acts on L(M) to the right (n = dim M).

Lemma. The set of tangent subspaces Q, = (L(M)), along the fibre 7-Y(0) = L(M)

T*
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grven by Q, = m - u is H-invariant, and it satisfies 7,(Q,) = My, Qu, = (B,)g @y for
u € wY(0), 8 € GL(n, R).

Proof. FKor heH, ue€ao) we have (Ly)e(Q, = (Lp)*(M,-u)=my- u
= ((R,.)* m,) cu =My (h-u) = Qh,. Further, 7,(Q,) = 7,(Me-u)=m,-0
= a,(m,) = M,. Finally, we have g - (u8) = (g-u) s forg€ K,u € 7-Y(0), s€ GL(n, I}.

Because K acts transitively on the set of fibres of L(Jdf), we obtain from here:

Proposition A. There 1s a unique K-invariunt connection in L(M) such that the

horizontal subspaces along the fibre 7-Y(0) are given by the formula Q, = m - u.
Definition. The connection I' constructed in Proposition A is called the canonical
Uinear connection of the reductive homogeneous space K[/H. The corresponding covariant

derivative V on the underlying manifold M = K[H is called the canonical affine
connection (of the second kind) on M.

Obviously, there is no risk of confusion if we speak shortly about the canonical
connection in either case.

Proposition B. The canonical connection of a reductive homogeneous space M = K|H
18 the unique K-vnvariant connection wn L(M) with the following property: for every
frame w at 0 € M, and for each X € m the orbit exp (tX) - u vs horizontal.

.=
dr 0
= (exp tX), (X - u). Now, let @, denote the horizontal subspace of the canonical

Proof. We hnvc%(oxp tX - u) = di’ (cxp (t+ 1) Au) = (exp tX) (exptX-u)
§ Tlo

d . 5

) (exp tX - u) € (exp tX), Q,
d . . . . . ;

= Qexpex-v- Hence — (exp tX - u) is horizontal. The uniqueness part is obvious from

Proposition 1. b

connection at = € L(M). Then we have X - u € @, and

Proposition C. Consider the geometry on M = K[H determined by the canonical
connection. The following is true:
(1) For each X € m put 2(t) = exp (tX) - 0 tn M. Then the parallel dispacement
of tangent vectors at o along the curve x(t), 0 <t < s, covncides with the
drfferential of exp (sX) acting on M.

(i1) For each X € m, the curve x(t) = exp (tX) -0 is a geodesic. Conversely,
every geodesic starting from o s of the form exp (¢X)- o for some X € m.
(i) The canonical connection on M vs complete.

Proof. (i) follows almost immediately from Proposition B. Indeed, choose u € L(M)
at o. Since exp (¢X)-u is a horizontal curve which projects on the curve x(t),
0 <t <s, we can see that, for any ¥ € M, (exptX), (¥) = (exp tX - u) - (u1Y)
is parallel to Y along the curve x(¢), 0 < ¢ < s. (Here u-! is considered as a map,
wl: My — R".)

(ii) follows from (i) since the tangent vector x*(t) is equal to (exp tX), (x'(O)).

(iii) follows immediately from (ii) since exp (¢X) is defined for all ¢ € R. (Cf. [1].)

Proposition D. The canonical connection s the unique K-invariant connection on
M such that for every X € m and every vector field Y € y(M) we have (V x+ Y )y = [X*, Y],
where X* € y(M) denotes the vector field generated by the action of X on M: X3
=X . p for every p € M.

Proof. The infinitesimal version of (i), Proposition C, says that (VxsY)y= (LxsY),
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(where £ denotes the Lie derivative). On the other hand, the covariant derivatives
(Vxe)e» X € m, and the K-invariance of the canonical connection determine V uniquely
on M.

Proposition E. If a tensor field on M is invariant by K then it 8 parallel with respect
to the canonical connection V.

Proof. Let S be a K-invariant tensor field on M. Then £ y.S = 0 and hence (V x+8),
= (ZLx+8) = 0 for every X € m, i.c., (VS)y = 0. (Here the covariant derivative
(V x+)o and the Liederivative (& x+), have been extended to act on germs of the tensor
fields at 0. From the uniqueness of these extensions and from Proposition D we can
see that hoth extended derivatives are equal.) Now, from the K-invariance of both V
and S we get VS == 0 identically.

Corollary. For the canonical connection of a reductive homogeneous space, both the
curvature tensor field and the torsion tensor field are parallel: VR = VT = 0.

Finally, let us recall the explicite formulas for the curvature and torsion of the
canonical connection:

T(X-0,Y-0)=—(X, Yl -0 forX, Y em, (1)
RX-0,YV-0)(Z-0)=—|[X, Y}, Z]-0 for X, ¥, Zem. @)

Here the indices at the brackets indicate taking the m-component and the f)-compo-
nent of a vector of f.

The proof of these formulas is a bit long and it willbe omitted (see[1], for instance).
We shall close this section with a result that will be useful in the main part of the
paper:

Proposition F. Let K|H be a reductive homogeneous space with respect to a decompo-
sition ¥ = ) + m. Then the subspace [ = m + [m, m] #s an ideal of ¥ and the corre-
sponding connected normal subgroup L — K 13 acting transitively on K[H to the left.
Moreover, L 18 generated by the set exp (m), where exp: ¥ — K 1is the exponential map
at e € K (and ¥ vs identified with the tangent space K ,).

Proof. It is obvious from the relation [m, )] = m that [ is an ideal of f; thus the
corresponding connected Lie subgroup I — K is normal. Identifying t with K,, we
can easily see that m,(I) = m,(m) = (K/H), Hence the transitivity of L follows
easily by a standard theorem on implicite functions and from the fact that K/H
is connected.

For the proof of the second statement, let L’ be the subgroup of L generated by
exp (m). Put A = {x € [ | exp tX € L' forallt € R}. Let a be the subspace of [ spanned
by A. Then mcAca. If he L’ and X € A, we have Ad (k) (exptX)
=exp (t-ad () X) € L', and hence ad (k) X = 4. It follows ad (k) (a) —a. In
particular, for ¥ € A, X € a, we have ¢rd¢!VX — ad (exptY)- X € a, for each ¢,
and hence [Y, X] € a. By the linearity we get [a, a] = qa; i.e., a is a subalgebra of I.
Now, [=m +[m,mlca+ [a,a] <a, ie, a=1 Thus 4 contains a basis
(X1, ..., X} of [, and exp (,X,) --- exp (t,X,) € L' for all ¢;,. This shows that L’
contains a full neighbourhood of e in L and therefore coincides with L.

2. Now let (M, V) be a connected manifold with an affine connection. Thus, we have
a connection I" in the frame bundle L(M). Let u, € L(M) be a fixed frame at a point
o € M, and P(u,) the holonomy bundle through wu,, i.e., the set of all points of L(M)
which can be joined to u, by a (piecewise differentiable) horizontal curve. Further,
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let ®(uy) denote the holonomy group of I' with the reference frame wug. (@P(u)
< (L(n, R) is isomorphic to the holonomy group ¥(o) with the reference point o.)
The famous “Reduction Theorem* says that

(1) P(uy) is a differentiable subbundle of L(.J) with the structure group @(u,),
(1) the connection ['is reducible to a connection in P(u,).

Let f: M —~ M bea diffeomorphism and f: L(M) -~ L(M) the induced automorphism
of L(M). Clearly, if f preserves a fixed holonomy bundle P(ug) then it also preserves
the holonomy bundle P(u) for each u € L(M).

Definition 1. Let (M, V) be a connected manifold with an affine connection. The
group of all affine transformations of M preserving the holonomy bundles P(u) is
called the group of transvections of (M, V), and it is denoted by Tr (M).

More geometrically, an affine transformation f belongs to Tr (M) if and only if it
has the following property: for every point p € M there is a piecewise differentiable
curve, starting at p and ending at f(p), such that the tangent map fy,: M, — My,
coincides with the parallel transport along this curve.

Remark. Every affine transformation of M preserves the foliation of L(M) into
the holonomy bundles but, in general, it interchanges the leaves. Hence Tr (M) is
a normal subgroup of the whole affine group 4A(M).

Now we can state our first main result:

Theorem 1. Let (M, V) be a connected manifold with an affine connection. Then the
following two conditions are equivalent:

(1) The transvection group I'r (M) acts transitively on each holonomy bundle P(u).

(ii) M can be expressed as a reductive homogeneous space K[H with respect to a
decomposition t = m + 1), where K is effective on M, and V is the canonical
connection of K[H.

Moreover, if (ii) us satisfied, then Tt (M) us a connected Lie group, namely « normal Lie
subgroup of K, and its Lie algebra is isomorphic to the ideal 1 = m + [m, m] of {.

Remark. The condition (i) in Theorem 1 means geometrically the following: for
each piecewise differentiable curve in M there is an affine transformation f € Tr (M)
inducing the parallel transport along this curve from the initial point to the end
point.

Proof of Theorem 1. (i) — (ii). Let Tr () act transitively on a holonomy bundle
P(uy), where u, € L(M) is a frame at a point 0 € M. Then Tr (M) is simply transitive
on P(u,). Let A(M) be the Lie group of all affine transformations of M, and 4 (u,)
< L(M) the subbundle generated by the action of A(M) on uy. The map g — g - u,is
a diffeomorphism between A(M) and A (u,).

According to the Reduction theorem, P(u,) is a differentiable subbundle of L(M)
and hence that of A(u,). If we identify Tr (M) with P(u,) and provide Tr (M) with
the corresponding differentiable structure, then Tr (M) becomes a connected Lie
subgroup of A(M). In the following we shall denote Tr (M) by K and its Lie algebra
by L. )

Let {Q,) be the horizontal distribution on L(M) corresponding to the linear connec-
tion I'. Because I' is reducible to P(u,), the subspaces @, are tangent to P(u,) for
u € P(u,). Also, the distribution {Q,} is K-invariant.

Let H — K be the subgroup preserving the fibre of P(u,) over o, then M ~ K/H
and K is effective on M. Consider the linear isomorphism #,: t — (P(uo)),. given by
the map X > X - u, for X € . Then the decomposition of (P(u)),, into the vertical
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subspace @,, and the horizontal subspace @,, corresponds to a decomposition
t =T + m, where [ is the Lic algebra of H and m <t is a linear subspace. We obtain
casily that ad (H) (m) = m. Moreover, @, = m - u along the fibre of L(M) over o.
Thus K/H is a reductive homogeneous space and I" is its canonical connection.
Q.e.d.

Now suppose that the condition (ii) is satisfied and let L denote the Lie group from
Proposition F. We shall show successively: L < Tr (M), L is transitive on a bundle
P(uy), L = Tr (M).

Lemma L. For p € M denote by m,, the subspace ad (g) m < ¥, where g € K satisfies
¢ € (p). Then my, is independent of the choice of g and | = m,, 4 [my,, m,]. Further,
the group L s generated by the set exp (my,).

Proof. The reductivity of K/ means that ad (h) m == m for & € Il'; hence m, is
independent of g € a='(p). Further, [ is an ideal of ¥ and thus ad (g) [ = [ for ¢ € K.
It implies m,, -+ [y, m,] == m + |m, m] = [. Finally, L is generated by exp (m)
(Proposition F) and hence L - ad (g) £ is generated by ad (g) (exp m) = exp (),
(l.l.‘.d.

Lemma 2. The global L-parametric subgroup f, = exp tX, X € m, has the property
that the curve x, = f(p)is a geodesic and the tangent map (f,)y, coincides with the parallel
transport along the curve x;, 0 < ¢ < s.

Proof. For p = o (= the origin) Lemma 2 is equivalent to (i), Proposition C. For
arbitrary p € M and X € m,put X = ad (g) Y, whereg € K, ¥ € m. Then (exp ¢}) (o)
is a geodesic and the tangent map (exp 8Y),, coincides with the parallel transport
along (exptY)(0), 0 =t =<s. Now, fy=g-exptY -g! and z, = |g-exp tY] (o).
Because ¢ is an affine transformation of (M, V), then x, is a geodesic and (f,)y,

= g % (exXp 8Y)go 0 g5, coincides with the parallel transport along x, 0 <¢ < s,
q.e.d.

Now, because K is effective on M = K|H, we can consider K as a group of affinc
transformations of (M, V). Denote by Tr® (M) the group of all transformations
¢ € K with the following property: For each p € M there is a broken geodesic y
from p to g(p) such that the transformation g,, coincides with the parallel transport
along v. Obviously, Tr® (M) - Tr (M). We shall show L < Tr? (M); hence it will
follow the inclusion L < Tr (M).

Let Tr? (p) denote the set of all transformations g € K such that, for a broken geo-
desic y from p to g(p), g, induces the parallel transport along y. Then Tr° (M)
= N Tr? (p). It suffices to show L = Tr? (p) for each p € M.

PEM
Now let p € M be given. According to Lemma 1, L is generated by the set exp (i1,,).

It means that L = U Li(p), where
i1

Lip)={geL|g=-exp X, ---exp X;; X;,..., X; € m,}.

According to Lemma 2 we have L'(p) <= Tr® (p). Now suppose Li(p) < Tr° (p) and
let g € L*(p), i.e., g = g'h with ¢’ € Li(p) and h = exp X, X € m,. Then there is a
broken geodesic ' from p to g'(p) such that ¢’ induces the parallel transport along y'.
On the other hand, we can write g = h'g’, where A’ = Ad (g') h = exp X' for
X’ =ad (¢9') X. Here X’ € myp). Using Lemma 2 once again for the new origin
g'(p) we can see that the transformation A’ induces the parallel transport along a
geodesic arc joining ¢'(p) to g(p) = (k'¢g’) (p). Thus g € Tr® (p), which completes the
induction step.

Now we shall need some more lemmas.
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Lemma 3. For each broken geodesic y = pq in M there is an element g € L such that
the parallel transport along y coincides with the differential g,,.

Proof. Let y consist of geodesic arcs y,, ..., y; starting at the points p = py, ..., 2%
respectively. Then the parallel transport along y; is given by the differential of a
transformation h; = exp X;, where X; € m, — [. Thus the parallel transport along ;-
is given by the differential of h = h; --- k, € L.

Lemma 4. Let L(p) be the vsotropy group of L at p € M, and LO(p) s connected com-
ponent. Then LO(p) is 1somorphic to the restricted holonomy group ¥O(p) of (M, V) with
the reference point p.

Proof. It is sufficient to show our assertion for p = 0. The Lie algebra of L%0) is
isomorphic to [ n ) = [m, m] nf). Thus it is spanned by all clements of the form
[X, Y]p, X, ¥ € m. According to a well-known theorem (sece e.g. [1]), it is isomorphic
to the holonomy algebra g(o) with the reference point 0. Hence the result follows.
Now we shall prove that . = Tr (M) is acting transitively on any holonomy bundle
P(ug), ug € 771(0). According to the Reduction theorem, if we consider the map
S+ ueS of GL(n, R) onto the fibre 7-1(0) = L(M), then the holonomy group ®(u,)
is mapped onto #-'(0) n P(u,) and the restricted holonomy group ®°(u,) is mapped
onto the connected component C(u,) > o of 7-1(0) n P(u,). Now, the group L is
acting freely on P(u,). By means of the map g —> g - u,, the subgroup L°(0) obviously
falls into C(u,). Consider the homomorphism 2A: L%0) —> ®%u,) given by g - u,
= uyA(g). Because 1 is injective and further, L%0) is isomorphic to ¥°(o) according
to Lemma 4, @%u,) is isomorphic to ¥(0), and the Lie groups L°0) and @°(u,) are
both connected, hence we obtain }.(L"(o)) = @%u,). Hence LO%0) is transitive on
Cl(uy).

Now, each homotopy class of (piecewise differentiable) loops at o can be represented
by a closed broken geodesic. According to Lemma 3, the isotropy subgroup L(o)
acts transitively on the set of connected components of 7-1(0) n P(u,). Because L9(0)
was transitive on C(u,), L(o) is transitive on the whole of #-1(0) n P(u,) and L is
transitive on P(u,). As a consequence, we get the relation L = Tr (M). This com-
pletes the proof of our theorem.

Remark. Some partial results towards Theorem 1 can be found in [1], p. 194.
On the basis of the previous theorem we can introduce the following definition:

Definition 2. A connected manifold (M, V) with an affine connection is called an
affine reductive space if the group Tr (M) acts transitively on each holonomy bundle
P(uy).

Obviously, on an affine reductive space (M, V), the connection V is always complete
and it satisfies VR 4+ V7T = 0. Conversely, if (M, V) is connected and simply con-
nected with V complete and satisfying VR = VT = 0, then (M, V) is an affine
reductive space. It follows from the well-known results about reductive homogeneous
spaces and from Theorem 1.

Directly from Definition 2 we obtain: On an affine reductive space (M, V), a tensor
field vs parallel if and only if it vs invariant with respect to the group Tr (M).

We shall close the paper with a different (and perhaps, more systematic) version of
Theorem 1. A reductive homogeneous space K/H with the given decomposition
f=m + 1) will be called prime if K acts effectively on K/H and [m, m]y=19. A
connected manifold (4, V) with an affine connection will be called pointed if there
is given a fixed point (origin) o € M.
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Theorem 2. There is « one-to-one correspondence between the pointed affine reductive
spaces (M, V,0) and the prime reductive homogeneous spaces K[H with a given decompo-
sition. This correspondence vs given by the formulas K = Tr (M), H = K, in one
direction, and by the formulas M ~ K[H, V = the canonical connection of K|H, in
the other direction.

The proof is obvious from that of Theorem 1.

REFERENCES

[1] KoBavasur, S., and K. Nomizu: Foundations of differential geometry. Vol. II. Inter-
science, John Wiley, New York 1969.

[2] KowaLskr, O.: Smooth and affine s-manifolds. Periodica Mathematica Hungarica 7 (4)
(1976).

Manuskripteingang: 12. 4. 1977

VERFASSER:
Ovupiicn KowaLski, Mat. fyz. fakulta UK, Praha, CSSR






	
	Affine reductive spaces


