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On perspectivities in incidence geometries of grade n

MANFRED STERN

L. In projective geometries perspectivities behave in a regular manner in the follo-
wing sense: they are transitive and perspective elements have the same dimension.
Both properties do not hold in affine geometries; this is shown immediately by
the following affine geometry of order 2.

In [7] we have proved that with respect to perspective elements in affine geometries
an extremal case is possible: there exists an affine geometry of infinite dimension
such that an atom (point) is perspective to a dual atom (hyperplane). This is why
one is interested e.g. in characterizing those affine geometries (of infinite dimen-
sion) in which an element of finite dimension can be perspective only to an element
of finite dimension.

In [9] we have given such a characterization for weakly modular matroid lattices
which include the affine geometries. M. F. JaNowrrz has proposed to extend these
results on incidence geometries of grade n which have been introduced by R. WiLLE
in [11].

For the non upper-continuous case (that is, for certain generalized finite-modular
AC-lattices which need not be matroid lattices) this was done in [10]. In this note
we extend the result of [9] and [10] to incidence geometries of grade n.

Acknowledgements. We thank Dr. M. F. JaNowrrz for his valuable remarks.
2. By b — a we mean that the element a covers the element b. If 0 — p holds in

a lattice with 0, then p is called an afom. A lattice with O is called afomistic, if each
element (4= 0) can be expressed as a union of atoms. An AC-laitice is an atomistic
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lattice in which the following implication holds: if p is an atom and aAp =0,
then a — av p. Matroid lattices can be defined as upper continuous AC-lattices,
For the theory of AC-lattices and matroid lattices we refer to [5].
In [9, Hilfssatz 3.2] we have shown that there exists to each element z of a matroid
lattice a uniquely determined cardinal number r(x) which is called the rank of z.!)
This notion of rank is a natural generalization of the notion of height as used in
[6].
By [5, Remark 13.2, p. 56] an interval [a, b] of a matroid lattice L is itself a matroid
lattice. By r[a, b] we denote the rank of [a, b] that is, the rank of b with respect
to [a, b). Instead of [0, 1] we write (L). A matroid lattice L is said to be of infinite
length if (L) = N,.
In [9, Folgerung 3.4] we have shown that for a matroid lattice L of infinite length
the set

Fy(L) ={a|a€ Land r(a) < \}

(&o =N r(L)) is an ideal in L. Fyg (L) coincides with the set F(L) as defined in
[5, Def. 8.1, p. 36]. F(L) consists of 0 and of all those elements which can be expressed
as a union of finitely many atoms; this is why F(L) is also called the ideal of the finite
elements of L.

According to R. WiLLE [11] we introduce

Definition 1. A lattice L is said to be an incidence geometry of grade n if L is a
matroid lattice and if for every element a € L with r(a) = n the interval [0, a] is
distributive and the principal dual ideal [a) is modular.

We note that we do not use the distributivity of the interval [0, a] in this paper.
Incidence geometries of grade n are far-reaching generalizations of projective geo-
metries: for » = 0 one obtains just the projective geometries; n = 1 gives the strongly
planar geometries (cf. [6] and [4]) which include the affine geometries. The Mébius
geometries (cf. [2]) are examples of incidence geometries of grade 2.

8. In a lattice with 0, we introduce perspectivity as follows: two elements a, b are
said to be perspective, and we write a ~ b if there exists an element x for which

avz=>bvzx and arnz=bArz=0

(cf. [6, Def. 6.1, p. 26]). Furthermore we need

Definition 2. Let L be an AC-lattice and y,z € L. If r(y A 2) = n (n fixed non-
negative integer) and z — z v y, then we write y < |, z. Instead of y < |, z we write
simply y < | z.

For the relation < | which abstracts a property of parallelity, we refer to [5, Def. 17.1,
p. 72]. The relation < |, (cf. also [10]) is a natural generalization of <|.

According to [1] we call an ideal S of a lattice L a standard ideal if J A (S v K)
= (J AS) v (J A K) holds for arbitrary ideals J, K of L.

An ideal S of a lattice L is said to be projective (cf. [3])ifa € 8,b,z€ Lave =bvz
and a Az = bz imply b€ 8. An ideal S of a lattice L with 0 is called p-ideal if S
is closed with respect to perspectivity, that is, if a € S, b oo a imply b € S.

1) Cf. also S. MACLANE, A lattice formulation for transcendence degrees and p-bases, Duke
Math. J. £ (1938), 4556—468.
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4. With respect to the ideal Fg(L) of a matroid lattice L, we shall consider the follo-
wing conditions:
(i) Fx(L) is a standard ideal;

(ii) Fyx(L) is a projective ideal;

(iii) F (L) is a p-ideal;

(iv) y < laz=>y€ Fn(L);

WMy <|z=>ye Fy(L).
Among these conditions, we have the following interdependence relations:

(i)

g
(ii) = (iv)
{ {

(iii) = (v).
It is known that the implications (i) = (ii) = (iii) hold for arbitrary ideals of a lattice
with 0.
In [8] we proved (i) = (ii) = (iii) = (v) = (i) in case N = N, for strongly planar
AC-lattices (without assuming upper continuity); this result was generalized in

[10]. In the presence of upper continuity we could prove the same for arbitrary N
(cf. [9, Satz 4.1]).

These results are here extended to incidence geometries of grade n, for which we
prove (i) = (ii) = (iv) = (i) (cf. Theorem 6). In the case of strongly planar geometries
we can even show (i) = (ii) = (iv) = (v) = (i) (cf. Corollary 8).

5. We shall need three results on matroid lattices which are given in this section.
The first one is a necessary and sufficient condition for Fy(L) to be a standard ideal
of a matroid lattice L.

Theorem 3 (cf. [9, Satz 3.6]). Let L be a matroid lattice of infinite length and let
Ry = R = 7(L). Then the following two conditions are equivalent:

(a) Fyx(L) 18 a standard ideal of L;

(b)if [a,avb] and [a Ab,b] are transposed intervals and if r[a,av b] < W, then
rlan b, b] < N.

Next we show how to gain in a matroid lattice special elements y, z for which
¥ < |, z holds.

Proposition 4. Let L be a matroid lattice and let a, b € L with r(b) > n. Ifrl@aab) <n
tflen there exists a maximal element ¢ with a < ¢ < av b and r(b A ¢c) < n. Moreover,
Yf pisan atom of Lwithpfcand p<avb,thenbna (cvp)<|yec.

Proof. Consider the set
C={,cL|la=c,<avband rbac,) < n}.

The set C ist not empty since a € C. Let now K denote an arbitrary chain in C and
let ¢, € K (u € I'). Since L is upper continuous, we have

bAV(e | n€ ) =Vbac,|ue D). )
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By assumption r(b A c,) < n (u € I'). Since L is an AC-lattice, there exists a d € L
with r(d) =nand bAc, < d (u € I'). From this it follows that V(bac,|p€ I') < d,
that is r(V(b A ¢, | u € I')) < n. Because of (1), we obtain therefore

oAV | pED) S,

that is, V(c, | u# € I') € C. Thus every chain K of C has an upper bound in C. By the
Lemma of KURATOWSKI-ZORN then there exists an element ¢ ¢ L which is maximal
with respect to the properties a < ¢ < av band r(bac) < n.

Let now p be an atom of L with p £ cand p <avb. Thenc—~cvp <avband
by the maximality of ¢ we get 7(b A (¢ v p)) > n. Furthermore the relation b A(c v p)
£ ¢ holds; for, if bA(cvp) <c, then ba(cvp) =bAa(cvp)ac=Dbac and it
follows that r(b Alev p)) = r(b A ¢), a contradiction to our conditions on the ranks.
Thus we obtain

ba(cvp)lve=cvyp
and

ba(cvp)ac=bnac,
that is

ba(evp)<|ac

holds (cf. Definition 2), which finishes the proof.

Finally we need

Proposition b. Let L be a matroid lattice. Consider the following three conditions:
(&) F(L) %8 a projective ideal;

(b)ifa€ Fy(L),arnz=bArzxandavz =>bvz, then b € Fy(L);

(€) ¥ < |n 2z tmplies y € Fn(L).

Then (a) = (b) = (c).

Proof. (a) = (b): this follows from the definition of the projective ideal.

(b) = (c): let y < |42 for y,z€ L. By [5, Lemma 8.18, p. 39] [zA y, zV y] is also
an AC-lattice and thus there exists an a — z A y such that

zAna=zAy and zva=zvy.

Since r(zAy) < n, we get zAy € F(L) and therefore a € F(L) — Fy(L). By (b)
this yields y € Fy(L), and the proposition is proved.

We remark that in [10] we have been able to prove the equivalence fo the three condi
tions of the preceding proposition at least for 8 = 8, (without assuming upper
continuity).

6. We are now ready to prove the main result of this paper.

Theorem 6. Let L be an incidence geometry of grade n. Then the following three conds-
tions are equivalent:

(8) Fx(L) 13 a standard ideal ((i) in Section 4);

(b) Fr(L) %8 a projective ideal ((ii) in Section 4);

©) ¥ < laz=>y € Fy(L) ((iv) in Section 4).
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Proof. (a) = (b): this is known for arbitrary ideals.
(b) = (c): this follows from Proposition 5.
(c) = (a): because of Theorem 3 it is sufficient to prove the following implication

rla,avb] < X =>r[lanb, bl < N. (2)

Assume that r[a, a v b] < N. If b€ Fg(L), thenalsoaab € Fy(L)and r[a A b, b] < W.
Hence we may suppose that b ¢ Fy(L). With respect to the rank of a A b we distinguish
two cases: r(a Ab) = n and r(a A b) < n.
If r(a A b) = n, then there exists a d € L with the properties d < a A b and r(d) = n,
and the principal dual ideal [d) is & modular lattice (cf. Definition 1). This immediately
yields r[a A b, b] < N, since transposed intervals in a modular lattice are isomorphic.
Thus (2) is proved in this case.
Let now r(a A b) < n. By Proposition 4 there exists an (@ <)c (< av b) which is
maximal with respect to the property r(b A ¢) < n; moreover, if p is an atom with
pfcand p < avb (such an atom exists since L is an AC-lattice), then ¢ —~cv p
< a v b. Because of the maximality of ¢ it follows that #(b A (¢ v p)) > n. Then one
can find an element e € L such that 7(e) =n andbAac < e < bA (cv p)since Lisan
AC-lattice. The principal dual ideal [e) is & modular lattice (cf. Definition 1). More-
over

bacvp),evp bbv(cvp)=avbcle)
and

rlevp,avbdl < X

because of a < cv p < avband r[a, a v b] < N. This yields
rfbA(cvp), bl <N\ (3)

®ince [cvp,avbd]and [bA (cv p), b] are transposed intervals in the modular lattice
[e). By Proposition 4 we get further

ba(evp) <lac.

Because of (c), this yields b A (¢ v p) € Fy(L). From this it follows that {0, b A (¢ v p)]
< X and therefore

rland,ba(cvp)] <N 4)
since 0 < anb < ba(cvp). It is now easy to see that (3) and (4) together give
rfan b, b] < N.
Thus implication (2) holds also in the case r(a A b) < n which proves the theorem.

Corollary 7. Let L be an incidence geometry of grade n and of infinite length. Let

Ro = R = 7(L). Then the following two conditions are equivalent:

(a) F'(L) 18 a standard ideal ©n L;

(b) Fy(L) i8 a standard ideal in L for all R (Ro < R < r(L)).

Proof. (b) = (a): this implication holds trivially.

(a) = (b): Let F(L) be a standard ideal in L. Then by Theorem 6 the implication
Y<|sz=>y€ F(L)

2 Beitrige zur Algebra 7
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holds. Since F(L) = Fy(L) for all R (Xo = 8 < r(L)), we get that

!I<|.2=>y€Fn(L)

holds. Again by Theorem 6, Fy(L) is then a standard ideal in L, and the corollary
is proved.

For the special case of weakly modular matroid lattices we proved this in [9].

Corollary 8. Let L be a strongly planar geometry (that 7s, an incidence geometry of
grade 1). Then then following three conditions are equivalent:

(a) Fx(L) 18 a standard ideal ((i) ©n Section 4);

(b) Fn(L) 18 a p-ideal ((iii) vn Section 4);

(€) y < |z=>y € Fy(L) ((v) in Section 4).

Proof. (a) = (b): as we already remarked, this holds for arbitrary ideals of a lattice
with 0.

(b) = (c): assume that y < | z holds in L, but y § Fx(L). For a p < y then we obtain
zvy=zvp and zAy=2Ap =0,

that is, p ~ y. Because of p € Fy(L), then Fy(L) cannot be a p-ideal.

(c) = (a): consider elements y, z € L for which y < |, z holds, that is z — zv yand
r(y A 2) < n (cf. Definition 2).

If y Az = 0, then y < | z holds (cf. Definition 2) and we get y € Fx(L) by (c).

If yAaz> 0, then [y A 2) is a modular lattice (cf. Definition 1) and it follows that
y A z — y. Because of r(y A z) < n, this yields y € F(L) = Fyg(L).

Thus in either case the implication

Y<l|sz=>y€ Fy(l)

holds in L. By Theorem 6 it follows that Fy(L) is a standard ideal which was to be
proved.

For the special case of an affine geometry the equivalence of these an of other con-
ditions has been proved in [9, Satz 5.2].
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