

Werk

Titel: Orientierung in angeordneten affinen Räumen

Autor: BÖRNER, W.

Jahr: 1976

PURL: https://resolver.sub.uni-goettingen.de/purl?301416052_0005|log8

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

Orientierung in angeordneten affinen Räumen

WALTER BÖRNER

1. Grundlagen

In der folgenden Arbeit, die als Beitrag zur "synthetischen" Geometrie in einem n-dimensionalen affinen Raum verstanden werden soll, wird eine Einführungsmöglichkeit des Begriffes der Orientierung dargestellt, die auf Inzidenz-, Parallelitätsund Anordnungsaxiomen beruht; von Koordinaten wird kein Gebrauch gemacht, wohl aber von Verschiebungen. (Über das Verhältnis eines solchen Weges zu den sonst üblichen siehe [1] und die dort angeführte Literatur.)

Als axiomatische Grundlage für das hier darzulegende Vorgehen kann eine mit Mitteln der Verbandstheorie aufgebaute Definition des Begriffes n-dimensionaler Raum dienen (siehe [2], [3], [4]). Die diesbezüglichen grundlegenden Definitionen und Sachverhalte, die für die Einführung des Orientierungsbegriffes hier benötigt werden, seien zunächst zusammengestellt. Die ohne Beweise aufgeführten Sätze können als Axiome aufgefaßt werden.

aller Punkte gestattet eine kommutative Gruppe von mit Ausnahme der Identität fixpunktfreien Abbildungen auf sich, die Verschiebungen genannt werden; zu zwei beliebigen Punkten gibt es genau eine Verschiebung, die den einen Punkt auf den anderen abbildet; die Bildmenge eines Teilraumes ist ein dazu paralleler gleichdimensionaler Teilraum. Eine Menge, die aus allen zu einer festen Geraden parallelen Geraden besteht, heißt Richtung. Die Verbindungsgeraden von Original- und Bildpunkten einer von der identischen Abbildung verschiedenen Verschiebung bilden eine Richtung (Verschiebungsrichtung). Sind H_1 , H_2 zwei Hyperebenen, $\mathcal R$ eine weder zu H_1 noch H_2 parallele Richtung, so versteht man unter der Parallelprojektion von H_1 auf H_2 in Richtung $\mathcal R$ die Abbildung π mit $\pi(X) = G(X) \cap H_2$, wobei X ein Punkt von H_1 und G(X) die Gerade in Richtung $\mathcal R$ durch X ist. Jeder k-dimensionale Teilraum $(1 \le k \le n)$ ist für sich genommen ein k-dimensionaler affiner Raum.

Bezüglich der Anordnung wird vorausgesetzt, daß jede Gerade eine (linear) dicht geordnete Menge ohne größtes und kleinstes Element ist. In üblicher Weise wird der Begriff der Zwischenrelation definiert. Die Zwischenrelation ist invariant gegen Parallelprojektion. Ein beliebiger (k-1)-dimensionaler Teilraum T $(1 \le k \le n)$ erzeugt in jedem T enthaltenden k-dimensionalen Teilraum U genau eine Zerlegung der Menge U-T in zwei Klassen h_1 , h_2 , k-dimensionale Halbräume genannt (auch: Seiten von T), derart, daß zwei Punkte genau dann in verschiedenen Klassen liegen, wenn zwischen ihnen ein Punkt von T liegt; h_1 , h_2 heißen dann entgegengesetzt, T heißt Begrenzungsraum von h_1 bzw. h_2 , in Zeichen: $T = \operatorname{Begr} h_i$; Begr h_i ist durch h_i eindeutig bestimmt; $U = \mathcal{H}(h_i)$ heißt Trägerraum des Halbraumes h_i (i=1,2). Eindimensionale Halbräume werden Strahlen genannt, der Begrenzungsraum eines Strahles heißt Anfangspunkt des Strahles; der Strahl mit dem Anfangspunkt X, der den Punkt Y (= X) enthält, werde mit XY^+ bezeichnet. (n-1)-dimensionale Halbräume werden Halbhyperebenen genannt. Sind zwei Punktmengen m_1 , m_2 in entgegengesetzten Halbräumen enthalten, so sagt man, daß der Begrenzungsraum dieser Halbräume die Mengen m_1 und m_2 trennt. Die Zwischenrelation ist invariant gegen Verschiebung, folglich auch die Eigenschaft, Halbraum oder Begrenzungsraum zu sein, getrennt zu werden usw. Eine Verschiebung läßt die Ordnungsrelation auf den Geraden in Verschiebungsrichtung invariant. Eine Verschiebung, deren Richtung parallel zu einem Teilraum T ist, bildet die von T erzeugten Halbräume auf sich ab. Es gelten folgende leicht zu verifizierende Hilfssätze:

Hilfssatz 1. Ist h ein k-dimensionaler Halbraum ($2 \le k \le n$), T ein zu Begr h nicht paralleler (k-1)-dimensionaler Teilraum von $\mathcal{H}(h)$, so ist $T \cap h$ ein (k-1)-dimensionaler Halbraum, und es ist Begr ($T \cap h$) = $T \cap Begr h$.

Hilfssatz 2. Ist h ein k-dimensionaler Halbraum $(2 \le k \le n)$, G eine in Begr h enthaltene Gerade, G' eine zu G parallele Gerade, so ist $G' \subset h$ oder $G' \cap h = \emptyset$.

Sind s_1 , s_2 , s_3 drei in derselben Ebene enthaltene Strahlen mit gemeinsamem Anfangspunkt, so soll die Aussage " s_1 trennt s_2 und s_3 " bedeuten, daß die Trägergerade von s_1 die Strahlen s_2 und s_3 trennt. Es gilt folgender Satz über drei Strahlen (Beweis siehe [1]):

Hilfssatz 3. Von drei in derselben Ebene enthaltenen Strahlen mit gemeinsamem Anfangspunkt hat entweder genau einer die Eigenschaft, die beiden anderen zu trennen, oder alle drei haben diese Eigenschaft.

Die folgenden Betrachtungen über das Verhalten von Halbhyperebenen bei Parallelprojektion erweisen sich im weiteren als nützlich.

Es seien H_1 , H_2 zwei nicht parallele Hyperebenen. H_i erzeugt zwei n-dimensionale Halbräume h_{i_1} , h_{i_2} (i=1,2). Die vier Mengen $h_{i_1} \cap h_{2j}$ ($i,j \in \{1,2\}$) mögen die vier von H_1 , H_2 erzeugten Sektoren heißen. Ist G eine beliebige weder in H_1 noch in H_2 enthaltene Gerade durch einen Punkt P aus $H_1 \cap H_2$, so ist $G - \{P\}$ entweder in $v_1 := (h_{11} \cap h_{21}) \cup (h_{12} \cap h_{22})$ oder in $v_2 := (h_{11} \cap h_{22}) \cup (h_{12} \cap h_{21})$ enthalten, denn jeder der beiden von P auf G erzeugten Strahlen ist in einem der vier Sektoren enthalten, und ist einer in $h_{1i} \cap h_{2j}$ enthalten, so der andere in $h_{1,i+1} \cap h_{2,j+1}$ (Addition im Index modulo 2). Ordnet man jeder Geraden G, die nicht in $H_1 \cup H_2$ enthalten ist, aber einen Punkt X von $H_1 \cap H_2$ enthält, diejenige der beiden Mengen v_1, v_2 zu, in der $G - \{X\}$ enthalten ist, so wird zwei parallelen derartigen Geraden dieselbe Menge zugeordnet; denn es gibt eine Verschiebung, die die eine Gerade auf die andere abbildet, wobei die Hyperebenen und Halbräume und folglich v_1 und v_2 als Ganzes festbleiben. Es ist daher sinnvoll, einer jeden weder zu H_1 noch zu H_2 parallelen Richtung R eine der Mengen v_1, v_2 zuzuordnen, nämlich diejenige, in der eine beliebige zu R gehörende durch einen Punkt von $H_1 \cap H_2$ gehende Gerade (ohne den Punkt aus $H_1 \cap H_2$) enthalten ist. Richtungen, denen dieselbe Menge zugeordnet ist, sollen bezüglich H_1, H_2 sektorgleich heißen; es gibt zwei Klassen sektorgleicher Richtungen.

Die Hyperebene H_i (i=1,2) wird durch $H_1 \cap H_2$ in zwei Halbhyperebenen h'_i , h''_i zerlegt. Ist π eine Parallelprojektion von H_1 auf H_2 in einer weder zu H_1 noch zu H_2 parallelen Richtung, so ist leicht nachzuweisen, daß die Bildmenge von h'_1 (bzw. h''_1) eine der Halbhyperebenen h'_2 oder h''_2 ist. π induziert also eine Abbildung des Halbhyperebenenpaares (h'_1 , h''_1) entweder auf das Paar (h''_2 , h''_2) oder auf (h''_2 , h''_2). Es gilt

Hilfssatz 4. Sind H_1 , H_2 zwei nicht parallele Hyperebenen, π_1 , π_2 zwei Parallel-projektionen in bezüglich H_1 , H_2 sektorgleichen Richtungen, so sind die von π_1 , π_2 induzierten Abbildungen der Halbhyperebenenpaare einander gleich.

Be we is. Es sei P ($\notin H_1 \cap H_2$) ein beliebiger Punkt von h_1' , S ein beliebiger Punkt von $H_1 \cap H_2$ und τ die Verschiebung, die P auf S abbildet; die Richtung von τ ist dann parallel zu H_1 . Da π_1 , π_2 sektorgleiche Richtungen haben, gehören die Geraden durch S in den beiden Projektionsrichtungen zur gleichen Menge v_I (j=1 oder 2), die Strahlen $\tau(P\pi_1(P)^+)$ und $\tau(P\pi_2(P)^+)$ also entweder a) zum gleichen Sektor oder b) zu zwei Sektoren, deren Vereinigung v_I ergibt. Im Fall a) sind die genannten Strahlen in demselben Halbraum bezüglich H_1 enthalten, also auch ihre Originale $P\pi_1(P)^+$ und $P\pi_2(P)^+$, und somit liegen die Punkte $\pi_1(P)$ und $\pi_2(P)$ in derselben Halbhyperebene von H_2 bezüglich $H_1 \cap H_2$, d. h., π_1 und π_2 induzieren dieselbe Halbhyperebenenzuordnung. Der Fall b) kann nicht eintreten, denn er würde bedeuten, daß die Strahlen $\tau(P\pi_1(P)^+)$ und $\tau(P\pi_2(P)^+)$ in entgegengesetzten Halbräumen bezüglich der Hyperebene H_2 , ihre Originale und somit die in H_2 liegenden Punkte $\pi_1(P)$ und $\pi_2(P)$ also in verschiedenen Seiten bezüglich $\tau^{-1}(H_2)$ enthalten wären, aber H_2 ist ganz in einem einzigen Halbraum bezüglich $\tau^{-1}(H_2)$ enthalten.

2. Orientierungsfiguren und Gleichorientierung

Eine Orientierung soll durch eine Punktmenge repräsentiert werden. Als zweckmäßig hierfür erweist sich der Begriff der Orientierungsfigur. Es sei k eine natürliche Zahl mit $1 \le k \le n$.

Definition 1. f ist k-dimensionale Orientierungsfigur (OF) genau dann, wenn $f = \{A\} \cup h^1 \cup h^2 \cup \cdots \cup h^k$ ist mit:

- (0 1) h^i ist ein *i*-dimensionaler Halbraum (i = 1, ..., k),
- (O 2) $h^{i} \subset \text{Begr } h^{i+1} \quad (i = 1, ..., k-1),$
- (O 3) A ist Anfangspunkt von h^1 .

Der Punkt A wird Anfangspunkt von f genannt, h^1 heißt Randstrahl von f (in Zeichen: $h^1 = \text{Rs } f$) und $\mathcal{H}(f)$ (= $\mathcal{H}(h^k)$) heißt Trägerraum von f.

Folgerungen.

- (1) Es ist $\mathcal{H}(h^i) = \operatorname{Begr} h^{i+1} \operatorname{für} i = 1, ..., k-1$.
- (2) Es ist $h^i \subset \text{Begr } h^j \text{ für } 1 \leq i < j \leq k$.

Der Beweis kann durch vollständige Induktion über j erfolgen.

(3) Ist $f = \{A\} \cup h^1 \cup \cdots \cup h^k$ eine k-dimensionale OF und T ein (k-1)-dimensionaler Teilraum durch A, der im Trägerraum von f enthalten ist, aber Rs f nicht enthält, so ist $T \cap f$ eine (k-1)-dimensionale OF.

Beweis. Es ist $T \cap f = \{A\} \cup (T \cap h^2) \cup \cdots \cup (T \cap h^k)$. Wegen $h^1 \cap T = \{A\}$ folgt aus dem Dimensionssatz $\mathcal{H}(T \cup \mathcal{H}(h^1)) = \mathcal{H}(f)$ und somit wegen $h^1 \subset \mathcal{H}(h^l)$ für $1 \leq l \leq k$ erst recht $\mathcal{H}(T \cup \mathcal{H}(h^l)) = \mathcal{H}(f)$. Hieraus folgt, ebenfalls wegen des Dimensionssatzes, daß $T \cap \mathcal{H}(h^l)$ ein (l-1)-dimensionaler Teilraum T_l ist. Folglich ist für $l=2,\ldots,k$ wegen Hilfssatz 1

$$T \cap h^l = T \cap (\mathcal{H}(h^l) \cap h^l) = T_l \cap h^l$$

ein (l-1)-dimensionaler Halbraum, womit Eigenschaft (O 1) aus Definition 1 nachgewiesen ist. Ferner ist für $2 \le l \le k-1$ wegen Folgerung (1) und Hilfssatz 1

$$T \cap h^{l} = T_{l} \cap h^{l} \subset T_{l+1} \cap \mathcal{H}(h^{l}) \subset T_{l+1} \cap \operatorname{Begr} h^{l+1}$$

$$= \operatorname{Begr} (T_{l+1} \cap h^{l+1}) = \operatorname{Begr} (T \cap h^{l+1}),$$

also gilt (O 2). Schließlich ist wegen Hilfssatz 1

$$\operatorname{Begr}(T \cap h^2) = \operatorname{Begr}(T_2 \cap h^2) = T_2 \cap \operatorname{Begr} h^2 = \{A\},\,$$

somit gilt (O 3).

Als Folgerung aus (3) beweist man leicht:

(4) Ist f eine k-dimensionale OF ($2 \le k \le n-1$) und T ein k-dimensionaler Teilraum durch den Anfangspunkt von f, der den Randstrahl von f nicht enthält, und ist dim $\mathcal{H}(T \cup f) = k$, so ist $T \cap f$ eine (k-1)-dimensionale OF.

Ferner:

(5) Ist f_0 eine k-dimensionale OF $(1 \le k \le n-1)$ und s ein Strahl, der denselben Anfangspunkt wie f_0 hat, aber nicht in $\mathcal{H}(f_0)$ enthalten ist, so gibt es genau eine (k+1)-dimensionale OF f_1 mit dem Randstrahl s und der Eigenschaft $f_1 \cap \mathcal{H}(f_0) = f_0$.

Es sei k eine natürliche Zahl mit $1 \le k \le n$.

Definition 2. f_1 , f_2 seien zwei k-dimensionale OFen. Es wird induktiv über k definiert:

- a) Ist k = 1, so gilt $f_1 \stackrel{.}{\text{a}} q f_2$ genau dann, wenn $f_1 = f_2$ ist.
- b) Ist $2 \le k \le n$, so ist f_1 äq f_2 gleichbedeutend damit, daß f_1 und f_2 denselben Trägerraum und denselben Anfangspunkt A haben und daß eine der folgenden beiden Aussagen richtig ist:

(A 1) Die Randstrahlen von f_1 und f_2 sind nicht entgegengesetzt, und es gibt einen A enthaltenden (k-1)-dimensionalen Teilraum T des Trägerraumes von f_1 , f_2 , der die Randstrahlen von f_1 und f_2 nicht trennt und keinen von ihnen enthält, so daß $T \cap f_1$ äq $T \cap f_2$ ist.

(A 2) Die Randstrahlen von f_1 und f_2 sind entgegengesetzt, und es gibt eine k-dimensionale OF f_3 mit demselben Trägerraum und Anfangspunkt wie f_1 und f_2 , so daß auf die Paare f_1 , f_3 und f_2 , f_3 jeweils die Aussage (A 1) zutrifft.

Statt "äq" soll auch "äquivalent" gesagt werden. Es gilt der

Satz 1. Die in Definition 2 angegebene Relation "äq" ist über der Menge der k-dimensionalen OFen (k = 1, ..., n) eine Äquivalenzrelation, und die Anzahl der Klassen ist bei festgehaltenem Trägerraum und Anfangspunkt gleich 2.

Beweis. Die Relation ist offensichtlich reflexiv und symmetrisch. Die Transitivität wird durch vollständige Induktion über die Dimension k bewiesen; der Beweis fordert eine Reihe von Lemmata. Für k=1 ist der Satz offenbar richtig. Zur Erleichterung der Sprechweise (Benutzung des Terminus Hyperebene) sei als Induktionsannahme die Richtigkeit des Satzes für $k=1,\ldots,n-1$ vorausgesetzt; es ist zu zeigen, daß er für k=n gilt.

Es ist leicht nachzuweisen, daß bei Parallelprojektion von einer Hyperebene H_1 auf eine Hyperebene H_2 die Bildmenge einer in H_1 enthaltenen (n-1)-dimensionalen OF eine in H_2 enthaltene OF ist.

Lemma 1. Ist f eine in der Hyperebene H_1 enthaltene (n-1)-dimensionale OF, ist H_2 eine Hyperebene durch den Anfangspunkt von f, die den Randstrahl von f nicht enthält, und sind π_1 , π_2 zwei Parallelprojektionen von H_1 auf H_2 mit bezüglich H_1 , H_2 sektorgleichen Richtungen, so sind die OFen $\pi_1(f)$ und $\pi_2(f)$ äquivalent.

Be we is. Der Randstrahl von f ist ganz in einer von $H_1 \cap H_2$ in H_1 erzeugten Halbhyperebene enthalten, folglich sind auf Grund der Voraussetzung und wegen Hilfssatz 4 die Randstrahlen von $\pi_1(f)$ und $\pi_2(f)$ in derselben von $H_1 \cap H_2$ in H_2 erzeugten Halbhyperebene enthalten, und sie sind nicht entgegengesetzt. Bezeichnet man noch mit $p_i(f)$ die Menge der Punkte der Geraden in Richtung von π_i (i=1,2), die (mindestens) einen Punkt von f enthalten, so gilt für i=1 und i=2: $\pi_i(f)=p_i(f)\cap H_2$ und (wegen $f \subset H_1$ und der Nichtparallelität von H_1 und der Richtung von π_i) $p_i(f) \cap H_1 = f$. Folglich gilt

$$\pi_i(f) \cap (H_1 \cap H_2) = p_i(f) \cap H_2 \cap (H_1 \cap H_2) = f \cap (H_1 \cap H_2),$$

also sind die (n-2)-dimensionalen OFen $\pi_1(f) \cap (H_1 \cap H_2)$ und $\pi_2(f) \cap (H_1 \cap H_2)$ gleich und somit äquivalent, womit für die OFen $\pi_1(f)$ und $\pi_2(f)$ die Bedingung (A 1) aus Definition 2 als erfüllt, also die Äquivalenz dieser OFen nachgewiesen ist.

Lemma 2. Ist f eine n-dimensionale OF, sind H_1 und H_2 zwei den Randstrahl von f nicht enthaltende Hyperebenen durch den Anfangspunkt von f und ist π eine Parallelprojektion von H_1 auf H_2 in Richtung der Trägergeraden des Randstrahles von f, so ist $\pi(f \cap H_1) = f \cap H_2$.

Beweis. Wegen Hilfssatz 2 ist eine zum Randstrahl s von f parallele Gerade durch einen in f-s enthaltenen Punkt P_0 ganz in f enthalten. Folglich gilt mit der im Beweis von Lemma 1 angegebenen Bedeutung von p(f) die Gleichung $p(f) = f \cup s'$, wobei s' der zu s entgegengesetzte Strahl ist. Demnach ist

$$\pi(f \cap H_1) = p(f \cap H_1) \cap H_2 = p(f) \cap H_2 = (f \cup s') \cap H_2 = f \cap H_2.$$

Lemma 3. Sind f_1 , f_2 zwei in einer Hyperebene H_1 enthaltene äquivalente OFen und ist π eine Parallelprojektion von H_1 auf eine Hyperebene H_2 , so sind die OFen $\pi(f_1)$ und $\pi(f_2)$ ebenfalls äquivalent.

Der Beweis kann unter Benutzung der Invarianz der Zwischenrelation gegen Parallelprojektion leicht durch Induktion über die Dimension n geführt werden.

Lemma 4. Sind f_1 , f_2 zwei n-dimensionale OFen mit gleichem Anfangspunkt A und sind H_1 , H_2 zwei A enthaltende Hyperebenen, die die Randstrahlen von f_1 , f_2 nicht trennen und nicht enthalten, so gilt:

Aus $f_1 \cap H_1 \stackrel{\text{diq}}{=} f_2 \cap H_1 \text{ folgt } f_1 \cap H_2 \stackrel{\text{diq}}{=} f_2 \cap H_2$.

Beweis. Es sei π_i die Parallelprojektion von H_1 auf H_2 in Richtung der Trägergeraden des Randstrahles von f_i (i=1,2). Da die Randstrahlen von f_1 und f_2 bezüglich H_1 und H_2 im gleichen Sektor enthalten sind, sind die Richtungen von π_1 und π_2 sektorgleich. Nach Lemma 1 sind somit die in H_2 enthaltenen (n-1)-dimensionalen OFen $\pi_1(f_1\cap H_1)$ und $\pi_2(f_1\cap H_1)$ äquivalent. Wird nun $f_1\cap H_1$ äq $f_2\cap H_1$ vorausgesetzt, so folgt durch Anwenden von π_2 nach Lemma 3 die Beziehung $\pi_2(f_1\cap H_1)$ äq $\pi_2(f_2\cap H_1)$. Auf Grund der für die Dimension n-1 gültigen Transitivität der Äquivalenz folgt $\pi_1(f_1\cap H_1)$ äq $\pi_2(f_2\cap H_1)$. Nach Lemma 2 ergibt sich hieraus $f_1\cap H_2$ äq $f_2\cap H_2$.

Lemma 5. Sind f_1 , f_2 zwei zweidimensionale OFen mit gemeinsamer Trägerebene, gemeinsamem Anfangspunkt A und nicht in derselben Geraden enthaltenen Randstrahlen und sind G und H zwei in der Trägerebene von f_1 , f_2 enthaltene, A enthaltende Geraden, die keinen der Randstrahlen von f_1 und f_2 enthalten und von denen die eine die Randstrahlen trennt, die andere nicht, so ist $f_1 \cap G = f_2 \cap G$ genau dann, wenn $f_1 \cap H$ entgegengesetzt zu $f_2 \cap H$ ist.

Beweis. Es sei s_0 der Strahl mit dem Anfangspunkt A auf der trennenden Geraden, der in f_1 enthalten ist, und s_1 der Strahl mit dem Anfangspunkt A auf der nichttrennenden Geraden, der in f_1 enthalten ist. Somit gilt:

$$s_0$$
 trennt Rs f_1 , Rs f_2 , (1)

$$s_1$$
 trennt Rs f_1 , Rs f_2 nicht. (2)

Aus $s_0 \subset f_1$ und $s_1 \subset f_1$ folgt

Rs
$$f_1$$
 trennt s_0 , s_1 nicht. (3)

Wegen (1), (2), (3) und Hilfssatz 3 sind die folgenden Aussagen gleichbedeutend: s_0 trennt s_1 , Rs f_2 ; s_0 trennt s_1 , Rs f_1 nicht; s_1 trennt s_0 , Rs f_1 ; s_1 trennt s_0 , Rs f_2 . Aus der Gleichwertigkeit der ersten und letzten dieser vier Aussagen und Hilfssatz 3, angewendet auf die Strahlen s_0 , s_1 , Rs f_2 , folgt, daß Rs f_2 die Strahlen s_0 und s_1 trennt. Das ergibt, daß von den Strahlen s_0 , s_1 genau einer in s_2 enthalten ist. Aus dieser Aussage folgt aber leicht die Behauptung des Lemmas.

Lomma 6. Zwei k-dimensionale OFen $(1 \le k \le n)$, die im Anfangspunkt und ihren ein- bis (k-1)-dimensionalen Halbräumen übereinstimmen, aber entgegengesetzte k-dimensionale Halbräume haben, sind nicht äquivalent.

Der Beweis erfolgt leicht durch Induktion über k.

Lemms 7. Es seien f_1 , f_2 zwei n-dimensionale OFen mit gemeinsamem Anfangspunkt A und nicht in derselben Geraden enthaltenen Randstrahlen, G und H Hyperebenen durch A, aber nicht durch Rs f_1 oder Rs f_2 , so da β gilt, wenn h_1^n den n-dimensionale

sionalen Halbraum von f_i (i = 1, 2) bezeichnet:

$$(f_1-h_1^n)\cap G=(f_2-h_2^n)\cap G\subset H. \tag{1}$$

Genau eine der Hyperebenen
$$G$$
, H trennt $\operatorname{Rs} f_1$, $\operatorname{Rs} f_2$. (2)

Dann gilt: Von den Relationen $f_1 \cap G \stackrel{\text{dia}}{=} q f_2 \cap G$ und $f_1 \cap H \stackrel{\text{dia}}{=} q f_2 \cap H$ ist genau eine erfüllt.

Beweis. Aus (1) folgt $(f_1-h_1^n)\cap H=(f_2-h_2^n)\cap H\subset G$. Somit unterscheiden sich $f_1\cap G$ und $f_2\cap G$ höchstens in ihren (n-1)-dimensionalen Halbräumen, ebenso $f_1\cap H$ und $f_2\cap H$. Der Teilraum $T:=\mathcal{H}(\operatorname{Rs} f_1\cup\operatorname{Rs} f_2)$ ist zweidimensional. Auf die Geraden $T\cap G$, $T\cap H$ und die zweidimensionalen OFen $T\cap f_1$, $T\cap f_2$ treffen die Voraussetzungen von Lemma 5 zu. Folglich besteht von den beiden Paaren von Halbräumen, die zu den OF-paaren $f_1\cap G$, $f_2\cap G$ und $f_1\cap H$, $f_2\cap H$ gehören, genau eines aus entgegengesetzten Halbräumen, das andere aus zwei gleichen. Nach Lemma 6 ergibt sich hieraus die Behauptung.

Lemma 8. Sind f_1 , f_2 zwei n-dimensionale OFen mit gleichem Anfangspunkt A und nicht in derselben Geraden enthaltenen Randstrahlen, sind G und H zwei Hyperebenen durch A, von denen eine Rs f_1 und Rs f_2 trennt, die andere nicht, so gilt $f_1 \cap G$ äq $f_2 \cap G$ genau dann, wenn $f_1 \cap H$ äq $f_2 \cap H$ nicht gilt.

Beweis. Es sei $G\cap H=U$ und f_3 eine beliebige in U enthaltene (n-2)-dimensionale OF mit dem Anfangspunkt A, und h_4 sei derjenige der beiden von U in G erzeugten (n-1)-dimensionalen Halbräume, für den $f_4:=f_3\cup h_4$ zu $f_1\cap U$ äquivalent wird. Durch f_4 und Rs f_1 ist nach Folgerung (5) eine n-dimensionale OF f_1' bestimmt. Ferner sei h_5 derjenige der beiden von U in G erzeugten (n-1)-dimensionalen Halbräume, für den $f_5:=f_3\cup h_5$ zu $f_2\cap U$ äquivalent wird. Durch f_5 und Rs f_2 ist nach Folgerung (5) eine n-dimensionale OF f_2' bestimmt. Auf f_1' und f_2' treffen die Voraussetzungen von Lemma 7 zu, so daß unter Verwendung der Transitivität der Relation äq für (n-1)-dimensionale OFen auf die Behauptung von Lemma 8 geschlossen werden kann.

Nun seien f_1, f_2, f_3 drei *n*-dimensionale OFen mit f_1 äq f_2 und f_2 äq f_3 , der gemeinsame Anfangspunkt sei A, und es sei $s_i := \operatorname{Rs} f_i$ für i = 1, 2, 3 sowie $S := \mathcal{H}(s_1 \cup s_2 \cup s_3)$. Es soll gezeigt werden, daß f_1 äq f_3 ist. Es gibt drei Fälle: Die Dimension von S ist a) 3, b) 2, c) 1.

Zu a): Es gibt eine Hyperebene H durch A, bezüglich derer die drei Randstrahlen im gleichen Halbraum liegen (man betrachte den zweidimensionalen Verbindungsraum dreier Punkte $\pm A$ auf den Randstrahlen, verschiebe ihn nach A und nehme eine Hyperebene, deren Durchschnitt mit S der verschobene Teilraum ist). Auf Grund der Voraussetzung f_1 äq f_2 folgt mit Hilfe von Lemma 4 die Äquivalenz von $f_1 \cap H$ und $f_2 \cap H$, ebenso folgt aus f_2 äq f_3 auch $f_2 \cap H$ äq $f_3 \cap H$, also wegen der Induktionsannahme und Definition 2 auch f_1 äq f_3 .

Zu b): Es sind einige Fälle zu unterscheiden.

b 1) Keine zwei der drei Randstrahlen s_1 , s_2 , s_3 sind entgegengesetzt oder gleich. Dann gibt es im Fall $n \ge 3$ einen nicht in S enthaltenen Strahl s und eine OF f_2 mit dem Randstrahl s, die mit f_2 äquivalent ist. Auf f_1 , f_2 , f_2 , auf f_2 , f_3 sowie auf f_1 , f_2 , f_3 ist jeweils Fall a) anwendbar, und es ergibt sich f_1 äq f_3 . Ist n=2 und gibt es eine Gerade G durch G, bezüglich derer G, G, G, G, auf derselben Seite liegen, so sind die Durchschnitte G, G für G, G, alle gleich, also G, wenn es keine solche Gerade gibt, gibt es doch eine Gerade G, durch G, die G, und G, nicht trennt, sie trennt dann notwendig G, und G, sowie auch G, und G, und nach Lemma G ist G, and G, ent-

gegengesetzt zu $f_2 \cap G_1$, ebenso $f_2 \cap G_1$ entgegengesetzt zu $f_3 \cap G_1$, also $f_1 \cap G_1 = f_3 \cap G_1$, d. h. f_1 äq f_3 .

- b 2) Zwei der drei Randstrahlen s_1 , s_2 , s_3 sind gleich. Dann folgt mit Hilfe von Definition 2 und Lemma 4 die Äquivalenz von f_1 und f_3 .
- b 3) Es ist s_1 entgegengesetzt zu s_3 . Dann folgt aus Definition 2, Bedingung (A 2), unmittelbar die Äquivalenz von f_1 und f_3 .
- b 4) Es ist s_1 zu s_2 oder s_2 zu s_3 entgegengesetzt, o. B. d. A. s_1 zu s_2 . Nach Definition 2 gibt es eine OF f_4 , so daß auf f_1 , f_4 und auf f_4 , f_2 die Bedingung (A 1) aus Definition 2 zutrifft. Auf f_4 , f_2 , f_3 trifft einer der bereits betrachteten Fälle zu, so daß auch f_4 äq f_3 ist. Sind die Randstrahlen von f_4 und f_3 nicht entgegengesetzt, so trifft auf f_1 , f_4 , f_3 einer der Fälle a), b 1), b 2), b 3) zu, so daß f_1 äq f_3 wird. Sind dagegen die Randstrahlen von f_3 und f_4 entgegengesetzt, so betrachte man eine Hyperebene H durch A, die s_1 und s_2 nicht trennt (sie trennt dann auch s_2 und s_3 nicht) sowie eine Hyperebene H_1 durch A, die Rs f_4 und f_4 nicht trennt (sie trennt dann auch f_4 und f_4 nicht trennt (sie trennt dann auch f_4 und f_4 nicht trennt (sie trennt dann auch f_4 und f_4 nicht trennt (sie trennt dann auch f_4 und f_4 nicht trennt (sie trennt dann auch f_4 und f_4 nicht trennt (sie trennt dann auch f_4 und f_4 nicht trennt (sie trennt dann auch f_4 und f_4 nicht trennt (sie trennt dann auch f_4 und f_4 nicht trennt (sie trennt dann auch f_4 und f_4 nicht trennt (sie trennt dann auch f_4 und f_4 nicht trennt (sie trennt dann auch f_4 und f_4 nicht trennt (sie trennt dann auch f_4 und f_4 nicht trennt (sie trennt dann auch f_4 und f_4 nicht trennt (sie trennt dann auch f_4 und f_4 nicht trennt (sie trennt dann auch f_4 und f_4 nicht trennt (sie trennt dann auch f_4 und f_4 nicht trennt (sie trennt dann auch f_4 und f_4 nicht trennt (sie trennt dann auch f_4 und f_4 nicht trennt (sie trennt dann auch f_4 und f_4 und

$$f_1 \cap H \stackrel{\text{diag}}{=} f_4 \cap H, \quad f_2 \cap H \stackrel{\text{diag}}{=} f_3 \cap H \quad \text{und} \quad f_2 \cap H_1 \stackrel{\text{diag}}{=} f_4 \cap H_1.$$

Aus den beiden ersten folgt mit Lemma 8: $f_1 \cap H_1$ nicht äq $f_4 \cap H_1$, $f_2 \cap H_1$ nicht äq $f_3 \cap H_1$, und hieraus ergibt sich zusammen mit der dritten $f_1 \cap H_1$ äq $f_3 \cap H_1$, also f_1 äq f_3 .

Zu c): Es sind drei Fälle zu unterscheiden.

c 1) Sind die drei Randstrahlen gleich, so ergibt sich f_1 äq f_3 sofort aus der Betrachtung von $f_1 \cap H$ mit einer s_1 nicht enthaltenden Hyperebene H durch A (i=1,2,3). c 2) Sind nicht alle drei s_1 gleich, aber $s_1=s_3$, so gibt es eine OF f_4 , deren Randstrahl nicht in S enthalten ist, so daß f_1 äq f_4 und f_4 äq f_2 gilt. Auf f_4 , f_2 , f_3 trifft Fall b 4) zu, so daß f_4 äq f_3 gilt, und auf f_1 , f_4 , f_3 trifft dann Fall b 2) zu, so daß f_1 äq f_3 folgt. c 3) Ist $s_1 \neq s_3$ und (o. B. d. A.) $s_2=s_1$, so gibt es eine OF f_4 , deren Randstrahl nicht in S enthalten ist, mit f_2 äq f_4 und f_4 äq f_3 , wegen b 2) ergibt sich f_1 äq f_4 , hieraus wegen b 3) f_1 äq f_3 .

Damit ist "äq" als Äquivalenzrelation nachgewiesen. Durch Induktion ergibt sich leicht, daß die Anzahl der Äquivalenzklassen bei festgehaltener Dimension, festem Anfangspunkt und Trägerraum gleich 2 ist. Damit ist Satz 1 bewiesen.

Hilfssatz 5. Sind f_1 , f_2 OFen und ist τ eine Verschiebung, so folgt aus f_1 äq f_2 die Beziehung $\tau(f_1)$ äq $\tau(f_2)$.

Der Beweis folgt aus Definition 2 und den Invarianzeigenschaften von Verschiebungen.

Der Begriff der Gleichorientierung von OFen wird nun unter Verwendung der Verschiebungsgruppe definiert.

Definition 3. Sind f_1 , f_2 Orientierungsfiguren, so ist f_1 mit f_2 genau dann gleichorientiert, wenn es eine Verschiebung gibt, die f_1 auf eine zu f_2 im Sinne von Definition 2 äquivalente Orientierungsfigur abbildet.

Aus Satz 1, Hilfssatz 5, der Gruppeneigenschaft der Verschiebungen und der Tatsache, daß die identische Abbildung die einzige Verschiebung ist, die einen Punkt auf sich selbst abbildet, folgert man leicht den grundlegenden

Satz 2. Die Gleichorientierung von Orientierungsfiguren ist eine Äquivalenzrelation, und es gibt in jedem Trägerraum zwei Äquivalenzklassen.

Die beiden Äquivalenzklassen gleichorientierter n-dimensionaler Orientierungsfiguren sollen *Orientierungsklassen* des n-dimensionalen affinen Raumes genannt werden.

3. Orientierungsklassen von Punkt-(n + 1)-Tupeln

In Verallgemeinerung der Bezeichnungsweise für Strahlen bezeichne XY^- den Strahl mit dem Anfangspunkt X auf der Verbindungsgeraden von X und Y, der Y nicht enthält; und ist f eine (k-1)-dimensionale Orientierungsfigur, X ein nicht in $\mathcal{H}(f)$ enthaltener Punkt, so sei fX^+ (bzw. fX^-) die k-dimensionale Orientierungsfigur $f \cup h^k$, wobei h^k der X enthaltende (bzw. nicht enthaltende) Halbraum in $\mathcal{H}(f \cup \{X\})$ bezüglich $\mathcal{H}(f)$ ist.

Definition 4. Unter der Orientierungsklasse eines der Bedingung

$$\dim \mathcal{H}(\{A_0, A_1, ..., A_n\}) = n$$

genügenden Punkt-(n+1)-Tupels $(A_0, A_1, ..., A_n)$ wird die Orientierungsklasse verstanden, der die Orientierungsfigur $A_0A_1^+ ... A_n^+$ angehört.

Satz 3. Unterwirft man die Punkte des (n+1)-Tupels $(A_0, A_1, ..., A_n)$ einer ungeraden Permutation, so ändert sich seine Orientierungsklasse.

Beweis. Es genügt zu zeigen, daß sich die Orientierungsklasse bei Vertauschung "benachbarter" Punkte A_i und A_{i+1} (i=0,1,...,n-1) ändert. Es sei

$$f_1 := A_0 \dots A_{i-1}^{\dagger} A_i^{\dagger} A_{i+1}^{\dagger} A_{i+2}^{\dagger} \dots A_n^{\dagger},$$

$$f_2 := A_0 \dots A_{i-1}^{\dagger} A_{i+1}^{\dagger} A_i^{\dagger} A_{i+2}^{\dagger} \dots A_n^{\dagger}.$$

- a) i=0. Die Verschiebung τ , die A_1 auf A_0 abbildet, führt infolge der Invarianzeigenschaften von Verschiebungen f_2 in $A_0A_1^-A_2^+\dots A_n^+$ (= $\tau(f_2)$) über. Ist H eine $A_0A_1^+$ nicht enthaltende Hyperebene, so ist $f_1\cap H=\tau(f_2)\cap H$. Mit Definition 2 (Aussage (A 2)) und Lemma 8 kann hieraus gefolgert werden, daß f_1 und $\tau(f_2)$ nicht äquivalent sind, also sind f_1 und f_2 nicht gleichorientiert.
- b) i=1. Es sei zunächst die Dimension n gleich 2. G sei eine $A_0A_1^+$ und $A_0A_2^+$ nicht trennende Gerade und $f_1\cap G=s$. Dann gilt: $A_0A_1^+$ trennt $A_0A_2^+$ und s nicht, und s trennt $A_0A_1^+$ und $A_0A_2^+$ nicht. Nach Hilfssatz 3 trennt $A_0A_2^+$ die Strahlen $A_0A_1^+$ und s, also ist $f_2\cap G$ der zu s entgegengesetzte Strahl. Es sei nun n>2. H sei eine $A_0A_1^+$ und $A_0A_2^+$ nicht trennende Hyperebene. Die Betrachtung der Durchschnitte $f_1\cap \mathcal{H}(\{A_0,A_1,A_2\})$ $(i=1,2),\ H\cap \mathcal{H}(\{A_0,A_1,A_2\})$ ergibt auf Grund des eben behandelten zweidimensionalen Falles, daß $f_1\cap H$ und $f_2\cap H$ entgegengesetzte Randstrahlen haben, in den zwei- und höherdimensionalen Halbräumen stimmen diese (n-1)-dimensionalen Orientierungsfiguren überein. Wie im Fall a) schließt man hieraus mit Definition 2 und Lemma 8, daß sie nicht äquivalent und somit f_1 und f_2 nicht gleichorientiert sind.
- c) i>1. Dieser Fall kann auf Fall b) zurückgeführt werden, denn bei dem auf Grund von Definition 2 vorzunehmenden Schnitt von f_1 , f_2 mit einer die Randstrahlen von f_1 und f_2 nicht trennenden Hyperebene durch A_0 entstehen zwei Orientierungsfiguren, die in der Form $A_0X_1^+\ldots X_{i-1}^+X_i^+\ldots X_{n-1}^+$ bzw. $A_0X_1^+\ldots X_i^+X_{i-1}^+\ldots X_{n-1}^+$ dargestellt werden können, und bei Weiterführung dieses Vorgehens (Schnitt mit (n-2)-dimensionalem Teilraum usw.) stellt sich schließlich der Fall b) ein. Damit ist Satz 3 bewiesen.

32

LITERATUR

- [1] BÖRNER, W.: Orientierung in angeordneten Translationsebenen. Wiss. Z. Univ. Rostock, 23. Jg. 1974, Math.-Nat. Reihe, Heft 8.
- [2] HERMES, H.: Einführung in die Verbandstheorie. Springer-Verlag, Berlin-Göttingen-
- Heidelberg 1955.

 [3] Lenz, H.: Grundlagen der Elementarmathematik. 3. Aufl., VEB Deutscher Verlag der Wissenschaften, Berlin 1975.
- [4] LINGENBERG, R.: Grundlagen der Geometrie I. Bibliographisches Institut, Mannheim 1969.

Manuskripteingang: 30. 9. 1974

VERFASSER:

WALTER BÖRNER, Sektion Mathematik der Friedrich-Schiller-Universität Jena