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On endomorphisms and quasi-endomorphisms of torsionfree groups

Leo C. A. vAN LEEUWEN

Introduetion

The problem of characterizing all abelian torsionfree groups which have a commuta-
tive endomorphism ring, is an old one ([5], Problem 46a) and seems far from being
completely solved.

In the present paper we use the concept of quasi-endomorphism, introduced by
BeaumonT and PIERrcE after basic work of JONsson, and applied to torsionfree
groups by BEaumonT and REID ([1, 9]).

For special classes of torsionfree groups of finite rank we obtain some results with
the aid of the ring of quasi-endomorphisms (Theorems 3.1 and 3.3). The problem of the
commutativity of the endomorphism ring of a torsionfree abelian group @ is closely
connected with that of characterizing the groups @ for which @ ~ End G. A conjecture
of Pu. ScrULTZ ([10]) is that G ~ End G implies that E(G) is commutative. In theorem
4.2 we show that this conjecture is true for a wide class of torsionfree groups of
tinite rank. The structure of the groups in this class is known to a certain extent
(Remark 4.3). Again using additional requirements, besides End Gz~ G, one can
prove that E(G) is commutative (Theorems 4.4 and 4.5).

The word ““‘group” will always mean abelian group and, unless otherwise stated,
torsionfree group. We consider only torsionfree groups of finite rank. If G isa group,
then End @ is the group of all endomorphisms of @& and E(G) is the endomorphism
ring of G. If R is a ring, then R+ denotes the underlying abelian group, so E(G)*
= End G. By QE(G) we mean the minimal Q-algebra containing E(@).

Here @ ist the group (ring) of rationals. Also Z is the group of rational integers.

If 4, B are groups (rings), then 4 + B denotes the direct sum of the groups (rings)
¥ and B.

1. Reduection to reduced torsionfree groups

Let G be an arbitrary torsiohfree abelian group. Then G can be written as a direct
sum: G =D + H, where D is a divisible group and H is a reduced group, i.e. a
group which has no divisible subgroups == 0.

Now it can easily be shown that the endomorphism ring E(Q) is commutative if and
only it B (D) and E(H) are both commutative and Hom (D, H) = Hom (H, D) =0
([6], p. 23). Since D is divisible and H is reduced, it follows that Hom (D, H) = 0.
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Now suppose that D = 0. Since D is torsionfree divisible, we have D~ >'Q, a
direct sum of copies of Q. Hence E(D)~ E(3 @) and E(D) is commutative if and
only if D~ @ ([6], p. 24).

Then Hom (H, D)=~ Hom (H, @) = 0O if and only if H = 0. Hence under the assump-
tion that D = 0 we find that E(G) is commutative if and only if H =0, D~ Q,
ie. G~@Q.

From now on we suppose that D = 0 and we restrict ourselves to reduced torsionfree
groups.

2. The ring of quasi-endomorphisms

Let @ be a torsionfree group of rank 1, i.e. G is isomorphic to a subgroup of Q. Then,
as is well-known, E(G) is isomorphic to a subring of @, hence E(G) is commutative.
For torsionfree groups G of rank n, n = 2, one does not have a nice classification.
Instead of trying to find conditionsfor E((), the endomorphism ring of &, we look
at another ring now.

We suppose that G is a torsionfree group of finite rank. Let G* be the [uniquely
determined] minimal divisible group containing G. Then G* is a vector space over
@ and the dimension of G* over @, which is denoted by [G*: @], equals the rank of G.
So [G*: @] is finite.

Let E(G) be the endomorphism ring of G. Then E(G) is a torsionfree ring, i.e. the
underlying additive group End @ is torsionfree. Now QE(G) is defined as the minimal
@-algebra containing Z(G). The underlying additive group of QE(G) is the minimal
divisible group containing End G.

QE(G) is called the quasi-endomorphism ring of G. It is easy to show that QE(G) is
that subring of the ring of all linear transformations of the vector space G*, that
consists of all linear transformations @ with the property, that there exists an integer
n == 0 with n®@(G) < G ([1], p. 47). Now we claim that E(®) is commutative if and
only if QE (@) is commutative. Since E(G) is a subring of QE(G), one part of the
agsertion is trivial. Assume that E(®) is commutative and let @, ¥ be two elements of
QE(®). Then there exist integers n &= 0, m == 0 such that n® € E(G), m¥ € E(G).
Hence (n®@)(m¥)= (m¥)n®) or nm(P¥ — ¥P) = zero mapping of G*. Since
QE(G)* = (End G)*, it follows that this additive group of QE(Q) is torsionfree. Hence
QY = Y& or QE(R) is commutative.

Since QE(G) is a rational algebra of finite dimension ([QE(G):Q] < n?, if rank
G = n), we may represent QE (), with the aid of a base, by means of n X n-matrices
having entries in Q.

QE(Q) reflects many interesting properties of G. It is possible, in special cases, to
determine QE (&) explicitly. For instance, if G has rank 1, then Q& (@)=~ @. For groups
G of rank 2 the algebras QE (@) also have been computed ([2], p. 31). In the last
case, the rings QE(G) have been used to give a classification of torsionfree groups of
rank 2 in terms of quasi-equality. Let ¢ and H be groups. Then @ is said to be quasi-
equal to H, denoted by G== H, in case there exist integers n 4 0, m == 0 such that
nG<C H,mHC G.

One can easily see that = H implies that rank G = rank H. Also, if G and H are
torsionfree groups of rank 1, @ = H if and only if G = H.

The importance of quasi-equality with respect to the rings QE(G) is a consequence of
the following: G= H implies QE(Q@) = QE(H).
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Another concept that plays a role in this theory is that of quasi-decomposability. A
group G is said to be quasi-decomposable if there exist independent groups 4 and B
such that @ = 4 + B (direct sum). If such groups do not exist, then @ is strongly
indecomposable.

Any torsionfree group G of finite rank has a quasi-decomposition into strongly
indecomposable summands and the number of these summands is an invariant of G.
Applying Theorem 7.1 of REID ([9], p. 64), one sees directly that a torsionfree group G
of rank 2 has a commutative E(G) if and only if @ is either strongly indecomposable
or @= G, + G, (direct sum) where G; is a group of rank 1 and the types of G; are
mcompa.rable (t=1,2).

3. Irreducible and strongly indecomposable groups

Definition. Agroup @ is irreducible if G has no non-trivial pure fully invariant sub-
groups == 0. Of course any torsionfree group of rank 1 is irreducible Let G be an
irreducible torsionfree group of finite rank. Then QE(G) = I3, i.e. a ring of mxm-
matrices over I', I" a division algebra, where m is the number of strongly indecompo-
sable summands in a quasi-decomposition of G and m[I": @] = rank G ([9], Theorem
5.3).

Theorem 3.1. An irreducible torsionfree group G of finite mnk has a commutative
@) if and only if QE(G) is a field.

Proof. Suppose E(@) is commutative, hence QE(G) is commutative. Since QE(G)
= I, in general, we must have m = 1 and I is a field.

Conversely, if QE () is a field, it is clear that £(G), being a subring of QE (), is commu-
tative.

Remark 3.2. A group @ satisfying the conditions of the theorem has the following
properties:

a) @ is strongly indecomposable,

b) [QE(G) : Q] = rank G.

So QE(Q) is an algebraic number field and E(G) is a subring of such a field. In a
previous paper ([7], Theorem 2) I have shown that supposing that @ is an irreducible
torsionfree group of prime rank we have:

E (@) is commutative if and only if G is strongly indecomposable.

This might raise the question whether it is sufficient, for a group @ of finite rank
= prime number, to require that G is irreducible and strongly indecomposable in
order that (@) be commutative.

This is not the case. We will give an example of a torsionfree group @ of finite rank
= prime number satisfying a) G is strongly indecomposable and b) G is irreducible,
such that QE(G), and hence E(@®), is not commutative.

Let

R = (ag + ayt + ayf + a3k | a; € Z)

be the ring of integer quaternions. R is a reduced, countable torsionfree ring and R
has a base (1, ¢, §, k} over Z. Then, by a result of ZasseNuAUS ([12], p. 180), R~ E(G),
where @ is a torsionfree abelian group with rank G = 4. Here QE(Q) is the field of

2 Beitrige zur Algebra 4
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quaternions. By ReIp ([9], p. 56), G is strongly indecomposable. Also [QE(Q) : @]
= 4 = rank G. Hence G is irreducible. But E(G)~~ R is not commutative.
However, there is a special class of torsionfree groups of finite rank which are both
strongly indecomposable and irreducible and have commutative endomorphism
rings.

Let @ be a torsionfree group. A subgroup B of G is a full subgroup of G if G/B is a
torsion group. G is called a guotient-divisible group if G contains a full subgroup B
such that B is free and G/B is divisible. The quotient-divisible groups @ of rank 1 are
exactly the groups of non-nil type, i.e. if G is given by the characteristic (k,, ks, ...,
k;, ...), then &; = 0 or oo for almost all ;. Clearly any torsionfree group of rank 1
is irreducible and strongly indecomposable. As not every group of rank 1 is non-nil,
it follows that not every torsionfree, irreducible and strongly indecomposable group
is quotient-divisible.

BrauMonT and PIErcE [3] have shown the equivalence of the following statements
for a torsionfree group G of finite rank:

1. @ is irreducible, quotient-divisible with QE (&) ~ field K.

2. @G is strongly indecomposable and @ is isomorphic to the additive group of a full
subring R of K.

Here a subring R of K is said to be full in case R+ is a full subgroup of K+.

Groups G satisfying either 1. or 2. have commutative E(G). In this case K ~ QE (@) is

an algebraic number field. Hence by 2., G is isomorphic to the additive group of a

full subring R of K, where K is an algebraic number field.

Now we can show:

Theorem 3.3. Let G be a torsionfree group of finite rank and assume that G is iso-
morphic to the additive group of a full subring R of K, where K is an algebraic number
field. Then E(G) is commutative if and only if G is strongly indecomposable.

Proof. If G is strongly indecomposable, then G satisfies 2., so by the result of
BeaumonT and P1ERCE, QE (G) = field K and hence E(G) < QE(R) is commutative.
Conversely, let E(G) be commutative, hence QE(®) is commutative. Now BEAUMONT
also proved: QE (@) ~~ full matrix ring M,,(F) (as a rational algebra), where F is the
smallest field of definition of G and m = [K : F). As QE(G) is commutative, m = 1
and K = F. Also QE(G) >~ K (= F), and since K is a field, we get that @ is strongly
indecomposable ([9], p. 56).

If the conditions of theorem 3.3. are fulfilled, and R has an identity, then we get
E(G@)~ R, hence End G ~ G (= R*). We will show this in the next section.

‘4, E-groups

A [torsionfree] group G is called an E-group if there exists a ring R with identity
over G (R* = @) such that E(Q) is the ring of left multiplications in R (cf. [10],
Definition, p. 134).

Fucas ([5], Problem 45) has posed the problem of characterizing the groups G for
which G~ End @G. Since this problem is closely connected with the commutativity
of E(@), we discuss it here. In a recent paper [10], PH. ScHULTZ proves that G is an
E-group if and only if G ~ End G and E(G) is commutative (Corollary 6, p. 134). The
problem is whether one can prove:

G is an E-group & G =~ End G. If this is true, then G ~ End @ implies that E(G)
is commutative.
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Lemma 4.1. Let G =~ End G = H. Then the following statements are equivalent:
(1) Any non-zero endomorphism of G is a monomorphism.
(2) G is an E-group and E(G) has no divisors of zero.

Proof. (1) — (2). We prove that H is an E-group and since G' =~ H, this proves that
G is an E-group. Let ¢ € End H and suppose that ¢(1g) = =, where 14(g) = ¢ for all
g € G. The left multiplication 7;, defined by mp = = - ¢ for any ¢ € H, is an endo-
morphism of H, hence & € End H. Now m(lg) == -1¢ =n = ¢(1g), hence
(m — @) (1g) = 0. If =, + @, then since G =~ H and by (1) we get: 1; = zero-endo-
morphism of @, which is impossible. Hence 7, = ¢. So any endomorphism of H is a
left multiplication endomorphism and E(H) is the ring of left multiplications in E(G).
Hence H is an E-group. Now assume @y = 0, y == 0 for @, y € E(G). Then x(g) =0
for at least one g € G. Hence Ker @ == 0, which implies @ = 0 by (1).

(2) = (1). Let ¢ € End G and let ¢ be the corresponding endomorphism of H in
End G ~ End H. Since H is an E-group it follows that ¢y is a left multiplication
endomorphism of H, say g = ;. Suppose ¢y = 0 and let g € Ker gy, then ¢g(o)
=m(0) = n - o = 0in E(G). Since E(G) has no divisors of zero, it follows that p = 0,
as = = 0. Hence Ker gy = 0 and ¢y is a monomorphism.

This proves (1).

Theorem 4.2. Let G be a torsionfree group of finite rank n such that QE(G) is semi-
simple 1.e. the Jacobson radical of QE(G) = 0.
Then G is an E-group & G ~ End G.

Proof. If @ is an E-group then G ~ End G wihtout any further conditions [10], so
one part is clear.

Conversely, assume that @ ~ End G. Since G is a torsionfree group of finite rank, it
has a quasi-decomposition into a finite number of strongly indecomposable sum-
mands.

First suppose that this number equals one, i.e. @ is strongly indecomposable. Then,
by Corollary 4.3 [9], QE(@®) is a division algebra. It follows that every non-zero endo-
morphism of @ is monic ([4], Remark 2.13, p. 19). Then G is an E-group (Lemma
4.1).

Secondly assume that G is quasi-decomposable. Then QE(G) is a semi-simple ring
which is not a division ring, since G is quasi-decomposable. If QE(G) is simple it
must be therefore afull matrix ring over a division ring of degree n (since G has rank n)
by the Artin-Wedderburn theorem.

Since @ =~ End G, we get [QE(F) : Q] = [(End G)* : Q] as a vector space and then

[(End @)* : Q] = [G* : Q) =rank G,

so [QE(Q) : @] = rank @ = n. Here [QE(G) : @] = n?, hence n2 =n or n = 1. But
hen @ is strongly indecomposable, which is a contradiction. Thus QE(G) is not
simple.

Now QE(G) is the minimal @-algebra containing £(G). Hence G admits multiplication
of algebra type QE(G) since there exists a ring E(G) with E(G)* = End G~ @ and
such that QE(G) is the algebra type of E(G) [1]. So ¢ admits multiplication of semi-
simple algebra type. Hence

(i) @ is a quotient divisible group,

. 7
(i) G is quasi-isomorphic to > B; (direct sum), where B; is a strongly indecompo-
i=1
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sable group, QE(B;) is an algebraic number field with
[QE(B;):Q] =rank B; (t=1,...,7)
(cf. [1], p. 48).
Hence QE(G) >~ QEF ('Zr' B.) Clearly Z’ E(B;) (direct sum) may be consxdered asa

=1 i=1

T
subring of £ ( > B,-) (isomorphical embedding). Hence

Q(g E(Bo) =X (=2 B;). M

T
On the other hand for a direct sum Z‘ (B;) one has:

T

o 5 B0) = Sox

=1

Hence it follows that
[QE( i’ B,—) :Q] = [QE(G) : @] = rank @ = rank ( Zr‘ B,-)
i=1 i=1

= 3 (ank B) = 3 [QE(B:) : Q)

= )

=[S 0mmi:e| - o 5 2w0): ] @

13

From (1) and (2) we infer:

is commutative.
Hence QE (@) is commutative. So £(G) is commutative and G is an E-group.

Remark 4.3. It may be remarked that the proof shows that QE(G) is simple and
End G =~ @ imply G is strongly indecomposable, irreducible and QE(Q@) is a field
(algebraic number field).

If G is quasi-decomposable, QE(G) cannot be simple, but End G =~ @ implies that
QE(G)is a finite direct sum of fields. Hence ¢ has a quasi-decomposition: G = @, + G,
+ .-+ + G, and one can show that each of the groups @; is a strongly indecompo-
sable, irreducible group with QE(G;) a field.

Theorem 4.4. Let G be a torsionfree group of finite rank.
Then the following statements are equivalent:

(1) @ 28 an E-group and @ is irreducible.

(2) End G~ G and QE(G) is simple.

(8) @ is strongly indecomposable and isomorphic to the additive group of a full subring B
of F, where F i3 a simple algebra with identity 1 such that 1 € R.
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Proof. (1) — (2). G is an E-group implies that End Gz~ G. Also, as @ is irreducible,
we get QE(G) = I, where I'is a division algebra. Hence QE (@) is simple.

Actually, m = 1 and I'is a field.

(2) = (3). Since QE(G) has an unit element, it cannot be J-radical (J = Jacobson
radical). So QE(G) is semisimple. Then QE(G) is simple and End G' =~ G imply that G
is strongly indecomposable, as we have seen. Also G is irreducible and QE(G) is a
tield. Since ¢ admits multiplication of semisimple algebra type, it follows that G is
isomorphic to the additive group of a full subring R of QE(G). Here QE(G) is simple
and has an identity. Now E(®) is a full subring of QE(G), since E(G)t = End G >~ G
is a full subgroup of QE(G)+. Also 1 € E(G).

(3) = (1). Since @ is strongly indecomposable, F' must be a field ([4], Corollary 1.14)
and QE(G) = F.

By the result of BEAuMoNT and PIERCE we get that @ is irreducible. Since F' is simple
with 1 and @ is strongly indecomposable, it follows that R, as a full subring of F,
is isomorphic to E(G) ([4], Corollary 1.16).

Hence R+ = G =~ End @. Then E(®) is commutative implies that @ is an E-group.

Theorem 4.5. Let G be a torsionfree group of finite rank n and let QE(G) be semi-
simple. Then the following statements are equivalent:

(1) End G ~ G and G is irreducible.

(2) G is an E-group and G is strongly indecomposable.
For groups G satisfying either (1) or (2) one has:

If rank (Hom (G, Z)) = 1, then G = Z.

If rank (Hom (G, Z)) & 1, then Hom (G, Z) = 0.

Proof. (1) — (2). Since @ is irreducible, QE(G) = I,,, where I' is a division algebra,
m is the number of strongly indecomposable summands in a quasi-decomposition
of @ and m[I": Q] = rank @ ([9], Theorem 5.5). As End G~ G, the @-dimension of
Iy, =m?I": Q] =rank G = m[I": Q). Hence m® = m and m = 1. So @ is strongly
indecomposable. Thisalso implies that @ is an E-group (see the proof of theorem 4.2).

(2) > (1). @isan E-group implies End G~ G. As the Jacobson radical of Q€ (@) = 0,
it follows that QE (@) is a division ring ([9], Corollary 4.3).

Since End G~ @, we get [QE(Q) : Q] = rank G. Now since G is strongly indecompo-
sable, we have @ is irreducible ([9], Theorem 5.5).

Hence (1) and (2) are equivalent.

As we have seen in the proof of Theorem 4.2, G is a quotient divisible group which
means: ¢ is an extension of a free group B by a divisible torsion group. Here rank B
=n, since G has rankn. As 0 - B — G — T — 0 is exact, where T is a divisible
torsion group, it follows that 0 — Hom (&, B) — Hom (@, G)=~ G is exact.

So @ contains an isomorphic copy of

> Hom (G, Z)= Hom (G, B).
1

Suppose that Hom (G, Z) has rankt, ¢ finite, then rank (Hom (G, B)) = tn <n,
hence t = 0 or ¢ = 1. The exact sequence 0 - B — G — T' — 0 also implies that

0 - Hom (G, Z) - Hom (B, Z) o~ 3’ Z
1
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