

Werk

Titel: 2.1 Elliptische Kurven

Jahr: 1975

PURL: https://resolver.sub.uni-goettingen.de/purl?301416052_0004|log26

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

Auf Grund von v kann man zeigen, daß $H_{n,m}$ eine komplexe Struktur der Dimension m besitzt (so daß v eine analytische Abbildung ist) (vgl. W. Fulton [1]). Die Fasern von σ , d. h. die Menge aller f, die auf M dieselbe konforme Struktur induzieren, sind (2n+p-1)-dimensionale Mannigfaltigkeiten, da man erstens den Polardivisor $(f)_{\infty} = f^{-1}(\infty) = P_1 + \cdots + P_n$ beliebig verschieben kann (bis auf eine dünne Menge im Raum $M^{(m)}$ aller Divisoren vom Grade m, in der $P_1 + \cdots + P_n$ nicht liegen darf) und zweitens bei gegebenem Polardivisor $P_1 + \cdots + P_n$ die zugehörigen Funktionen f einen (n+p-1)-dimensionalen Vektorraum $L = L(P_1 + \cdots + P_n)$ bilden (Satz von RIEMANN-ROCH). Alle Funktionen f aus L (bis auf eine dünne Menge) sind in $H_{n,m}$ enthalten. Also ist die Faser von σ ein offener Unterraum von $M^{(m)} \times \mathbb{C}^{n+p-1}$. Da

$$\dim H_{n,m} - \dim (M^{(n)} \times \mathbf{C}^{n+p-1}) = 2(n+p-1) - (n+n+p-1)$$

$$= 3p-3$$

ist, schließt Riemann, daß es 3p-3 Parameter gibt, die die konformen Strukturen auf M festlegen.

2. Elliptische und hyperelliptische Kurven

2.1. Elliptische Kurven

Zur weiteren Illustration der Problematik betrachten wir den oben ausgeschlossenen Fall p=1 (elliptische Kurven) und im Anschluß daran hyperelliptische Kurven, da hier die Verhältnisse eine explizite Beschreibung gestatten. Wir betrachten alles über einem beliebigen algebraisch abgeschlossenen Grundkörper k der Charakteristik $p \neq 2$.

Ist E eine elliptische Kurve, Q ein Punkt, so definiert das lineare System |3Q| eine Einbettung $E \to \mathbf{P}^2$ (da $0 = \dim |3Q - P_1 - P_2| < \dim |3Q - P_1| < \dim |3Q| = 2$ ist für alle $P_1, P_2 \in E$); also ist E eine singularitätenfreie kubische Kurve. Projiziert man von Q aus auf eine beliebige Gerade, so erhält man eine zweiblättrige Überlagerung $f \colon E \to \mathbf{P}^1$ (da die Projektionsgerade außer Q noch zwei weitere Schnittpunkte mit E hat), und nach der Hurwitzschen Geschlechterformel erhält man außer Q noch drei weitere Verzweigungspunkte P_0, P_1, P_2 . Man wähle auf \mathbf{P}^1 die Koordinaten so, daß $f(Q) = \infty$, $f(P_0) = 0$, $f(P_1) = 1$, $f(P_2) = \lambda$ (Doppelverhältnis auf \mathbf{P}^1) ist. Die komplexe Struktur wird also durch einen Parameter beschrieben. Hierbei ist zu beachten, daß λ nicht eindeutig der komplexen Struktur entspricht. Man kann z. B. noch eine Permutation der drei Punkte $f(P_0)$, $f(P_1)$, $f(P_2)$ betrachten. Entsprechend dem Transformationsverhalten des Doppelverhältnisses erhält man bei der Transposition (0,1) den Wert $1-\lambda$ und bei der Transposition (0,2) den Wert $\frac{\lambda}{\lambda}$

Der Ring der Invarianten von $\mathbf{Z}\left[\lambda, \frac{1}{\lambda}, \frac{1}{1-\lambda}\right]$ bezüglich S_3 ist $\mathbf{Z}\left[\frac{(\lambda^2-\lambda+1)^3}{(\lambda-1)^2\,\lambda^2}\right]$, und die Größe

$$j(E) =: 2^8 \frac{(\lambda^2 - \lambda + 1)^8}{\lambda^2 (1 - \lambda)^2}$$

heißt die absolute Invariante von E.

Wählt man die Koordinaten X, Y, Z in \mathbb{P}^2 so, daß Q der Punkt (0:1:0) und Z=0 die Tangente im Punkt Q ist, so genügt E der Gleichung

$$F(X, Y, Z) = Y^{2}Z + 2(aX + bZ) YZ + G(X, Z)$$

= $(Y + aX + bZ)^{2} Z + H(X, Z) = 0;$

also hat E nach einer Koordinatentransformation die Gleichung

$$Y^{2}Z = aX^{3} + bX^{2}Z + cXZ^{2} + dZ^{3}, \quad a \neq 0.$$
 (1)

Eine leichte Rechnung zeigt

$$j(E) = 2^8 \frac{(b^2 - 3ac)^3}{a^2 \cdot A},\tag{2}$$

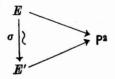
wobei \varDelta die Diskriminante von aX^3+bX^2+cX+d ist.

Es gilt

2.1.1. Satz

- (i) $E \mapsto j(E)$ ist eine Bijektion zwischen der Menge aller Isomorphieklassen elliptischer Kurven und den Punkten von M = Spec k[t].
- (ii) Ist $(E_s)_{s\in S}$ eine algebraische Familie elliptischer Kurven, so daß ein Schnitt $\varepsilon\colon S\to E,\ \varepsilon(s)\in E_s$, existiert, dann wird $s\mapsto j(s)$ durch einen Morphismus $S\to M$ induziert.
- (iii) (j, M) ist universell mit den Eigenschaften (i), (ii).
- Zu (i). Bekanntlich erhält die Kurve E durch Auszeichnung eines Punktes Q eine Gruppenstruktur (mit Q als Nullelement, drei Punkte haben die Summe 0, wenn sie bei der oben betrachteten Einbettung kollinear sind, der Punkt -(X:Y:Z) hat die Koordinaten (X:-Y:Z).

Ist $\sigma: (E,Q) \xrightarrow{\sim} (E',Q')$ ein Isomorphismus, so induzieren |3Q| und |3Q'| Einbettungen derart, daß



kommutativ ist, also ist j(E) = j(E'); nimmt man insbesondere E = E', und $\sigma(P) = P + Q'$, so sieht man, daß j nicht von Q' abhängt. Ist j gegeben, so kann man daraus λ und damit eine zu j gehörige Kurve bestimmen. Ist $\chi(k) \neq 3$, so ist

$$y^2 = x^3 - 3j(j - 12^3)c^2x - 2j(j - 12^3)^2c^3$$
 $(c \in k^{\times})$

die affine Gleichung einer zu j gehörigen Kurve, falls $j = 0, + 12^3$ ist, und

$$y^2 = x^3 + c$$
 $(c \in k^{\times})$ für $j = 0$, $y^2 = x^3 + cx$ $(c \in k^{\times})$ für $j = 12^3$.

Damit ist (i) bewiesen.

Zu (ii). Diese Behauptung ist unmittelbar klar, wenn die Familie durch eine Gleichung von der Form (1) gegeben ist, wobei a,b,c,d reguläre Funktionen auf S sind und a und Δ keine Nullstellen haben. Die Frage ist außerdem lokal bezüglich S. Der Schnitt $\varepsilon(S) = D$ ist ein relativer Cartierdivisor über S, und für hinreichend kleine S sind $p_*\mathcal{O}_E(D), p_*\mathcal{O}_E(2D), p_*\mathcal{O}_E(3D)$ frei vom Rang 1, 2 bzw. 3 über S (Basiswechsel, vgl. Kap. III).

Dann definiert $\mathcal{O}_{\mathcal{B}}(3D)$ eine Einbettung $E \to \mathbf{P}^2 \times S$, die genau wie oben beschrieben bei geeigneter Wahl der Koordinaten durch eine Gleichung vom Typ (1) bestimmt ist, q. e. d.

Im folgenden nehmen wir $k = \mathbf{C}$ an; in diesem Fall entsprechen die elliptischen Kurven den komplexen Tori $\mathbf{C}/(\mathbf{Z}w_1 + \mathbf{Z}w_2)$ $(w_1, w_2]$ Fundamentalperioden), da jede kompakte komplexe Liesche Gruppe ein komplexer Torus (man betrachte die Liesche Algebra und die Exponentialabbildung als universelle Überlagerung) und da jeder eindimensionale komplexe Torus algebraisch ist (vgl. D. Mumford [6]). Konkreter läßt sich die Situation wie folgt beschreiben: Gegeben sei ein Perioden-

gitter Γ , das bis auf Isomorphie durch die Fundamentalperioden 1 und $\tau \left(=:\pm \frac{w_2}{w_1}\right)$

erzeugt werde, wobei τ in der oberen Halbebene von ${\bf C}$ liegt.

Die elliptischen Funktionen mit den Perioden $1, \tau$ bilden einen eindimensionalen Funktionenkörper, und \mathbf{C}/Γ ist komplex isomorph zu der zugehörigen singularitätenfreien kompletten Kurve.

Eine projektive Einbettung von \mathbb{C}/Γ erhält man durch die Thetafunktionen. Unter einer Thetafunktion der Ordnung m mit dem Periodengitter Γ versteht man eine ganze Funktion f auf \mathbb{C} mit den Eigenschaften

$$f(z+1) = f(z),$$

$$f(z+\tau) = \varepsilon \left(-m\left(z+\frac{\tau}{2}\right)\right) f(z) \qquad (\varepsilon(t) = :\exp(2\pi i t)).$$

Diese bilden einen Vektorraum der Dimension m, eine Basis bilden die durch Fourierreihen dargestellten Funktionen

$$\theta_m[n](z,\tau) = \sum_{\nu=-\infty}^{\infty} \varepsilon \left(\frac{\tau}{2m} (m\nu + n)^2 \right) \varepsilon((m\nu + n) z) \quad (0 \le n < m).$$

(Gleichmäßige Konvergenz auf jeder kompakten Menge ergibt sich aus der Voraussetzung, daß τ in der oberen Halbebene liegt.) Insbesondere ist folgende Bezeichnung üblich:

$$\vartheta(z,t) = \theta_1[0](z,\tau) = \sum_{\nu=-\infty}^{\infty} \varepsilon \left(\frac{\tau \nu^2}{2}\right) \varepsilon(\nu z).$$

Dann gilt (Koeffizientenvergleich!)

$$\theta_m[n](z,\tau) = \varepsilon \left(n\left(z+\frac{n\tau}{m}\right)\right)\vartheta(mz+n\tau,m\tau).$$

Integration der logarithmischen Ableitung um eine Grundmasche des Gitters Γ ergibt, daß eine Thetafunktion f(z) modulo Γ genau m (= Ordnung (f)) Nullstellen hat (entsprechend den Vielfachheiten gezählt). Sind f, g Thetafunktionen der Ordnung m, die m-1 gemeinsame Nullstellen haben, so folgt aus dem Residuensatz

(Residuen von $\frac{1}{a}$ in einer Grundmasche haben die Summe 0), daß auch die letzten Nullstellen beider Funktionen übereinstimmen; insbesondere ist $\frac{f}{a} = c$ konstant,

Mit diesen Bemerkungen erhält man leicht den folgenden

2.1.2. Satz. Sind fo, f1, f2 drei linear unabhängige Thetafunktionen der Ordnung 3, so liefert

$$z \mapsto (f_0(z):f_1(z):f_2(z)) \in \mathbf{P}^2$$

eine komplexe Einbettung $C/\Gamma \rightarrow P^2$ auf eine kubische Kurve.

(Eine kubische Relation gilt wegen der Tatsache, daß es höchstens neun linear unabhängige Monome $f_0(z)^{i_0} f_1(z)^{i_1} f_2(z)^{i_2}$, $i_0+i_1+i_2=3$ (Thetafunktionen der Ordnung 9) gibt.)

Beispiel.

$$\begin{split} f_0 &= \vartheta \left(z + \frac{1}{2} + \frac{\tau}{2} \right)^3, \\ f_1 &= \vartheta \left(z + \frac{1}{2} + \frac{\tau}{2} \right) \cdot \vartheta \left(z + \frac{\tau}{2} \right)^2, \\ f_2 &= \varepsilon (-z) \cdot \vartheta (z) \cdot \vartheta \left(z + \frac{1}{2} \right) \cdot \vartheta \left(z + \frac{\tau}{2} \right) \qquad (\vartheta (z) =: \vartheta (z, \tau)). \end{split}$$

(Ersetzt man z durch $z + \tau$, so multiplizieren sich die drei Funktionswerte mit $-\varepsilon(-3(z+ au))$; um Thetafunktionen im obigen Sinne zu erhalten, muß man noch eine unwesentliche Verschiebung der Variablen z durchführen.)

Man sieht leicht, daß $\frac{1+\tau}{2}$ Nullstelle von ϑ ist (indem man in der Fourierentwicklung

jeweils das *i*-te und (-(i+1))-te Glied zusammenfaßt für $i=0,1,2,\ldots$). Also haben f_0, f_1, f_2 die Nullstellen $0, \left(0, \frac{1}{2}\right), \left(\frac{\tau+1}{2}, \frac{\tau}{2}, \frac{1}{2}\right)$, und F ist überall definiert; man erkennt ferner leicht, daß f_0, f_1, f_2 linear unabhängig sind und hieraus, daß F injektiv ist.

Weiterhin ist $\frac{f_1}{f_0}(z)$ eine gerade Funktion von z mit einem zweifachen Pol in z=0; $\frac{f_2}{f_0}$ (z) ist ungerade und hat einen dreifachen Pol in z=0. Somit genügen die Funktionen einer kubischen Relation

$$\left(\frac{f_2}{f_0}\right)^2 = a\left(\frac{f_1}{f_0}\right)^3 + b\left(\frac{f_1}{f_0}\right)^2 + c\left(\frac{f_1}{f_0}\right), \quad a \neq 0,$$

bzw. homogen:

$$f_2^2 f_0 = a f_1^3 + b f_1^2 f_0 + c f_1 f_0^2$$

(das konstante Glied ist Null, da $\frac{1}{2}$ eine gemeinsame Nullstelle von f_2 und f_1 ist). Indem man durch f_0 bzw. f_1 dividiert und beide Seiten für z=0 bzw. $z=\frac{1}{2}$ aus-