

Werk

Titel: On a problem of M. F. JANOWITZ

Autor: Stern, M.

Jahr: 1975

PURL: https://resolver.sub.uni-goettingen.de/purl?301416052_0004|log18

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

On a problem of M. F. Janowitz¹)

MANFRED STERN

§ 1. Introduction

For the following definitions and notions cf. [3]. A lattice L with 0 is called atomistic if every element of L is the join of a family of atoms. In a lattice L with 0 let F(L) denote the set of elements that may be expressed as the join of a finite (possibly empty) family of atoms. We say that in a lattice L the element $a \in L$ covers the element $b \in L$ and write $b \prec a$ in case b < a and $b \le x \le a$ implies x = b or x = a. The covering property (C) is introduced as follows:

(C) If p is an atom and $p \leq a$ then $a \prec a \cup p$.

We call L an AC-lattice if it is an atomistic lattice with the covering property (C). A matroid-lattice may then be defined to be an algebraic AC-lattice. In a lattice L the pair (a,b) $(a,b\in L)$ is called a modular pair, denoted by (a,b) M, if $c\leq b$ implies $(c\cup a)\cap b=c\cup (a\cap b)$. A lattice L with 0 is called finite-modular if $a\in F(L)$ implies (x,a) M for every $x\in L$.

Following the terminology of Grätzer and Schmidt (cf. [1], p. 30) we call an ideal S of a lattice L standard if

$$I \wedge (S \vee K) = (I \wedge S) \vee (I \wedge K)$$

holds for any pair of ideals I, K of L. An ideal I of a lattice L will be called a p-ideal if L has a zero element and I is closed under perspectivity. Without proof we state the following well-known

Lemma 1. Let L be a lattice with zero element. Then every standard ideal of L is a p-ideal.

M. F. Janowitz has proved the following

Theorem 2 (cf. [2], Theorem 4.6). If L is a finite-modular AC-lattice, then F(L) is a standard ideal.

Likewise in [2] the following problem was raised: Is F(L) a standard ideal for L an arbitrary AC-lattice? What is if L is a matroid-lattice?

¹⁾ To the memory of my teacher Professor Andor Kertész.

Our aim is to show that there are AC-lattices L (even matroid-lattices) with the property that F(L) is not standard. More exactly, we prove that in a kind of matroid-lattices L the ideal F(L) is not a p-ideal. After this, from Lemma 1 we get the assertion.¹)

§ 2. Preliminaries

In the sequel we need the notion of parallel elements:

Definition 3 (cf. [3], Def. 17.1, p. 72). Let L be a lattice with 0 and let $a, b \in L$. We write a < |b| when

$$a \cap b = 0$$
 and $b \prec a \cup b$.

When a < |b| and b < |a| we say that a and b are parallel and write $a \parallel b$.

Next we consider under which conditions in a complete AC-lattice an atom is perspective to a dual atom. We have

Lemma 4. Let L be a complete AC-lattice of length h (1) > 2. Then there exists an atom $p \in L$ which is perspective to a dual atom $m \in L$ if and only if there exists a dual atom $n \in L$ such that $m \parallel n$.

Proof. If we have two dual atoms $m, n \in L$ such that m || n, then we take an atom $p \in L$ for which p < m. Then $p \sim m$. Conversely, let $p \in L$ be an atom, $m \in L$ be a dual atom with $p \neq m$. If $p \sim m$, then there exists an $x \in L$ such that

$$p \cup x = m \cup x$$
 and $p \cap x = m \cap x = 0$.

From this and from the fact that $x \neq 0$, 1 we get $x \nleq m$ and therefore $m \cup x = 1$ = $p \cup x$ Here x is a dual atom, because if there were any $y \in L$ with

$$x < y \le x \cup p = 1$$

then by the covering property (C) we get y = 1 and the lemma is proved.

§ 3. An example

After this we give now an example of a matroid-lattice L, in which F(L) is not standard: let L be an affine matroid-lattice (cf. [3], Def. 18.3, p. 78) of infinite length satisfying Euclid's strong parallel axiom (cf. [3], Axiom 18.1, p. 78). Then it follows that every line of L is incomplete (cf. [3], Remark 18.10, p. 80). Next we show that in L there are two dual atoms m_* , n such that $m_* \parallel n$. Let

$$1 = \bigcup (a_{\nu} \mid \nu \in \Gamma)$$

where $\langle ..., a_r, ... \rangle_{r \in \Gamma}$ is a maximal independent set of atoms in L. We define

$$m_{\nu}^{\text{def}} \cup (a_{\mu} \mid \mu \in \Gamma, \mu \neq \nu).$$

¹⁾ As M. F. Janowitz remarked, he obtained another solution to his problem. More precisely, he obtained necessary and sufficient conditions for F(L) to be a p-ideal, where L is an atomistic Wilcox lattice.

Then $m_r \cup a_r = 1$ and $m_r \cap a_r = 0$, therefore $a_r \nleq m_r$ and $m_r < 1$. By the covering property (C) we get from $m_r < y \leq m_r \cup a_r = 1$ that y = 1. Therefore m_r is a dual atom in L.

Since in L every line is incomplete, every in m_r contained line ist incomplete. This means that m_r is an incomplete element of L (cf. [3], Def. 18.5, p. 78). Now we apply

Lemma 5 (cf. [3], Corollary 18.13, p. 81). In an affine matroid-lattice L let $a \in L$ be an element of height ≥ 2 . Then the following two statements are equivalent:

- (i) $a \in L$ is an incomplete element and $a \neq 1$;
- (ii) there exists an element $b \in L$ with $a \parallel b$.

We know that m_r fulfils condition (i). Then according to (ii) there exists an $n \in L$ such that $m_r \parallel n$. By Definition 3 we have $n \prec m_r \cup n = 1$. Hence n is a dual atom.

Theorem 6. There exists a matroid-lattice L such that F(L) is not a standard ideal.

Proof. In the above affine matroid-lattice L there exist two dual atoms m_r , n such that $m_r \parallel n$. Then, by Lemma 4, there exists an atom $p \in L$ such that $p \sim m_r$. We have evidently $p \in F(L)$. However $m_r \notin F(L)$ since L was supposed to be of infinite length. Hence F(L) is not a p-ideal. Then, according to Lemma 1, F(L) is not standard, which finishes the proof.

Remarks. (i) There is a concrete example for a matroid-lattice of the above kind: Let E be a vector space over a division ring. The set $L_A(E)$ of all affine subsets of E forms a lattice, ordered by set-inclusion. If the dimension of E is not less than 3, then $L_A(E)$ is an affine matroid-lattice satisfying Euclid's strong parallel axiom (cf. [3], Theorem 22.9, p. 106).

(ii) Since an affine matroid-lattice is weakly modular (cf. [3], Def. 1.10, p. 3) we have the following corollary: in a weakly modular AC-lattice L, in general F(L) is not a standard ideal.

REFERENCES

- GRÄTZER, G., and E. T. SCHMIDT: Standard ideals in lattices. Acta Math. Acad. Sci. Hung. 12 (1961), 17—86.
- [2] Janowitz, M. F.: On the modular relation in atomistic lattices. Fund. Math. 66 (1969/70), 337 bis 346.
- [3] MAEDA, F., and S. MAEDA: Theory of Symmetric Lattices. Springer-Verlag, Berlin—Heidelberg—New York 1970.

Manuskripteingang: 20. 4. 1974

VERFASSER:

Manfred Stern, Sektion Mathematik der Martin-Luther-Universität Halle—Wittenberg

•

· ·