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Boundary value problems for the stationary
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Frédéric Poupaud

(Communicated by Pierre-Arnaud Raviart)

Abstract. The Vlasov-Maxwell equations provide a kinetic description of the flow of particles
in a self-consistent electromagnetic field. The aim of this paper is to prove the existence of
stationary solutions for boundary value problems with arbitrary large data. The main idea
consists in using explicit upper solutions for the Vlasov equation that allow to bound the
particles concentration and flux. A key point is that the electric field is repulsive. The
mathematical analysis is first given for the relativistic Vlasov-Maxwell system. Next, the results
are extended to classic mechanics, systems with several species of particles and Boltzmann-
Vlasov-Poisson problems.

1991 Mathematics Subject Classification: 35F30, 76P05, 78A35, 82A45.

1. Introduction

A lot of studies in physics and applied physics are based on Vlasov-Maxwell
equations. These equations model the transport processes of charged particles in
a selfconsistent electromagnetic field. A few domains of application are: particle
accelerators, electron guns, semiconductors and so on ... Recently the works of
R.J. Diperna and P.L. Lions [7, 8] have allowed significant progress in the mathe-
matical studies of kinetic equations. The have proved existence of solutions of the
Vlasov-Maxwell system for the Cauchy problem in a free space. However it remains
in this field a lot of difficult problems.

To my knowledge, there are few mathematical works on boundary value problem
for stationary kinetic equations. P. Degond has given in [2] particular solutions for
the relativistic Vlasov-Maxwell system. C. Greengard and P.A. Raviart [11] have
studied a one dimensional problem for the Vlasov-Poisson equations. They obtain
the existence of stationary solutions and give some conditions on the data that
guarantee uniqueness. The aim of this paper is to provide stationary solutions of
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boundary value problems for Vlasov-Maxwell systems with arbitrary large data in
any kind of geometris with minor restrictions on the regularity of the boundaries.
Some results and the basic ideas have been presented in [13]. This work is a first step
in the mathematical study of boundary value problems for plasma physics. Thus in
a forthcoming paper [4] we use some of the techniques developped in the present
paper to provide an asymptotic analysis of the Vlasov-Poisson system. It gives
a mathematical proof of the Child-Langmuir law for cylinders and spheres. This
result has already been obtained in [5] in the case of the plane diode.

This work begins with the study of linear stationary Vlasov equations. The Vlasov
problem reads

{ v(p). ¥ f(x,p) + F(x,p).V, f(x,p) =0; xeQ; peR>
S, p) =folx,p); (x,p)eZ™.

The function f(x, p) denotes the particle distribution depending on the position x and
the momentum p.  is a smooth bounded domain of R? and X~ ist the subset of the
boundary 0Q x R3 where the velocities are pointing inwards

@ %= {(x,p) €02 x R*; v(p).v(x) 2 0}.

)

Above, we have denoted by v(x) the unit outward normal to 022 at x. The velocity
v(p) is the gradient of the given energy function &(p) of the particles

3 v(p) = Ve(p).
The force field F(x, p) reads

4) F(x,p) = q(=V.¢(x) +v(p) A B(x)).

The electrostatic potential ¢ and the magnetic field B are first assumed to be known.
The constant ¢ is the elementary charge of the particles.

Since the value zero lies in the spectrum of Vlasov operators, there is no uniqueness
for the boundary value problem (1). We prove existence by considering the following
perturbed problem

{af,(x,p)+v(p).zf;(x,p)+F(x,p).z,j;(x,p)=o; xeQ; peR?
fo(x, p) = fo(x,p); (x,p)eZ™.

Results due to C. Bardos [1] on first order hyperbolic equations guarantee that the
problem (5) is well posed for « >0 and for a C* force field F. We show that the
sequence f, converges towards the solution of the Vlasov problem (1) that is minimal
for the order relation f < g among the set of solutions of (1). Next we give a weak
formulation of (1). This formulation allows to get rid of restrictions on the regularity
of the force field F. This second section is ended by introducing upper solutions that
will be usefull in the following. They read

(6) g(x, p) = G(e(p) + g4 ().

©)



Boundary value problems 501

We point out that the function &(p) + g¢ (x) is nothing else than the total energy of
the particles which is invariant along their trajectories.

In section 3 the non linear Vlasov-Maxwell system is investigated. From now on the
electromagnetic field is selfconsistent. It satisfies the stationary Maxwell equations

N 44 =Lew: xeQ.

(®) VA B(X)=poqj(x); V.B(x)=0;, xeQ.

The constant ¢, and p, are the vacuum permittivity and permeability. The
concentration ¢ and the flux j depend on the particle distribution f through the
relations

(€)) o) = | f(x,p)dp; j(x)= §3v(p)f(x,p)dp; xeQ.

R3 R
In this section we first recall some classical results on the magnetostatic problem (8).
We point out that the necessary conditions for the problem to be well posed are

Vj=0; 0RQ isconnected.
Then boundary conditions for the stationary Maxwell equations are
(10) P (x) = ¢o(x); B(x).v(x) =b(x); xe€dR.

The existence of a solution (f; ¢, B) for the Vlasov-Maxwell problem (1), (7), (8), (10)
with arbitrary large data will be obtained by the application of the Schauder fixed
point theorem. Unfortunately the non uniqueness of the solutions for the Vlasov
problem does not allow to directly apply the fixed point procedure. Therefore we
have to introduce a regularized problem.

Section 4 is devoted to the proof of the existence of solutions for this regularized
problem. The a-priori estimates are obtained with the upper solutions (6) of the
Vlasov problem. Indeed the maximum principle applied to (7) implies that the
electrostatic energy g¢ is uniformly bounded from below. Therefore, if the function
G is non increasing, we get with some constant C,:

A1) 0<f(xp) <Ge(p)+99(x) < G(e(p) + Cp).

It provides apriori estimates on the density ¢ and the flux j that allow to apply the
Schauder theorem. We point out that changing the sign of the right hand side of (7)
which would correspond to an attractive (gravitational) potential would not allow to
obtain such an estimate any more. In this case, the techniques used in this paper
would only provide solutions for small data. We do not focus on this problem because
the physical meaning of boundary value problems for gravitational potential is
unclear.
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In section 5, we investigate other models for which the above analysis is successful.
First the Vlasov-Poisson system with several species of particles is investigated. The
way to obtain a-priori estimates is a little more complicated than in the preceeding
sections. However, once they have been derived, the techniques are the same. Next we
study the Vlasov-Poisson system with reflection conditions for the distribution f and
with mixed conditions (Dirichlet and Neumann boundary conditions) for the poten-
tial. Slight differences appear in the analysis of the linear Vlasov problem and in the
procedure of regularization of the electrostatic potential. Finally the analysis of
a kinetic model for semiconductors is performed. A linear Boltzmann operator is
involved in the problem. After giving a proof of existence of solutions for the
Boltzmann-Vlasov equation, we demonstrate that Maxwellian distributions are
upper solutions. This allows to perform the proofs of sections 3 and 4 for the
Boltzmann-Vlasov-Poisson system.

We end this paper in section 6 with some remarks. We first point out that the
compactness results of velocity averages of [ 7] which are essential in the analysis of
the Cauchy problem for the time dependent Vlasov-Maxwell system have not been
used. The reason is that the stationary Maxwell equations are no more hyperbolic but
elliptic ones. The regularizing effects are those of the Poisson equation. They allow to
control the non linearity F.V, /= V,.(Ff). However the regularity results on the
integrals of the distribution f with respect to momentums of [7, 10] would be useful
in the investigation of problems that involve non linear Boltzmann operators. Next
we give some examples of non uniqueness of solutions. To construct these solutions
we profit of the difference of charges between two species of particles or between one
species and a ionized background (impurities in semiconductors or heavy ions in
plasmas). When only one charge is involved, C. Greengard and P.A. Raviart has
given in [11] an example of multiple solutions in the one dimensional case and for an
entering data which is a Dirac distribution. They have also proved a uniqueness result
for entering data which are non increasing with respect to v. However this problem of
uniqueness is still open for more complicated geometries.

2. The Vlasov equation

In this section we assume that the force field is given. Then the Vlasov equation (5)
is a linear hyperbolic equation. Therefore let us recall classical results on first order
hyperbolic equations.

Let Q be a smooth domain of RY. We denote by C#(Q) the space of functions
whose derivatives of order less or equal to p are continuous and bounded and by
C¥(Q) the space of functions which are moreover compactly supported. Let 4 be
a vector field

Ae(CL@)".

We denote v (x) the unit outward normal to the boundary X of Q at x, 2~ is the part of
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2 where A is pointing inwards and do (x) is the superficial measure of X. Let us
introduce the unbounded operator 4, on L?(Q)

A, D(A4,) = {ue LP(Q); A.Vue L?(Q); uy-= 0} - L?(Q)
u— AVu.

We denote by V. A4 the divergence of the vector field 4. Then we get

Theorem 1. (C. Bardos [1]) Let 1 < p <oo. The operators A, are % maximal accretif

with @ = ||V. A|| (). It follows that for any function S in L?(Q), any entering data u,,
such that

J 1A G g ()17 dor (x) < 0

and for any 1 > % the problem
{ Au(x) + A(x).Vu(x) = S(x); xeQ;
hiz-=uq
has a unique solution in L?(Q) which satisfies the (weak) maximum principle.

We now apply this result for the Vlasov equation. Let Q be a smooth open set of R3.
We denote dy its superficial measure. We assume

(12)  ve(CLRY)® or v(p>=§;

(13)  ¢eCi(Q); Be(Cy ().

In (12) mis the mass of the particles. We point out that (12) is satisfied for a relativistic
velocity field. Indeed if ¢ denotes the light speed we get

cp

wp) = ey
|pI* +m?c

Remark. The force field F given by (4) is divergence free with respect to p. It follows
that the vector field (v (p), F(x, p)) is divergence free with respect to (x, p). Thus we get

ve (CL(R?))3.

@ = ”l7(x,p)‘(v? F)|lLe@xry = 0.
Proposition 1. Under the hypotheses (12) and (13) the problem

(14) {afa(x,l’) +v(p).V, f,(x, p) + F(x, p).V, f,(x,p) = S(x,p); x€Q;peR?
fox,p) =fo(x,p); (x,p)eX”
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where F is given by (4) has a unique solution in L? (Q % R3) for any a > 0, any source
term S in L?(Q % R?) and any entering data f, that satisfies

15) [ 1o(p).v()| 1fo(x, p)IPdy(x)dp < c0.
rs
The solution f satisfies the maximum principle.

Proof. 1t is a straightforward application of theorem 1 except in the case where
v(p) = p/m. Although the result is widely known let us sketch a proof. First let us
consider compactly supported data. By bounding velocities for sufficiently large p we
get solutions. By application of the maximum principle we show that they are
compactly supported. Then we a posteriori verify that this solutions satisfy (14). It
remains only to approximate any data by compactly supported functions. O

We want to get rid of the absorption term af;,. This is not straightforward since zero
belongs to the spectrum of the operators A4,. Indeed we get

Example 1. Non uniqueness for the Vlasov problem. We put Q = {x;|x| <1},
¢(x) = — (1 —|x|?), g = 1. We assume that there is an energy &(p) which satisfies (3)
and ¢(p) > £(0). For any magnetic field B and any function G in C§ (R) which satisfies

G@H=0 for t>0; G@® =0 for t<0
the functions f(x,. p) = G(e(p) — &(0) + ¢ (x)) are all solutions of

{v(p)-fo(x,p) +F(x,p).V, f(x,p) =0; xeQ;peR?
flx,p)=0; (x,p)eZ".

Nevertheless we get

Theorem 2. We always assume (12) and (13). Then for any entering data f, that
belongs to L*(X ™), the sequence f, of solutions of

(16) {Otfa(X,p) +0(p).Y, f(x,p) + F(x, p).V, f(x,p) =0; xeQ; peR?
£, p) =folx,p); (x,p)eZ”.

converges a.e. towards the minimal solution f in L*(Q x R*) of the stationary Vlasov
problem

(17) {U(P)Zf(x,P)"'F(X,P)Z,f(X,p) =0; XEQ;pe[R3
JGp) =fox,p); (x,p)eZ”

A solution f of (17) is minimal if for any solutions g of (17) the inequality |g| < | f|
implies that g = f. First we establish a lemma which will be useful in the sequel.
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Lemma 1. Let f, be a sequence such that
{v(p)-Kf,,(x,p) + F,(x,p).V, f,(x,p) = S,(x,p); xeQ;peR’
JFux,p) = fo(x,p); (x,p)eZ”.
We assume that
F, - Fin L. (2 x R?);
S, = Sin L, (Q x R®) weak (or weak * if p=0);
f, = fin L*(2 x R?) weak *.
Then the function f is a solution of

(18) {”(P)Kf(xsp)+F(X,P)Zf(xap)zs(x,P), XEQQPGHQ?'
f(x,p) =fo(x,p); (x,p)eZ”.

Proof of lemma 1. Let us introduce a weak formulation of the Vlasov problem (18).
We define

V= {0e C5(R®); 0,5 = 0}.
A function f is a weak solution of (18) if and only if

19) { for any function 6 in V
— | f.V,0+ F.V0)dxdp= [ SOdxdp+ [ v.vf,0dy(x)dp.
ki

QxR? QxR?

In the above formulation we have used that F is divergence free with respect to p.
Thus the term F.V f'is equal to V,.(fF). This allows to pass to the limit in the
nonlinear term F,.¥, f,. Using this formulation the lemma is now obvious. O

Proof of theorem 2. By treating separately the sequence f;} =3(|f,|+f,) and
fe =3(f,| —f,) we may assume that f, is non negative. Then the maximum
principle implies

0 </ <l foll=ez)-
Let g = f, — f;, this function satisfies
ag+v.g+FVg=B—0)f; xecQpeR’
{ g:=0.

Therefore g has the sign of f — a because f; is non negative. It follows that the
sequence f, is non increasing. Thus we get

Jo = f=38up,s>q f, a.e. 0 < f<|folle=zy-

By lemma 1, f is a solution of (17). Now let g be an other solution of (17).
A regularization procedure shows that the function g* also satisfies (17) since f, is
non negative. We put = g* —f,, we get
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{ ah+v.V.h+FVh=og"; xeQ; peR?
hs=0.
Thus the function /4 is non negative and we obtain
0<f=supsof,<g"
which concludes. O
Remark. The notion of minimal solutions is not very useful in the sequel. Indeed we

are unable to prove a stability result of minimal solutions under perturbations of the
force field.

Upper solutions. The maximum principle for the Vlasov equation allows to obtain
L estimates. If f, is a solution of (14) we get

1
”f:z”L”(QxIR’) < “fo”un(z*) + & ”S"L”(Dxn?’)'

But it is not sufficient to bound the concentration and the flux related to the
distribution f. Therefore we have to introduce upper solutions that are rapidly
decreasing for high momentums. The derivation of explicit solutions of the Vlasov
equation is closely related to the existence of invariants of the trajectories (see [2]).
We only use the energy invariant.

Proposition 2. Under the hypothesis (12) and (13), if moreover we assume that the
velocity field satisfies (3) for some energy ¢, the function g(x, p) = G(e(p) + q¢ (x))
satisfies

v.Vg+FVg=0;, xeQ;peR?

for any non negative function G in C*(R). It follows that for any entering data f, that
verifies

0<fo<g (x,p)eZ”
the solution f, of the Vlasov problem (16) with an absorption term is estimated by
(20) 0<f,<g xeQ;pelR.
Proof. A computation gives
v.V.g+FVg=(.qV¢+q(=V.¢+vAB)Ve)G (+qd).
Using (3) we get
v.V,g+FVg=@wAB)vG(e+qp)=0.

The conclusion of the proposition follows from the maximum principle. 0O



Boundary value problems 507

Remark. The result is false for the Vlasov problem (17) since we have no more
uniqueness of the solutions. But it follows from theorem 2 that the minimal solutions
also satisfies (20). However in the following sections we only use upper solutions for
the perturbed Vlasov problem (16).

The assumption of regularity on the force field F (13) is very restrictive. As it has
been remarked by Diperna and Lions in [8], only very weak assumptions on the
convetive field are needed to obtain solutions for hyperbolic equations of first order.
But, then, there is no more result of uniqueness. This last question is closely related to
the existence of characteristics (see [8]). Although this result will not be needed in the

sequel, we end this paragraph with the corresponding result for the stationary Vlasov
problem.

Theorem 3. We assume that the velocity field satisfies (13) and that the force field
verifies

Fe LL.(Q x R3).

Then for any function f,, in L*(X7), there is at least one solution f which belongs to
L*(2 x R?) of the boundary value problem for the Vlasov equation (17).

Proof. Let F, be a regularizing sequence of the force field F. The minimal solutions
f, given by theorem 2 are uniformly bounded. We conclude using lemma 1. 0O

3. The Vlasov-Maxwell system

In this section we restrict our attention to the relativistic case. Thus we have
2 2.2. , cp
(21) e(p)=c)lpl*+m*c*; v(p)=Ke(p) = ==
|pl* +m*c
The Vlasov-Maxwell system reads

22)  o(p).Kf(x,p)+ F(x,p).V, f(x,p) = 0; xeQ; pelR?,
@) ~440 = e xeQ
(24) V. A B(x) = poqj(x); ¥%.B(x)=0; xeQ
25) o= ,!,f(x’ p)dp; j(x)= gjv(p)f (x,p)dp; xeQ
@6)  F(x,p) = q(—F,¢(x) +v(p) A BX) xeQ; peR?.

This system is supplemented with the boundary conditions

(27) f(xa p) =f0 (x, P), (x,p)ex”
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(28) P (%) = do(x); x€oQ
29) B(x).v(x) = b(x); xedQ.

Before analyzing the nonlinear problem, we recall some results on the magnetostatic
problem (24), (29).

Lemma 2. Let Q be a smooth open set of R® whose boundary 6Q is locally compact. Let
0Q;,i=1,..., M, be the components of 0Q. Then a function h in (L*(Q))* reads

h=VAu;, ue(L?*Q))?>
if and only if
V.h=0; [h(x).v@dy(x)=0; 1<i<M.

a0,

If these conditions are satisfied, there is a unique solution in (L*(Q))3 of
VAau=h; Vu=0; u.v,;=0.

This solution belongs to (H'(Q))* and we get

“u”H‘(Q) <C@Q) “h”L’(ﬂ)'

For this result we refer to [6]. The regularity of the solution u is demonstrated in
[9, chap. 7, th. 6.1]. The estimate is then a consequence of the closed graph theorem.
We point out that the condition of divergence free is necessarily satisfied by the flux
Jj of a solution of the Vlasov equation. It is a property of mass conservation that is
obtained by integrating (22) with respect to p. On the contrary the conditions

[ i@ v(x)dy(x)=0; 1<i<M

2,

are not generally verified if M > 2. On the other hand, if Q2 is connected, i.e. M =1,
this condition is an obvious consequence of the assumption V.j = 0. Therefore we
assume

(H1) Q is a smooth bounded set of R3. Its boundary dQ is compact and
connected.

Furthermore we impose that the boundary data satisfy
(H2) Forsome C,>0andsomey>3 0<f, <Co(1+]|p»)7"
(H3)  ¢oe H'?(0Q)n L*(09Q)
(H4) beH '?(0Q); aj bdy(x) = <b,1) g = 0.
Q

The main result of this section is
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Theorem 4. Under the hypothesis (H1), ..., (H4), the stationary Vlasov-Maxwell
system (21), ..., (29) has at least one solution (f, ¢, B) which verifies
0<f<Cl+|p|*>)~7 forsomeC>0,
¢e H (Q); Be H(div,curl, Q).

In the theorem above, H(div, curl, Q) denotes the space of functions u such that u,
V A u, V.u belong to L*(Q). First of all we begin with an easy result about the
boundary data.

Lemma 3. Let us suppose that ¢, and b satisfy (H3) and (H4). Then there are two
functions ®, and B, such that

D, e H'(Q)NL*(Q); A4,D,=0; Dyo0 = Po

Bye H(div,curl,Q); V. ABy,=0; V,.By=0; By.vy=>b.

Proof. The existence of @, is obvious. If b satisfies (H4), let  be a solution of the
Neumann problem

)
weH(Q); 4,p=0; a—'f,,m =b.

We immediately verify that B, = Wy has the requested properties. 0O

Sketch of proof of theorem 4. The main idea that has been presented in [13], is to use
a fixed point procedure on the electromagnetic field. Indeed we remark that in view
of (23) and (28) the potential satisfies for any non negative concentration g

(B0) g9 =qP,.

It follows from proposition 2 that we are able to find a non increasing function G for
which we get

B 0= f(x,p) < C(fo, Po) G((p) + qP(x)) < C(fo, Do) G(e(p) + 9Py (x)).

We point out that if we consider repulsive forces, the inequality (30) is reversed. We
have no more a-priori estimate on the distribution f and the mathematical analysis
performed in this paper fails.

Now the stimate (31) allows to obtain uniform bounds on the flux j and the
concentration g. Then we obtain compactness properties for Fin L2. So let us define

the following map

(¢, B) — f, 5 solution of the Vlasov problem — g, 5, j; 5 concentration anf flux of
fo.8 = (¢4, By) solution of Maxwell equations with sources g4 5 and jj 5.

We hope to apply the Schauder fixed point theorem to this map. Unfortunately the
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above map is not well defined since we have no uniqueness for the Vlasov problem.
Therefore we have to introduce a perturbed problem. To recover a uniqueness
property we have to put an absorption term in the Vlasov equation and to regularized
the force field.

Regularization of the force field. For any o > 0, we define a regularized force field F,
in the following way.

F, = E(¢, B) = q(— V.y,(¢) +v(p) A H,(B)).
The modified magnetic field H, is given by
H,(B)=Bx{(,

where {, is a regularizing sequence
1 X oS
L) === ] [lMdx=1; {eCF(R?
o o R3
and where B is the extension of B by zero outside Q.

The regularization of the potential is a little more complicated. Indeed we want to
preserve the a-priori estimate on the distribution (31). Therefore we have to impose
on the modified potential

V€ C(Q); Waao=do; Vs = g%,
for any ¢ such that

PeH (Q); =0 99>qP.
A possible choice is to let
(2)  w=0,+U—ad) (¢ — )

where the operator 4 is considered as an unbounded operator on L?(Q) whose
domain is H?n H}(R). Let us remark that (I — ad)~%(¢ — D,) belongs to H*(Q)
and then to CZ(R). Thus, in order that y, belongs to CZ(£2), we have to assume

(HS5) &,eC(Q).

Then the properties of the above regularization are summarized in the following

Lemma 4. The map F, = F,(¢, B) is continuous from H'(Q) x L*(Q) into C,(Q x R?).
For any potential ¢ such that

peH' (Q); da=do; 99 =qP,.
the modified potential v, = y,(¢) satisfies

VeCE(Q); Voo = dos V. = qP,.
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Furthermore for any sequence (a,, ¢,, B,) such that
(¢,) is uniformly bounded in H*(Q); @00 = ¢o; ¢, = ¢ in H'(Q)
B, —» Bin L*(Q); o, >0
the regularized force field converges and we have
F, (¢ B) > F=q(— V¢ +v(p) A B) in Li, (2 X R%).
Proof. The continuity of F, is obvious. The second point is a consequence of the

definition (32) and of the maximum principle. Let («,, ¢,, B,) a sequence defined as in
the lemma. First we get

H, (B,) = (B,— B) * G+ B x Lo, — Bin L?(R3)
Thus we obtain
v(p) A H, A (B,) = v(p) A Bin L{, (2 X R?).
Next we use that for any u in H>n H!'°(Q) we get
33) (I — ad) ™2 (@)l @) < Cllull gy C independent of .
Indeed if we put v, = (I — a4) ™' (1) we have
140l 120y < 1 Aull 12 (q)-

But the norm || 4v||,2q, is equivalent to the norm |[v]|,2(q, in the space H> n Hy ().
Therefore for some constant C independent of « we obtain

”va”m(m < Cllull o)

Repeating this argument once more leads to (33). From (33) we deduce that y, (¢,)
given by (32) is uniformy bounded in H?(2) since ¢, — @, is uniformly bounded in
H? n H''°(Q). Furthermore it easy to verify that

¥, (¢,) = ¢ in L?(Q).
It follows that we have

¥, (¢n) = ¢ in H'(Q)

which allows to conclude. O

The modified Vlasov-Maxwell system. We introduce the following regularized Vlasov-
Maxwell problem

af +v.V. f+F($,B).Vf=0; xeQ; peR?
(34) ?

f| ==Jo-

~4.9="L0 0()={f(x,p)dp; xeQ
(35) { €o R3

¢|an = ¢o-
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ZAB=u0q(j—fx%°Z¢>; 7.B=0; xeQ
(36) J) = [v(p) f(x, p)dp; xeQ
,R!

B.v,a=0b.
The magnetostatic problem has been modified because the flux of a solution of (34)
is no more divergence free. Instead we obtain
ao+V.j=0.

In view of (35) this equation gives
£ . - &9
—a;Ax¢+ Vj=V\i— 7 g)=0.

showing that j— o %0 V. ¢ is divergence free.

Proposition 3. Let o > 0. Under the hypothesis (H1), ..., (HS), the modified Vlasov-
Maxwell system (34), ..., (36) has at least one solution (f,, ¢,, B,) which satisfies
uniformly with respect to a

(37 0 <f, < C(Co, [Pyl =) A + |PID) 77
¢, is uniformly bounded in H*(Q), B, — B, is uniformly bounded in H' (Q2).

The demonstration of this proposition is given in the following section. We are now
ready to prove theorem 4.

Proof of theorem 4. First le us assume that @, satisfies (HS). The above proposition
gives a solution (f,, ¢,, B,) of the modified problem for any a > 0. In view of the
uniform estimates there is a subsequence o, — 0 and a triple (f; ¢, B) such that

(fu> u> B)) = (1, &s,» B,,) satisfies
f, = fin [°(Q x R?) weak star;
(¢,) is uniformly bounded in H*(Q); ¢n00= Po; ¢, = ¢ in H'(Q);
B, > Bin L*(Q).
We deduce from lemma 4 that
F, (¢,,B) > F=q(—V.¢ +v(p) A B) in L}, (2 x R?).

Then lemma 1 allows to conclude that f'is a solution of (22), (27). Moreover in view of
(37) and of the condition (H2), y > 3/2, we get
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0,(x) = | f,(x, p)dp — 0(x) = [ f(x, p)dp in L*(Q2) weak star,
R3 RrR?

Jn(x) = _[ v(p) f,(x,p)dp — j(x) = [ v(p) f(x, p)dp in L*(Q) weak star.

R?

Then it is straightforward to pass to the limit in (35) (36) to obtain (25), (26), (28) and
(29). Thus (f, ¢, B)is the desired solution. It remains to get rid of the restriction (H5).
For that we introduce a sequence @, , such that

By, € CE(Q); Po, > Poin H'(Q); || Do,ll-@ < C.

Let (f,, ¢,, B,) the corresponding solutions. We always have
0</,<C(Co, CHU+]PI)T.

Therefore g, and j, are uniformly bounded in L*(2) and for a subsequence
[, = fin [*(Q x R3) weak star
0, = ¢ in [*(Q) weak star, j, — jin [*(Q) weak star

From lemma 2 and 3 we deduce

¢, — Do, is uniformly bounded in H*(Q);
B,— B, is uniformly bounded in H'(Q).

Hence we obtain for a subsequence
¢, > ¢ in H'(Q); B, » Bin L*(Q).

The limits ¢ and B are solutions of the Maxwell problem. Moreover we get
F,=q(=Vd,+v(p) A B) > F=q(—F¢+v(p) A B) in L (2 x R?).

Thus we apply lemma 1 to pass to the limit in the Vlasov problem. O

4. Existence for the modified Vlasov-Maxwell system

The aim of this paragraph is to demonstrate proposition 3. The ideas have been
presented in the sketch of the proof of theorem 4 of the previous section.

Definition of a map on the electromagnetic field. First let us define

E={(¢,B)e H'(Q) X L*(Q); 0= do; 99 =qPo}.

—

It is straightforward to verify that EZ is a nonempty convex closed set of
H'(Q) x L*(Q). For a pair (¢, B) in £ we denote by f,, the unique solution of the
modified Vlasov problem (34) (see proposition 1). Then we put

Q¢‘B(x) = _[f(»,s(xa p)dp; j¢,a(x) = Iv(p)f¢,3(x,P)dP-

R
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Let(¢,, B,) be the solution of (35) and (36) with the corresponding concentration and
flux. The map I is defined by I'(¢, B) = (¢,, B,)-

Proposition 4. The map I' is a continuous and compact map from E into itself for the
topology of H'(Q) x L*(Q).

A consequence of the above proposition and of the Schauder fixed point theorem is
the existence of a solution for the modified Vlasov-Maxwell system. First we establish

Lemma 5. For any (¢, B) in E, the solution f, ; of (34) satisfies
0 Sfd:.B < C(Cy, ”(DO”L"’(Q)) (= |P|2)—y-

Proof. We use upper solutions of the Vlasov equation given by proposition 2. We
point out that in view of (21)

clpl < e(p) < mc*+c|pl.
We denote C; = ||g® || ~q), then it follows from lemma 4
(38)  &(p)+qu(x) =e(p) + qdo(x) < c|p|+mc*+C,; onX
(39 e(P+av(x) = e(p)+qPo(x) = c|p| — Cy; on Q x R,

We choose a function G as follows
1 =
G()=C, <1+?(t—mc2—Cl)2> i t>mc?+ Cy

G(t) = Cy; t<mc*+C,.

The function G is C! and non increasing. We put g(x, p) = G(¢(p) + qy, (x)). Since
G is non increasing we deduce from (38)

gx,p)=>G(clpl| +mc* +C) =Co(1+|p|*»7; onZ.
With (H2), it gives
0<f,<g onZX .
Hence proposition 2 leads to
0<f,5<g onQxR3
Using (39), we obtain
0</f,3<g<Glclp|—Cy) < C(Cyp,C)U+1p»)77; on QxR
which concludes. O

Proof of proposition 4. The proof is divided in two steps. First we show that I is well
defined and compact. The second step is devoted to the proof of continuity.
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Compactness. It follows from lemma 4 that for any (¢, B) in E, the concentration
04.5 and the flux j, ; satisfy

0<045=<Cy; |f¢.B| <C,

for some constant C, that depends only on C, and C,. Then the solution of

—am="Lo,, neH}®)

0

is uniformly bounded in H?(Q) and satisfies gy > 0. Therefore the function
¢, = D, + 1 lies in a bounded set of H? (L) that is a compact set of H' (Q), by the
Rellich theorem. It satisfies

¢1|aa =¢o; 9P, =qP,.

The function jj; , — « %0 V.¢, is in a bounded set of L?() and verifies

. € .
Z-(].p,x_ o ;0 Zd)l) =V Jppt @04 5= 0.

The last equality is obtained by integrating (34) with respect to p. We apply lemma
2 to show that the solution D of

A D=u0q<j¢'8—a%° Zd)l); ..D=0; D.v;=0

belongs to a bounded set of H' (). Therefore B, = B, + D belongs to a compact set
of L?(Q). Thus we have proved that (¢,, B,) lies in a compact subset of Z. O
Continuity. Let (¢,, B,) be a sequence in = such that

¢, — ¢ in H'(Q); B, » Bin L*(Q).

Lemma 4 implies that the force field F,(¢,, B,) converges in Ci (2 x R?) towards
F,(¢, B). Then we deduce from lemma 1 that for any subsequence f, = f; , which
converges in L(Q x R?) weak star the limit is f;, ;. Hence a consequence of lemma 5 is

Ju = fo5in L2(2 X R3) weak star;
Qn N QdJ.B ln LZ (Q) Weak; j,, - j¢‘5 in L2 (Q) Weak.

Since the sequence I'(¢,,B,) = (¢, ,,B, ;) belongs to a copmpact set of
H'(Q) x L?(R), the last convergences show that

($n.15B1) = (¢, B) in H'( @)X L*(Q). O

Proof of proposition 3. Proposition 4 and lemma 5 establish the existence of a solution
(/% ¢,, B,) which satisfy (37). Furthermore we deduce from the proof of the com-
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pactness of I that ¢, belongs to a bounded set of H?(Q) and that B, — B, belongs to
a bounded set of H'(2). O

5. Other kinetic models

First let us point out that without any change the preceeding proofs provide solu-
tions to the Vlasov-Maxwell system for classical mechanics and to Vlasov-Poisson
equations for classical or relativistic mechanics. The condition (H2) about the decay
of the entering data becomes y > 2 in the first case and is always y > 3/2 in the others.
It allows to estimate the concentration and the flux of the solutions of the Vlasov
equation. Now we analyze models for which slight changes in the proofs of section 2,
3 and 4 also give existence results.

Models with several species of particles. The Vlasov-Poisson equations for several
species of particles in classical mechanics read

my

vV fi— % VoV £=0;, xeQ,veR3s=1,...,8
(40) {
fx|£'=f0,sfs=1,...,S

s=1

S

—4,¢ = l<N+ Y qses); 0,(x) = [ fi(x,v)dv; xeQ

41) { . fo R
o2 = Po-

Above, g, and m_ are the elementary charge and the mass of particles of the species s.
The function N = N(x) is a fixed background charge concentration. It accounts for
steady heavy ions in a plasma or for the doping profile in a semiconductor.

We always assume that Q is a smooth domain of R3 and

(42) 0<fo,<Co(I1+[v)7" s=1,...,8; y>3/2

(43) o€ H'?(0Q2) N L*(09Q)

(44) NeL*(Q).

Theorem 5. If the conditions (42), (43) and (44) are satisfied, the Vlasov-Poisson

system with S species of particles (40), (41) has at least one solution (¢, (f)s=1.....s)
that verify

O0<f<C+vP)7 s=1,...,S,
¢ e H' Q)N L(Q).
The following analysis of the Vlasov-Poisson equations is easily extended to Vlasov-

Maxwell systems and to relativistic mechanics. The proof of the corresponding
theorems are left to the reader.
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Proof. The only difference with the previous sections is the derivation of the uniform
estimate on the potential. Then we only detail this point. Let us define
GO =0+ fort>0; G@{t)=1fort<0

m,v?

g&(x,v) = C,G ( 4 qsdJ(x))-

The constants C, that depend only on ¢, and C,, ,, are chosen such that
g2 Co (1 +0)7"2f,; onZ™.

Then the functions f; are estimated by

(45) 0<f,<g; onQxR.

We assume that the charges g, are positive for s =1, ..., P, and negative for
s=P+1,...,S. We introduce

m,v?
n@)=4.C.| 67 +a.6)dv.
’R)
Since G is non increasing, the charge concentration n, is a non decreasing function

with respect to ¢. It is positive for s =1, ..., P, and negative for s= P+ 1, ..., S.
Therefore we deduce from (41) and (45) that

1 s 1 s
- <N+ y ns(qﬁ)) <-40<— (N+;ns(¢)>

(46) €o P+1
¢|an = o-
Let us introduce the two solutions 6, and 6, of the problems
1

—4,0, = ! (N—l— i ns(91)> —4,0,=— (N-i- ins(92)>

& P+1 &o

Ouan = ¢0- 92|an = d)o
Since the function n, are non increasing these problems have unique solutions. It
follows from (43) and (44) that they belong to H'(Q) n L*(Q).
Lemma 6. Let ¢ be a function of H'(Q) which satisfies (46) then 0, < ¢ < 0,.

Let us suppose this lemma. It provides an a-priori estimate on the potential ¢ in
H'(Q)n [*(Q). It leads with (45) to an a-priori estimate on the distributions f,. Now
the proof of theorem 5 can be carried out as in section 3 and 4 except that the convex
Z of section 4 has to be replaced by

E= {¢EH1(Q)§ B0 = Pos 0,<¢p<0,}. O

Proof of lemma 6. We use the Stampacchia method. Let H be a C* function such that
H(t)= fort<0; H@)>0fort>0; 0<H () <M<o0.
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Since the function 6, — ¢ belongs to Hy (L), the function H(0, — ¢) lies in H}(RQ).
We get

VHO,—¢)=H'(0,—¢)V (0, - ¢).

We multiply the inequation

N

4O, — B+ L Y ny($)—n(0,) <0

€0 Pt+1

by H(0, — ¢) snd we integrate over 2. We obtain

J H'0,— )|V, —$)|*dx

S
LY @ -n@nHO, - pax<o.

0 JR2 P+1
The first integral is the integral of a non negative function. For the second one we
have
(n,(¢) —ny(6,)) H(O, — ¢) = 0 for 0, < ¢;
(n(¢) —n,(0,)) H(O, — $) > 0 for 0, > ¢

because n, is non increasing. It follows that both integrals vanish. Hence we get

H@O,—)IVO,—¢)|>=0 ae.
Thus
VHO,—¢)=0 a.e.

We finally deduce that 6, < ¢ a.e. In the same way we obtain ¢ <0,. O

Reflection and Neumann boundary conditions. It is of physical interest to impose
a reflection condition on a part of the boundary for the Vlasov problem and a
Neumann condition for the Poisson equation. The problem reads

m

vV, f— d VoV, f=0;, xeQveR?
(47) {
Szi=tos Rz, = 1is,

0 o

100, = Po.;

—4,¢ = 10; o(x)= [ f(x,v)dv; xeQ
48) & 2

av |oa,
where we define

0R=00,00Q,; X7 ={(x,v)eZ™; xedQ,};
2, ={(x,v)eZ; x€0Q,}.
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The reflection operator R is defined on X by
R(N)(x,0) =f(x, Rv); Rov=0v—20v(x)v(x).

The differences with section 2, 3 and 4 appear in the analysis of the linear Vlasov
problem and in the regularization procedure of the potential. Let us first give a precise
result. We introduce the potential @, solution of

{—AerO:O; xeQ

oD
‘polm, = @.; —6;9“?52 =g.

We assume
(49) @, belongs to H'(Q)n L*(RQ),
(50) 0<fo <Col+|v|)77; y>3)2.
Theorem 6. Under the assumptions (49), (50) the problem (47), (48 ) has at least one
solution (f, ¢) which satisfies
0<f<C+|v|>)77; ¢ belongs to H'(Q); qd > q®,.
The results on the linear Vlasov problem that are needed for the proof of the above

theorem are summarized below.

Proposition 5. Let ¢ a potential in CZ(Q) and f,, an entering data which satisfies

§ 1oy ()11 fo (x, 0) [P dy (x) dv < o0.

5
Then for any o> 0 the problem
{af+v.l§f——r%l§¢.l7;f=0; xeQ;veR?
f|z, = fos R(f)m =f|£l
has a unique solution in L?(Q % R3). Moreover if we get
Jo<gonZy
muv?
2
f<gon QxR

where g(x,v) = G( + qd)(x)) and G is C', the solution f satisfies

Proof of proposition 5. The results of this proposition are well known. But a reference
where a proof is given seems difficult to find. So let us sketch a proof.

Uniqueness. If f is a smooth solution we multiply the Vlasov equation by f | f|?~2
and we integrate over Q x R3. Thus we obtain the estimate
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[ 1frdxdp+ [ oyl |fPdy(x)do <  [0.v]1 fol7dy(x)do.

QxR
As in [1], this estimate is proved for any solution by a density argument. It implies
uniqueness.

Existence and maximum principle. Let f;, be a bounded and compactly supported
entering data. There is a function

2

gx,v)=G (mTU

such that

+ Q¢(X)>; Ge Cy(R),

|fol<g on ZXy.
Let us consider the sequence
7o =0,
af 040 00— Ly g et —0; xeQiveR?
{ fO D =fos fO" V5= RU™)s;.
From proposition 1 we deduce by induction that f™ is uniformly estimated by

[f™<g on QxR3.
N
Then it is just an exercise to verify that a weak limit of A = Y Y. /™ provides
n=1
a solution to our problem. Moreover it follows from this construction that this
solution satisfies the maximum principle. This result is extended to any entering data

by density arguments. O

Now the only difference with sections 3 and 4 is the way to regularize the potential.
The difficulty is that singularities may occur at the interface between Neumann and
Dirichlet conditions. First we assume instead of (HS5) that there exists an open subset
 of dQ, such that int (0Q2,) > w where we denote by int(0,) the interior of 0Q,,
and w x R3 o supp(f,). We assume in addition that @, CZ(). Then there is a
function 6 in CZ(R?) such that

0,=1; int(0Q,)> supp(0,,).
We define the regularized potential y,(¢) by
() = (I —ad) 2 (0(¢ — D)) + 0P, + (1 - 0) (% ()

where (, is a regularizing sequence. We verify easily that we have an analogous of
lemma 4 for this modified potential. O
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Boltzmann-Vlasov-Poisson system. We focus our attention on a Boltzmann-Vlasov-
Poisson system which occurs in semiconductors physics. We refer to [3,12] for some
mathematical results on the time dependent system and for references about the
physical background. The problem reads

vl L g v f—00)=0; xeQveR?
(51) "
f|z-=fo

1

—4,0=—(N—q0); o(x)= | f(x,v)dv; xeQ

(52) €o R
¢|an = d’o-

The charge density N is a known doping profile. The Boltzmann operator Q is a linear

integral operator that models the collisions of the particles (electrons or holes) with
the semiconductor crystal. For a function g = g(x, v), it is given by

(53) Q@ (x,v) = [ s(x,v,w) (M(v) g(x, w) — M(w) g (x, v))dw.

R

The function M is a centered Maxwellian with a fixed temperature

kg T\ ™32 mov?
M(U) = (27'[ %) exp(— m) 5
B

The positive real numbers k5 and T are the Boltzmann constant and the temperature.
The integral kernel s is a non negative measure that satisfies

SE Lw(Q X [Rl?; Mb([R3))s S(x, v, W) = S(xa w, U),

where M, (R?) is the space of bounded measures and the last equality means that for
any continuous functions f and g we get

| s owflx,wdwgx,v)dv= [ [s(x,0,w)g(x, wdwf(x,v)dv.

QxR? R? QxR R?
The collision frequency ¢ is the function of L°(Q2 x R3) defined by

o(x,0) = [ s(x,v, w) M(w)dw.

’PS
Thus an other expression of the operator Q is
Q(g) (x’ U) = M(U) I s(x, v, W)g('xa W)dW - a(x, v)g(x, U)
rRS
= Q+ (g)(x’ U) - og(x, U).

Some properties of the collision operator are summarized below.



522 F. Poupaud

Proposition 6. The operators Q and Q* are continuous operators on L' (Q x R®). The
Maxwellians ¢ M, g € R, belong to the nullspace of Q. For any integrable function f we
get

[ 0N (x,v)dxdv=0.

QxR?

Proof. For a continuous function f; using the symmetry of the kernel we obtain

[ 107N v)ldxdv < [ |07 (1f1)(x,v)|dxdv

QxR? QxR?

= [ a(x,0)|f(xv)|dxdv,

QxR3

||Q+(n"1_'(nxr23) < ||0||L‘(QXFR‘) "f”u(nxne’)-

It proves that Q" and Q can be extended into bounded operators on L!(Q x R?).
The last two properties are obvious in view of (53) and of the symmetry of s. O

About the linear Boltzmann-Vlasov problem we obtain
Proposition 7. Let ¢ a potential in CZ () and f,, an entering data which satisfies
zj~ [v.v(X)| ] fo(x,v)|dy(x)dv < co0.
then for any a > 0 the problem
af+0.hf~ LRGN~ Q) =0; xeQveR
G4 { f[r =fo
has a unique solution in L'(Q x R*). Moreover if for some constant C, we get
59 fo<Co exp(— ki—T(%"— ¥ q¢<x)>>; on 5"

the solution f satisfies
1 [ mv? s
56)  f<Co eXp<— KT(T ; q¢(x)>>, on 0% RS,

Proof. Let us consider the following map 4 on L!(Q x R?)
A(f)=h
(a+o)h+v.Vh—
hu:’ =Jo-

We denote

Vo.V,h=0"(f); xeQ;velR’

RIE)
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A= | (x+0o(x,0)|f(x,0)|dxdv.
QxR

Since « is positive and since g is a nonnegative function of L°( x R*) the norm ||| . |||
is equivalent to the norm of L' (2 x R3). Let 6 = A(f) — A(g). We have

{(a+a)6+v.l§6-—%l§¢.l7y6= 0*"(f—g); xeQvelR?
6“:» — 0.

If 6 is a smooth function, we multiply the equation above by sign () ans we integrate
it over 2 x R3. We obtain

o< § 10" (f—@ldxdv< [ o|(f—g)ldxdv.

QxR3 QxR3

This estimate is easily generalized to any function § by density arguments (see [1]).
Then we obtain

n (PSS .
Molll =MA) =A@ <klllf—gll with k = . 1

Oy = ”o-”L"“(QXIR’)'

Thus the map 4 is a contraction. Since a solution of the Vlasov problem is a fixed
point for 4, we obtain existence and uniqueness. Let f,, be an entering data that
satisfies (55). Let us consider the following sequence

fO=0; fUY = A®).

Since A is a contraction this sequence converges towards the solution f of the Vlasov
problem. We point out that the function

g = Cyexp (— E:‘T (% + q¢(x)>>

satisfies g = 4 (g) because Q(g) = Q" (g) — ag = 0 (proposition 6). Let us suppose
that /™ < g, then we get

{m+aw+vn5—%z¢na=Qwﬂ”—gso;eruew
5|£’ =fo—8<0

with § = f®*1 — g Tt follows 6 < 0, /™" < g. It remains to pass to the limit to
obtain the desired estimate (56). O

Thanks to the above proposition, the techniques of section 3 and 4 leads to

Theorem 7. Let us assume

2
bo€ H?(0Q)nL*(0Q); fo< Coexp| — o ); onZ-.
2k, T
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then there is at least one solution (f, ¢) of the Boltzmann-Vlasov- Poisson equation that
satisfies
mov?
deH' (Q)NL*(Q); f<C exp(— —) ; on QxR3.
2k, T

6. Counter-examples and remarks

Let us point out that we have not used the mean regularity results of [7,10]. The
regularizing effects of the stationary Maxwell equations are sufficient to control the
non-linearity that appears in the Vlasov equation (lemma 1). The situation would be
different if the model included a non-linear Boltzmann operator. Then mean
compactness results would be necessary. Such a problem arises in the kinetic theory
of semiconductors. The Cauchy problem in a free space has been studied in [12]. In
a forthcoming paper we will also give an analysis of boundary problems for the
stationary equations. Although in the previous sections, the results of [7] are not
necessary in the proof of existence, they provide some indications on the regularity of
the solutions. Indeed for a solution that has a compact support with respect to
velocities (it is the case if the entering data is compactly supported) the corresponding
concentration belongs to HL/# () [7, theorem 3]. It follows that the potential belongs
to HEI1V4(Q).

We now focus our attention on the question of uniqueness of solutions. We give
two counter-examples. They are based on the idea to trap particles with a potential
created by a background charge density or by an other species. In the following
examples, the solutions of the Vlasov equation depend only on |v|?. It follows that
a magnetic field has no effect on these distributions. Thus, the following multiple
solutions of the Vlasov-Poisson equations give also multiple solutions for the
Vlasov-Maxwell systems.

Example 2. Particles trapped by a background charge density. In dimensionless
variables, the Vlasov-Poisson problem that we deal with reads

{U-Kf— VN, =0
Siz-=0

{ —4,9=0—N; o= | fav
¢|an =0. 8

Let F be a smooth function such that

(57) F(t)=0fort>0;, F()>0for¢<0.

We let n, be an arbitrary positive real number, n, > 0. We define yp by

—A,w=—ny; Y=0.
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We let the background charge density N be equal to

N(x) = J‘ F(lp(x)+ %) dv+n,

and finally we define @, by

—A4,P95=—N; Dy0=0.
The two solution of the Vlasov-Poisson problem are (f=0,¢ = ®,) and
<f =F <1p (x) + 0—22) , = 1p>. The function F <1p(x) + g) is not vanishing since

the function vy is negative on Q.

Example 3. Particles trapped by an other species. A Vlasov-Poisson system for two
species reads

{U'Zfl_Vx¢‘val=0 {U.Zfz+‘§¢-‘7ufz=0

v
fux =0

2
foz- = @a)=2 exp(— 5)
{ —4,¢=0,—0,; 0; = ff.-dv
¢|m =0. :
Let @, be the solution of
—A4, Py =—exp(Py); Py0=0.

One solution of the problem is given by

<f1 =0, f, = (2n) 2 exp <<P0(x) - %)s ¢ = (po)-

Let F be a smooth non increasing function that satisfies (57). We put

2
0r(¢) = f}F(% +¢> do.

The function g is non increasing with respect to ¢. Therefore there is a unique
solution ¢, of the non-linear elliptic problem

—A4,¢ =—exp(@) + 0p(9); ¢|an =0.

The potential ¢ is not equal to . Otherwise we get ¢ (®,) = 0 which is impossible
since @, is negative on Q. Indeed in view of (57) we get g(¢) > 0 for ¢ > 0. Thus
a family of solutions is given by

(fl - F(% - ¢F>, fr=02m) 7 exp <¢p— %) ¢ = ¢p>~
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For Vlasov-Poisson systems with only positive (or negative) charges we are not able
to give such counter-examples. In [11], multiple solutions are described when the
entering data is a Dirac distribution. We think that even for smooth entering data
multiple solutions may occur. Indeed let us consider the following situation

{U-Zf—Z¢-i7uf=0 {—Ax¢=e;e=§fdv
fie = F&?) bae0. ¥

Then if @ is a solution of

—A4, P =n(®); D,,=0; n(¢)=J F<%2+¢>dv.

2
<f= F(% + <I>> , 0= (D) is a solution of the Vlasov-Poisson system. But if F is

chosen in order that the function n is not non-decreasing, the above non-linear elliptic
problem may have several solutions.

As a consequence of the non-uniqueness of solutions, these solutions do not
necessary have the same symmetries as the data. However, working with symmetric
functions, the techniques presented in this paper provide symmetric solutions. Such
a result is derived in [4].
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