

Werk

Titel: Aufgaben.

Jahr: 1968

PURL: https://resolver.sub.uni-goettingen.de/purl?378850199_0023|log29

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

Aufgaben 91

Aufgaben

Aufgabe 552. In einem Simplex des R_n werden zwei Punkte beliebig so gewählt, dass keiner von ihnen auf einem (n-1)-dimensionalen Grenzraum liegt. Man zeige, dass die Fusspunkte der «Ecktransversalen» durch die beiden Punkte auf den Simplexkanten auf einer n-dimensionalen Quadrik liegen.

Bemerkung. Unter dem Fusspunkt P_{ij} der «Ecktransversalen» durch den beliebigen Punkt P auf der Kante A_i A_j versteht man den Schnittpunkt der Geraden A_i A_j mit dem (n-1)-dimensionalen Unterraum, gebildet durch die Punkte

Lösung des Aufgabenstellers: Es ist bekannt und lässt sich leicht einsehen, dass im n-dimensionalen Raum A=n (n+3)/2=2 $n+\binom{n}{2}$ Punkte eindeutig eine n-dimensionale Quadrik bestimmen, falls höchstens k (k+3)/2 (k< n) Punkte in einem k-dimensionalen Unterraum liegen.

Seien P und Q die gegebenen Punkte, P_{ij} bzw. Q_{ij} ihre Fusspunkte auf der Kante $A_i A_j$, wenn man die Simplexspitze mit $A_i (i=1,\ldots,n+1)$ bezeichnet. Die Anzahl B=(n+1) n der Fusspunkte ist gleich der doppelten Kantenanzahl. Offenbar ist A < B, falls n > 1 ist.

Betrachten wir jetzt sämtliche Fusspunkte der Ecktransversalen durch P, P_{ij} $(i, j = 1, \ldots, n + 1; i \neq j)$, deren Anzahl $a = \binom{n+1}{2}$ ist. Nehmen wir dazu von den Fusspunkten der Ecktransversalen durch Q diejenigen, die auf jenen Kanten liegen, deren Endpunkt A_k ist, also die Fusspunkte Q_{ki} $(i = 1, \ldots, k - 1, k + 1, \ldots, n + 1)$; ihre Anzahl ist a' = n. Aus a + a' = A folgt, dass die ausgewählten Fusspunkte eine n-dimensionale Quadrik bestimmen.

Wir beweisen, dass ein beliebiger Fusspunkt Q_{ij} $(i,j=1,\ldots,k-1,k+1,\ldots,n+1;i\neq j)$ – welcher bei der Bestimmung der Quadrik nicht vorkam –, auch zur Quadrik gehört.

Die Ebene A_i A_j A_k schneidet die Quadrik in einem Kegelschnitt. Dieser Kegelschnitt ist durch die Fusspunkte P_{ij} ; P_{ik} ; P_{jk} Q_{ik} Q_{jk} bestimmt. Laut Aufgabe Nr. 530 (El. Math. 22, 89 (1967)) ist aber auch Q_{ij} ein Punkt dieses Kegelschnittes und damit auch ein Punkt der Quadrik, q.e.d.

Aufgabe 553. k étant un nombre naturel donné, appelons P_k le problème suivant: Existe-t-il des nombres triangulaires > 0 qui sont sommes de k nombres triangulaires consécutifs > 0?

Examiner pour quels entiers k, tels que $2 \le k \le 10$, le problème P_k n'a pas de solutions, pour quels k il admet un nombre fini > 0 de solutions, et pour quels k il a une infinité de solutions.

W. Sierpiński, Varsovie

Lösung: P_k bedeutet: Gibt es zu festem natürlichem $k \ge 2$ Paare (m, n) natürlicher Zahlen derart, dass

$$t_m = t_n + \dots + t_{n+k-1}$$
 mit $t_a = \frac{a(a+1)}{2}$ (1)

für alle natürlichen a gilt? Aus der Forderung (1) wird somit die Diophantische Gleichung

$$(2 m + 1)^2 - k (2 n + k)^2 = \frac{1}{3} (k - 1) (k^2 + k - 3) = r(k)$$
 (2)

oder in etwas anderer Bezeichnung $u^2 - k \; v^2 = r(k) \; . \label{eq:energy}$

$$u^2 - k v^2 = r(k) . \tag{2'}$$

Ist k=2, 3, 5, 7, 8, 10, so hat P_k jeweils unendlich viele Lösungen. Denn für k=2 reduziert sich (2') auf die Pellsche Gleichung u^2-2 $v^2=1$. Für k=3, 5, 7, 8, 10 entnehmen wir untenstehender Tabelle je eine Lösung (u, v) von (2'), aus der man mit Hilfe der unendlich vielen Lösungen der zugehörigen Pellschen Gleichung x^2-k $y^2=1$ je unendlich

92 Aufgaben

viele Lösungen gewinnen kann. Für k=6 wird aus (2'): u^2-6 $v^2=65$, woraus $u \neq 3$ (mod 6) folgt. Da u aber ungerade sein muss, folgt $u \equiv \pm 1 \pmod{6}$ und also $u^2 - 6 v^2 \equiv 1$ (mod 6), während 65 $\equiv -1 \pmod{6}$, so dass (2') für k = 6 keine Lösung besitzt. Bleiben die beiden Quadratzahlen k=4, 9. Für k=4 wird aus (2'): (u+2v) (u-2v)=17, was nur geht, wenn u+2v=17, u-2v=1, woraus folgt v=2n+4, d.h. n=0, so dass wir für k = 4 wieder keine Lösung bekommen. Für k = 9 wird aus (2'): (u + 3v) (u - 3v)= 232. Da beide Faktoren links gerade sein müssen, kommen nur u + 3v = 116, u - 3v= 2 bzw. u + 3v = 58, u - 3v = 4 in Frage, wo der zweite Fall wie vorher auf n = 0führt und somit ausfällt; der erste führt auf u = 59, v = 19, d.h. m = 29, n = 5, was tatsächlich die einzige existierende Lösung von $P_{\mathfrak{g}}$ liefert.

\boldsymbol{k}	3	4	5	6	7	8	9	10
r(k)	6	17	36	65	106	161	232	321
u ′	3	-	9	_	13	13	59	19
v	1	-	3	-	3	1	19	2

P. Bundschuh, Freiburg-Littenweiler

Eine weitere Lösung sandte G. Wulczyn, Bucknell University, USA.

Aufgabe 554. Démontrer qu'il existe une infinité de nombres naturels k pour lesquels le problème P_k (voir n° 553) n'a pas de solutions, et une infinité de nombres k pour lesquels P_k a une infinité de solutions. W. Sierpiński, Varsovie

Lösung (nach A. Schinzel, Warschau): Wir verwenden die Bezeichnungen und Formeln der Lösung zu Aufgabe 553.

- a) P_k hat für k=9 t+6 (t=0,1,2,...) keine Lösung. In der Tat ist für diese k $r_k\equiv 2$ (mod 3) und aus (2) ergibt sich nun die unmögliche Kongruenz (2 m+1)² $\equiv 2 \pmod{3}$.

b)
$$P_k$$
 hat für $k=3$ t^2-1 stets eine Lösung, da (2) die Lösung $n_0=\frac{t-3}{2}$, $m_0=\frac{t(3}{2})$

besitzt. Andererseits ist $k \equiv 2$ oder 3 (mod 4), also nie ein Quadrat, so dass $x^2 - k y^2 = 1$ unendlich viele Lösungen hat. Die Zahlen $x + k^2 y - 1$ und k x + y - k sind gerade. Setzt

$$n = x n_0 + y m_0 + \frac{k x + y - k}{2}$$
, $m = k y n_0 + x m_0 + \frac{x + k^2 y - 1}{2}$,

so ergeben sich unendlich viele ganzzahlige Lösungen von (2) für jedes k=3 t^2-1 .

Weitere Lösungen sandten E. Teuffel (Korntal/Stuttgart) und G. Wulczyn (Bucknell University, USA).

Aufgabe 555. Aus neun Punkten A, B, C, A₁, B₁, C₁, A₂, B₂, C₂ eines Kegelschnitts werden die Dreiecke ABC, $A_1B_1C_1$, $A_2B_2C_2$ und das Dreieck gebildet, das aus den Geraden A_1A_2 , B_1B_2 , C_1C_2 als Seiten besteht. Ist Dreieck ABC zu zweien der anderen W. Schöbe, München Dreiecke perspektiv, so auch zu dem dritten.

1. Lösung (analytisch): Über das Koordinatendreieck sei so verfügt, dass $x_1 x_2 + x_2 x_3$ $+ x_3 x_1 = 0$ die Gleichung des Kegelschnitts K ist und die ersten drei Punkte durch $A(1 \mid 0 \mid 0)$, $B(0 \mid 1 \mid 0)$, $C(0 \mid 0 \mid 1)$ gegeben sind. Die Dreiecke \triangle_1 und \triangle_2 seien perspektiv zum Koordinatendreieck \triangle mit den Zentren $Z_1(u_1 \mid u_2 \mid u_3)$ und $Z_2(v_1 \mid v_2 \mid v_3)$. Eine einfache Rechnung ergibt die Koordinaten der sechs auf K liegenden Ecken von \triangle_1 und \triangle_2 . Die Verbindungsgeraden A_1 A_2 , B_1 B_2 , C_1 C_2 (Seiten von \triangle_3) schneiden die homologen Seiten von \triangle in den Punkten $P(0 \mid u_2 v_2 \mid -u_3 v_3)$, $Q(-u_1 v_1 \mid 0 \mid u_3 v_3)$, $R(u_1 v_1 \mid -u_2 v_2 \mid 0)$. Diese drei Punkte liegen auf der Geraden

$$\frac{x_1}{u_1 v_1} + \frac{x_2}{u_2 v_2} + \frac{x_3}{u_3 v_3} = 0. {1}$$

△ und △3 sind also perspektiv (Umkehrung von «Desargues»).