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Concurrencies and Areas in a Triangle

It is astonishing but true (see e.g., [1]1)) that many elementary results relating to
the triangle are still being discovered. The following note gives a fresh derivation of
some known results, along with simple extensions, some of these being applicable to
various other plane configurations.

We begin with a proof of the generalized DUDENEY-STEINHAUS theorem (see [2]):

In a triangle ABC, transversals?) AX, BY, CZ are drawn from the vertices cutting
the opposite sides at points X, Y, Z dividing these sides internally in the respective ratios
st(1—s),t: (1 —48),u: (1 — u). These transversals meet in pairs at L, M, N (see Fig. 1).
Then

AABC ~ (si+1—f(utl—w@ms+1—s \BC ° ro

ALMN {1 —s)(1 —#) (1 —u) — stu}? (I;)é ’ g/}; ,‘:;_Izg:u)

Figure 1

We put BC=p, BA=gq, LM =a, LN = B Then, AX=sp—gq, BY =
1—-typ+tq, CZ = (1 — ») g — p. Writing ABY = BL—sp—l—yXA we have
AQ-—tp+Atg=sQ-—pwp+prq,

1) Numbers in brackets refer to References, page 55.

2) Other writers refer to these lines through the vertices as cedians, cevians, redians, and nedians; see,
e.g., the references to School Science and Mathematics at the end of this paper.
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whenced (1 —#)=s (1 —pu)andAt=py,sothatA=s/(st+1—1¢), u=st/(st+ 1—1).
From these, and similar, results it follows immediately that

BL s XL st
BY  st+1—1t’ XA~ st+1-—t
cM t YM _ tu )
CZ  tu+l—u’ YB tu+1l—u
AN . u ZN us
AX  us+1-—s’ ZC  us+1—s
so that
Y _ i N BL MY tq+ (1—8p
o= BY (BL+MY)‘{1”BY BY}BY L PR ¥ i g o
where ¢ = (1 —s) (1 — ¢) (1 — #) — s ¢ u; similarly

—sp
B= ¢(st+1—t)(us-|—1—s)'

Thus, asst+ 1 —¢> 0, etc.,

/-'LMN_] ></3 ¢*|{tqa+ (1 —1) p}x{g —sp}| )
A4ABC DX (st+1—8)2@¢u+1—u)(us+1—5s)|pxq|
. {(l—s)(l—t)(l—u)—stu}2 _
Tt 1 - (tut+l—u)(us+1—ys) =fls,t, u)
Among the consequences of the result (2) we may mention the following:
I. Taking s = ¢t = u = 1/3 we obtain the DUDENEY-STEINHAUS theorem:if X, Y, Z
divide the sides of 44 BC, in cyclic order, in the ratio 1:2 then ALMN = (1/7) AABC.

II. Clearly, ALMN = 0 if, and only if, f(s, ¢, ) = 0, i.e.
=51 —t)1—u)=stu, (3)

, say . (2)

(0<s,t u<1). As (3) holds for s == u = 1/2, it follows immediately that the
medians of AABC are concurrent.

III. Taking s =¢= u = 1/2, it follows readily from the relations (1) that the
medians of a triangle divide each other in the ration 2:1. The converse result, that
AX, BY, CZ are the medians of 44 BC if they are concurrent and divide each other
in the ratio 2:1, is moderately difficult to prove by elementary methods; however,
using the relations (1), a simple calculation shows that, in this case, s =t = » = 1/2.

IV.For0<s,t,u<1,
BX CY AZ stu

XC YA ZB ~ (1—-s(1—-9)(1—wu)

As the transversals AX, BY, CZ are concurrent if, and only if, (1 —s) (1 —¢) (1 —u) =
st u, CEVA’s theorem and its converse follow immediately.

V. Some interesting results arise from the case in which the transversals divide
the sides, in cyclic order, in the same ratio. Suppose BX : XC=CY : YA =AZ:ZB=
A:p; then, s=t=u=A4/(A+ u), and

ALMN - (A—p)® @
AABC ~ B AAip+p’
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(It will be clear that the transversals now cut, in cyclic order, in the same ratio.) We
consider AXYZ (the MENELAIC triangle [3]): with the above notation,

XY=(1-s)p+t(g—p), XZ=(1—w)q—sp,
whence

AXYZ | XYxXZ| _ i
A4BC = [pxq] =1=s)A =1 —u) +stu;

Thus, in the case considered,

AXYZ A2 — A p+ u?

AABC — (A + p)? )
and
ALMN _ (22 — p?)? ©)
AXYZ ~ M+ 2pd 4ot

The expressions on the right in (4), (5), (6) are symmetric in 4 and g, so that inter-
change of 1, u leaves the corresponding ratios invariant; it is easily seen that, in
general, the effect of this interchange is not such as to transform the triangles XYZ,
LMN into identical triangles.

VI. It is easily shown that, when one or more of the points X, Y, Z divide the
corresponding sides of triangle 4 BC externally, the ratio of the areas of the triangles
XYZ, ABC is given by

AXYZ
—AZFC—:l(l-—s) I—81—u)+stu].

Accordingly, stu/{(1 —s) (1 —¢) (1 — u)} = — 1 (here, we suppose X, Y, Z do not
coincide with any vertex of 44 BC), if and only if AXYZ = 0; i.e., if, and only if,
X, Y, Z are collinear. Thus we obtain MENELAUS’ theorem and its converse. (For this

case it follows from Pasch’s axiom that at least one of the points X, Y, Z lies outside
AABC.)

X
Figure 2

VII. By expressing A_N, ZTV, M_>Y, CM, etc., in terms of p, ¢ we can similarly
calculate the ratios AANZ: AABC, AANC: AABC, ABXL: ABCY, etc., to-
gether with ratios of areas of quadrilaterals such as LXCM : ANMY, and so on.
If X, Y, Z divide corresponding sides of triangle 4BC in the same ratio, then
AANZ = ABLX = ACMY, and the quadrilaterals LXCM, MYAN, NZBL are of
equal area.

VIIL. If AX, BY, CZ are the interior bisectors of the corresponding angles of the
triangle 4 BC, then, with a common notation (BC = a, etc.), we have s/(1 — s) = ¢/,
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t/(1 —t) = afe, u/(1 — u) = bja, whence (1 —s) (1 —¢) (1 — u) = stu; accordingly,
these interior bisectors meet at a point I (the incentre). More generally, if AX, BY,
CZ meet at an interior point J, then by (1)

al . " L. SRS SN ' N S

JX  (Q-u(@l-s’ JY (t=s)(1=0" JZ =01 —-wu’
and stu=(1—35s) (1 —¢) (1 — u), so that

A] B] €] _ 1 .
TX JY JZ " stu’

in particular, if J is the incentre I of triangle A BC, then we obtain

AI BI CI _ (a+b) (b+c¢)(c+a)
IX 1Y 1z abce ’

It will be clear that a similar result can be obtained for the case in which [ lies at the
centre of an escribed circle.

IX. If AX, BY, CZ are the altitudes of triangle A BC then

s __ ccosB t B a_cosC w_ bcosA (7)

1—s becosC 1—t c¢cosd 1—u acosB

so that we again have stu = (1 —s) (1 —¢) (1 — u); this establishes concurrency
of the altitudes. From this result and the result obtained in V we see that the area of
the pedal triangle XYZ is given by

AXYZ
A4A4ABC

hence, by (7), AXYZ = 2| cosA cosB cosC | AABC.

X. Now let Y, Z divide CA, A B in the respective ratios p:q and q:p. As p/q varies,
the locus of the intersection of BY, CZ is the median through A. This result follows
immediately from CEvaA’s theorem.

XI. Let a, b, ¢ denote the lengths of the sides of triangle A BC and let m,, m,, m,q
denote the lengths of the transversals AX, BY, CZ. Put y = (m2 + m2 + mZ)[(a® +
b2 + ¢2). It is well known that, if AX, BY, CZ are medians, then

v=7. ®)

More generally, if X, Y, Z divide BC, CA, AB in the same ratio p/g (0 < p/g < o0),
it is easily shown that

=|(1=s)Q1—)Q—u)+stu|=2|stu];

_ P tPa+ )
Lo <l

For 0 < p/g < oo, inf(y) = 3/4, the infimum being attained for p = ¢ (i.e. for the
case in which AX, BY, CZ are medians).
Now suppose X, Y, Z divide the sides of triangle ABC in the respective ratios
s/(1 —s), ¢/(1 — ¢t), #/(1 — u). We can readily show that
mAmitmi=a (P 1ltu—s—)+PFE+1+s—1t—u)

+ U+ 1+t—u—s);
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and from this it follows that, for — co <5, ¢, # < + o0,

. 1 2 __ p2)2 b2 — (c2)2 2 __ g2)2
mf(w)=%— B - {(a - L azc) 4 K bza)} )

this infimum being attained for

ccosB acosC bcosd
—_— = _—, u = p

(This last result is immediate when we note that y attains its least value when AX,
BY, CZ are altitudes of triangle ABC.)

Restricting 0 <s,?#, # <1, i.e. all transversals internal, we have
Theorem 1. If m,, my, my are the lengths of transversals drawn from the vertices
A, B, C of an acute-angled triangle, to the opposite sides of lengths a, b and ¢ and if

_ mi + mj +mj
Fr ot

then 1/2 << Min {p} < 3/4, the upper bound being attained in an equilateral triangle.
Proof:

Figure 3

If all angles 4, B,C <90° set a >b >c. Therefore 90° >4 > B > C and
A > B > 45°, m,, m,, my are altitudes.

2 2 2 2 __ A2 2
my=a —cy, mg = b" — ¢,
therefore
2 2 2 2 2
2my = a* + b* — (cf + ¢3)

but 2> 2+ ¢2 and 2m > a®+ b* —c*.
. c
m,:csmA}V%, alsom1>7/5_-
therefore
2mE 4+ 2md +2mi>a*+ 0P+,
thus
5 1
Min {y} > 5.

Min {y} may be made to differ from 1/2 by as little as we please as may be seen in an
acute-angled isosceles triangle whose base is arbitrarily small.
Again, from (9) we see that Min {y} 3} 3/4 and if 2 = b = ¢, Min {y} = 3/4.
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Theorem 2. With the previous notation, if ABC is an acute-angled triangle,

1 < Max {p} < 3/2.
Proof:

Figure 4

Let a > b > ¢, normalize side a to unity, thus 1 > b > ¢. Then
1

m1<b; my <1, my <1,

and
2+ b2 .
<i7ora for fixed b and c.
Assume
2 4 b2 3
1+ b2 + c? = 2

then we have 1 > b2+ 3¢2> b2+ ¢%, but by hypothesis 1 < 42 + ¢2, thus the
contradiction yields

3
Max {y} < .

However, the maximum may differ from 3/2 by as little as we please, as may be seen
in an acute-angled isosceles triangle whose base is arbitrarily small.

Again, keeping b fixed, the denominator of (2 4 52)/(1 + 4% + ¢?) is largest when
¢ = b, thus we require to minimize f(b) = (2 + 5%)/(1 + 2 %) under the restriction
0<b K.

f(b) being a decreasing function has its minimum value at the maximum value
of b, thus f(b)min = 1 and Max {p} > 1 exhibiting equality in an equilateral triangle.
Theorem 3. With the previous notation, if A BC is an obtuse-angled triangle,

1 3+)3
~3*<1,U< 3 o

4

Figure 5
Normalizing a to unity, set 1 > b > ¢ and then
m<b, my<1l, my<1,
and yp < (2 + b%)/(1 + b2 + ¢?) for fixed b and c.
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With centre C and radius b, describe an arc of a circle through vertex 4 cutting
BC at P. Join C and B to A’, any point on the arc AP inside the triangle 4 BC.

In AA’BC angle A’ > angle 4, thus BA’ < BA = ¢ and

2+ b? = 2 4 b
1+ 02+ BA’? 14+ b2+4c2"

Thus we may obtain obtuse-angled triangles A’BC in which the quantity
(2 + ?)/(1 + b% + c?) becomes progressively larger. Sup {(2 + 5%)/(1 + b2 + ¢%)} occurs
forc =1— b, and (2 + 6%)/(1 + 4%+ (1 — b)?) becomes largest for b = ‘/37—— 1. Hence

240 | 34)3
Sup{1+b2+c2}_ 3

and

e 3+31/3 ’

the difference |y — (3 +1/3)/3 | being arbitrarily small in the triangle whose sides
approach 1, /3 — 1, 2 — |/3 respectively.
Again, in AABC
my>c, mg>0b,

and a < b + ¢ (reverting to side BC = a).

Thus
ms + mg + my > b® + %, (10)
Further, a2 << 202 + 2c¢2 as 2 b ¢ < b2 + ¢2, therefore
a2+ b2+ c2 < 3 (% +c?). (11)

From (10) and (11) therefore (m? + mi + m3)/(a® + b* + c*) > 1/3, the difference
| w — 1/3 | being arbitrarily small in an obtuse-triangle whose sides approach a, a,
2 a respectively.

I wish to thank Professors R. L. ForBEs and J. W. REED for many helpful
suggestions. A. S. B. HoLLaND, University of Alberta, Calgary, Canada
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