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BASIC SETS OF BRAUER CHARACTERS OF FINITE
GROUPS OF LIE TYPE, III

MEINOLF GECK

Let G(FFy) be a finite classical group where g is odd and the centre of G is
connected. We show that there exists a set of irreducible characters of G(IF,)
such that the corresponding matrix of scalar products with the characters of
Kawanaka’s generalized Gelfand-Graev representations is square unitriangular.
This uses in an essential way Lusztig’s theory of character sheaves. As an
application we prove that there exists an ordinary basic set of 2-modular Brauer
characters and that the decomposition matrix of the principal 2-block of G(IF,)
has a lower unitriangular shape.

1. INTRODUCTION

1.1. Let G be a connected reductive group over F,, and let £ be a
prime not dividing ¢. Recall that a basic set of Brauer characters is
a set of Brauer characters which is linearly independent and such that
every Brauer character of G(F,) is an integral linear combination of the
elements in that set. We say that a basic set is ordinary if it consists
of the restrictions of ordinary characters of G(F,) to the set of {-regular
elements. The main results of [GH], [G1] assert that ordinary basic sets
always exist provided that £ is good for G and that £ does not divide
the order of the group of components of the centre of G. In [GH] we
already gave examples showing that the situation is different if £ is a
bad prime. In this paper we study the case where G is of classical type
with connected centre and £ = 2, ¢ is odd.

1.2. In Section 2 we will count the number of 2-modular Brauer
characters in the various blocks of G(F,). The proof uses the results of
Broué and Michel [BM] on the block distribution of characters, as well
as Broué’s theory of perfect isometries [Br]. This counting argument
also shows that it is sufficient to consider the problem of existence of
basic sets for the unipotent blocks B; only. In this case, it yields that the
number of irreducible Brauer characters equals the number of unipotent
classes of G(F,). With each unipotent class in G(F,) we associate a
character of a projective representation, namely Kawanaka’s generalized
Gelfand-Graev representation (GGGR for short). In Theorem 2.5 and
the remarks following it, we state our main result concerning the scalar
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products of ordinary characters in B; with the characters of the GGGR’s.
This also yields the desired results about basic sets and the triangular
shape of the decomposition matrix.

1.3. In [L6] Lusztig has expressed the character of a GGGR in terms of
intersection cohomology complexes of closures of unipotent classes with
coeflicients in various local systems. In Section 3, we collect those results
that we shall need. On the other hand, in [L3] the values of ordinary
characters of G(F,) at unipotent elements are expressed in terms of
characteristic functions of character sheaves. (More generally, such an
expression of the character values on any element of G(F,), up to scalar
multiple, is established by Shoji [S2], [S3].) This provides us with a
method of computing scalar products between ordinary characters and
characters of GGGR’s. The next step then is to relate the ordinary
characters of G(F,) with the unipotent classes of G. This will be done,
in Section 4, in terms of Lusztig’s map from the set of special classes
in the ”dual” group to the set of unipotent classes in G. Finally, in
Section 5, the main results can be proved.

We hope to be able to provide the analogous information for the ex-
ceptional groups by explicitly computing the necessary character values,
in the framework of CHEVIE [Chv]. (Note that, in this case, there are
several bad primes for each type but there are only finitely many cases
to consider.)

1.4. The results in [L6] on GGGR’s are proved under the assumption
that G is split and that q is a sufficiently large power of a sufficiently large
prime. Therefore, our results are also valid only under this condition. It
is very likely, however, that they remain valid whenever ¢ is a power of
a good prime and with G being split or non-split.

Moreover, we use those properties of character sheaves concerning
their restriction to the unipotent variety of G which are stated in [L1],
(1.6), and for which a full proof is given only for G of type B,.

The methods involved in the proofs of such results are of a quite
different nature than the kind of arguments we use here. Therefore, we
present the applications to questions about Brauer characters etc. here,
taking those results for granted.

1.5. Let us assume that the group G(FF,) has a cuspidal unipotent
character xo. If G(F,) = GU,(g) then, by [GHM], Theorem 6.10, the ¢-
modular reduction of o is an irreducible Brauer character (for any £ not
dividing ¢). In order to prove this, we used Harish-Chandra induction
of GGGR’s and the concept of cuspidal unipotent classes. In [GM], we
show that similar methods also work for the cases considered in this

paper.



GECK 197

1.6. Notations. We always denote by ¢ a prime not dividing the
prime power ¢. If a variety or an algebraic group G is defined over F,
we denote by F the corresponding Frobenius map and by G¥ the set of
fixed points.

By a function on a finite group H we always understand a function
with values in a sufficiently large cyclotomic field contained in Q,, and
we denote by z — Z an automorphism of that field which takes roots of
unity to their inverses. If f, f' are two class functions on H we denote
by

(5. = g 3 F@FE)

z€H

their scalar product. If G is an algebraic group over F, and H = GF
we also write (f, f')¢ instead of (f, f')gr. If H' C H is an H-invariant
subset and f a function on H' we will also regard f as a function on all
of H by letting its values be zero outside H'.

2. COUNTING BRAUER CHARACTERS

2.1. Let G be a connected reductive group over Iy with a connected
centre. Throughout this section, we assume that G has only simple
components of type A,,, B,, C, or D,, and that £ = 2, ¢ is odd. Blocks
and Brauer characters will always be taken with respect to the prime
L=2.

2.2. The distribution of characters into blocks is compatible with
the distribution into geometric conjugacy classes. In order to describe
this, let G* be a group over F, dual to G. For a semisimple element
seG*F let £ (G¥, s) be the corresponding geometric conjugacy class of
characters of G¥ (cf. [BM]). Broué and Michel [BM] have shown that,
given a semisimple element s € G*¥ of order prime to 2, the set

B, :=JE(GF,st),
t

where ¢ runs over the set of 2-elements of G*¥ commuting with s, is
a union of blocks of GF. (These results are valid for any connected
reductive G, and £ any prime.)

We shall denote by m, the number of irreducible Brauer characters
in B,. If necessary, we shall also write B,(G), m,(G) to indicate the un-
derlying group. The blocks contained in B; will be called the unipotent
blocks of G¥.

An and, independently, Cabanes and Enguehard have shown that each
set B, is in fact a single block of GF (see [CE] and the references there).
We will not need this result here.
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2.3. Let L' := Zg-(s) be the centralizer of s in G*. The fact that the
centre of G is connected implies that L' is connected. Since 2 is the only
bad prime for G, it follows that L' is a regular subgroup of G*, that is,
the Levi subgroup of a (not necessarily F-stable) parabolic subgroup of
G* (this is due to Schewe, cf. [GH], Lemma 2.2). In particular, L' has
connected centre and root system with components 4,, B,, C,, or D,.
Let L C G be a Levi subgroup dual to L' and $ be the linear character
of LF dual to s € L*F. By a result of Broué [Br], the map

p > ecerRE(5 p)

defines a perfect isometry between B;(L) and B,(G). In particular, these
two blocks have the same number of irreducible Brauer characters. Thus,
using the notation introduced in (2.2), we have

m,(G) =my(L) where L is dual to Zg-(s).

Furthermore, since restriction to the 2-regular elements commutes with
twisted induction (see [BM], (3.5)) we see that, if B;(L) has an ordinary
basic set of Brauer characters then so does B,(G).

Proposition 2.4. With the assumptions in (2.1), the number m,(G)
equals the number of unipotent classes of GF.

Proof. By induction we may assume that the proposition is true for
all connected reductive groups of dimension strictly smaller than dimG,
defined over F,, with connected centre and root system with components
of type A,., B,,, C, or D,.

(a) Assume that G is simple adjoint having indecomposable root sys-
tem of type A,, B,,, C, or D,,. If it has type A, that is, if G = PGL,,,
then even £ = 2 is a good prime and the result is covered by [GH],
Theorem 5.1. Note that in this case, the unipotent characters give rise
to an ordinary basic set for B,, and their number equals the number of
partitions of n + 1 which also is the number of unipotent classes. (The
result in this case is also contained in [FS], (8A)). So we may assume
that G has type B,, C, or D,,. Let S,: be a set of representatives of the
conjugacy classes of semisimple 2'-elements of G*. For each s € S, let
L' := Zg-(s) and L, C G a regular subgroup dual to L. By (2.3) the
blocks B,(G) and B,(L,) have the same number of modular irreducible
characters.

In our case, G* has centre of order 1, 2, or 4. So, if s # 1 then s is
non-central and, hence, dim L, < dim G. By induction, B;(L,) contains
N, modular irreducible Brauer characters where N, denotes the number
of unipotent classes of L. So, in this case, B,(G) contains N, modular
irreducible characters.
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It is a well-known fact that the total number of irreducible Brauer
characters equals the number of 2-regular classes. Combining this with
the previous fact shows that the number of 2-regular classes of G¥ equals

my(G) + Y N.,

where s runs over the elements in S, \ {1}. Now there is a natural bijec-
tion, s — s*, between G*F- and GF -conjugacy classes of semisimple ele-
ments of odd order, such that there is an isomorphism Zg(s*) = Zg-(s)*,
defined over F,. (This follows by an argument entirely analogous to the
proof of [GH], Proposition 4.2; instead of a single good prime, one con-
siders a set of good primes.) Thus, we conclude that the piece ), N,
in the above sum equals the number of non-unipotent 2-regular classes
of G¥. So we must have that m;(G) equals the number of unipotent
classes of G¥.
(b) Assume that G is semisimple adjoint. Then there are two cases.
If G = G; x G, where both G; and G, are semisimple adjoint, non-
trivial and F-stable, then it is readily checked that the result holds for
G¥ if and only if it holds for GF and Gf. Thus we are done by induction.
If no such factorization exists, then G = G; x ... X G, with simple
adjoint factors G; permuted cyclicly by F. In this case, we have G¥ =
G,"" and the result follows by applying (a) with G;, F™ instead of G, F.
(c) Finally, we consider the general case. If the centre of G is trivial,
then G is semisimple adjoint and we are done by case (b). Otherwise,
let # : G — G,q be the adjoint quotient of G. By induction, we have
that m;(G.q) equals the number of unipotent classes of GF,. Now, the
passage from G¥ to GE, preserves unipotent classes. (Note that G has
connected centre.) Thus, we are done if we can show that m,(G..) =
my(G). Each irreducible Brauer character in B;(G) is a constituent of
the reduction of some unipotent character of G¥ (see [H2], Theorem 2.9).
Since the latter always have the centre in their kernel, the same holds
for the Brauer characters in B;(G). So we have a bijection between the
modular irreducible characters in B;(G) and B;(G,.q). This completes
the proof. O

Theorem 2.5. Recall that G has connected centre, that the simple com-
ponents of G are of type A,, B,, C, or D,, and that { = 2, q is odd.
Assume, moreover, that G satisfies the conditions mentioned in (1.4).

(a) There ezists an ordinary basic set of Brauer characters for GF.
(b) The decomposition matriz of the unipotent blocks of G¥ has a
lower unitriangular shape.

In order to construct an ordinary basic set of Brauer characters for G¥
it will be sufficient, by (2.3), to study the irreducible Brauer charac-
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ters in B;. By Proposition 2.4, their number is precisely the number of
unipotent classes of G¥. With each unipotent class of G¥ there is asso-
ciated a GGGR. Since these are representations induced from unipotent
subgroups, they are projective representations. To proceed, we shall use
the following result whose proof is straightforward and will be omitted

(cf. [H1]).

Lemma 2.6. Let G be a finite group and B a union of p-blocks of G
(for some prime p) which contains precisely m irreducible Brauer char-
acters. Assume that there ezist ordinary characters py,... ,pm tn B and
characters ®,,... ,®,, of projective modules for G such that the matriz
of scalar products
(thj)g’ 1 S 2,.7 S m,

has determinant +1. Then the restrictions of the characters p; to the
p-regular elements of G form a basic set for B. If, moreover, the above
matriz is lower unitriangular, then the decomposition matriz of B has a
lower triangular shape.

We apply this with the characters of the various GGGR’s as the pro-
jective characters ®;, and all we need to do is find suitable ordinary
irreducible characters in B; which satisfy the conditions of Lemma 2.6.
Note that these are statements about the ordinary characters of G¥.

3. ON GENERALIZED GELFAND-GRAEV REPRESENTATIONS

3.1. Let G be a connected reductive group defined over F,. (We do
not assume that the centre of G is connected.) Our aim in this section
is to collect from [L6] some results on GGGR’s in a form convenient for
our purposes. We also restate some of the main results of [loc. cit.] in a
slightly different form. This reformulation is not completely trivial, so
we also include the proofs.

As in [L6], we have to assume that g is a sufficiently large power of a
sufficiently large prime, and that G is split (cf. also (1.4)).

3.2. (Cf. [L2], (24.1), (24.2).) Let I be the set of all pairs (C, £) where
C is a unipotent class of G and £ is an irreducible, G-equivariant local
system on C (given up to isomorphism).

We call C the support of : = (C, &) € I.

For i = (C,€), ¢! = (C',&') we write ¢ < ¢' if C' is contained in the
Zariski closure of C', and ¢ ~ ¢’ if C = C'. We write ¢ < ¢ if ¢ < ¢' but
C # C'. This defines a preorder on I.

The Frobenius map F acts naturally on I. To each pair iz = (C,£) €
I¥, we associate an integer s; as follows (this will be the same as ao
in [L2], (24.1.2)). The set I can be naturally partitioned into blocks
which are permuted by F. With each block, there is associated a Levi
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subgroup L of a parabolic subgroup of G and a "cuspidal pair” for L
(we shall not need to know this precisely.) Now, if < belongs to the block
I, with associated Levi subgroup L we define, as in [L2], (24.1),

s;:= —dimC — dimZ; (where Z = centre of L).
(The use of this number will become clear later on.)

3.3. We denote by G,,; the unipotent variety of G. Let ¢ = (C,€) €
I*, and fix an isomorphism 1 : F*£ — £ which induces maps of finite
order on the stalks at points in C¥. Let Y; be the function on G¥ ;
defined by Y;(z) = Trace(y,&.) for ¢ € CF, and extending by zero
outside C¥ (see [L2], (24.2.2), (24.2.3)). For i,i' € IF let P, ; be the
integer determined by the algorithm described in [L2], (24.4), see also
(24.10). We have P;; = 0 unless ¢ < 7 and 7,7 belong to the same
block; moreover P;; = §;; (Kronecker delta) for ¢ ~ . We define a

function X; on G ; by
= E P,'l,"K'.

irerr
Using the above properties of the numbers P;:; we see that X; = Y;+
linear combination of Y;, with 2’ < 7.
The functions ¥; (¢ € I¥) and X; (i € IF) each form a basis of the
space of GF-invariant functions on GE, ;. For i,i' € I¥ we shall write

/\i,." = (Yi,Yi')c.' and Wi i 1= (Xiin')G~

We then have
Y. PPy
JJ'eIr
(Cf. also [L2], (24.3), (24.4), and note that the values of Y; and X; are
cyclotomic integers, by [L2], (25.6.3), (25.6.4)). The matrix (w;;) is
invertible; its inverse will be denoted by (&; ;).

3.4. Let C be an F-stable unipotent class in G. For any element
u € C we denote by A(u) the group of components of the centralizer of
uin G. Let u,,... ,u4 be representatives of the GF-orbits on C¥. With
each u, there is associated a GGGR which we denote by I',,. (Usually,
we will identify the GGGR with its character.) Now let ¢ = (C,€) € IF,
and Y; the corresponding function on G ; as above. As in [L6], (7.5),
we define

Z_: (1A(ur)l/|A(ur)7])Yi(t )T,

We call this function the twisted GGGR associated with ¢ € I¥. Using
the orthogonality relations between the functions Y; [loc. cit.] we see
that giving the I', is equivalent to giving the T;.
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In order to perform this transformation, we need to know the values
Yi(u, ). For the following discussion, we refer to [S1], (5.1) and Proposi-
tion 5.2. Let us assume that C contains a split element. (This is possible
if G is a classical group, for example.) We then choose notation so that
this is the representative u,. Let 1 = a,,... ,aq be representatives of the
conjugacy classes of A(u;), so that u, is obtained from u; by twisting
with a,. Now there is a bijective correspondence, z — ¢;, between those
elements i € I¥ with support C' and the irreducible characters ¢; of
A(uy), and there are choices of the isomorphisms F*£ — £ used in the
definition of Y; such that

Y:(u,) = ¢i(a,) for all such 7 and r.

In the following, we denote by D¢ the standard duality operation on
the character ring of G(F,). Recall, in particular, that this operation
is an involution and self-adjoint with respect to the inner product in-
troduced in (1.6). Moreover, Dg maps an irreducible character to an
irreducible character, up to sign.

Lemma 3.5. Let i = (C,€) € IF with associated integer s;, and let T;
the corresponding twisted GGGR. Let j € I¥. Then (Dg(T;), X;)e =0
ift £ j or if 1,5 belong to different blocks. If i ~ j belong to the same
block I, then

(De(T:), Xj)a = ('|A(u)|g = 4™ E—*9%, 5,
where u € C and (' is a fourth root of unity which only depends on I,.

Proof. Let I, be the block to which the given 7 belongs and L the asso-
ciated Levi subgroup. Let a be the order of the group A(u) for u € C.
At first, we shall express the dual of I'; in terms of the functions X,
for i; € If. To simplify notation, we denote by C; the unipotent class
which is the support of the element j € I.

In [L6], (7.5), [; is written as a linear combination of the X;, (¢, € I3 ),
and in [L6], (8.3), we find an expression of Dg(X;,) as a scalar multiple
of X;, for some i; € If (cf. also [L6], (5.3)). Substituting the defining
equation [L6], (6.7)(d), for @; ;, we obtain the following expression.

De(Ty)= Y. |GF1g" )¢ i, Pl Xs,,
iielf

where P/, is obtained from P, ; by changing ¢ to ¢~' (cf. [L6], (6.5)),
and

c(i) = (dimZ} — dimG + 2dim C;y — dim C)/2.
Moreover, § is a sign and ( is a fourth root of unity, and both of them
only depend on I, (see [L6], (7.2) and (8.4)(a)). (Note that, in the
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formula [L6], (7.5), the exponent of ¢ depends on two indices; by the
above rewriting the dependence of one of them disappears.) We set

¢ = (8.
Now we compute the scalar product of Dg(T;) with the function X;
where j € I¥. If j does not belong to the block I, then the scalar
product will be zero, by [L6], (6.5). So we may assume that j € IF.

Using the formula for the scalar product between X; and X;: in (3.3)
above we obtain

(Da(T3), X;)e = Y ('ag™ VPl u s (Xs,, X;)e

i1y

Z Clan(iI)})il,i‘ (Z d:‘-,,;lw;l ,j)

— Z Claqc(‘.')-Pil'{IJi‘,j = (laqc(j)-Pi’,j-

Il

Let us assume that this is non-zero. Then we must have P;; # 0. Using
(L6], (6.5), we conclude that i < j. Now assume that i ~ j. Then
dim C; = dim C}, and we obtain

(DG(Fi)yxj )G - Claq(—dim G—“)/zéi,j-
This completes the proof. [

Corollary 3.6. With the same notation as in Lemma 3.5 the following
hold.

(a) The characters of the various GGGR’s of G form a basis of the
space of GF -invariant functions on G¥ ;.

(b) Let C'" be a unipotent class such that C; is not contained in the
(Zariski) closure of C'. Then Dg(T;)(y) =0 for all y € C'F.

(The statement in (b) should be compared with [L6], Proposition 6.13.)

Proof. (a) We choose a total order on I which refines the given preorder
<. Using Lemma 3.5 and the selfadjointness of Dy we see that the
matrix of scalar products between the I'; and the Dg(X;) has a lower
triangular shape with non-zero entries along the diagonal. Now the
X; form a basis of the space of GF-invariant functions on G¥ ;. Since
D¢(X;) is a non-zero scalar multiple of X; for some j, and the map j — j
is a bijection (see [L6], (5.4)), we conclude that the T'; form such a basis,
too. Since every GGGR is a linear combination of the I';, the proof is
complete.

(b) Let {C!} be the set of unipotent classes of G such that, for each r,
the class C; is not contained in the closure of C.. Let V be the space of all
GF-invariant functions on GF,; with support contained in |J, C!%. Let

uni
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I(V') be the set of all j € I* which have as support one of the classes
C;. Then the functions Y; (j € I(V)) form a basis of V (cf. (3.2)).
The relation between the X; and Y; expressed in (3.2) shows that also
X; € V for j € I(V). Hence the functions X; (j € I(V)) are a basis of
V. Consequently, we are done if we can show that (Dg(T;),X;)e = 0
for all j € I(V).

Now C' is one of the classes C.. Let j = (C',£') € I(V)F. Since C;
is not contained in the closure of C' we have i £ j. Hence the proof is
complete by Lemma 3.5. [

3.7. Let p' be any irreducible character of G, and let C be the unipo-
tent support of p'. (We use the symbol p' for the irreducible character in
order to keep consistency with [L6], Theorem 11.2.) According to [L6],
C is the unique unipotent class in G of maximal possible dimension such
that 3°_.cr p'(2) # 0. Let p be the irreducible character of G¥ such that
Dg(p) = £p'. Then, by [L6], Theorem 11.2, the scalar product

(Tiyp)e, where i=(C,E)elI”,

is “small”, that is, bounded above independently of ¢. In order to evalu-
ate this scalar product explicitly, we use the results of this section in the
following way. Using the self-adjointness of Dg we see that the above
scalar product equals

(T3, £Dg(p"))e = £(Ds(T:), £)e-

Now we note that Dg(T;)(z) is zero unless ¢ € GF is unipotent. (This
follows from the definition of D¢ and the fact that I'; itself is zero outside
GF ..) Thus, it will be sufficient to consider the restriction of p' to GE, ..
Since the functions X; (i' € IF) form a basis for the space of all G¥-

invariant functions on G¥ . we can write uniquely

uni

p’(:l:) — ZC{:X{I (13 € ani)

where the sum is over all i/ € I¥ such that i’ ~ 7 or the support of ¢’ has
strictly smaller dimension than the support of i (see (3.2), and recall the
definition of unipotent support of p').

On the other hand, by Lemma 3.5, the scalar product of Dg(T;)
with X; is zero unless ¢ < /. We deduce that, in order to evaluate
(De(T:), p')e, it will be sufficient to consider only those terms c; Xy
where i ~ ¢'. Using once more Lemma 3.5 we see that the scalar product
of Dg(T';) with such a X, is zero unless 7' = 7. Thus, we finally have
that

(De(Ts),p')e = ('ag=dimE=ai2g,
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We see that we have to study the restriction of p' to C¥ where C is the
unipotent support of p’. In the next section, we first study in general
the relation between characters and unipotent classes.

4. RELATING CHARACTERS AND UNIPOTENT CLASSES

4.1. Let G be a connected reductive group over F;,. We assume that
the centre of G is connected and that ¢ is a power of a good prime for
G. Let T C G be an F-stable maximal torus contained in some F-stable
Borel subgroup B in G. Let (G*,T*) be a pair dual to (G,T). We will
then identify the Weyl groups W = N¢(T)/T and W* = Ng.(T*)/T*
of G and G* respectively. We assume that the centre of G is connected
in order to be sure that centralizers of semisimple elements in G* are
connected.

In his book [L1], Chapter 13, (see also [L6], §10) Lusztig has defined
a canonical map ¥ from the set of special conjugacy classes in G* to the
set of unipotent classes of G. This map is known to be surjective. In
this section, we shall exhibit a set of distinguished special classes in G*
such that the restriction of ® to this set is a bijection. (We refer to [L1],
(4.1), (13.1), (13.2) for the definition of special representations of Weyl
groups and special elements in G, G*.)

With our applications in mind, we consider only groups G such that
the root system of G is a sum of root systems of type A,,, B,, C, or D,,
and such that F' leaves stable each simple component of G.

4.2. Recall the definition of the set I in (3.2). Now let E be an irre-
ducible representation of W. By the Springer correspondence, there is
a unique element ¢ € I associated with E; we then write E = F;. For
example, if i = (C,Q,) and C is the class of the regular unipotent ele-
ments (respectively, the trivial class) then E; is the trivial (respectively,
the sign) representation.

Lusztig’s map ® is defined as follows (see [L1], (13.3)). Let g € G*
be a special element. We write ¢ = sv = vs with s semisimple and v
unipotent, and denote by Z(s) the centralizer of s in G*. Let C' be
the class of v in Z(s) and i’ = (C',Q,) (a pair in the set I' defined
with respect to Z(s)). The corresponding representation E;: is a special
representation of the Weyl group W, of Z(s). We then apply the j-
operation and obtain an irreducible representation E of W* (see [L1],
(13.3)) which we can also regard as a representation of W. This is of
the form E = E; for a pair i = (C,Q,) € I. The map & associates the
class C with the class of g in G*.

For the basic facts about the j-operation, we refer to [C3], §11.2.
Note that this operation (as defined in [C3]) can be applied to special
representations by [C3], Proposition 11.3.8.
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4.3. Let C be a unipotent class in G. As in (3.4), we denote by A(u)
the group of components of the centralizer of an element u € C. If u is
special there is a canonical quotient A(u) of A(u), defined in [L1], (13.1).

If g € G* is special we define A(g) to be the group A(v) defined with
respect to Z(s) (where g = sv = vs with s semisimple and v unipotent).
Then, by [L1], p.346, we have that

|A(u)| = sup,|A(g)]

where the supremum is over all special g € G* with &(g) = (u). We
wish to find a canonical choice for an element g where the supremum is
taken.

4.4. The choice is motivated by the following fact. Let (XV,RY, X, R)
be the root datum of G with respect to T C G and AY C RY a system of
simple roots determined by B. Then (X, R, X",R") is the root datum
of G*. (Note that we use the symbols R, X for G*, and not for G, in
order to simplify the notation in the sequel.) For any a € A, we define

R(a) := (A \ {a}) U {ao})

where oy is the highest short root in R. This is a closed subsystem of
R. Now let E’ be a special representation of the Weyl group of such a
subsystem. We apply the j-operation to it, and obtain an irreducible
representation E of W = W*. By Springer’s correspondence, there is
a corresponding unipotent class of G. It was shown by Lusztig (see
[C3], p.388/389) that all unipotent classes of G are obtained in this way,
for various a and various special representations E' of the Weyl group
corresponding to R(a). We shall show that such pairs a, E' correspond
to special elements in G* for which the supremum in the formula in (4.3)
is taken.

Proposition 4.5. With the assumptions in (4.1), let u € G be a unipo-
tent element. (Recall, in particular, that the simple components of G are
of classical type.) Then there ezists a special element g = sv = vs € G*F
(s semisimple, v unipotent) such that the following conditions are satis-

fied.
(a) We have 8(g) = (v) and | A(w)] = |4(9)]-
(b) The centralizer Z(s) has the same semisimple rank as G*.
(c) The group Z(s) is mazimally-split (i.e. T* C Z(s)), and the
order of s is a power of 2.

Proof. We have noted in (4.3) that there exists some special element
g1 = s1v1 € G* such that (g;) = (u). Let R; C R be the root system
of Z(s,), and let E; be the special representation of the Weyl group W,
of Z(s,) associated with v; by Springer’s correspondence. Let E be the
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irreducible representation of W obtained by applying the j-operation to
E1.

(i) At first we claim that there exists a closed subsystem R' C R
such that R; is a parabolic subsystem of R’ and R’, R have equal rank,
and that, moreover, R’ occurs as the root system of a centralizer of a
semisimple element in T*. (Recall that R, is parabolic in R’ if every
system of simple roots of R; can be extended to a system of simple
roots in R’').

This can be seen as follows. Let R; be the set of all rational linear
combinations of elements in R, which are roots in R. Then R, is a closed
subsystem of R which is parabolic in R, by [Bo], Proposition VI.24.
Now let A C R be a system of simple roots in R which is obtained by
extending a system of simple roots A; C R;. We then define R’ to be
the closed subsystem of R generated by the set A’ which is the union
of a system of simple roots of R; and the roots in A \ A;. It is clear
that R, is parabolic in R'. Moreover, since Ry, R, have the same rank,
the same holds for R', R. In order to prove that R’ occurs as the root
system of a centralizer of a semisimple element in T* we use the results
in [C1]. By [loc. cit.], Proposition 10, there exists a subgroup ¥; C X
such that X/Y; has torsion subgroup which is cyclic of order prime to
g and such that Y; N R = R,. Let A’ as before and define Y’ to be the
subgroup of X generated by A’ and Y;. Then it is readily checked that
Y’ has the analogous properties as Y; above. The proof of our claim is
therefore completed by using once more [loc. cit.], Proposition 10.

(i1) For the arguments to follow it will be convenient to consider only
the case that G* is simple of simply-connected type (or, equivalently,
that G is simple of adjoint type). This will be sufficient in order to prove
the proposition. For, assume that G is semisimple of adjoint type. Then
G* is semisimple of simply-connected type, hence is a direct product
of simple groups of simply-connected type. If the required semisimple
elements exist for each factor, the product of these elements has the
required properties in G*. In the general case, we let G — G,4 be the
adjoint quotient (note that G is still assumed to have connected centre).
This induces an embedding G, — G*. Moreover, the centralizer in G*
of a semisimple element in G}, is the product of the centralizer in G;,
and the centre of G*.

Now let G be simple of adjoint type A,,, B,, C, or D,,. We have seen in
(i) that R’ occurs as the root system of the centralizer of a semisimple
element s € T*. This element will be a candidate for the semisimple
part of the required special element g € G*. Since R', R have the same
rank, Table 1 on p.15 in [C2] shows that these root systems must have
types given as follows. (Note that, by [C2], a root system of type D,
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corresponds to a group of type 4,.)

Type of R type of R’ comment

A, A, R = R’ necessarily
Chn C, + G, at+b=n>2
B, D,+By, a+b=n>3
D, D,+Dy, a+b=n>4

The types occurring in the above table imply that the order of any
such element s € T* is a power of 2.

(iii) According to [C2], Table 2, we can choose the element s € T* in
(ii) even to be fixed by F, provided that g is sufficiently large. (In the
notation of [C2], we choose the “twisting element” w = 1; the shape of
R' shows that the “critical subgroups” do not occur.)

Now, following the proof of [C1], Proposition 19, in our special situa-
tion, we see that, in fact, no condition on ¢ is needed (except for being
odd). (In the notation of [C1], p.505/506, we have & = &, and hence
T*| - U, |E > (l/mg‘lI“| > 0, without condition on g.)

The element s € T*" will be the semsimple part of the required special
element g. The arguments at the end of (ii) show that conditions (b) and
(¢) in the proposition are satisfied. It remains to construct the unipotent
part v of the required element g, and to verify condition (a).

(iv) Let W' be the Weyl group of R’. By construction we have W; C
W' C W. We apply the j-operation (with respect to W; C W’) to E; and
obtain an irreducible representation E' of W'. We have seen in (i) that
W, is a parabolic subgroup of W'. Hence, by [C3], Proposition 11.3.11,
the representation E' is special. Using the transitivity of the j-operation
(see [C3], Proposition 11.2.4) we find that

E= jw'(E’L

where E’ is special for W’ and W', W have the same rank. Let Dg(t) (¢
an indeterminate) be the generic degree of E'. As usual (see [L1], (4.1))
we define integers a(E') > 0 and f(E') > 0 by the requirement that

Dg:(t) = f(E')"*t*®") + higher powers of t.

Analogously, let f(E;) be the number defined in terms of the generic
degree for the representation E; of W;. We claim that

f(E') > f(Ey).
But this is true since W, is parabolic in W' and E,, E' are special, see
[(C3], Proposition 11.3.3.
(v) The representation E’ in (iv) corresponds to a special unipotent
element v € Z(s) and, by the definitions, #(g) = (u) where g = sv.
We claim that |A(g)| = |A(u)|. This can be seen as follows. We know
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already that |A4(g)| < |A(w)| = |A(g1)|- So it will be sufficient to show
|A(g)| > |A(g1)|- Combining [L1], (13.1.3) and (4.14.2), we see that the
order of A(g) equals f(E'). (See (iv) and note that the generic degrees of
two representations obtained from each other by tensoring with the sign
representation are equal up to a power of ¢; see [CR], Theorem 71.14.)
An analogous statement holds for A(g,) and the number f(E;) defined
in terms of the generic degree of the representation E; of W;. Hence we
are reduced to the assertion that f(E') > f(E,), and this was proved in
(iv).

(vi) Finally, we note that since s € T*F the group Z (s) is maximally-
split. Hence the unipotent element v € Z(s) can be chosen to be fixed
by F, too. This completes the proof. [J

A statement similar to Proposition 4.5 also plays a role in Lusztig’s
work on cells in affine Weyl groups, [L5], §6. We remark that the results
obtained so far in this section depend to some extend on the explicit
case-by-case description of Springer’s correspondence (see the remarks in
[L1], (13.1)). This seems to be the case, in particular, for the statement
in (4.3). The proof of Proposition 5.4 below will show that it can be
reformulated in terms of a certain “multiplicity 1” property for GGGR’s.

4.6. Let us briefly recall the parametrization [L1], (4.23), of the set
Irr(GF) of irreducible characters of GF. At first, we have a partition

Irr(GF) = [ | £(GF, 5),

where s runs over a set of representatives of the conjugacy classes of
semisimple elements in G* and £(G¥, s) denotes the corresponding geo-
metric class of characters (see [L1], (8.4.4)). We fix a semisimple element
s € G*F and assume that

(a) the centralizer Z(s) is a split group.

Let W’ be the Weyl group of Z(s). The irreducible representations of W'
are partitioned into families F (see [L1], (4.2)). Moreover, with each such
family F there is associated a finite group G and an embedding of F
into the finite set M(Gx) (see [L1], (4.14), and (4.3) for the definition of
that set). By our assumption (a), the statement of [L1], (4.23), simplifies
considerably, and we obtain a bijection

(b)  E&(G",s) & LI M(95),

where F runs over the families of irreducibles representations of W'.
There is a bijective correspondence between families in W' and special
unipotent classes in Z(s). We twist this bijection with tensoring by the
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sign representation. Then the following hold (see [L1], (13.1.3)). Let
C' C Z(s) be a special unipotent class such that the representation E' ®
sign of W' lies in the family F, where E’ is the Springer representation
corresponding to the pair (C',Q;). Let v € C' and g = sv (a special
element in G*). Then the group A(g) is isomorphic to Gz.

The duality operation leaves invariant each set £(GF,s). Moreover,
if the irreducible character p corresponds to an element in the set asso-
ciated with the family F of W' then +£Dg(p) corresponds to an element
in the set associated with the family {E’' @ sign | E' € F}. We can now
reformulate (b) in the following way (always assuming (a)). There is a
bijection

(c) £(GT,s) — I, M(A(9)),

where g runs over a set of representatives of the conjugacy classes of
special elements in G* with semisimple part conjugate to s (cf. [L1],
(13.2.1)). Moreover, p € £(G¥,s) corresponds to an element in M(Gx)
if and only if p' = +Dg(p) corresponds to an element in M(A(g)).
Finally, in this case, C' := &(g) is the unipotent class associated with p
by the method described in [L6], (11.1). So, [L6], Theorem 11.2, shows
that

(d) C is the unipotent support of the character p'.

This gives us the relation with the considerations in (3.7).

4.7. Let u € G be unipotent and g = sv = vs € G*¥ a special element
as in Proposition 4.5. Then we have that

M(A(g)) = M(A(u)).

This, in addition to the fact that we consider a group G of classical type,
will be the crucial point for the subsequent results.

Namely, let C be the class of u. As pointed out in [S1], (5.1), we can
choose u to be a split element. Then F acts trivially on A(u). Moreover,
A(u) is an elementary abelian 2-group of order d, say (see [C3], §13.3).
The definition of M(A(u)) then shows that this is a set of cardinality d?,
and the corresponding Fourier coefficients are of the form +1/d. (See
[L1], (4.14.3), for the definition of the Fourier matrix.) Thus, the Fourier
coefficients corresponding to the set M(A(g)) are given in terms of the
unipotent element u and the group A(u). (And this would not hold for
any special element in the preimage of the unipotent class (u) under the

map $.)
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5. RESTRICTING CHARACTER SHEAVES TO UNIPOTENT CLASSES

5.1. We keep the assumptions on G and ¢ as in the previous section.
In particular, the root system of G is a sum of root systems of type 4,,
B,, C, or D,, and F leaves stable each simple component of G. Let
T C G be a split torus, and G*,T* a pair dual to G,T.

Let G be the set of character sheaves on G. These are certain ir-
reducible G-equivariant £-adic perverse sheaves on G. (See [L4] for an
exposition of the theory.) Again, we will have to use the results in [L6]
concerning the restriction of character sheaves to the unipotent variety of
G. Whenever necessary, we will then also assume that ¢ is a sufficiently
large power of a sufficiently large prime.

5.2. A classification of the character sheaves of G is given in [L2],
(17.8.3). With each character sheaf, there is associated a certain local
system on T and a two-sided cell in its stabilizer in W. These local
systems on T are in bijective correspondence with semisimple elements
in G*. Thus, we have a partition

G= Ué’(s)

where s runs over a system of representatives for the semisimple classes
in G*. Furthermore, the two-sided cells are in bijective correspondence
with the families in a Weyl group. Thus, we have a bijection

G(s) « [ [ G(s, F)

where F runs over the families in the Weyl group W' of Z(s). By [L2],
(17.8.3), the set G(s, F) can be parametrized by the finite set M(Gx).
We see that character sheaves of G are classified in a similar way as
irreducible characters of GF were classified in [L1], (4.23).

The Frobenius map F actson G. If A € G is F-stable, we always as-
sume that an isomorphism ¢ : F* A — A is chosen as in [L2], (25.1). The
corresponding characteristic function x4 is a G¥-invariant function on
GF such that (x4,x4)c = 1 (cf. the convention in (1.6)). Note that the
choice of such an isomorphism is only determined up to multiplication
by a root of unity.

If, in the above classification, the element s € G* is F-stable and its
centralizer is a split group, then all A € G(s) are F-stable.

5.3. Let us fix a unipotent class C = (u) in G, and let g = sv = vs €
G* be a special element as in Proposition 4.5. To simplify notation, we
let

M = M(Gx).
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Now note that, if 7, 7' are two families of a Weyl group which are
obtained from each other by tensoring with the sign representation then
the corresponding sets M and M’ have the same cardinality. Using
(4.6), (4.7) we therefore have

M| = M| = IM(A(u))]-

For any m € M, we denote by A,, the corresponding character sheaf,
and by x,, the characteristic function corresponding to A,, and some
choice of isomorphism F*A4,, — A,, as above. On the other hand, we
also have an associated irreducible character p,, of GF, defined by the
correspondence in (4.6)(b).

Shoji proves in [S2], [S3] (see also [L7]) that for each x,, there exists
an algebraic number py,, of absolute value 1 such that p,,x. is equal
to an almost character in the set M, that is, it can be expressed as a
linear combination of the characters p,, (for various m’ € M) where
the coefficients are the entries of the Fourier transform matrix of M.
Combining the previous remarks, we obtain the following formula.

Epm

(Xms Pmt)e = = TA(w)’ where m,m’ ¢ M (or m,m' € M').

Proposition 5.4. With the notation in (5.3), let p be an irreducible
character of GF such that +D¢g(p) corresponds to an element in the
set M. Then there ezists a unique (up to conjugation in GF) element
u € CF such that

(Tuyp)e =1 and (Ty,p)e =0
for all y € CF which are not conjugate to u in GF.

Proof. Let uy,... ,uqs € C¥ as in (3.4) with u, split. We consider the
element i := (C,Q,) € I¥. By (3.4), we have Y;(u,) = 1 for all r.
Moreover, |A(u, )| divides |A(u, )| for all r. (In fact, the cardinalities are
equal, but this will turn out automatically.) Hence, the corresponding

twisted GGGR
d
Z |A(u1)|/|A(u, )T )T

is an ordinary representatlon. (This is the same set-up as in the proof
of [L6], Theorem 11.2.) It will therefore be sufficient to prove that

(Fia p)G — 1

But this follows from the proof of [L6], Theorem 11.2. For, let n be the
multiplicity of p in ;. The arguments up to equation (k) in [loc. cit.]
show that n is |A(u)| times the scalar product of p with the characteristic
function X, for some m' € M’ (notation as in (5.3)). Now, using the
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formula in (5.3) shows that n must be an algebraic number of absolute
value 1. Also being an integer, we conclude that it must be 1. [

5.5. We keep the notation of (5.3). In [L4], (4.6), it is stated that
the class C has the property that there exists some m € M such that
C C suppA,, (support of A,,) and that if C' is a unipotent class in G
such that C' C suppA,,, for some m' € M then dimC’ < dimC. (A
proof can be extracted from [L6], Theorem 10.7. The fact that there
exists some m € M with non-trivial restriction to C is expressed in
equation (g) in the proof of [loc. cit.], (10.7).) We therefore call C' the
unipotent support of the character sheaves in M.

To proceed we need some more precise information about the restric-
tion of the character sheaves in M to the unipotent class C.

We shall denote by X the set of those m € M such that the restriction
of A,, to C is non-zero. Let us consider the following properties of the
elements in X.

(a) If m € X, the restriction of 4,, to C is (up to shift) an irreducible,
G-equivariant local system &,, on C. Thus, we have a map X —
I, m =iy, 2= (0, £ )

(b) The map m — i, in (a) is injective.

(c) The map ¢ : M — Z, defined by p(m) = rank(£,,) if m € X,
and ¢(m) = 0 otherwise, is a Lagragian subspace in the sense of

[L1], (12.10).

It is stated in [L3], (1.6), that these conditions are always satisfied.
(In fact, Lusztig has pointed out to me that this will only be true for
families corresponding to special elements as in Proposition 4.5). This
is proved explicitly in [loc. cit.] for groups of type B,. In the following,
we shall assume that (a), (b), (c) hold for all special elements g € G* as
in Proposition 4.5.

If the conjugacy class of g in G* is F-stable and the character sheaf
A,, € X is F-stable then we also have i,, € I¥.

Proposition 5.6. Let u € C be a split element, and v = uy,... ,uq €
CF as in (3.4). We assume that the special element g = sv € G* is
chosen as in Proposition {.5. Then there ezist irreductble characters
P1y... ,pa € E(GF,s) such that the matriz of scalar products

(Fu,:apr)G9 1 S 7',,7' S da
is the identity matriz.

Proof. (a) At first we note that the set X in (5.5) has cardinality d. For,
the group M is an F,-vector space of dimension 2d’ where d = 2%, by
the choice of the special element g. By (5.5)(c) and the definition of a
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Lagrangian subspace we see that X is a subspace of M of dimension d'.
This proves the claim.

Let us write X = {m, | 1 < r < d}. For each r, let ¢, := i,, be the
corresponding element in I, see (5.5)(a).

(b) We claim that the matrix of scalar products

(DG(Fi,a)s Xm.-)G, 1 S TI,T S d,

is diagonal and invertible. This can be seen as follows. In order to
evaluate the scalar product we only need to know the restriction of x,,,
to CF. This follows from Corollary 3.6(b) and the characterization of
C in (5.5) (see the analogous arguments in (3.7)). By (5.5)(a) and (3.3)
the restriction of x,,, to C¥ equals the restriction of X; to C¥ times
a non-zero constant. Thus, it will be sufficient to consider the scalar
products
(-DG(Fi,:)aXi,)G) 1 < 7",7‘ < d.

The assertion now follows from Lemma 3.5 and the fact that all z, are
distinct, see (5.5)(b).

(c) Now each Dg(I';,) can be expressed as a linear combination of the
duals of the GGGR’s associated with the class C (see (3.4)), and each
Xm, is a linear combination of the irreducible characters corresponding
to the set M (see (5.3)). It follows from (b) that the matrix of scalar
products of the duals of these GGGR’s with these irreducible charac-
ters has full rank. Thus, there exist irreducible characters pi,...,p}
parametrized by elements in the set M such that the matrix of scalar
products

(DG(I‘u',),PL)G, 1 Srlar de
is invertible. Now let us write p, = +Dg(p,), for r = 1,... ,d. Then

these characters satisfy the assumption of Proposition 5.4. Using the
fact that D¢ is an involutory isometry we conclude that the matrix

(Fu,,,Pr)G, 1< 1",1’ <d,

is invertible. On the other hand, by Proposition 5.4, each column of
this matrix contains precisely one non-zero entry, and this entry is 1. It
follows that the above matrix of scalar products is a permutation matrix.
Relabelling the p, gives the desired result. [J

Note that the statement in Proposition 5.6 does not involve character
sheaves. These are used in an essential way in the proof. I don’t know
if a more elementary proof exists.

5.7. We can now complete the proof of Theorem 2.5, as follows. Let
C, (1 £ n < N) be the F-stable unipotent classes of G, ordered such
that dim C, < dimC,,: implies n < n'. For each n, let u,, (1 <r <d,)
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be representatives of the G¥-orbits on C’f, and let p, . (1 <r <d,) be
the irreducible characters of G provided by Proposition 5.6.

At first we note that all p,, lie in B;. This follows from Proposi-
tion 4.5(c) and the facts collected in (4.6) which mean that these char-
acters lie in geometric conjugacy classes of the form £(G¥F, s), for various
semisimple elements whose order is a power of 2.

Furthermore, Proposition 5.6 and the definition of unipotent support
and [L6], Theorem 11.2, show that

1 Jifn=n,r=1r
(pn,r,run, ,,)G = s ] — al [
’ 0 ,ifn<n' orn=n'"andr# 7.

Ordering the pairs (n,r) lexicographically yields that the corresponding
matrix of scalar products has a block lower unitriangular shape, with
one block for each unipotent class C,. Moreover, the diagonal blocks
are identity matrices of sizes d;,... ,dy.
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