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Extended Dyer-Lashof algebras and modular
coinvariants

Dedicated to the memory of Jose Adem

Nondas E. Kechagias

Given an increasing sequence of integers N = (0,7n,ny,...), a functor Gy
is constructed from the category < of based spaces of the homotopy type of
CW compleces and based maps to a subcategory S of S in analogy to May’s
approximation model C. A family of homology operations RN is associated to
G and its algebraic structure is described in terms of modular coinvariants of
parabolic subgroups.

0. Introduction

The Dyer-Lashof algebra R, the algebra of homology operations on QX (=
lim 2" 2" X), being an invariant on the category of infinite loop spaces, was
studied extensively in ’70 s; its relation with modular invariants was realized
around 1975 and described in the early ’80 s.

The space QX can be approximated by May’s model CX which is con-
structed using the symmetric groups £, and its homology can easily be de-
scribed using modular coinvariants. The main advantage of CX is its simpler
structure compared with the function space QX. In particular, CS° is built
successively of BX,;,’s and nothing else. Moreover BX, is homologically equiv-
alently to (QS%)o, for SO the zero sphere.

Since the symmetric group is an important object in algebraic topology, it
is interesting to investigate the analogous properties of certain of its subgroups
and this is our project. In [15], we defined homology operations on certain fam-
ilies of topological spaces, G [ X, for G certain subgroups of Lo. As a main
tool, modular coinvariants were used eliminating the complication of Adem rela-
tions and questions concerning operations can be reduced to relations between
subrings of rings of invariants. It turns out that subrings of rings of invari-
ants of certain families of subgroups of GL,(Z/pZ), for n = 1,2,..., induce
families of operations in homology on certain spaces, because of their relation
with certain families of subgroups of symmetric groups. In this work, we con-



262 Kechagias

struct certain spaces Gn.\ related to G [ X above in analogy to May’s mod-
els CS° and BX,,. We note here that the difference between CX and Gy X
is that Gy X is associated to a family of compatible permutation subgroups,
S={Gn | Zpnp:=E1 [+ [En < Gn < Zpn, n=1,2,... } instead of Ty
itself, for m > 0. Here Z,» is the symmetric group of all permutations of all
elements of V", an n dimensional vector space over Z/pZ for p a prime number,
E; is the subgroup of the i-th translations, and Zp» , is a fixed p-Sylow sub-
group of Zya. The basic properties of the new space are studied and homology
operations are defined in theorem (1.12). This family of operations admits the
structure of an algebra, denoted RN and called the extended Dyer-Lashof
algebra. The difference between RN and R is that Adem relations are not al-
lowed at certain positions. We examine its algebraic structure and show that its
dual is closely related to the rings of invariants of various parabolic subgroups
of GL,(Z/pZ), theorem (2.22). At the end, we calculate the mod-p structure of
H.(GnX) which is free with basis a fixed homogeneous basis of H.(X, Z/pZ)
over RN and therefore a modular coinvariant theoretic description can be given,
theorem (3.1).

Let E(z;,... ,z,) be an anticommutative exterior algebra on n gener-
ators and Ply;,... ,yn] a polynomial algebra on n generators over Z/pZ
both graded with degrees: {z;| = 1 and |y;|] = 2 for i = 1,...,n. Then

E(zy,...,20) ® Ply1,...,yn] = H*(V"™,Z/pZ) as modules over the Steenrod
algebra and there is a natural action of the subgroup G on this algebra, where
G is one of the following groups: Up < B, < Pa(N) < GLy, (the group of upper
triangular matrices with one’s along the main diagonal, the Borel subgroup, the
parabolic subgroup associated to a sequence of positive integers, and the gen-
eral linear group, respectively). In section 4 we calculate the ring of invariants
(E(z1,...,%0) ® P[y1,.-.,yn])C for G as above.

Sections 2 and 4 are revised forms of the algebra chapter of my Ph. D. thesis
[13]. We note that this is a generalization of part of May’ work in [8] mainly and
later by Huynh [12] and Campbell [4] concerning the modular coinvariants. I
would like to thank J. P. May for his encouragement and advice on constructing
these families of spaces in section 1, my supervisor H.E.A. Campbell, coadvisor
J.McCleary, and S. Kochman for their help and support.

1. Definitions-Notation

Let (BG, EG, 7g, G) be the principal G-bundle associated with the group
G such that EG is a contractible space. We recall that the functors £ and B
preserve products. The topological wreath product between G and H is defined
by EG x¢ (BH)", where G < X, and the definition above is extended to any
topological space X: G [ X = EG xg X", (see [18]).

Since maps between subgroups of symmetric groups are important in this
work, we shall establish the notation needed. As usual Xy~ acts on n :=
{1,...,p"}. Let I be a strictly increasing sequence of k elements from k+1.

(1.1) Let i; be the monotonic increasing embedding of k in k+-1 described by
I =(i1,...,ip),i.e. iy(m) = im. We also use the same symbol i for the induced
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inclusion 7y : Xpx — X x41 which makes the following diagram commutative,
and the induced map between EX,x and EZ u+1.

k L k+1
10 li((a)
k L k41

(1.2) Let o7 : Zpesr —Z,x be the map associated with iy which makes the
following diagram commutative

k L k+1
lo,(a) 1(:
k<44 k41

Here a € L x+1 and J is the sequence a(I) obtained by reordering the sequence
(a(i1), .., alipx)).
We extend the definition above to the cases: a) from G, f Zox to Gp f Zprs1;
and b) from Zpk fGn to .‘_-..__.‘--1»1 fGn
(1.3) a) Let & = (B:61,....5n) € Gn [ Zpx, then the map iy : Zpx— Do
above induces a map (the same notation is used) i : Gp [ Zpx—Gpn [ Zpes
given by is(a) = (B:ir(é1)....,i1(8pn)). Respectively, the map
o7 : Lprsr — L,k above induces a map (the same notation is also used)
or: Gn f Epk+x ——*Gn f Epa b}' Uj(ﬂ; 61, o % ol (5;.-) = (,3, (7](6,'1), ceey 0’1(65’.‘ ))
Here a = (f;61,...,8pn) € Gn [ Zpx acts on (s,t) by (B(s), 8 (t)), where
{(s,t)] s=1,...,p"and t = 1,...,pF*+!} is given the lexicographic ordering.
(1.4)b) Let a = (3;61,...,6pn) € Gn [ Zpr+1 then themap iy : Zpr —Zpus1
above induces a map i} : Ly« [ Gn—Zpus1 [ Gr given by i7(8; 61, ..., 6ps41) =
(i;(ﬂ);&{,...,é;.“). where 5{’, = §;, for 1 > j > p¥; and the identity, oth-
erwise. Respectively, the map o7 : X x+1—Z,x above induces a map o7 :
Zpet1 [ Gn—Zpn [ Gn given by 07(B;61,..., 8prs1) = (01(B); iy -, 6 4)-
The notation above is suitable for subgroups given by wreath products i.e.
Z,x [ Zypn. We note that oy is onto and satisfies o7(a’a) = 05/(a’)os(a). We use
the same symbol oy for the induced map oy : EEPH: —EX,.. We avoided to
introduce more symbols, because, we believe, they would cause more confusion.
(1.5) We shall study spaces related to the following systems of permutation
subgroups (Gn):
a) Gp = Zpn p.
b) G, associated to an increasing sequence of non-negative integers N =
(0,ny,nz,...) such that Go = 1; G1 = Zy; Gi = Ly, if i < ny;
or G =Zpmi [+ [ Zpma [ Lpa-ua, if vk < 1 < Viy1, Where v = Zf ng.
c) G, associated to a reversed order increasing sequence of non-negative inte-
gers N = (...,nz,n,,0) such that Go = 1; G1 = Zp; Gi = Zi, if i <ny;
of Gp = Zyn-ui [ Zpma [+ [ Zpmi, if vk < 1 < iy where v = }:t ng.
d) Gn = Zpa, n > 0 is associated to N = 0.
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Note 1.8. We shall use the maps o for families described in b) and o} for
those in c). We restrict our study to the cases a), b), and d) above. The case ¢)
can be studied using the same method and we will discuss the results without
proofs.

The infinite symmetric group Xpe is defined by Lpw := limZ,n (direct
limit), with respect to monomorphisms: iy : Zpn —»Z’p..-n which fixes the last
(p — 1) blocks. The infinite subgroup G, is defined in the obvious way.

(1.7) Let us define a natural map called ¥ between appropriate product of
total spaces:

7:EGm X EGi, X -+ X EGy,m —EGy(mr)
1)(311)( 31

to be the composition xpduced by EGmx EGi, X+ -X EGk,m " EGmx
(EGy)P™, E(Gm [ Gk) g EG(m+k), and the obvious map:

EG, x (EGk)Pm—E(Gmka) Here k = maz{ki,..., kpm}, is; is induced
by the inclusion which leaves the last p¥ — p¥i elements ﬁxed and m+k)is
an integer such that Gm [ Gk < Gym4k) With &(m + k) > m + k.

REMARK. Let m=n;+---+n; _1+m—vy; _1andk=n;+---+n;, 1+

k—v;,_1such that m—v; _; < n;_ and k—vij—y < n;, . Um—y; 1 <n;,let
i, = maz{i; | ir < i, nq, —Z}‘:l nj > 0}. Then we replace Zpn, [-- -fEPn..o
(which is part of G) by i . fm — v 1 = ny,, let 4y, = maz{i; | i <
ik, Min+1 — EJ .7 > 0}. Then we replace Zpn, [ fZ' g DY Zprimtrs
Next we continue by replacing part of the group Zp"-,u+l f [z p™u Using
. the method above, until the whole group has been replaced, say, by G[(k) Let
Gemik) = Zpm [+ [ Zprim [ G-
E\campleLetN_(011223 ) Gs = Zp [Z, [ L2 [Zp and G5 =
Zo [Zp [ Zp, then Gys) = .pr):' [ Zp2 [ Zp2 [ Zpa. In any case {(m + k)
can be Z'-"‘:"" n;, but the faster the sequence increses the biggest the group
we get.

The map 7 satisfies:

a) 7(9(6); €1y-.+, ek,'n) = 7(e; €g=1(1)y++ > eg"‘(k,m))i(g)‘

Here g permutes (k,...,k), i(g) is the inclusion of g in G4k, and i(g) acts on
EGm+l¢-

b) v(e; 911, .., gk mek,m) = V(€5 €1, s hym Jil i (i,(91))s - -3 80,m (Gkym ))-
Here ij; (g,) actsonkfor1> j > p™and(g1,...,9k,m) acts on EGm X (EGk)P"
by the mduced action of Gg, on EG; via the inclusion Gk,—»Gg which leaves
the last p* — p** blocks fixed.

(1.8) Let X be an object from the category 3 of based spaces of the homotopy
type of a CW complex and based maps. We denote the base point by “*”. To any
sequence N defined in (1.5) we associate the topological space Gy X constructed
as follows: .

GNX =Un>0EGn x XP U{(+, %)}/ (»).

Here (=) denotes the equivalence relation: .
i) (ge; =) = (e; gz) for e € EGn, g € Gn, and z € X?
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ii) (e; srz) =~ (o7e; z) fore € EGn and z € X" .
Here sy : XP"™' — XP" is given by s1(z;) = (zi;) and fills the rest components
with base points and g acts on z = (z1,...,Zp~) by 92 = (Zg-1(1), - - -, Zg=1(pn))-

For N = 0, Gy X is nothing else but CX, May’s approximation model for
QX (see May [20]). If X = {#}, then GNX = {*}.

We shall use the obvious filtration Fi(X): the image of U*¥_,EG, x X?" U
{(*,%)} in GN X to calculate its mod-p homology in section 3.

First we discuss the basic properties of this family of spaces and we proceed
to the definition of homology operations. The geometric properties as well as
their relation with other interesting spaces are under investigation and we shall
present our results in a separate work.

A map f : X—Y induces a map Gn(f) : GNX—GnNY by
GN(f)(esz1,...,zpn) = (6 f(21),- .., f(zpn)) for e € EGy and z; € X.

(1.9) A natural map g : GN(GNX)—GNX is defined by

plesfers 1), oo Jepni zpn]] = [y(ei €1, -0, €00 )i 21y - iy Bpny %,y B,

for e € EG,, €; € EGpn,,and z; € Xr,

It is easy to verify that the map p is well defined. We also define the natural
map 7 : X—GnX by n(z) = (1;2), for z € X. With these two maps Gy X
becomes a monad in J, see May [20]. The map p above plays important role in
the definition of the homology operations defined below. In a general setting u
is replaced by the structure maps 6, as the following definition explains:

Definition 1.10. a) A space X is called a Gn-space, if there exist maps 0, :
EG, x XP" — X called structure maps that satisfy the following properties:
i) The following diagram is commutative:

EGn x EG, x -~ x EGy . x XXZim?™) X% gG, ., x xo™
On+k
lm
bn
EGnx EGi, x XP* x ---x EGya x X' 2. EG, xX?"
Here @ = 1x 6, x---x Ok,ny U is the evident shuffle map, s;(z) = (z,*,...,%),

and k = maz{ky,..., kp=}.

ii) fo(1;2) =z, z € X.

iii) 0, (ge; z) = Bn(e; 9z), for e € EGp, g € Gn, and z € X?".

b) A map between G y-spaces is a map which respects the structure maps.

Proposition 1.11. Let Y = Gy X, then Y is a Gy-space and Y € 3. More-
over;

a) there is @ product § : Y x Y —Y and the base point acts as an identity in
homotopy: (.0)=1y=6., where (.0(y)) = (*,y) and 8.(y) = (y,*)-

X



266 Kechagias

b) If Gy = Z,, then 8 is homotopy commutative. For p = 2, 8 is homotopy
commautative.

c) Ifp > 2 and G, = Z,. then 0 is homotopy associative. For p = 2 and
G2 = X4, then 6 is also homotopy associative.

d) On(1;—,*,...,xFly.

Proof. We define 6, : EG, x YP" —Y to be the composite 6, = p o 7, and
Tn : EGp x YP"—GyY is the obvious map. For the second assertion we refer
to May [18] proposition 2.6. For a), let  : Y x Y —Y be the composite

Y x Y—EG; x YPZLGNY 5.

Let H : I x Y—EG; x YPELY be given by H(t,y) = 61(u(t);y,*,...,*),
where w : I— EG| is a path which connects 1 and 7(1;1, *, - - -*).

Then H(0,t) = 61(L;y,*,...,*) = p[l;[c,z],[*, %], ..., [*, *]] = plo1l;[c,2z]] =
p[l;[e,z]] = [v(1,¢);2] = [c,z]. Here y = [e,7] for ¢ € EG,, € XP",
0: EG1—EGy = EX), and ¥(1;¢) = c € EG, = E(Go x Gpn) = EGo x EG;.

(1 y)—91(7(1 11*!" *) y, yeoe *)=0(yv*)'
For b), let G1 = Z,, then 0(y1,v2) = p[1;[c1, z1], [e2, z2], [*, %], ..., [*, #]] = nly
(1 C1,€2,%,..., ) Z1.T2,% a"'v*] = [l[g-l')’(l;C[,Cz,*,...,*);2‘2,2‘1,*,...,*].

Let w: [—E X, be a path from g‘l');’(l;cl,c;»,*, coo %) to v(l; ez, 01, %, ..., %),
thenlet H:I xY x Y—EZ, x Y=Y be given by:

H(t,y1,y2) = 01(w(t), y1, 92, %, . . ., %))

For c), we use an appropriate path in EX,.

d) Let H : I x Y—EG; x vy be given by H(t,y) = 6o(w(t),y) and
w : I—EG) connects 1 and 0,(1), where ¢ : EG,—EX}.

REMARK (1.12). a) The cartesian product X x Y of Gn-spaces (X,6')
and (Y,6”) is again a Gn-space, where the structure maps 6, are given by the
composite:

EGn X (JY X Y)PnA—X!.‘EGn X EGn X Xp" X Yp"leXl
nflx8,"

BIXIEG, x XP" x EG, x Y?"' 22" X x v.

b) The diagonal A on a Gy-space X is a map between Gy- spaces X and
X x X.

Now we are ready to express the main theorem of this section. It should be
pointed out at this point that the functor Gx associated to G, = E, [--- [ E,
is different from Gy to GnZpm [ ... Zpne not only because of Adem relations
but also of the geometry it assigns to a space X. We use the letter e for ho-
mology operations on Gy-spaces for G, = E; [--- [ E, and Q for the fam-
ily GnZp=: f ... Zpne. The basic differences between e and @ are discussed in
Proposition (1.15).

Theorem 1.13. Let X be a Gn-space, then there ezist homomorphisms
Q' : Ho (X)—H.(X), (lete’ : H.(X)—H.(X)for the family of groups G, =
Zpnp and note that Q° = €’ in this case) for s > 0, which satisfy the following
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properties:

1) The Q° (e®) are natural with respect to maps of Gn-spaces.

2) Q°, (e*), raises degree by 2s(p — 1) (2s).

3)Q*z=0, (¢ =0), if2s < |z| (25 < (p— 1)|z|).

4) @’z =zP, (e? =2P), if2s = |z] (25 = (p - 1)|z]).

5) Q*zo =0, (e*zo = 0), where zo coresponds to the base point class.

6))Q (z0Y) =T,,;-, @ z0Q y(¢ 2@y =T, 206 ), , if
TQyEH.(X xY). ‘ o

i) Q° (zy) = Li4;=,Q zQ y (¢ (zy) = Yirj=s € z€ ), if zy € Hu(X).
i) P(Q° z) = .0, @ I ®Q 27 (Y(e* 2) = Tiyjo, € @€ 27, if
P(z) =3 2 @z _

7) Adem relations hold everywhere ezcept at positions v; = 3 1 n; from the left
for any element of length ny + - - -+ ng. (no Adem relations for G, = Lpnp or
Ga=5p [ [5)

Q Q= Zi(_l)r-f-i ((P —1)(i—s)~ 1) Qr+s-iQi, if r > ps.

pi—r

Q8Q° = Z(—-l)rH ((P _p:)—(ir— 3)) ﬁQr+:—£Qi_

s (PP ) gremipgi it e 2

8) The Nishida relations hold: Let Pl be the dual to Steenrod cohomology oper-
ation P". Then

PIQ* = Zi(—i)r+i ((P" 1)(3 -r)— 1) Q:-—r+£P:‘_

r—pi
Pres = 3, (~1) ((P— 1)(’.5:;3?- 1)!')) er=(p-1)(r=i) pi
r s r+i (P"'l)(s"'r)—l s—r+i pi
PIBQ’ = ;(“1) * ( g )ﬂQ HP4

PrBe* = Z(_l)r-}-i ((P - 1)(3 - (P - 1)1‘) - 1) ﬂea-(p—l)(r-i)Pf+

: r—pi

s Z(_l)r-h’ ((P— 1)(::;5’——11)1') - 1) C’—(P-l)(r-‘)Pjﬂ.

All coefficients are to be reduced mod-p.

Note. The absence of Adem relations at certain positions does effect the action
of the operations above. To see this let p = 2 and G, = Z3» 2, hence no Adem
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relations are allowed. If they were allowed, we would have Q?Q' = Q2Q? (here
we identify €' and Q). Now let z; € H(X) and apply Q3Q! and Q%Q? onto
z1. Q?Q%z; = 0, because of the degree, but there is no particular reason for

Q*Q'z, =0.

Proof. The definition of the action has been given in [15], we repeat it here
for completeness. The natural inclusion iz, , r,) : B(Zp,;)— B(Z,) induces a
coalgebra epimorphism in mod-p homology. The action is defined for the family
Gn = Zpn p as follows

e : Hu(X)—H.(Z,, / X)—H.(X),by

e’z = { (61)-(es-(p-1)iz1/2®2F), if (p—1)|z]/2 <5
’ 0, otherwise.

Here we used the Steenrod decomposition H.(Zp, [ X) = Hu(Z, ;) PLH.(X)
® H.(Zp p; M), where P, is the Steenrod map in homology and H.(Z, p; M)
the submodule of H.(X)? generated by {®/z; | z; belongs into a homogeneous
basis of H.(X)and z;, # z; for some sand t}. The definition above extends to
any number of operations e°, see [15] definition 3.3. Let Q; € H.(Z,) and
e; € H.(Z,,p) such that i.(e;) = Q; (see May [19], lemma 1.4), we define
Qiz :=(61).%.(e; ® zP) and we extend to

8 o { (-1)’V(IzI)Q(Za-IzI)(p—l)za if 25 < |z]
Q’z := )
- 0, otherwise.

Here v(|z|) = (=1)I=l(=1=D(-1)/4((p—1)!/2)I%], see [15] definition 3.6. All prop-
erties of the Q*’s have been verified in [15] theorem 3.8 for G,-spaces except
the fifth which is a consequence of property a) in the definition of a Gx-space.
For Gy X spaces proofs are similar and are omitted.

The following proposition describes fundamental properties between opera-
tions.

Proposition 1.14. Let § be the Bockstein operation in homology.

a) The B%€' are natural monomorphisms, if 2i — € > (p — 1)|z|; the B¢Q* are
natural monomorphisms, if 2i — € > |z|.

b) A length two homology operation is given by B4 €' f<3e2(z) = f1 e (B2 e'2x)
and it acts non trivially if 2i; — €1 > (p — 1)(2i2 — €2);

and B9 Q1 2 Q' (z) = B4 Q"1 (82 Q*(z)) and it acts non trivially if 2i; —e; >
2(p-1 i3 .62 - Here ﬂ‘;’Qg({B"Q") acts as fallc.?ws: %)

Ho(X) = Ho(Zp [ X)" = Ho(Zp [ Zp [ X)(—Hu(Zpa fX))L;H..(X).
The inclusion i takes place if an Adem relation is allowed between 3°:Q** and
Q.

CJ(Be)(Bret (B0e)) = (Boren (Baci))(Bres);

(ﬂ‘l Qi'x)(ﬂCzQi:(ﬂtan'a)) = (ﬂh Q"(ﬁ"Q"))(ﬂ"Q").
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Remark 1.15. A length n operation is of the form:8 Q% ... 3 Q** and it
acts non-trivially if 2i; — e, = Y7, (2(p— 1)i, —¢,) 2 0, for 1 <t <n—1;
(respectively, Bte’t ... Q' if 21 — & — (p— 1) Y14 (28s — €,) 2 0, for 1 <
t<n-1).

Proposition (1.14) and the remark above that Adem relations are allowed at
certain positions characterize the structure of each family of operations which
acts on a category of Gn-spaces for (G,) fixed. Each family becomes a graded
associative Hopf algebra and we examine its structure in the next section.

2. Extended Dyer-Lashof algebras and their duals

The algebra of homology operations as well as its dual structure is described
here. Since the coalgebra structure plays an important role in the study of
its dual which is isomorphic to a subalgebra of the ring (E(zy,...,z,) ®
Ply1, ..., yn))P»(N)| Adem relations should be explicitly evaluated. Here lies the
advantage of using modular invariant theory to describe these algebras where
Adem relations are overcome and the relation between homology operations and
modular coinvariants is revealed. We proceed by analogy with May’s compu-
tation of the dual of the Dyer-Lashof algebra. The Dyer-Lashof algebra R has
been defined by allowing Adem relations everywhere and the extended Dyer-
Lashof RN is defined by allowing Adem relations everywhere but on certain
positions determined by a strictly increasing sequence P = (vo = 0,vy, va, ...)
of integers. If P is empty we allow Adem relations everywhere.

Let F be the free graded associative algebra on {e, i > 0} and {B¢, i > 0}
over Z/pZ with |e'| = 2i and |Be’| = 2i — 1. F becomes a coalgebra equiped
with coproduct ¢ : F — —— > F ® F given by

ve' = Zei_j ® ¢l and yYPe' = Zﬂei_j Qe + Zﬁi—j ® Bel.

(2.1) Elements of F are of the form ¢/ = g% ¢’ ... e’ where [ = ((exy71),- .-
(€n,n)) with €¢; = 0 or 1 and i; a non negative integer for j = 1, ... ,n. Let
I(I) denote the length of e/ and let the excess of e/ be denoted by ezc(ef) =
et | —e1— |e!'|(p—1) where I' = ((e2,i2), - - - (€, in)); and 00, if I = (0, ..., 0).

F admits a Hopf algebra structure with unit n: Z/pZ— F and augmenta-
tion € : F—Z/pZ given by:

ey = { 1, ifi=0

0, otherwise.

(2.2) We define U = F/I., where I, is the two sided ideal generated by elements
of negative excess. U is a Hopf algebra and if we let U[n] denote the set of all
elements of U with length n, then U[n] is a coalgebra of finite type. We note
here that the dual Steenrod algebra acts on U via Nishida relations, (see [9],
the proof has been given by May in [19]).
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(2.3) We extend the previous construction by restricting the degrees and im-
posing Adem relations. Let U’ be the subalgebra of U generated by {e(P=1)¢ i >
0} and {Be(P=1) i > 0}. We denote these elements by Q* and AQ° respectively,
and recall their degrees |Q'| = 2i(p—1) and |3Q*| = 2i(p— 1) — 1. Let B be the
quotient algebra of U"' by the two sided ideal generated by elements of negative
excess, where ezxc(Q!) = 2i; — ; — |Q”'|, with I = ((e1,41),...(¢n,in)) and
I' = ((e2,%2),...(€n,in)); and oo, if I = (0, ..., 0). B is a Hopf algebra with
the induced coproduct and B[n] a coalgebra as before.

(2.4) Let N = (0,ny,nz,...) be a sequence defined before or N =  and
let P = (vo = 0,vq, va, ...), where y; = Z;‘=1 n;. Let Iy be the two sided
ideal of B generated by allowing Adem relations everywhere except at positions
described by N counting from the left. We denote RN the quotient B/Iy
and this quotient algebra is called the extended Dyer-Lashof algebra. If
N = 0, then RN = R is the Dyer-Lashof algebra. We remark that B and R
are special cases of RN. Finally, RN is a Hopf algebra and RN|[n] is again a
coalgebra. Since RN [n] and U[n] are of finite type, they are isomorphic to their
duals as vector spaces and these duals become algebras. We shall describe these
duals giving an invariant theoretic description, namely: they are isomorphic to
subalgebras of rings of invariants over the appropriate subgroup of GL(n, Z).
Respectively, if we let Adem relations everywhere except at positions described
by N but counting from the right, the algebra we get is denoted by R'N and
is associated to the family described in 1.5-c) and acting on appropriate G'y-
spaces.

An element Q! in RN[n] is called admissible, if there are no Adem relations
between its factors and primitive if ¥Q7 = QT ®Q° + Q°®Q’. Here Q° means
Q° I(I) times. Knowing that the dual of a primitive is a generator, we shall find
all the primitives and their relations to examine the algebraic structure of the
dual algebras.

(2.5) The following algebra epimorphisms
F — U — B — RN — R

induce coalgebra epimorphisms and dually algebra monomorphisms (see dia-
gram before remarks (2.24) below).

Note 2.8. The algebra U is an important tool to define homology operations;
on the other hand, its algebraic structure is easier to be understood than of
RN. We will examine RN in detail and discuss the U- case briefly.

Next we discuss the primitives of U[n], RN [n], and the primitive decompo-
‘sition of an admissible element. We follow May [8].
(2.7) Let I; n» = (p*~%(p-1),...,(p—1),1,0,...,0), where there are n — i zeros.
Its degree is |I; »| = 2p*~! and ezc(l;,) =0. Here 1 < i < n.
(2.8) Let J; n = (p*~2(p-1)/2,...,(p—1)/2,(1,1),0,...,0), where there are n—i
zeros and one Bockstein operation. Its degree is |J; n| = p* =1 and ezc(J;n) = 0.
Here 1<i<n.
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(2.9) Let Iy, —s0;n = (P~ 1P =), oovy PP (PP =1), <., (PP =1),P7Y - s,

» 1,0, ..., 0).

Here1<j<¢ 1<i<n, I(Q*=**i") = n, i is the number of p-th powers,

and the first n — v; entries are zeros. The degree [Q’”J""’J"‘l = 2p*~i(p* - 1)

and the e:cc(QI )y =0,ifi<yj,and 1if j=1and i = v,.

(2.10) Let J,;—i ., n = (P72 (p -1), ..., p™~i(p-1), ..., (P -1),(1,P""Y),
.., p 1,0, ..., 0).

Here 1 < j < ¢, 1 < i < nj. The only difference between I, _; ,, » and Juj=iwin

is the appearance of one Bockstein operatlon The degree IQJ" =tvin] =
2pi~i(p' — 1) - 1 and the ezc(Q”s—**") = 1.

(2 11) Let I{VJ—.’ vy=iv,n = ( fo=ie l(p - 1) —pyj—’_lv o8 oy (lap’_i—l(pi - 1))1
P =1,(1,p7Y, ., p.1,0, ..., 0).

Here 1 < j<¢ 1<1i<n;, and i < s < v;. There are two Bockstein oper-

ations in this element: at the 1—th position after the zeros and i+s-th position

after the zeros. The degree |Qfvs=rwi=rvin| = 2(p¥i~i(p* — 1) — p*»~*) and the

ezc(QFvi-rvimrnmy = 0.

We shall show that these elements are primitives and any primitive in RN [n]
is a linear combination of these elements.

Lemma 2.12. The set P[n] = { QMo=ran, Q7urwan, Q¥vs=rws-iwsn |1 <
J L1, 1<i< nj, and i < s < vj } consists of primitive elements and any
primitive monomzial belongs in this set.

Proof. First we consider primitive monomials with no Bockstein operations.
The lemma above has been proved by May in the case n = v, we proceed to
the case n > v;. We note that the first n — v; entries from the right may all
be zero and the v; + 1-st should be 1 (there is no Adem relation between the
v; and the v; + 1-st). The number of p-th powers can be at most n;; otherwise
we can write p* = p' — p*~™~! 4 p'~™ ! which implies that the sequence I
above can be written as a sum of two admissible sequences. This implies that
for t > i, there is only one choice: p*~*~}(p - 1).

For the case with a number of Bockstein operations, we are left only to show
that one of them must be inside the last block (the n;-th entries after the zeros)
using May’s lemma [3.1] in [8]. Let I = (I, (B8, ki), I') such that no fBs in I'.
Then I’ is primitive and of the form I’ = I;_1-,,i~1,n-v,+i-1, Where i > n;. If
the last entry in I’ is p*~2~*(p* — 1), then k; = p*~17*(p* — 1) + 1, otherwise
the excess is negative. But then there is an Adem relation between the elements
above: if i = n;j + 1, we have a non-primitive element i.e. Q! contains
QI-(p"J-l-:(p-l),...,(p—l).(l,l),O,A..,O)®Q(p"i-‘-:(p-l),...,(p—l),(l,l),O....,O) This forces
ki-y = p'~? and k; = p*~. Thus i < n; and k; = p*~!, for t < 4, and the last
implies that I is of the form J,,—; v;,n OF Kyjms vj=i,v;n-

For the U[n]-case we have the analogue.

Lemma 2.13. The set
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P()n]={ &=, e’ | 1< jand s < n)
consists of primitive elements and any primitive monomial belongs in this set.

Next we shall show that any admissible sequence, I, can be written uniquely
as a sum of primitives. We follow May’s notation.

(2.14) To any sequence I we associate a sequence €/(*) = {ey,...,e;} with
1<e;<---<ej <yy<nandl <t < Csuch that its elements correspond to
the positions where Bocksteins appear in I, and to any such sequence €/(*) we
associate a set I,r([n] which contains all admissible sequences such that their
Bocksteins appear at positions described by e/(*).

Itw[n) = { I | Iadmissible, ezc(I) > 0, I(I) = n,and €,,—-a =1 &> a € /¥ }.

If /() is empty, I,1(n[n] = I[n]. For each ez, in /() we find t(m) such that
Ut(m)—l < €2m S Vt(,-)'
If j is even we define:

LE’("J’:U/,)." = Iiex—l,ez—l.u,“),n+f\e,—1,e4-1,u,(2),n+' : '+I‘e,-1-l.e,-l,vc(j/,)-"'

If j is odd we define:
L

I =K, - st K, _o- -
O M anymn T embeamLyigyn o Rejamte, ity

t e =Ly

Lemma 2.15. Let I € I[n]. Then I can be wrillen uniquely in the form

> m;ily, i, n-
155 <, 1<ign,

Proof. This lemma has been proven by May in the case N = 0. For complete-
ness we quote his proof:

Let N be the non-negative integers and f:N"—I[n] given by f(m;,...,m,) =
S miln_inn Then fis abijection with inverse f~1(sy,...,s,) = (my1,...,my),
where my = psg —sq-1 if¢>1and my =5, — E: my. For the general case we
induct on the number of blocks.

Let I = (1.1, L [ (O N iy,) and I; = (i,,‘_l.“, ‘v oy i,,z), then I; can
be written uniquely as E';' m;In,—inen. by induction. We extend In,—in,n,
to I,,—i,u.,n such that the last n, elements of the last sequence are equal to ele-
ments in I, i n, n, respectively. We note that the excess of the last m elements
of Iy,—iv.n is zero for any m > n, and any i. Let I' = (14,...,4,,_,0,...,0) =
I =31 mil,—iven, then I' can be written uniquely in the required form by
induction as soon as I’ is admissible.

Claim: I’ is admissible with non-negative excess.

For any two consecutive elements of I,,_;.,» We have s;,_.1 = ps;  for
g < vg—1. And since £ > 1, exc(l,,-iv,n) = 0, for any i. 2i; — ZZiq(P -1)>
ezc(Z';‘ mil,,—iv.n) = 0 implies ezc(I') > 0, and for any two consequtive
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eler'nen.ts of I' we have iy = i = 31 siq where i,_; < pig and s; -1 = psig
which implies #;_; < pi. This completes the proof.
We proceed to the case I contains a number of Bocksteins.

Lemma 2.16. For each non empty /), let fu) : I[n]—ILuw[n] given by
faw(I) =1+ Law ,, n, then fae is a bijection.

Proof.  fe1(r) is well defined since the sum of two admissible sequences is again
admissible and f,r¢1)(I) € L1 [n]. We shall show that f33,(J) = J — Law g,
is admissible and has no negative excess. Let J = ((€1,71),...,(én,in)) €
Iiw[n]. If the number of Bocksteins in J is odd, then ezc(J) > 1. Now
for any ¢ < n, i1 < pig — €, since J is admissible. We recall that
Ly yen = ((61,71)5 -+ +3 (8042 T0e), 0, - .., 0), where rg_y = pry — &, 8, = €,
and ezc(Ky,~s,v,~iv,,n) = 0. If the number is even, then ea:c(L,x(.)',h,,) =0
implies exc(J — L1y, n) > 0. Moreover, i, < pi; — €, and ry_y = pry — §;
imply ig_y —rg—1 < p(ig —r¢), 50 J — Lo1vy ,,  is admissible in either case and
this completes the proof.

Proposition 2.17. Let e/ € U[n] and B(I) = (i1, ..., i) be the position where
Bockstein operations appear in I (1 < k < n and B(I)can be 0). Then I can be
written uniquely in the form:

n
I=ijlj," + z Ji.,n-
7=l

tep(l)

We are ready to consider (RN [n])* and discuss its algebra generators among
with their relations, its relation with modular invariants, the Steenrod algebra
action and its coalgebra structure.

(2.18) Define the generators as follows:

on = ((Q%)™)", 0< n.
Euiminyn = (QM9700)", 1<j<41<i<n;.
Toymign = (Q7 5= wim)*, 1<j<61<i<n;.

Ovjmsvymivjmn = (QK“j-"';-'-"i-“)‘, 1<j<¢41<i<nj,and i< s<y;.
We have the following generalized version of May’s theorem 3.7 [8].

Theorem 2.19. Let PM([n] be the free associative commutative algebra gen-
erated by {€,,—iv,ns Tvj—iv;n,and Ovjms =i jm /1 <j<¢41<LiXZ
nj,and i < s < v; } modulo the following relations:
a) Tvj—iwjn Tvj—ivjn = 0,1<j<¢ 1< S'nj'
b) T,y =s,vj,n Tvj=ivjn = Opj —svj—iv;n Hi‘:l Eveor viin: Here 1 < s < N,
1<j<¢ 1<i<n;, and js <.

Je
C)T”J."':”Junry.il-i'uh'"Tulz—k-”,':l" = UV:."-“J’:'i-":lv"T"u""-"J:'"tljls"'-h"""'
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H€T€1S3<nj', ISjlt j'-'SZv lfisnjp js SjISjL a"dlﬁksnj:-
Then PM[n] = RN|[n]" as algebras.

Theorem 2.20. U[n]" is the free associative commutative algebra generated by
{ ("), (e7=)", | 0<i<nand 1< < n}

modulo the single relation ((e’>»)")? = 0. That is U[n]" is isomorphic to a
polynomial tensor an exterior algebra over Z/pZ.

We procced to the relation between RN[n]* and
(E(z1,--+,%n) @ Ply1, ..., ¥a])T»™). We recall that P,(N) stands for the first
length n part of the infinite sequence N. We advise the reader to read theorem
(4.25, 4.26, 4.27), proposition (4.28), and corollary (4.28) from section 4 before
the rest of this section.

(2.21) Let SP~(V) be the subalgebra of (E(z1,.-.,2n) ® Py1, ..., yn])PV)
generated by:

{(Lu,/Lv,_l)p_l, Qu,,v,-—i = Qx’;,il,i—n,’ Mu,-;ui—i(LV,)p_zvand
lwuh:yh-"(Lst )P_2M"J;"j"i(ij)p_z/LiJ_.l |

1<j<¢,1<i<n;j -1, jy<jand1<s<nj,¢{.
_-d = - J =Y ="

Here we understand Q,,_, i-n, to be zero, if i < n;; modulo the relations:
a) [MVJ;J(LVJ )p—2]2 =0;
b) A’[v“;y,-,-:(Lu_,, )p_2Mv,:u,—i(Lu, )p-—2 = (Lu,, )p_ljuu,,;u,,-—sLEJ_.Z/Lﬁj_,l
My, -i(L,,)P~% Here 1< j< fand yj_; < 5 < yj.

Now the following corollary is deduced.

Theorem 2.22. (RN[n])" = SP»(V) a5 glgebra over the Steenrod algebra and
the isomorphism @ is given by '

¢(£u,—i,u,,n) = Qv,;u,-i = (Qv,-l,i—n,-)pnj, ifi> nj,

¢(7'u,—i,u,-,n) = Mu,;u,—i(Lu,)p—z;

¢(o'u,-,—a,v,<—i,yj,n) = Mu,-,;u,_—:(Lv_i, )P-zMV”;UJ‘-i(LUJ’)p_z/(LUj' )p—l.
Here1<j<¢ 1<i<nj, j, <jand 1< s < nj,.

As it is expected the U[n]-case is simpler.

Theorem 2.23. (U[n])* = SY» as Steenrod algebras and the isomorphism & is
given by

B((e"m)") = Vj3

B((e”*:)") = Myys-1(Lys-1)0~ 32,

Here0<j<nandl1<s<n.

We have arrived at the following picture where the downward arrows are
coalgebra epimorphisms over the Steenrod algebra induced by the Adem rela-
tions, the upward arrows are monomorphisms over the Steenrod algebra (actu-
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ally inclusions), and the first column horizontal arrows are vector space isomor-
phisms, while the second column arrows are isomorphisms over the Steenrod
algebra.

Fln]

~

Un] = U] = &U» < (E(z1,...,20) ® Plyy, ..., yn))V"
2 8B < (E(zy,...,2n)® Plys,. .. ya)) B

I I I

RN[n] =+ RN[)* 2 SPMN) <(E(zy,...,24)® Plus, ..., ya))P"™)

R I

B[]

lm
]
=,

|

R[] = R[n)* — S%» < (E(z1,..-,2) ® Ply1,...,ua))C0"
REMARK (2.24). We have shown that the n-th extended Dyer-Lashof coal-
gebra RN[n] associated to P, = (0,ny,n; + ng,...,n = me- n;) is isomor-

phic to (SP»(M))* as opposite Steenrod coalgebras via Nishida relations. Since
SPa(N) = §nnPu(N)'nn a5 Steenrod algebras, RN[n] = (S"“PA(N)'"") as op-

posite Steenrod coalgebras. where P, = (0,nk,ng + ng—y,...,n = Zfﬂ n;).
Therefore, if we are given an increasing sequence of positive integers N as be-
fore, we can construct the extended Dyer-Lashof algebra, denoted R'N, by let-
ting Adem relations everywhere but on the positions described by N but in the
reverse order and this algebra of homology operations acts on a G y-spaces as-
sociated with the family of groups described in (1.5)-c). In simple words, RN [n]
is associated to Zpn, [+ [ Zpne and R'N([n] to Zpme [+« [ Zpny.

Since Q° does not act as an identity, the degree zero homology operations
denoted by @'~ do not form a finite dimensional vector space and in general
RN is not of finite type (any number of zeros is allowed). RN* is not a Hopf
algebra. As an algebra RN" =[], RN[n]* and for each n there are n polyno-
mial generators {; ,;} or {Q.,j,.'}-in degrees 2(p¥i — p'), n exterior generators
{7iv,n} or {M, ;} in degrees 2(p"s — p* — 1) + 1, and also n(n — 1)/2 exterior
generators {0, ; ,;n} of {M, ;, ;} in degrees 2(p"i —p* —p’) respectively, modulo
the single relation b) given in theorem (4.25). In the invariant theoretic descrip-
tion of the generators we are not allowed to use the known relations between
generators of different height, where the height of elements of RN [n]* is n. For
example, let p = 2 and N = (0,1,1,...), then in the isomorphic image of B*
the generator V¥ =1 appears infinitely many times with a different height.

The Steenrod algebra action on (E(zi,...,2Zn) ® Ply1,- ., ¥n))"*V) has
been calculated in [14], hence the same action on RN|[n]* is known and it can
be used to deduce the dual Steenrod action on RN|[n].

" Since $P»(M) is a subalgebra of SB~, we shall show that the monomorphisms
induced from the epimorphisms which impose Adem relations are inclusions.
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We will use this result to calculate the coproduct in the dual algebras. The
idea is to find all Q7 € B[n] such that after applying Adem relations their
sums contain a certain primitive of R[n]. Let ¥ also denote the coproduct in
RN* (¢ : RN*—RN* ® RN*) which is dual to the given product in RN.
We shall find the coproduct on generators of RN* and this is equivalent to
find all elements of RN which contain a certain primitive element. This case
reduces to consider the coproduct in R* since a generator of RN* is an algebraic
combination of R*-generators. The coproduct in R* has been given by May in
(8], here we use an invariant theoretic proof of his formulas.

REMARK (2.28). It is known that the induced inclusion
i: X, [ [ Z,—Z,~ induces Adem relations in homology [19]. Since the
same inclusion is used in cohomology to give an invariant theoretic description
of H*(Zpn) and H*(Z, [--- [ Zp), as the following diagram suggests, the dual
of every monomial of B[n] which contains the primitive @Q/»~+~~ in its sum
after applying Adem relations should be a summand of the dual (Q»~i»»)* in
its B,-decomposition.

H(E, [---[E,) — H*(E")P»

T I

H*(Sp)  — He(E")CLe

Using our isomorphism between R[n]* and S%L», we can find all monomials
in B[n] which contain @Q/»-*~~ after applying Adem relations. Now suppose
that we do not allow Adem relations only in one position. The dual of such a
monomial of B[n] must be of the form

(Veg1 - - - Vegr )PP (Vigitr - .. Vi )P~D) which is a summand in Q, 4, for 1 <
k< n-iand0 <t < i Here we used lemma (4.8) c). Hence, Q7 »" can be
written in terms of a product of two admissible elements as follows:

QP'IOJ‘-"")'(F»_.—P')Ik—l,k.hQll,n-k.n—k = Qll,n,n'
Using the corresponding decomposition for M,.;,-Lg.p "D in (E(z1y..-,20) ®
Ply1,...,yn])B*, we derive the corresponding formula for Q”*~~ (theorem

(4.24)-b): Let us pick any summand My, L¥~3(L,/L,)P~1Q,_1; in
M,,;iL,(.’ ~?)_ The monomial that contributes an Adem relation to the left of a
Bockstein in the dual side is Q,—-1,; between r — 1 and r position from left and
the farthest that it can be moved is the t-1-i-th position from the left. Since in
this case, the Bockstein operation should be contained in the left factor, there
are r — ¢ — 1 cases to consider, namely Adem relations described above. By a
straightforward bookkeeping we get the formula in the lemma bellow. Let us
note that there are no Adem relations to the right of the Bockstein. The next
lemma follows.

Lemma 2.29. Let I = Linn or Jinn, then all possible choices for admissible
sequences J and K such that QX Q7 contains Q' in its summand after applying
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Adem relations are given by the following formulas.

a) ka—l—.(p_l)ll—l.l.lQli—l—l.k—l.u-l — Q[k—l,k,n’ for 1 S i < k S n.

b) QIk-trn= Q00 = Qfk-viben, for1<i<n—k
) QP TP Ik tmkonns = QJk-vkn for 1< i< k< n.
d) Q-1 4n=1 Q00 = Qk-sibn, for1<i<n-—k.

e) Q(P"_k—P’)fo.k.ri-P’I--,mjQf,,..—n_u—k — Qlu.n.n_ for0<j<i, j<n-—k.
f) Q(p""‘—p’)lo,u.h+p’l,-, u,.QJ,.....n.,..-» - Q""""‘.fot 0<j<i j<n—k
g) Q(Pn—k_I)Io.k,h+-’|.k,kQ]D.n—h,n—k — QJ""'", forn—i<k < n.

Note 2.30. If we replace Q' and SQ* by €' and fe’ respectively in a) and b)
above, then we get the analogous formulas for the U[n]-primitives.

Let us also note here that the analogue formula for QX+~ turns out to
be complicated and this is the same for the corresponding formula with respect
to invariants. As May pointed out in [8] page 35, we can find the coproduct for
M,,;,_,-Ls.p -2 using the relations between the generators. Let us also note that
the invariant description of RN™ is simpler but not simple enough to reduce
every case.

Before we express the next theorem which has been proved by May (8], we
malke a note on the notation. Let nd(p =Y and ,,Mk;;,_lLﬁp =2 denote the gener-

ators V,:(P'l) a.nd»Mk;k_lLip_z) respectively in (E(z1,...,2,)® Py, ..., ¥a])2
and 1,, the identity element in B[n]* and R[n]* dual to Q(°0),

Theorem 2.31. The coproduct on generators of B* and R* is given by the
following formulas (here we use the isomorphic image of these algebras).
DYaVEV) = T TP g (o VETY) +
1<i<k-1

+ ¥ (k+in(P-”)® P S

0<i<n—-k
i) YaMee-1 L) = ¥ GVETVPTTOD @ i(MecigoiaaLESY)

1<i<k—1

+ X (k+iMk;k-1L£p-2,)® lo—k-i-

0<i<n—k

n—k __J

“l) 1l’(Qﬂ,i) = (z;)Qi.o E Qif,’_( ® Qn_k,j.

: - ; -k _ »

i) Y(Mas L) = T Qg QFiny © M-k LTZ0 +
(i.k)

+ E(k) Q}’:;._IM’:#L?-Z, ® Qn-k,0-

v) (M, kL""’) =

—pf (p-2
(Z QPO i PJ QP:+J le At Sf—s Qt S - k H+J J)®M""J~’LP )~
i/
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E Qf:)—'—pJ-l(Q}i,Ji -_kAIi:i—sLEP—Z) _ f‘J,'.’.'-,Mi;i—kLgp-z))@ "\’In—i;jL(p:iz)
e ke ?

+ 2(;) Qf,:)-l-lMi;i-s,i—kLE-p_z) ® Qn-io-

3. The homology of Gy X

Theorem 3.1. Let X be connected in S and Gp = Zpny [+ [ Ty associated
to N = (0,ny,ng,...) an increasing sequence of positive integers or Gp = Zpn.
Then H.(GNX) =Y. Ho(Fi/Fi-1 (X)) is isomorphic to a free non associative
(associative, if Gn = Zp» for all n) commutative graded algebra over Z/pZ
generated by the free RN -module basis(H.(X)) modulo the relations: Q°z = zP,
if2s = |z| and Q'z = 0, if e(I) + b(I) < |z|. Here z € basis(H.(X)).
Moreover H,(GNX) is a coalgebra, where the coproduct is given by:

vQlz = Z ZQK:c'@Q"::", with w::Zx’®z”.

K+J=1I

Here basis(H.(X)) is a fized homogeneous basis of H.(X) over Z/pZ.

Proof.  First, we shall show that H.(GyX) and the algebra described in theo-
rem above are isomorphic as comodules, then the theorem will follow from the
fact that the product 6 in Gy X induces the tensor product in homology which
was used to calculate the homology of Gn [ X and G [ X in [15]. We recall
the filtration Fi(X): the image of UX_o(EG, x XP")U {*,*} in Gn X and hence
H.(GnX) = lim H.(Fe(X)). It is known that Fy/Fi_; (X) = EGi x XP"1/ »
= (EGr)+ N X "], where X*] is the smash product and the relation is given
by (e;*) = (¢’;*) for any €. ¢/ € EGk, and (ge;z) = (e;gz) for g € Gy and
z € XP". X, denotes X U {}. If we let Y = X U {*} and consider {*} as
the base point of Y, then Fi/Fi—; (Y) = Gi [ X U{*} and the obvious map p
between Y and X induces an epimorphism in mod-p reduced homology:

p- s Hu(Fi/Fio1 (Y)—H.(Fi/Fe-1 (X))
Using the known comodule decomposition of H.(Fi/Fi-1 (Y)) (see [15] discus-
sion after theorem (4.2)) and the map p we conclude that:
H.(Fi/Fi-1 (X)) = H.(G / Y)/ M.

Here M; is the submodule of H.(G% JY) generated by all elements of the form
Q'zo and ®F.,Q”'z; where z is the zero class of X, I(I) = p*, T I(J:) = p*,
and z; = zo for some j € {1,.. .,p'}. Our assertion follows by the natural
decomposition:

A.(Fe(X)) = Hu(Fi_1(X)) © Ho(Fi/Fe-1 (X))
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The relations are due to the definition of the Q”’s.

REMARK (3.2). The stable homotopy groups of spheres are the homotopy
groups of Q(S°). On the other hand, its homotopy type is the same as to the
realization of the simplicial monoid Un>0BZ, by adjoining inverses. Moreover,
if we let X be a group, Un>0BZ, [ X is a simplicial monoid and its group
completion has the homotopy type of Q(BX;). We are interested in studing
the analogue of our Gy X, for X a space.

4. Modular invariant theory

In this section, we discuss the rings of invariants of certain subgroups of
GL.(Z/pZ). Although, it can be thought of as an independent section, we are
mostly interested in the cases G = Uy, By, or P,(N) because of their relation
with homology operations. The main result is given in theorem (4.25).

(4.1) Here P,(N) denotes the parabolic subgroup of GL,(Z/pZ) associated
to N = (0,ny,nz,...) with 3 n; = n and P,(N) the parabolic associated with
the sequence N but with the order reversed as follows:

Iy X my * 0,...,0,1
[Tl-) X ng]
P,(N)= . and 7, = :
0 - 1,0,...,0

(4.2) We have k blocks along the main diagonal, anything above and 0 below,
where any block [n; X n;] is an element of GL,,(Z/pZ). Note that if k = 1,
then P,(N) = GL,(Z/pZ) and if n; = ¢, then P,(N) is denoted by By, a
Borel subgroup of GL,(Z/pZ). Finally, let U, be the subgroup of GL,(Z/pZ)
consisting of matrices with 1’s along the main diagonal, anything above, and
zero below. It is well known that U, is a p-Sylow subgroup of GL,(Z/pZ). We
note that 7, P,(N)n, = P,(N)'.

The notation we use follows Hyunh [11]. First, we recall some details here
for the convenience of the reader and quote some lemmas and theorems from
[11] and [4]. We recall that the object usually referred to as Dickson’s algebra
is (Ply1,- ..,y,,])GL"(z/Pz).

The GL,(Z/pZ) action on E(zy,...,2,) ® Ply1,...,yn) = H*(Ey x --- X
En,Z/pZ) is induced by the contragradient representation on H(E; x --- x
E.,Z/pZ), where this action is extended to the y;’s, via the Bockstein monomor-
phism ﬁz:,- =Y.

n n
(%)% = D 9isTir (9i3)0s = Zyi,ys,for 1<s<n.
i=1 i=1
The idea is to define some elements of (E(zy1,...,Zn) ® Ply1,.-.,ya])¢L"

and show that they form a generating set for this algebra.
(4.3) Let Ly, Ly i, and My, ,....s,. denote respectively the following graded

determinants (in the sense of Hyunh [10] page 321):
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n Yn i ¥
L, = v & y Lni = y{ . ’
y}l,n-x yﬁn-l !fi’n yf'"
A u e Zn
Mauisy, om = 7_7];'{ ;: z:
A

Here the i-th power is omitted from the second determinant, 0 < i < n—1.
There are m rows of z;s and the s;-th’s powers are omitted, where 0 < s; <
+++ < 8m < n—1, in the last determinant. (4.4) Also let

L :
Qn,i= L""-

n

Note 4.5. L, = [[i., Vi, where V; = Ha,eZ/pZ(alyl + o+ aio1Yio1 + W)
and Ln,o = L?. The degrees of the previous invariants (of Un, SLn(Z/pZ), and
GLA(Z/pZ)) are given by:
Vil =2p'~ [2°7), if p=2]. |La| =2(14 -+ p" 1) 2" -1, if p=2),
|@nil = 2(p" = p') [2" = 2%, if p = 2], and |Mpys,, . sl = m+2((L+ -+
pP5) = (p* 4=+ p*=)).

We recall here the following theorems concerning the ring of invariants of

P,(N) over a polynomial algebra.

Theorem 4.8. (Campbell) The invariants {L.,j/L.,J_,,Q.,j,g-(Q.,j_hi_,,j)P"j |
|1 <7<k vjo1 <i<vyj—1} of SPy(N) are algebraically independent and
form a polynomial basis for the invariants of SP,(N) . Moreover,

(P[yly wis e ,yn])P'(N) =P(Lyj/Lu"-|! QV,',i = (QVj-l,l'—n,')Pnj
|1<j<ky1<i<y—1}).

Here we understand Q,;_, i-n; to be 0, if i < nj.

The following lemma gives the relation among the generators of the previous
invariants.

Lemma 4.7. a) Ly= (—1)"‘1Ln_1(23‘1(_1)00"_1"%').
b) Qn,a = Qn—l,a—lvrf_l + Qf,_l',.

n—t - ite=j,
c) @Qni= 215j1<-..<,',_.5n [Tx '(Vj‘: 1)’ =
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(4.8) Let I = (4y,...,im) be a totally ordered sequence and I' = (im41, ...,
in) its ordered complement in {1,...,n}. We denote its length by I(I) = m
and an order between sequences of the same length is defined: I < J, if there
isat, 1 <t<m,such that iy < j; and i, = j,, fort +1 < s < m. Let also
zr:=z; ...z, and

1 ”n
Voorr - W
[slv-~-15n—m]1’= o o
':‘— ‘nem
Vo e W

Lemma 4.9. (Huynh) Let0< 51 <---<sp <n-—1.

Q) Mags,, om L™t = (=1)™m= DM, . Mp,,..

b) (Mn,s)? = 0.

C) }V{n;o,l,...,n—ngm1 = (—l)n(n-l)nMn;O cee Mn;n—l =I1Z22...2q.

Here ftx ,,,,, tm € (P[yl' .. '!yﬂ])U"'

f)Mn;s; ..... :,,.L:-.n—l = (_l)m(m—l)/z HT( Z lnMr;r—lVr-H v VnQr—l,r-—l-—a,)
r=s;+

g) Mn-li-’l.--w’m-lz" == Mﬂ;lx ~~~~~ Sm-1,n—1"
- Y sgnorzf[0,...,5,...,5m-1,...,n = 2]].
I|=m, n¢I

Note 4.10. i) Let f be a P,(.V)-invariant given by f =) ;.; zrfr and let J
take m; values from {vj_1+1,...,y},for1 < j <t I(I) =mand 3_m; =m.
Then J is of the form:
(ri=my+1,...,v,va—ma+1,... v, ..., t—m¢+1,...11). We also note that
not all indices less than J might appear in the sum of any element in P,(N).
Since each block is an element of GLy,,, I can take at most m; values from the
t-th block, min(m; + my_1,n:—1) values from the t-1-st block, and so on. In
general, it can take min(m; + - - - + m;, n;) values from the i-th block.

ii)Let f be an SP,(N)-invariant given by f = 3", ; z; f1, where J = (j1,.. .,
Jm)s Jmet =Vk-t, 0 <t <ng—1,and jmn, = ve. Uwelet F =3, .z fpr,
where J' U (k-1 +1,...,u)=J,and f = (E,,<1, zl’f]’)z(yk_l.’.l'”:_y.)

+ i<y T1f1, then F is also an SP,(N)-invariant.

Lemma 4.11. (Huynh) Let f be a Uy-invariant given by f = 3 ;. z1fI.
Then f; is a Un-invariant having the factor Vi := [[;c; Vi, where J' is the
complement of J in {1,2,...,im}-

Lemma 4.12. Let f be an SP,(N)-invariant given by f = 3, z1f1. Let I
be an indez set involved in the above sum. If there ezists an element g of P,(N)
such that gz = sign(g)z; and fizes z(jusy, then f contains (ys) as e factor.
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Proof. There always exists a o, product of transpositions, in X, such that
its associated element g(c), in GL, satisfies the required properties. If g(o) €
Pa(N) — SP,(N) then by changing the sign of its elements in the first col-
umn and applying it on the f, noting also that f is a U,-invariant, we have
the required property. Here (¢'(0))~! = g(0), ¢'(0)f = f = g'(0)z1fr =
zs9'(o)fr = zsyr fy = fi=(9'"(0)  ysfs = fr=yr(d' (o))" f).

Note. The existance of g in the lemma above depends on the form of I, i.e. I
and J must contain the same number of elements from the same block.

Note 4.13. i) Let f be an SP,(/NV)-invariant given by f = 5, =1 f such that
Jm = Vky Jm—q = Vik-¢, and there is no vz between j, and jm—g, for1 <i <

£. Then fr, contains V,, as afactor where I} = (j1,...,jm-q, ¥k —d,...,ve—1).
ii) Let I = (4,...,1x) with iy = m < n and
F= b [0,1,...,51,-..,8k]1f(s,,....sx) Such that F contains the fac-

0<8;< " <sp=m-1

tor L,/Lm, and each f(,,
the factor L, /L.

iii) Given f = ), z1fr an SP,(N)-invariant, we shall express it in terms of
the invariant generators. First we show that the exterior factors and their in-
variant polynomial coefficients can be expressed in terms of invariant matrices
My, ...s.. and SP,(N)-invariant polynomials. The next lemma proves the last
part of the last sentence.

sx) is an invariant of Uy, then each f,, .. ,,) contains

.....

Lemma 4.14. Let f be zero, where f is given by >, Myisi,..om
0<81<<sm<r1~-1
k
f(”l;-’ly~ ~|3m) + Zj:Z ;‘;l Z M“'J;’l ~~~~~ ’mf(yj;’lnn--’m)'

0<51< - <sm=v,; =L
____ sm) Gre zero. Moreover, if f is an SP,(N)-invariant, then
sm) @re also SP,(N) -invariants.

Then all the f, ;s,

all the f(, .s,,...,

Proof. The lemmais proved by induction on j, lemma (4.9) is extensively used.

We formulate the idea for the first steps.

Let F; = Z?;]_ z Mv.-;n,...,:...f(v.-;a, ..... Sm) and then f = Z F;. We
¢

0<81< " <Im=V,~
show that f(,,;s,,....s..) = 0 for all indeses in the sum.

n;
Fi(Lw‘/Lv.) =Z Z Mv.;sl,...,s...f(v.;al,...,s,,.)'*'
t=10<5< " <sm=vi =t

+ Z Moty tmbity,.. tm)

(t1,-tm)>(Ve=m+1,...,vi=1)
Here the hy;,, .. 1,.) are algebraic combinations of f(,,;s,,....s,») 20d elements from
P[ylx .. '1yvn]Un'
First step:
f(L,,,,/L.,,) = Mu..;0,....m-1fvx;0.---.m-l + Z Mnm.---.tmh(!x....,tn)

(t1,-.stm)tm2m
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f(Lu;. /Lvl)Mv.;m,m+1,...,v;-l = A’Ivk;o,...,m-le,.;m,m-{-l,....v;—lfvl;o,...,m-l +
+ Z -"[v,,;t;,...,l,..Mu.,;m,m+l,.,.,v;.-lh(tl,...,t,..)~

(t;,...,t,..),t,,.zm

Applying (4.9) again, we see that f,,;0,..m—-1 = 0 and this is the smallest index
set. Inducting on v, and m we show that f,,.,, . s,.) =0, and hence F; = 0.

Lemma 4.15. Let f = H + Fz,, be an SP,(N)-invariant, where f €
B(21,..,%0,) @ Plyr,. ... i), while H, F € E(2y,...,2,-1) ® P, - s W)
and F given by:

Z A/[“'l;’la-m’m—lf("l;’h--w’m-l) +
0<s1 < <sm-18V1~1

o

o

ny

= E Myjiss,...smer J(isn,mer)-
j =1 0<51 < <Sma1 ==L

<
1l
~

Then H and F are SP,_y(.V)-invariants and z,, F can be written in the form:

x,,,‘F = Z -‘[Uk;s;,“.,.‘m_lf(llp,;:l,...,lm-l) - Z sgna[II
0<8,< - <Sma1 =V 1 I|l=m, I<J
—~ ~ 7]
Z [0.....,8,...,Sm=1,...Vk — 2]If(yk;31,~~~.-’m-x)'

0<1<<sm-1SVk—2

Here J = (vg —m,...,vx —1) and f(’m“
mvariants.

) are both SP,_1(N) and Up,-

..... Sm=-1

Sketch of proof. We outline the proof which is technical but straitforward.
We prove the lemma using induction on j, the number of blocks. We start
with the biggest index set I* = (vg—e —m+2,..., V) involved in F and we

note that its polynomial coefficient 3 j~7* D [0,....8m-1,..-,
0<81< <8 me1SVhoe—-t

Ve—e =11 f(vucaisy,...sm—r) isdivided by L,, _1/L,,_,, (lemma 4.11). Hence each
f(viesis1,...sm—r) has the same property, (Note 4.13 ii)). This is crusial, since
using lemma 4.9 e), we can rewrite

— /
Mu;._.;.n,...,a.,._;f(u.,-.;al,....s.._x) - Ml'k—lz-'h-n.-’m—lf(uk_.;sl,...,:m-l)-l-

Z Mu;.—l;tl,...,t,.._lf(z,,...,tm-x)”’

(t1, o tme1)>(Vh—em1=m+2,... Vk—ea-1)

The last step is to rewrite My, —1;5,, .51 Zvs OF My, _1;t;,....tm—1 Zv, iD the re-
quired form using lemma 4.9 g). We use the technique above in the following
example.

EXAMPLE: Let n = (2,2) and f given by the following sum be an SPy(N)
-invariant.

f=zanfaz+za3fa) + 20,9009 + 223 f23) + 224 (24
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f =z faz)+ 20313 + 2@23)f2.3) + (21 f(1,4) + 22f(2,4)) 24
f=H+ Fzy, H = z013)f(1.2) + 2(1,3)f(1,3) + Z(2,3)f(2.3), and F = (z1f(1,4) +
J.'gf(z'4)) = Mg;of(g;o) + M2;1f(2;0)- H and F are SP3(2, 1)-invariants and F is a
Un-invariant. By lemma 4.11 both f(; 4) and f(3,4) contain the factor V3 and by
lemma 4.12 the same holds for f(2;0) and F{(3;1). Now we apply lemma 4.9 d):
M20V3f(5,0) = Mai0f{2,0) — M3:2Q2,0(3,0) and
My.oV3 f(’z;o) = Msy f(’z;O) - M3,2Q2,0 f('2;0) and Lemma 4.9 g) is applied in the
following: M3,;z4 = Myi3— 3. sgn(I)z;[O,’i\, 2)r,fori=0,1,2.

1<(3,4)
Lastly, Fz4 = M4;O,3f(lg;o) + -"14;1,3.[(,2;1) - M4;2,3(Q2,0f('2;0) -t Q2,1f(’2;1))"
I(IZ):=2sgn(I)1:1[1, 2)1f(3,0) = ’(Z 2sgn(I):::J o, 2]1f(’2;1)
+l(§_239"(1)21[0v 11(Q2,0f(3,0) + Q2,1f(3;1))-

Note 4.16. The lemma above remains true, if v, _. is replaced by v — 1, since
My, —1;s,,...,s is still an SP,_;(N)-invariant.

Lemma 4.17. Let f be an SP,(N)-invariant given by f = 3, ;. 1 f1, where
I =(31,...,i0), td, 4 td, = vt, 1<t <k, m=dy+---+di-, and dp+ < nge,
if nge > 1. Then f can be uritten in the form:

k®* n,

f= E Z Z M”j;-’l ..... s,..f(v,;s;,....am)-

J=im £=10<81< <sm=v;=L

sm) @7¢ SPA(N)-

.....

Here vj, —1< m < v and j,m > 2. Moreover all f, s,
invariants.

Proof. Since the proof is lengthy and technical, let us discuss the main points
and work out a complete example. The idea is to use induction on the num-
ber of z;’s and the length of I*. Since i}, = vi, induction on I* is equivalent
inducting on the size of the k- block. First we prove the case m = 1 and then
m > 1 using three steps:

i) We prove the lemma for i}, = n;;

ii) We suppose the lemma is true for N = (ny,...,nx—1) and prove it for the
case n; = 1;

iii) We suppose the lemma is true for n, = u and prove it for the case
niy = u+ 1. To be reduced to the case where induction holds, we factor out
Tis, (f = Trcreingr zeft + (X s<ge z2f1)zis,), and we note that f is an
SP,,—1(N) and Up-invariant, where P,,_y = (v1,...,v¢—1) and i}, = v;. Then
we start with the sum over J noting that the length of J, I(J), is m — 1 and
induction hypothesis can be applied. Since this is a U,-invariant, using lemma
(4.9), we bring the new form into the required one plus a sum where the exterior
factors do not contain z;. . This is because induction hypothesis provides gener-
ators with exterior factors of length m — 1 and invariants of SP,,—;(N) instead
of SP,(N). The last step is to write those invariants as SP, (N )-invariants. This
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is again achieved using mostly lemma (4.12).
EXAMPLE: Let n = (2,2) and f given by the following sum be an SP4(N)
-invariant as in lemma 4.15.
f=zanfa +z03)f13) + 20,9509 + 223 f(2,3) + 229 f2,9
= z(1,2)f(1,2) + 2(1,3)f(1,3) + 2(2.3)f(2,3) T (z1f(1,9) + 22f(2,9))Z4-
Here I* = (2,4) and z;f(1,4) + Z2f(2,4) is an SP4(N) and Us-invariant. Hence
1 f(1,4)+22f(2,4) = M2;0f(2:0)+ M2;1 f(2;0) by induction. From example in lemma
4.15 we have the following SP4(N) and Us-invariant.
f—M4;0,3f(’2;0)—A’I-i;l,3.f('2;1)+1"!4;2,3(Q2,0f(12;0)+Q2.lf(lz;1)) = Z zrh
1<(2,4), {4}¢1
and this sum is an SP5(2,1) and Us-invariant.
By induction E zh = Mz;o,lhb;o) - M3;o'2h23.0‘2) + M331:2h(3.1,2)'
1<(2,4), {4}¢1

Now z(33)h(2,3) is a summand in the sum above. Since f(;3) contains y4 as
a factor and the polynomial coefficient of z(2,3) in My;03 f(IZ;O) - M4;1,3f('2;1) +
M4;2'3(Q2'of(’2;o) + QZ,lf(,g;l)) also contains y4 as a factor, h(z3) contains y, as
a factor as well. Finally hfs 1,2) and h(so 2) contain y4 as a factor and hence
M3:0,2Vah(3 04y = M402h(302)+M423h(302 Q3,2 — Maj0,3h(3  5)@3,2-
The required expression for f follows using the expression above and the ap-
propriate one for M3,1,2h 312)

REMARK(4.18). If in the lemma above I* = (if,...,i,, = v.) and
m—nx.41 = Vk.—1+ 1, then we prove the lemma followxng almost the same
technique. First we decompose f as follows:

Z zrfr + (Z Z1f1)Tu s 41 Zuy, -
I<I® {vxoor+1,...vx YT J<Je
Here J*U{vg.—1+1,...,u..} =I". Now Y z;f; is an SP,(N)-invariant by
J<Ie

lemma (4.13) and by lemma (4.17) we can write this sum in the following form:

a) Z zyfr = Z Mv‘;sl,...,sm_nk. f(u;;:.,...,sm-..k.) +

J<J" O<s|<-~-<s,..-..*_ <vy-1

e
+ ZZ Z Mv,-;a;,...,:,,.-..h f(u,-;.n,...,a..._..k_)-

J=2t=10<1<"<3mon, =v,-1

Here the f(y,is,,....sm-n,, ) 3%€ SPn(N)-invariants. We note that if J* has a sim-

ilar form as I*, namely: J* = (i],...,im-n,,) such that if,_, = v and
Imena. —ne+1 = Ve-1+ 1, we proceed to the longest subset of I* where its last
part does not cover the whole block. At this point we observe that L,, _1/L,,
divides f(yis,...,sm-a,, ) a0d this is the key point to express the invariants above
in the right form using the following formulas:

(4-19) Mn—e;:;,...,uzn-uﬂ e Ty = Mn;a;,...,a.,n—e,n—e+l,...,n-1-

sgnorz/[0,1,...,51,...5m,...,n—e—1]s
I(I)=k+e, {n—e—k,...n—e}gl
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(For proof we use the Laplace expansion.)

(4-20) Ln-ezn-—e+l T = -Un;n-e,n-e+l,...,n-l = Z sgnorzxy
i(I)=e, I<{n-e+1,...,n}

[0,1,...,n—¢]s.
The last step is to induct on j = 1,...,e — 1 and mimic the proof of lemma
(4.15).

Theorem 4.21. The algebra (E(z1,...,2n) ® P[y1,..-,yn)) ™) is a tensor
product between the polynomial algebra P((L,;/Ly,_,), Qu, -—(Q,,J._h,-_,,j)""" [
1<j<kvj_1<i<vyj—1) and the Z/pZ -module SM([n], where SM[n] is
spanned by the set of elements consisting of the following monomials:

Myﬁ,h._.,,m; 1<j<k1<m<y,1<¢<Lv;,and 0< 51 < -+ < 8 = y5=L
Here we understand Q,,_, i-n; to be 0, if i < nj. Its algebra structure is deter-

mined by the following relations:
a) (M,,;s)? =0, for1<j<k, vji.i<s<y—1

g=1
k(q)—ln,_,. Ny—r=—A+1
Z ZMVJ_,;VJ_,.—A(LV,/LVJ_.-) Z (—1)#-1
r=0 A=1 u=1

II Qavanr):

@o=8q, Vymr=1Sa, < <Au=Vymr=A
Here vio1 < sm < vj -1, Viig-1 <8¢ S Vi, — 1, and kig) = j = j(q)-
Proof. The theorem follows from lemma (4.9)-b) and f).

Corollary 4.22. (Huynh) The algebra (E(zy,...,Zn) ® Ply1,.. Ya))Un is a
tensor product between the polynomial algebra P(V; | 1< i < n) and the Z/pZ
-module UM|n], where UM|n] is spanned by the set of elements consisting of
the following monomials:

My, sn;i 1<m<n m<s<n, and0<s5; < - <5 =5-1.

Its algebra structure is determined by the following relations:
a) (M,;;,)*=0, for1 <j<k, vj1<s<y-1

b) Mys,,....sm(V1 ... V)1 = (=1)m(m=1)/2 |

( Z Mr;r—lVr-{—l wie »V.-Qr-x,:.)-

r=sq+1

Fori1<m<n m<s<n,and0<s;<---<sp=85-—1.

Now we proceed to the P,(/N)-invariants.
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Lemma 4.23. Let f be a B,-invariant given by f = Z,S,. zrfr. Then I" =
(31,..-,iy,), then every fr has the factor L{-’:z, where I = (i1,...,1im).

Theorem 4.24. The algebra (E(z1,...,22)® Ply1,. .-, Ya])B" is a tensor prod-
uct between the polynomial algebra P((V;)P™' | 1 < i < n) and the Z/pZ
-module BM([n], where BM([n] is spanned by the set of elements consisting of
the following monomials:

Myjsy,.smLf7% 1< m<n, m<s<n, and0< 51 <+~ < sm =5 — 1.

Its algebra structure is determined by the following relations:
a) (M,;;s L2=%)2 =0, for 1< j<k, vjoy<s<v;—1

b) Mysay,....sm LE=3(LE~1)™"1 = (=1)™(m=D2 [T |

(5 ML (VP2 (VP Qro1,)
I;;;g?ngn, m<s<n and0<s< - <sy=5-1.

Theorem 4.25. The algebra (E(z1,...,22) ® Ply1, ..., ua))*™) is a tensor
product between the polynomial algebra P((Ly;/L,;_, )"~ !, Q,,J.,.-—(Q,,j_l,,~_,,j)*’“J
|1<j<kvj_1<i<vj—1) and the Z/pZ -module PM[n], where PM|[n] is
spanned by the set of elements consisting of the following monomials:

Myyss sl 51< SIS M S0, 1 <0< 05,0881 <+ < 5 = v —L.

cSm
Here we understand Q,,_, i-n, to be 0, ifi < n;. Its algebra structure is deter-
mined by the following relations:

a) (MVJ‘;SLﬁj_z)Z =0, for1<j<k, vji.1<s<y -1l

m
-2 7p-1ym- -1)/2 -2
R 7 e 1 (T
q=
Eg)=1n;_,
(L":’/L":'-"(q)y_l + E ZM,j_rwj_,_;\Lﬁ;_zr(L‘,,./L,J._r)P‘l
r=0 A=1
nj—r=A+1

Zl (T I Qaroiy)-

ap=3q, Vj—r-1Lai< - <au=Vi_r=A
Forvj_1 <sm Svj—1, vj,-1<8; <vj,, —1, and kg =j - j(g)-

Note. The last summation in relation b) above can be expressed as a polynomial
with respect to generators of (P[y1, - - ., ¥n])P*) by lemma (4.15).

The rings of invariants of lower parabolic subgroups denoted by P,(N) can
be deduced from the theorem above after noting that P,(N)* = 0, PL(N)1a,
where P,’l = (w1 =ng,...,wg =0+ -+ n1).
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Theorem 4.26. The algebra (E(z1,...,2n) ® Py, ..., u])P*™) is a ten-
sor product between the polynomial algebra P(nn(Luw,;/Lu, )"~ !, 1nQu;,i —
(anw;‘-x»i-"k+1-:‘)pnk+l-’ |1<j<k wj = ZJ'H Meg1-t Wi-1 <i< wj — 1)
and the Z/pZ -module P'M[n], where P'M[n] is spanned by the set of ele-
ments consisting of the following monomials: nn(Myj;,,,...,,,..Lf,;z); 1<j<k,
1<m<w, 1<l ny-j,and0 <51 < -+ < 5y = wj — £ Here we
understand Qu;_1,i-nxsi-, 10 be 0, if i < npyy_; and its algebra structure is as
in theorem (4.25).

For the rest of this section we discuss modular invariant theory and extended
Dyer-Lashof algebras.

There is a well known injection i* : H*(G)— H*(A)"<(4) induced from
the inclusion i : A—G, where Zpn , < G < Zpn, A = [[I, Ei, and Wg(A)
is the Weyl subgroup of A in G (see Quillen’s Theorem in [11]). The image of
this map has been studied by Huynh in [11]. We recall his result:

Theorem 4.27. (Huynh [11])

0) Im i* (A, Spn ) = E(W1. ..., Wa) ® P[Vi,..., Va]

b) Im i*(A, Z3n ) = E(mafV1, .., Wa) @ P[paVA, ..., Vi)
¢)Imi*(A, G)=Imi*(A, Zpnp) N H*(A)We(A)

Here Spnp = Zpnmip [ Bpo tap = Tp [ Epamiy, and Wi = Mii_1L;7, .

Proposition 4.28. a) Let S be the subalgebra of (E(zi,...,2,) ® Ply1, ...,
yn))U generated by the following elements: {V;, W;, fori=1,...,n}. Then

SN(E(z1,....2n) ® Py, ..., ya)) V) = §PA (M),

Here SP»(N) is the dual to the extended Dyer-Lashof coalgebra of length n de-
noted by RN[n] and isomorphic to a subalgebra of H'(A)P:-(N).

b) Let S’ be the subalgebra of (E(z1,...,2n) ® P[yl,...,y,.])uv'- generated by
the following elements: {n.V;, naW;|i=1,...,n}. Then S'N(E(z1,...,20)®
Ply1, ..., yn])"Pr(Mn = GPL(N) g5 glgebras over the Steenrod algebra. Here
SPa(N)' is the dual to the extended Dyer-Lashof coalgebra of length n denoted
by R'N[n] and isomorphic to a subalgebra of H*(A)P~(N),

The following corollary discuss the relation between coalgebras of homology
operations and modp-homologies of appropriate subgroups of Zn.

Corollary 4.29. Let i(A,G,) denote the inclusion between the named sub-
groups, then

(Im #*(A, Gn))* injects into H.(Gn; Z/pZ), where the second asterisk denotes
the dual.

Hence: (Im i*(A, Gn))* > — H.(Gn;Z/pZ), implies monomorphisms :
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a) Uln] > — H.(Zp» p; Z/pZ),

b) RN[n] > — H.(Gn;Z/pZ),
¢) R'N[n) > — H.(G.;Z/pZ).

Here G, = Zpmi [+ [ Spne and Gl = Zpne [+ - [ Zpma
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