

Werk

Titel: On Galois isomorphisms between ideals in extensions of local fields.

Autor: Byott, Nigel

Jahr: 1991

PURL: https://resolver.sub.uni-goettingen.de/purl?365956996_0073 | log21

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

ON GALOIS ISOMORPHISMS BETWEEN IDEALS IN EXTENSIONS OF LOCAL FIELDS

Nigel Byott

Let L/K be a totally ramified, finite abelian extension of local fields, let \mathfrak{D}_L and \mathfrak{D} be the valuation rings, and let G be the Galois group. We consider the powers \mathfrak{P}_L^r of the maximal ideal of \mathfrak{D}_L as modules over the group ring $\mathfrak{D}G$. We show that, if G has order p^m (with p the residue field characteristic), if G is not cyclic (or if G has order p), and if a certain mild hypothesis on the ramification of L/K holds, then \mathfrak{P}_L^r and $\mathfrak{P}_L^{r'}$ are isomorphic iff $r \equiv r' \mod p^m$. We also give a generalisation of this result to certain extensions not of p-power degree, and show that, in the case p=2, the hypotheses that G is abelian and not cyclic can be removed.

1 Introduction and statement of results

Let K be the field of fractions of a complete discrete valuation ring $\mathfrak O$ of characteristic 0 and residual characteristic p > 0. Throughout this paper we regard $\mathfrak O$ and hence K as fixed. We write $\mathfrak P$ for the maximal ideal of $\mathfrak O$ and e for the absolute ramification index of K (so $p\mathfrak O = \mathfrak P^e$). L/K will always denote a finite Galois field extension of K, and G its Galois group. We write $\mathfrak O_L$ for the valuation ring of L, and $\mathfrak P_L$ for the maximal ideal of $\mathfrak O_L$.

 \mathcal{O}_L can be regarded as a (left) module over the group ring $\mathcal{O}G$, and more generally so can each fractional \mathcal{O}_L -ideal $\mathfrak{P}_L{}^r$. It is well-known that \mathcal{O}_L is free as an $\mathcal{O}G$ -module if and only if L/K is at most tamely ramified, and Ullom [16] has shown that every fractional ideal is then free over $\mathcal{O}G$. In this paper, we assume that L/K is totally and wildly ramified, and investigate when two fractional ideals $\mathfrak{P}_L{}^r$ and $\mathfrak{P}_L{}^{r'}$ are isomorphic as $\mathcal{O}G$ -modules. Clearly a sufficient condition for this is that $r \equiv r' \pmod{n}$, where n is the degree of the extension L/K. Our main result is that, if L/K satisfies certain hypotheses, this congruence condition is also necessary.

Recall that the ramification groups G_i of L/K are defined by

$$G_{i} = \begin{cases} G & \text{if } i = -1\\ \{\sigma \in G : (\sigma - 1)\mathfrak{O}_{L} \subseteq \mathfrak{P}_{L}^{i+1}\} & \text{if } i \geq 0. \end{cases}$$

L/K is totally ramified if and only if $G_0 = G$, and is then wildly ramified if and only if $G_1 \neq \{1\}$. If L/K is wildly ramified, we write t(L/K) for the first positive ramification number, i.e. $t(L/K) = \max\{t : G_t = G_1\}$. If G has order $p^m k$, where (p, k) = 1, then $t(L/K) \leq ekp/(p-1)$ (see Proposition 3(iv) below):- in particular, if G is a p-group then $t(L/K) \leq ep/(p-1)$.

Our main result is the following:

Theorem 1 Let L/K be a totally ramified abelian extension of degree p^m with

$$t(L/K) \leq \frac{ep}{p-1} - 1.$$

If $m \geq 2$, assume that G is not cyclic. Then, for any integers r and r', the fractional \mathfrak{D}_L -ideals \mathfrak{P}_L^r and $\mathfrak{P}_L^{r'}$ are isomorphic as $\mathfrak{D}G$ -modules if and only if $r \equiv r' \pmod{p^m}$.

The proof of this involves an analysis of the case where L/K is cyclic of degree p, using the calculations of Ferton [6], and a reduction of the general case to this special case using the notion of factor equivalence, which has recently been studied extensively by Fröhlich ([9], [10]). We will also use standard ramification theory for local fields, as presented for instance in [14].

The necessity of the hypothesis on t(L/K) is shown by the following example:- let K contain a primitive pth root of unity, and take $L = K({}^p\sqrt{\omega})$, where ω generates the maximal ideal $\mathfrak P$ of $\mathfrak D$. Then t(L/K) = ep/(p-1). It is easily seen that every fractional $\mathfrak D_L$ -ideal is a free module over the maximal order in KG, and hence that any two such ideals are isomorphic as $\mathfrak DG$ -modules. We shall show that the conclusion of Theorem 1 is in fact false for any cyclic extension of degree p with

$$t(L/K) > \frac{ep}{p-1} - 1,$$

so that, for extensions of degree p, Theorem 1 is best possible.

If we remove the hypothesis that L/K be of p-power degree, our methods can still be applied to give some partial results in certain cases. To illustrate this, we will prove the following generalisation of the non-cyclic case of Theorem 1:

Theorem 2 Let L/K be a totally ramified abelian extension of degree $p^m k$, where (p, k) = 1, and suppose that

$$t(L/K) \leq \frac{ekp}{p-1} - k,$$

that G is not cyclic, and that

$$k \leq \frac{p^m - 1}{p - 1}.$$

If \mathfrak{P}_L^r and $\mathfrak{P}_L^{r'}$ are isomorphic as $\mathfrak{O}G$ -modules, then either $r \equiv r' \pmod{p^m k}$ or, interchanging r and r' if necessary, $r = ap^m$ and $r' \equiv ap^m + 1 \pmod{p^m k}$ for some $a \not\equiv 0 \pmod{k}$.

Factor equivalence yields no information about cyclic extensions, and, at least in the simple formulation given in [9], is only applicable to abelian extensions. One can, however, extend Theorem 1 to non-abelian extensions and to cyclic p-extensions in the case p=2. Indeed, without using factor equivalence, we will prove the following supplementary result to Theorem 1:

Theorem 3 Let L/K be a totally ramified extension of degree p^m , with

$$t(L/K) \leq \frac{ep}{p-1} - 1.$$

Then the p^m \mathfrak{O}_L -ideals \mathfrak{P}_L^r $(1 \leq r \leq p^m)$ represent at least $2^{m-1}p$ distinct isomorphism classes of $\mathfrak{O}G$ -modules. In particular, if p=2 then \mathfrak{P}_L^r and $\mathfrak{P}_L^{r'}$ are isomorphic as $\mathfrak{O}G$ -modules if and only if $r \equiv r' \pmod{2^m}$.

Before commencing the proofs of these results, we indicate how they can be used to investigate the occurrence of extensions L/K with self-dual rings of integers. Given any $\mathfrak{O}G$ -lattice M, the dual lattice M^* is defined to be $Hom_{\mathfrak{O}}(M,\mathfrak{O})$, with the G-action $(g\theta)(m)=\theta(g^{-1}m)$ for $\theta\in M^*$, $g\in G$, $m\in M$. We say that \mathfrak{O}_L is self-dual if it is isomorphic to \mathfrak{O}_L^* as an $\mathfrak{O}G$ -module. The trace pairing $L\times L\longrightarrow K$ identifies \mathfrak{O}_L^* with the inverse different $\mathfrak{D}_{L/K}^{-1}$ of L/K, so \mathfrak{O}_L is self-dual if and only if $\mathfrak{O}_L\cong \mathfrak{D}_{L/K}^{-1}$ as $\mathfrak{O}G$ -modules. Thus Theorem 1 has the following consequence:

Corollary 1 Let L/K be a totally ramified abelian extension of degree p^m , and let $\mathfrak{P}_L^{-v} = \mathfrak{D}_{L/K}^{-1}$ be its inverse different. If \mathfrak{D}_L is self-dual then

either
$$v \equiv 0 \pmod{p^m}$$
 or $t(L/K) > \frac{ep}{p-1} - 1$ or L/K is cyclic and $m \ge 2$.

Note that v is determined by the ramification groups of L/K ([14] IV Proposition 4).

We end this section with some conditions on the associated order $\mathfrak{A}_{L/K}$ of L/K which ensure that \mathfrak{O}_L is self-dual. Recall that

$$\mathfrak{A}_{L/K} = \{ \alpha \in KG : \alpha \mathfrak{O}_L \subseteq \mathfrak{O}_L \}$$

(and more generally, the associated order of any fractional ideal \mathfrak{P}_L^r is defined by replacing both occurrences of \mathfrak{O}_L by \mathfrak{P}_L^r in this definition). For any element $\alpha = \sum_{g \in G} a_g g$ of KG, we write $\bar{\alpha} = \sum a_g g^{-1}$.

Proposition 1 Let L/K be an abelian extension.

(i) If $\mathfrak{A}_{L/K} = \bar{\mathfrak{A}}_{L/K}$ and $\mathfrak{A}_{L/K} \cong (\mathfrak{A}_{L/K})^*$ as $\mathfrak{D}G$ -modules, then \mathfrak{D}_L is self-dual. (ii) If $\mathfrak{A}_{L/K}$ is a Hopf order in the Hopf algebra KG (cf. [15]), then \mathfrak{D}_L is self-dual.

Proof. (i) Since $\mathfrak{D}_L^* \cong \mathfrak{D}_{L/K}^{-1}$, the associated order of $\mathfrak{D}_{L/K}^{-1}$ is $\bar{\mathfrak{A}}_{L/K}$, which coincides with $\mathfrak{A}_{L/K}$. Moreover, as $\bar{\mathfrak{A}}_{L/K} \cong (\mathfrak{A}_{L/K})^*$, $\mathfrak{A}_{L/K}$ is a (weakly) selfdual order in the sense of [7] §8. By Theorem 10 of that paper, \mathfrak{D}_L and $\mathfrak{D}_{L/K}^{-1}$ are both free over $\mathfrak{A}_{L/K}$, and so are isomorphic.

(ii) is a special case of (i): if $\mathfrak{A}_{L/K}$ is a Hopf order then by [13] $(\mathfrak{A}_{L/K})^* \cong \mathfrak{A}_{L/K}$, since \mathfrak{D} is a principal ideal domain; and $\bar{\mathfrak{A}}_{L/K} = \mathfrak{A}_{L/K}$ since $\alpha \mapsto \bar{\alpha}$ is the antipode of the Hopf algebra KG.

2 Extensions of degree p

In this section, we will prove Theorem 1 for extensions of degree p, and will also discuss almost maximally ramified extensions of degree p. We make use of the calculations of Ferton [6], and largely follow her notation.

Thus let L/K be a totally ramified cyclic extension of degree p, and let t = t(L/K). Then $1 \le t \le ep/(p-1)$, and (t,p) = 1 unless t = ep/(p-1) ([14] IV §2 Ex.3). Any such value of t can occur (loc. cit. Ex.5).

Let $t = pa_0 + a$ with $0 \le a \le p - 1$. Note that if $t + 1 \ge ep/(p - 1)$ then $ep - (p - 1) \le (p - 1)t \le ep$ and $t \equiv a \pmod{p}$, so

$$t = \frac{ep - a}{p - 1} \text{ if and only if } t \ge \frac{ep}{p - 1} - 1.$$
 (1)

Now let ω (resp. π) be a generator of \mathfrak{P} (resp. \mathfrak{P}_L), and fix a generator σ of the Galois group G of L/K. Set $f = \sigma - 1 \in \mathfrak{D}G$. Since $(f+1)^p = \sigma^p = 1$, we then have

$$f^p = -\sum_{n=1}^{p-1} \binom{p}{n} f^n. \tag{2}$$

If $a \neq 0$ then π^a is a normal basis for L/K, i.e. $L = KG\pi^a$ ([3] Proposition 3). For $a+1-p \leq r \leq a$ let

$$\mathfrak{U}_r = \{\alpha \in KG : \alpha \, \pi^a \in \mathfrak{P}_L^r\}.$$

Then \mathfrak{U}_{τ} is a fractional $\mathfrak{O}G$ -ideal containing $\mathfrak{O}G$, and $\mathfrak{U}_{\tau} \cong \mathfrak{P}_{L}^{\tau}$ as $\mathfrak{O}G$ -modules. From [6] Proposition 3 we have the following explicit description of the lattices \mathfrak{U}_{τ} :

Proposition 2 If $a \neq 0$ and $a+1-p \leq r \leq a$ then the elements

$$\frac{f^i}{\omega^{\nu_i(r)}} \ (0 \le i \le p-1) .$$

form an D-basis of Ur, where

$$u_i(r) = \left[rac{it+a-r}{p}
ight].$$

(For any real number y, [y] denotes the largest integer not exceeding y.)

We can now prove Theorem 1 for extensions of degree p:

Lemma 1 Let L/K be a totally ramified cyclic extension of degree p, such that

$$t(L/K) \leq \frac{ep}{p-1} - 1.$$

For any integers r and r', \mathfrak{P}_L^r and $\mathfrak{P}_L^{r'}$ are isomorphic as $\mathfrak{O}G$ -modules if and only if $r \equiv r' \pmod{p}$.

Proof. With the above notation, $a \neq 0$ by the hypothesis on t, and if $r \equiv r' \pmod{p}$ then certainly $\mathfrak{P}_L^{r} \cong \mathfrak{P}_L^{r'}$. Thus, adjusting r and r' by multiples of p, and interchanging them if necessary, we may assume that $a+1-p \leq r \leq r' \leq a$; it is then sufficient to show that if $\mathfrak{U}_r \cong \mathfrak{U}_{r'}$ then r = r'.

To simplify notation, let $\mathfrak{U} = \mathfrak{U}_r$, $\mathfrak{U}' = \mathfrak{U}_{r'}$, $\nu_i = \nu_i(r)$, $\nu_i' = \nu_i(r')$. Then $\nu_i' \leq \nu_i \leq e$ for $0 \leq i \leq p-1$. Any isomorphism $\theta : \mathfrak{U} \longrightarrow \mathfrak{U}'$ of $\mathfrak{D}G$ -modules

is determined by $\theta(1)$. Setting $\alpha = \theta(1) \in \mathfrak{U}'$ and using Proposition 2, we have

$$\alpha = \sum_{j=0}^{p-1} c_j \frac{f^j}{\omega^{\nu'_j}} \text{ for some } c_j \in \mathfrak{O}.$$

The elements

$$\alpha \frac{f^i}{\omega^{\nu_i}} = \sum_{j=0}^{p-1} c_j \frac{f^{i+j}}{\omega^{\nu_i + \nu'_j}} \quad (0 \le i \le p-1)$$

form an \mathfrak{D} -basis for \mathfrak{U}' . Using (2) to expand f^{i+j} for $i+j \geq p$, comparing coefficients of $1 = f^0$, and noting that $\nu_0 = \nu'_0 = 0$, we see that $c_0 \in \mathfrak{D}^{\times}$, where \mathfrak{D}^{\times} denotes the group of units of \mathfrak{D} . Without loss of generality, we suppose $c_0 = 1$. Then \mathfrak{U}' has a basis consisting of the elements

$$\alpha \frac{f^{i}}{\omega^{\nu_{i}}} = \omega^{\nu'_{i} - \nu_{i}} \frac{f^{i}}{\omega^{\nu'_{i}}} + \sum_{j=1}^{p-1-i} c_{j} \frac{f^{i+j}}{\omega^{\nu_{i} + \nu'_{j}}} + \sum_{j=p-i}^{p-1} c_{j} \frac{f^{i+j}}{\omega^{\nu_{i} + \nu'_{j}}}.$$
 (3)

We will show that

$$\frac{f^{i+j}}{\omega^{\nu_i+\nu'_j}} \in \mathfrak{U}' \text{ whenever } p-i \leq j \leq p-1. \tag{4}$$

Admitting this for the moment, we must have $\nu'_i - \nu_i \geq 0$ for each i, since the elements (3) lie in \mathfrak{U}' . We have already observed, however, that $\nu'_i \leq \nu_i$, so $\nu'_i = \nu_i$ for $0 \leq i \leq p-1$. It then follows from the definitions of ν_i and ν'_i that r = r'. Thus it only remains to prove (4).

Writing i + j = p + k and using (2), we have

$$\frac{f^{i+j}}{\omega^{\nu_i+\nu'_j}} = -\sum_{n=1}^{p-1} \binom{p}{n} \frac{f^{k+n}}{\omega^{\nu_i+\nu'_j}}.$$

If $k + n \ge p$ then, using (2) again and noting that the binomial coefficients are divisible by p, we have

$$\left(\begin{array}{c} p \\ n \end{array}\right)\frac{f^{k+n}}{\omega^{\nu_i+\nu_j'}}\in \frac{p^2}{\omega^{\nu_i+\nu_j'}}\ \mathfrak{I}G\subseteq \mathfrak{I}G\subseteq \mathfrak{U}'.$$

On the other hand, if k + n < p then

$$\begin{pmatrix} p \\ n \end{pmatrix} \frac{f^{k+n}}{\omega^{\nu_i + \nu'_j}} = \begin{pmatrix} p \\ n \end{pmatrix} \omega^{\nu'_{k+n} - \nu_i - \nu'_j} \frac{f^{k+n}}{\omega^{\nu'_{k+n}}}$$

and we must show that

$$e + \nu'_{k+n} - \nu_i - \nu'_j \ge 0$$
 whenever $i + j = p + k \ge p$ and $1 \le n \le p - 1$. (5)

Clearly it is sufficient to take n = 1. Now

$$\begin{aligned} e + \nu'_{k+1} - \nu_i - \nu'_j \\ &= e + \left[\frac{(i+j-p+1)t + a - r'}{p} \right] - \left[\frac{it+a-r}{p} \right] - \left[\frac{jt+a-r'}{p} \right] \\ &\geq e + \left[\frac{(1-p)t - a + r}{p} \right] \\ &= e - t + a_0 + \left[\frac{r}{p} \right]. \end{aligned}$$

If
$$t = \frac{ep}{p-1} - 1$$
 then $a = p - 1$, $a_0 = \frac{e}{p-1} - 1$ and $0 \le r \le p - 1$, so

$$e-t+a_0+\left[\frac{r}{p}\right]=e-\left(\frac{ep}{p-1}-1\right)+\left(\frac{e}{p-1}-1\right)+0=0;$$

whereas if $t < \frac{ep}{p-1} - 1$ then (p-1)t < ep-a by (1), and $r \ge a+1-p > -p$, so

$$e - t + a_0 + \left[\frac{r}{p}\right] > \frac{(p-1)t + a}{p} - t + a_0 + \left[\frac{r}{p}\right]$$

$$= -\frac{t}{p} + \left(a_0 + \frac{a}{p}\right) + \left[\frac{r}{p}\right]$$

$$= \left[\frac{r}{p}\right]$$

$$\geq -1,$$

and since the left-hand side is an integer, it follows that

$$e-t+a_0+\left[\frac{r}{p}\right]\geq 0.$$

Thus (5) holds in all cases, which completes the proof of (4) and thus of the Lemma.

In [11], Jacobinski defines the notion of an almost maximally ramified extension. In the case of a cyclic extension of degree p, the definition reduces to the following condition:

$$L/K$$
 is almost maximally ramified $\Leftrightarrow t \ge \frac{ep}{p-1} - 1$.

Although it is unnecessary for the proofs of the three theorems, we will now consider extensions with this property, thereby showing that Theorem 1 is best possible for extensions of degree p:

Lemma 2 Let L/K be an almost maximally ramified cyclic extension of degree p. Then \mathfrak{O}_L is self-dual as an $\mathfrak{O}G$ -module. In particular, if t+1 > ep/(p-1) then the conclusion of Theorem 1 is false for L/K.

Proof. We first consider the maximally ramified case t = ep/(p-1). Here, K contains a primitive pth root of 1 ([12] Theorem 3), and $L = K({}^p\sqrt{\omega})$ for some generator ω of \mathfrak{P} . As noted after the statement of Theorem 1, it follows that every fractional \mathfrak{O}_L -ideal is free over the maximal order in KG, and hence is isomorphic to every other fractional \mathfrak{O}_L -ideal.

For any value of t, we have $\mathfrak{D}_{L/K}^{-1}=\mathfrak{P}_L^{-v}$, where, by [14] IV Proposition 4, $v=(p-1)(t+1)\equiv -a-1\pmod{p}$. If t+1=ep/(p-1) then $v\equiv 0\pmod{p}$, so certainly $\mathfrak{O}_L\cong\mathfrak{D}_{L/K}^{-1}$; whilst if t+1>ep/(p-1) then by (1), t=(ep-a)/(p-1) with $0\leq a\leq p-2$, so $v\not\equiv 0\pmod{p}$.

It remains to show that, if t = (ep - a)/(p - 1) with $1 \le a \le p - 2$ then $\mathfrak{O}_L \cong \mathfrak{D}_{L/K}^{-1}$. Now $\mathfrak{O}_L \cong \mathfrak{U}_0$ and $\mathfrak{D}_{L/K}^{-1} \cong \mathfrak{U}_{a+1-p}$, so writing $\mathfrak{U} = \mathfrak{U}_0$ and $\mathfrak{U}' = \mathfrak{U}_{a+1-p}$, it suffices to show that $\mathfrak{U} \cong \mathfrak{U}'$. By Proposition 2, these two lattices have \mathfrak{O} -bases

$$\frac{f^i}{\omega^{\nu_i}}$$
 respectively $\frac{f^i}{\omega^{\nu_i'}}$ $(0 \le i \le p-1),$

where

$$u_i = \left\lceil \frac{it+a}{p} \right\rceil = ia_0 + \left\lceil \frac{(i+1)a}{p} \right\rceil$$

and

$$\nu_i' = \left[\frac{it+p-1}{p}\right] = ia_0 + \left[\frac{ia+p-1}{p}\right]$$
$$= \begin{cases} 0 & \text{if } i=0\\ 1+a_0+\nu_{i-1} & \text{if } 1 \le i \le p-1. \end{cases}$$

Let

$$\alpha = 1 + \frac{f}{\omega^{\nu'_1}} = 1 + \frac{f}{\omega^{1+a_0}}.$$

We will show that multiplication by the element α of \mathfrak{U}' induces an \mathfrak{O} -linear isomorphism between \mathfrak{U} and \mathfrak{U}' ; this map is then necessarily an isomorphism of $\mathfrak{O}G$ -modules. For $0 \leq i \leq p-2$ we have

$$\alpha \frac{f^i}{\omega^{\nu_i}} = \omega^{\nu_i' - \nu_i} \frac{f^i}{\omega^{\nu_i'}} + \frac{f^{i+1}}{\omega^{\nu_{i+1}'}} \in \mathfrak{U}'$$

since $\nu_i \leq \nu'_i$. Also, using (2),

$$\alpha \frac{f^{p-1}}{\omega^{\nu_{p-1}}} = \omega^{\nu'_{p-1} - \nu_{p-1}} \frac{f^{p-1}}{\omega^{\nu'_{p-1}}} + \sum_{n=1}^{p-1} b_n \frac{f^n}{\omega^{\nu'_n}},$$

where

$$b_n = - \left(\begin{array}{c} p \\ n \end{array}\right) \omega^{\nu'_n - \nu_{p-1} - 1 - a_0}.$$

Since $\nu_{p-1}=e$, b_n has valuation $\nu'_n-1-a_0=\nu_{n-1}\geq 0$, so $b_n\in\mathfrak{O}$ for all n. Thus $\alpha\mathfrak{U}\subseteq\mathfrak{U}'$, and the matrix expressing multiplication by α in terms of the above bases of \mathfrak{U} and \mathfrak{U}' is

$$B = \begin{pmatrix} \omega^{\nu'_0 - \nu_0} & 0 & 0 & \cdots & 0 \\ 1 & \omega^{\nu'_1 - \nu_1} & 0 & \cdots & b_1 \\ 0 & 1 & \omega^{\nu'_2 - \nu_2} & \cdots & b_2 \\ \vdots & 0 & \ddots & \ddots & \vdots \\ \vdots & \vdots & & & & \vdots \\ & & \omega^{\nu'_{p-2} - \nu_{p-2}} & b_{p-2} \\ 0 & 0 & 1 & \omega^{\nu'_{p-1} - \nu_{p-1}} + b_{p-1} \end{pmatrix}$$

To complete the proof, we must show that $det(B) \in \mathfrak{O}^{\times}$.

Since a < p-1, there is an integer h with $1 \le h \le p-2$ such that

$$\left(\frac{h-1}{h}\right)p < a < \left(\frac{h}{h+1}\right)p.$$

We then have

$$\nu_i = (a_0 + 1)i \text{ if } i < h$$

$$\nu_h = (a_0 + 1)h - 1.$$

Thus if $2 \le n \le h$ then $\nu_{n-1} > 0$ and $b_n \in \mathfrak{P}$, while $b_1 \in \mathfrak{D}^{\times}$ as $\nu_0 = 0$. Also, $\nu'_h - \nu_h = 1 + a_0 + \nu_{h-1} - \nu_h = 1$. Thus the matrix entries $\omega^{\nu'_h - \nu_h}$ and $b_n \in \mathbb{P}$ and $b_n \in \mathbb{P}$ and $b_n \in \mathbb{P}$ by the in \mathbb{P} . It follows that $\det(B) \equiv \pm \omega^{\nu'_0 - \nu_0} b_1 = \pm b_1 \pmod{\mathfrak{P}}$, every other term in the expansion of $\det(B)$ lying in \mathbb{P} . Thus $\det(B) \in \mathfrak{D}^{\times}$ as required.

We remark that if t+1>ep/(p-1) there may be other isomorphisms between ideals in addition to that given by Lemma 2. For example, in the absolutely unramified case e=1, any ideal \mathfrak{P}_L must have as its associated order either the group ring $\mathfrak{O}G$ or the maximal order

$$\mathfrak{M} = \mathfrak{O}G + \frac{1}{p} \sum_{\sigma \in G} \sigma.$$

These are both self-dual orders in the sense of [7], so \mathfrak{P}_L^r is free over its associated order, and hence isomorphic to either $\mathfrak{O}G$ or \mathfrak{M} . Thus there must be many isomorphisms between the ideals $\mathfrak{O}_L, \mathfrak{P}_L, \ldots, \mathfrak{P}_L^{p-1}$. (The author is indebted to D.Burns for this observation.)

In the situation of Lemma 2, \mathfrak{D}_L need not be free over its associated order. Indeed, Bertrandias, Bertrandias and Ferton [2] give a criterion for \mathfrak{D}_L to be free when L/K is almost maximally ramified:- writing $t/p = [a_0; a_1, \ldots, a_n]$ for the continued fraction expansion of t/p, \mathfrak{D}_L is free over its associated order if and only if $n \leq 4$. (The same is also true for almost maximally ramified cyclic extensions of degree p^m , $m \geq 2$:- see [1]). Thus if L/K is almost maximally ramified and cyclic of degree p, with $n \geq 5$, then \mathfrak{D}_L is self-dual but not free over its associated order. The first example of this is

p = 13, a = 8. The question of the existence of abelian extensions with this property was raised in [5] (p148). Some elementary abelian examples of degree p^2 are constructed in [4]; these have t + 1 = ep/(p-1).

3 Factor equivalence

We now recall from [9] the notion of factor equivalence between $\mathfrak{O}G$ -lattices spanning the same KG-module. We will then derive a necessary and sufficient condition for two fractional \mathfrak{O}_L -ideals to be factor equivalent.

Let Γ be a finite abelian group, let Γ^{\dagger} denote its group of (complex-valued) abelian characters, and let $S(\Gamma^{\dagger})$ denote the lattice of subgroups of Γ^{\dagger} . There is an inclusion-reversing bijection between the lattice of subgroups of Γ and $S(\Gamma^{\dagger})$, given by associating to each $\Delta \leq \Gamma$ the subgroup $X_{\Delta} = \{\chi : \chi(\Delta) = 1\}$ of Γ^{\dagger} .

A division D of Γ^{\dagger} is an equivalence class of characters, two characters being deemed equivalent if they generate the same cyclic subgroup of Γ^{\dagger} . We write \bar{D} for the subgroup generated by any element of D. Let I_K denote the group of fractional ideals of \mathfrak{O} (written multiplicatively). We extend any function $f: S(\Gamma^{\dagger}) \longrightarrow I_K$ to the set of divisions D of Γ^{\dagger} by defining

$$f(D) = \prod_{C < \bar{D}} f(C)^{\mu(\bar{D}:C)},$$

where the product is over all subgroups of \bar{D} , and μ denotes the Möbius function. By Möbius inversion, we then have

$$f(X) = \prod_{D \subseteq X} f(D) \tag{6}$$

for every cyclic subgroup X of Γ^{\dagger} . The function f is said to be factorisable if (6) holds for every subgroup X.

Now let M, N be two $\mathfrak{O}\Gamma$ -lattices spanning the same $K\Gamma$ -module V. We define a function $f: S(\Gamma^{\dagger}) \longrightarrow I_K$ by setting

$$f(X_{\Delta}) = [M^{\Delta}:N^{\Delta}]_{\mathfrak{O}} \ \text{for each} \ \Delta \leq \Gamma,$$

where M^{Δ} , N^{Δ} denote the lattices of Δ -fixed points of M, N, and $[:]_{\mathfrak{D}}$ is the \mathfrak{D} -module index, defined for two \mathfrak{D} -lattices spanning the same K-space (see e.g. [8] §3). The lattices M, N are said to be factor equivalent, written $M \wedge N$, if this function f is factorisable. This gives an equivalence relation on the set of $\mathfrak{D}\Gamma$ -lattices spanning a given $K\Gamma$ -module V, and moreover, it is shown in [9] that $M \wedge N$ whenever M and N are isomorphic as $\mathfrak{D}\Gamma$ -modules.

We remark that factor equivalence is independent of the base field K in the following sense:- if F is a finite extension of K, and M, N are $\mathcal{O}_F\Gamma$ -lattices, then they are factor equivalent as such (i.e. working with \mathcal{O}_F -module indices) if and only if they are factor equivalent when considered as $\mathcal{O}\Gamma$ -lattices by restriction of scalars. We will use this observation in the proof of Theorem 2.

We now take M, N to be \mathfrak{O}_L -ideals, and Γ to be the Galois group G.

Lemma 3 Let L/K be a totally ramified abelian extension of degree p^m , and assume that its Galois group G is not cyclic. For any integers r, r', write

$$s = r - 1 = s_0 + ps_1 + \dots + p^{m-1}s_{m-1} + p^m x$$

$$s' = r' - 1 = s'_0 + ps'_1 + \dots + p^{m-1}s'_{m-1} + p^m x'$$

with $0 \le s_i, s'_i \le p - 1$ for $0 \le i \le m - 1$.

Then the $\mathfrak{O}G$ -modules \mathfrak{P}_L^r , $\mathfrak{P}_L^{r'}$ are factor equivalent if and only if $s_i' = s_i + v$ for $0 \le i \le m-1$, where v is independent of i.

Proof. If $r \equiv r' \pmod{p^m}$ then $\mathfrak{P}_L^{r} \cong \mathfrak{P}_L^{r'}$, so certainly $\mathfrak{P}_L^{r} \wedge \mathfrak{P}_L^{r'}$. Thus we may assume that x = x' = 0.

Let
$$v_i = s_i' - s_i$$
 for $0 \le i \le m - 1$. Also, for $k \ge 0$, set

$$s(k) = \left\lceil \frac{s}{p^k} \right\rceil, \quad s'(k) = \left\lceil \frac{s'}{p^k} \right\rceil, \quad v(k) = s'(k) - s(k).$$

Thus

$$v(k) = \begin{cases} v_k + pv_{k+1} + \dots + p^{m-1-k}v_{m-1} & \text{if } k < m \\ 0 & \text{if } k \ge m \end{cases}$$

Let H be a subgroup of G of order p^k , with fixed field $F = L^H$. Then

$$(\mathfrak{P}_L^{\ r})^H = \mathfrak{P}_L^{\ r} \cap F = \mathfrak{P}_F^{\ 1+s(k)}$$

(and similarly for $\mathfrak{P}_L^{r'}$) since the smallest integer not less than r/p^k is

$$\left\lceil \frac{r+p^k-1}{p^k}\right\rceil = 1 + s(k).$$

Thus

$$\begin{split} [(\mathfrak{P}_{L}^{r})^{H}:(\mathfrak{P}_{L}^{r'})^{H}]_{\mathfrak{O}} &= & [\mathfrak{P}_{F}^{1+s(k)}:\mathfrak{P}_{F}^{1+s'(k)}]_{\mathfrak{O}} \\ &= & [\mathfrak{O}_{F}:\mathfrak{P}_{F}^{v(k)}]_{\mathfrak{O}} \\ &= & \mathfrak{P}^{v(k)}, \end{split}$$

since F/K is totally ramified. Hence the assertion $\mathfrak{P}_L^r \wedge \mathfrak{P}_L^{r'}$ is equivalent to the factorisability of the map $f: S(G^{\dagger}) \longrightarrow I_K$ given by

$$f(X_H) = \mathfrak{P}^{v(k)}$$
 for any $H \leq G$ of order p^k .

For j in the range $1 \le j \le m$, consider the following three assertions:-

- (I) $f(X_H) = \prod_{D \subset X_H} f(D)$ for every $H \leq G$ of order at least p^{m-j} ;
- (II) $v_{m-i} = v_{m-1}$ for $1 \le i \le j$;
- (III) if D is a division of G^{\dagger} and \bar{D} has order p^d with $d \leq j$ then

$$f(D) = \left\{ \begin{array}{ll} \mathfrak{O} & \text{if } d = 0 \\ \mathfrak{P}^{p^{d-1}v_{m-1}} & \text{if } d \geq 1. \end{array} \right.$$

We shall prove by induction on j that $(I) \Leftrightarrow (II) \Rightarrow (III)$ for each j. In the case j=m, the equivalence $(I) \Leftrightarrow (II)$ proves the Lemma.

For j=1, (I) holds since X_H is cyclic, being of order 1 or p, and (II) holds trivially. For (III) we must consider divisions D for which \bar{D} has order 1 or p. But $f(\{1\}) = \mathfrak{P}^{v(m)} = \mathfrak{O}$, whilst if \bar{D} has order p then

$$f(D) = f(\bar{D})f(\{1\})^{-1} = \mathfrak{P}^{v(m-1)}\mathfrak{I}^{-1} = \mathfrak{P}^{v_{m-1}}.$$

Thus (III) holds for j = 1.

Now let $2 \le j \le m$ and suppose that (I), (II), (III) all hold with j replaced by j-1. As G is not cyclic, it has a subgroup H of order p^{m-j} such that G/H is not cyclic. Thus any division $D \subseteq X_H$ generates a group \bar{D} of order p^d for some $d \le j-1$. If d>0 then D contains $|D|=p^{d-1}(p-1)$ characters, and by (III) for j-1, $f(D)=\mathfrak{P}^{|D|\,v_{m-1}/(p-1)}$. For any such H, the condition in (I) therefore becomes

$$\mathfrak{P}^{v(m-j)} = f(\{1\}) \prod_{1 \neq \chi \in X_H} \mathfrak{P}^{v_{m-1}/(p-1)},$$

or equivalently,

$$v(m-j) = \frac{p^{j}-1}{p-1} v_{m-1}.$$

Using (II) for j-1 and the definition of v(m-j), this can be rewritten as

$$v_{m-j} + (p + \cdots + p^{j-1})v_{m-1} = \frac{p^j - 1}{p - 1} v_{m-1},$$

i.e. $v_{m-j} = v_{m-1}$. Thus (I) \Rightarrow (II) for j, and conversely if (II) holds for j then (I) holds for j, except possibly when H is of order p^{m-j} and G/H is cyclic. But (I) always holds when G/H is cyclic, so we have shown (I) \Leftrightarrow (II) for j. Finally, if D is a division for which \bar{D} has order p^j then $\bar{D} = X_H$ for some subgroup $H \leq G$ of order p^{m-j} with G/H cyclic. Applying (I) and arguing as above for the divisions $\{1\} \neq D' \neq D$ contained in \bar{D} ,

$$\mathfrak{P}^{v(m-j)} = f(\{1\}) \left(\prod_{D'} f(D') \right) f(D)$$
$$= \mathfrak{O} \mathfrak{P}^{(p^{j-1}-1) v_{m-1}/(p-1)} f(D)$$

so $f(D) = \mathfrak{P}^y$, where

$$y = v(m-j) - \frac{p^{j-1}-1}{p-1} v_{m-1}$$

$$= (1+p+\cdots+p^{j-1}) v_{m-1} - \frac{p^{j-1}-1}{p-1} v_{m-1}$$

$$= p^{j-1}v_{m-1}.$$

Thus (III) holds for j, which completes the induction and the proof of the Lemma.

The following corollaries indicate that factor equivalence considerations go a long way towards proving Theorem 1 (in the non-cyclic case), but are not in themselves sufficient.

Corollary 2 Let L/K be as in the Lemma, and let r be divisible by p, with $0 \le r \le p^{m-1}$. If $\mathfrak{P}_L^r \wedge \mathfrak{P}_L^{r'}$ then $r \equiv r' \pmod{p^m}$.

Proof. In the notation of the Lemma, $s_0 = p - 1$ and $s_{m-1} = 0$. Thus $v + (p-1) = s'_0 \le p - 1$ and $v + 0 = s'_{m-1} \ge 0$, whence v = 0.

Corollary 3 Let L/K be as in the Lemma. Then $\mathfrak{O}_L \wedge \mathfrak{P}_L$.

Proof. Taking r = 0 and r' = 1, we have $s_i = p - 1$ and $s'_i = 0$ for all i, so the condition of the Lemma holds with v = 1 - p.

4 Conclusion of the proofs

We begin with some ramification theory.

Proposition 3 Let L/K be a totally ramified extension of degree $p^m k$, where (p, k) = 1 and $m \ge 1$. Let G be its Galois group. Then:-

(i) G_1 has order p^m , and G is a semidirect product of G_1 by a cyclic group C of order k;

(ii) if C is normal in G then, writing $M = L^{C}$ for the fixed field of C,

$$t(M/K) = \frac{1}{k} t(L/K);$$

(iii) if k=1 or if G is abelian then G has a normal subgroup H of index p whose fixed field $F=L^H$ satisfies

$$t(F/K) = \frac{1}{k} t(L/K);$$

(iv) if C is normal in G then

$$t(L/K) \leq \frac{ekp}{p-1};$$

(v) if k = 1 and $m \ge 2$ then G has a normal subgroup N of order p whose fixed field $E = L^N$ satisfies t(E/K) = t(L/K) and $t(L/E) \equiv t(L/K) \pmod{p}$.

Proof. (i): see [14] IV §2.

(ii) follows from (i) and [14] IV Proposition 14.

(iii): $G_{t+1} \neq G_t = G_1$, where t = t(L/K), so G_{t+1} has order dividing p^{m-1} . If k = 1 take for H any subgroup of order p^{m-1} containing G_{t+1} ; then H is normal in G being a subgroup of index p in a finite p-group. If G is abelian, take for H any subgroup of order $p^{m-1}k$ containing G_{t+1} . In either case, H has the required property by [14] IV Proposition 14.

(iv): If L/K has degree p then $t(L/K) \le ep/(p-1)$ by [14] IV §2 Ex.3. In the case k=1 the result now follows from (iii). Finally, if k>1 and M is as in (ii), then

$$t(L/K) = k t(M/K) \le \frac{ekp}{p-1}.$$

(v): Let n be the integer such that $G_n \neq G_{n+1} = \{1\}$. Since $G_n \triangleleft G$, G acts on G_n by conjugation, and as G is a p-group, each orbit has p-power cardinality. As at least one orbit, namely $\{1\}$, has cardinality 1, it follows

that some element $g \neq 1$ of G_n is central in G, so there is a subgroup N of G_n of order p, central and hence normal in G. N has the required properties by [14] IV Propositions 2, 11 and 14.

We can now prove the three theorems:

Proof of Theorem 1. By Lemma 1, we may assume that $m \geq 2$, so G is not cyclic. If $r \equiv r' \pmod{p^m}$ then certainly $\mathfrak{P}_L^r \cong \mathfrak{P}_L^{r'}$. Writing s = r - 1, s' = r' - 1, we may therefore assume for the converse that $0 \leq s, s' \leq p^m - 1$. If $\mathfrak{P}_L^r \cong \mathfrak{P}_L^{r'}$ then these ideals are factor equivalent, so by Lemma 3, $s_i' = s_i + v$ for some v, where the notation is as in the Lemma. We must show that v = 0.

Let H and F be as in Proposition 3(iii), and let Q = G/H. Taking H-fixed points in the isomorphism $\mathfrak{P}_L^r \cong \mathfrak{P}_L^{r'}$ of $\mathfrak{O}G$ -modules, we obtain an isomorphism $(\mathfrak{P}_L^r)^H \cong (\mathfrak{P}_L^{r'})^H$ of $\mathfrak{O}Q$ -modules. But, arguing as in the proof of Lemma 3,

$$(\mathfrak{P}_L^{r})^H = \mathfrak{P}_F^{1+s_{m-1}},$$

and similarly for $\mathfrak{P}_L^{r'}$. Since

$$t(F/K) = t(L/K) \le \frac{ep}{p-1} - 1,$$

we can apply Lemma 1 to the extension F/K of degree p. Hence

$$1 + s_{m-1} \equiv 1 + s'_{m-1} = 1 + s_{m-1} + v \pmod{p},$$

and since $|v| \leq p-1$, it follows that v=0 as required.

Proof of Theorem 2. Writing s = r - 1, s' = r' - 1, we can assume that $0 \le s, s' \le p^m k - 1$. Interchanging r and r' if necessary, we assume also that $s' \ge s$.

Let C and $M=L^C$ be as in Proposition 3. By hypothesis, $\mathfrak{P}_L{}^r\cong\mathfrak{P}_L{}^{r'}$ as $\mathfrak{O}G$ -modules, and taking C-fixed points, we obtain an isomorphism of

 $\mathfrak{O}G_1$ -modules

$$\mathfrak{P}_{M}^{1+[s/k]} = (\mathfrak{P}_{L}^{r})^{C} \cong (\mathfrak{P}_{L}^{r'})^{C} = \mathfrak{P}_{M}^{1+[s'/k]}.$$

By Proposition 3(ii) and the hypothesis on t(L/K), we can apply Theorem 1 to the non-cyclic extension M/K of degree p^m to deduce that $1 + [s/k] \equiv 1 + [s'/k] \pmod{p^m}$. The assumptions on s and s' ensure that this congruence is an equality, so

$$0 \le s' - s \le k - 1. \tag{7}$$

Now let $L_1 = L^{G_1}$. We may regard \mathfrak{P}_L^r and $\mathfrak{P}_L^{r'}$ as $\mathfrak{D}G_1$ -modules by restricting the action of G, and they are factor equivalent as such. We may also regard them as $\mathfrak{D}_{L_1}G_1$ -modules, since G_1 acts trivially on L_1 , and, as noted in the previous section, they are then still factor equivalent. Writing

$$s = s_0 + ps_1 + \dots + p^{m-1}s_{m-1} + bp^m$$

$$s' = s'_0 + ps'_1 + \dots + p^{m-1}s'_{m-1} + b'p^m$$
with $0 \le s_i, s'_i \le p-1$ and $0 \le b \le b' \le k-1$,

and applying Lemma 3 to the extension L/L_1 of degree p^m , we have $s_i' = s_i + v$ for $0 \le i \le m-1$, where $1-p \le v \le p-1$. Thus

$$s'-s=(1+p+\cdots+p^{m-1})v+(b'-b)p^m$$

and comparing with (7) we have

$$0 \le \left(\frac{p^m - 1}{p - 1}\right)v + (b' - b)p^m \le k - 1. \tag{8}$$

By hypothesis,

$$\frac{p^m - 1}{n - 1} > k - 1. \tag{9}$$

Thus if b' = b we must have v = 0, and so s' = s, giving r' = r. On the other hand, if $b' - b \ge 1$ then, since $v \ge 1 - p$, (8) and (9) can only be satisfied

simultaneously by b'-b=1, v=1-p. This value of v forces $s_i=p-1$, $s_i'=0$ for all i, so $s=p^m-1+(b'-1)p^m$, $s'=b'p^m$. Thus, putting a=b', we have $r=ap^m$, $r'=ap^m+1$.

It only remains to show that $a \not\equiv 0 \pmod{k}$. Take H and F as in Proposition 3(iii), so F/K is cyclic of degree p with Galois group Q = G/H, and

$$t(F/K) \leq \frac{ep}{n-1} - 1.$$

Taking H-fixed points in the original isomorphism of $\mathfrak{O}G$ -modules, we obtain an isomorphism $(\mathfrak{P}_L^{r'})^H \cong (\mathfrak{P}_L^{r'})^H$ of $\mathfrak{O}Q$ -modules. Applying Lemma 1 to F/K, we deduce

$$1 + \left[\frac{s}{p^{m-1}k}\right] \equiv 1 + \left[\frac{s'}{p^{m-1}k}\right] \pmod{p},$$

i.e.
$$1 + \left[\frac{ap}{k} - \frac{1}{p^{m-1}k}\right] \equiv 1 + \left[\frac{ap}{k}\right] \pmod{p},$$

which fails if $a \equiv 0 \pmod{k}$.

Proof of Theorem 3. Let a be the integer such that $t(L/K) \equiv a \pmod{p}$, $1 \leq a \leq p-1$. Given r with $1 \leq r \leq p^m$, set

$$s = r - 1 = s_0 + ps_1 + \dots + p^{m-1}s_{m-1}$$
 with $0 \le s_i \le p - 1$

as before, and define

$$I(r, L/K) = \{i : 0 < i < m-2, s_i > a\}.$$

It is sufficient to prove the following implication:

$$\mathfrak{P}_{L}^{r} \cong \mathfrak{P}_{L}^{r'} \text{ as } \mathfrak{O}G\text{-modules } \Rightarrow \begin{cases} I(r, L/K) = I(r', L/K) \\ \text{and } s_{m-1} = s'_{m-1}. \end{cases}$$
 (10)

We will prove (10) by induction on m. If m=1 then $I(r,L/K)=I(r',L/K)=\emptyset$, and (10) holds by Lemma 1. Now assume that $m\geq 2$. Take

N and E as in Proposition 4(v) and set J = G/N. If $\mathfrak{P}_L^r \cong \mathfrak{P}_L^{r'}$ as $\mathfrak{O}G$ -modules then taking N-fixed points gives the isomorphism of $\mathfrak{O}J$ -modules

$$\mathfrak{P_E}^{1+[s/p]} \cong \mathfrak{P_E}^{1+[s'/p]}.$$

Since

$$\left(1 + \left[\frac{s}{p}\right]\right) - 1 = s_1 + ps_2 + \dots + p^{m-2}s_{m-1}$$

and similarly for s', and since $t(E/K) = t(L/K) \equiv a \pmod{p}$, it follows from the induction hypothesis that

$$\{i: 1 \le i \le m-2, \ s_i \ge a\} = \{i: 1 \le i \le m-2, \ s_i' \ge a\}$$

and

$$s_{m-1} = s'_{m-1}$$
.

Thus to complete the induction, it only remains to show that $s_0 \geq a$ if and only if $s_0' \geq a$. For this we compare the 0th Tate cohomology functor

$$\hat{H}^{0}(N,-) = \frac{(-)^{N}}{Tr_{L/E}(-)}$$

([14] VIII §1) on the $\mathfrak{O}N$ -modules $\mathfrak{P}_L{}^r$ and $\mathfrak{P}_L{}^r{}'$. Here $Tr_{L/E}$ denotes the trace map from L to E. Let n=t(L/E), so $n\equiv a\pmod{p}$ by Proposition 3(v). Then the different of L/E has valuation v=(p-1)(n+1) ([14] IV Proposition 4) and

$$Tr_{L/E}(\mathfrak{P}_L^{r}) = \mathfrak{P}_E^{[(r+v)/p]}$$

([14] III Proposition 7). Hence

$$\hat{H}^{0}(N,\mathfrak{P}_{L}^{r})\cong\frac{\mathfrak{P}_{E}^{[s/p]+1}}{\mathfrak{P}_{E}^{[(r+v)/p]}}\cong\frac{\mathfrak{O}_{E}}{\mathfrak{P}_{E}^{k(s)}},$$

where

$$k(s) = [(1+s+v)/p] - [s/p] - 1.$$

If $\mathfrak{P}_L^r \cong \mathfrak{P}_L^{r'}$ as $\mathfrak{O}G$ -modules then they are isomorphic as $\mathfrak{O}N$ -modules, and we must have k(s) = k(s'). Since $v \equiv -1 - a \pmod{p}$, this simplifies to

$$\left[\frac{s_0-a}{p}\right]=\left[\frac{s_0'-a}{p}\right].$$

Hence $s_0 \ge a$ if and only if $s'_0 \ge a$, completing the induction.

References

- Bertrandias, F.: Sur les extensions cycliques de degré pⁿ d'un corps local. Acta Arith. 34, 361-377 (1979)
- [2] Bertrandias, F., Bertrandias, J-P. and Ferton, M-J,: Sur l'anneau des entiers d'une extension cyclique de degré premier d'un corps local. C. R. Acad. Sci. Paris 274, A1388-A1391 (1972)
- [3] Bertrandias, F. and Ferton, M-J.: Sur l'anneau des entiers d'une extension cyclique de degré premier d'un corps local. C. R. Acad. Sci. Paris 274, A1330-A1333 (1972)
- [4] Byott, N.P.: Some self-dual local rings of integers not free over their associated orders. to appear in Math. Proc. Camb. Phil. Soc. 1991
- [5] Cassou-Noguès, Ph. and Taylor, M.J.: Elliptic functions and rings of integers. (Progress in Mathematics 66) Boston-Basel-Stuttgart: Birkhäuser 1987
- [6] M.-J.Ferton, M-J.: Sur les idéaux d'une extension cyclique de degré premier d'un corps local. C. R. Acad. Sci. Paris 276, A1483-A1486 (1973)
- [7] Fröhlich, A.: Invariants for modules over commutative separable orders. Quart. J. Math. Oxford (2) 16, 193-232 (1965)
- [8] Fröhlich, A.: Local fields. in: Cassels, J.W.S. and Fröhlich, A. (eds.): Algebraic number theory. London: Academic Press 1967
- [9] Fröhlich, A.: Module defect and factorisability. Illinois J. Math. 32, 407-421 (1988)
- [10] Fröhlich, A.: L-values at zero and multiplicative Galois module structure (also Galois Gauss sums and additive Galois module structure). J. reine angew. Math. 397, 42-99 (1989)
- [11] Jacobinski, H.: Über die Hauptordnung eines Körpers als Gruppenmodul. J. reine angew. Math. 213, 151-164 (1963)

- [12] MacKenzie, R.E. and Whaples, G.: Artin-Schreier equations in characteristic zero. Am. J. Math. 78, 473-485 (1956)
- [13] Larson, R.G. and Sweedler, M.E.: An associative orthogonal bilinear form for Hopf algebras. Am. J. Math. 91, 75-94 (1969).
- [14] Serre, J-P.: Local Fields. (Graduate Texts in Mathematics 67) Berlin-Heidelberg-New York: Springer 1979.
- [15] Taylor, M.J.: Hopf structure and the Kummer theory of formal groups.
 J. reine angew. Math. 375/376, 1-11 (1987)
- [16] Ullom, S.: Integral normal bases in Galois extensions of local fields. Nagoya Math. J. 39, 141-148 (1970)

Nigel Byott, New College, Oxford OX1 3BN, U.K.

(Received December 3, 1990; in revised form June 28, 1991)

