D
[-A elt

Werk

Titel: On Galois isomorphisms between ideals in extensions of local fields.
Autor: Byott, Nigel

Jahr: 1991

PURL: https://resolver.sub.uni-goettingen.de/purl?365956996_0073 | log21

Kontakt/Contact

Digizeitschriften e.V.
SUB Géttingen

Platz der Gottinger Sieben 1
37073 Gottingen

& info@digizeitschriften.de


http://www.digizeitschriften.de
mailto:info@digizeitschriften.de

manuscripta math. 73, 289 - 311 (1991) manuscripta

mathematica
© Springer-Verlag 1991

ON GALOIS ISOMORPHISMS BETWEEN IDEALS
IN EXTENSIONS OF LOCAL FIELDS

Nigel Byott

Let L/K be a totally ramified, finite abelian extension of local
fields, let Or and O be the valuation rings, and let G be the Galois
group. We consider the powers ;" of the maximal ideal of O as
modules over the group ring OG. We show that, if G has order p™
(with p the residue field characteristic), if G is not cyclic (or if G
has order p), and if a certain mild hypothesis on the ramification
of L/K holds, then ;" and P." are isomorphic iff = ' mod p™.
We also give a generalisation of this result to certain extensions not
of p-power degree, and show that, in the case p = 2, the hypotheses
that G is abelian and not cyclic can be removed.

1 Introduction and statement of results

Let K be the field of fractions of a complete discrete valuation ring O of
characteristic 0 and residual characteristic p > 0. Throughout this paper we
regard 9 and hence K as fixed. We write 9 for the maximal ideal of O and
e for the absolute ramification index of K (so p0 = 9¢). L/K will always
denote a finite Galois field extension of K, and G its Galois group. We write
O for the valuation ring of L, and 9 for the maximal ideal of Op.
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Or can be regarded as a (left) module over the group ring OG, and more
generally so can each fractional Oy-ideal ;7. It is well-known that Oy is free
as an OG-module if and only if L/K is at most tamely ramified, and Ullom
[16] has shown that every fractional ideal is then free over OG. In this paper,
we assume that L/K is totally and wildly ramified, and investigate when
two fractional ideals 95;" and P," are isomorphic as OG-modules. Clearly a
sufficient condition for this is that » = 7' (mod n), where n is the degree
of the extension L/K. Our main result is that, if L/K satisfies certain
hypotheses, this congruence condition is also necessary.

Recall that the ramification groups G; of L/K are defined by

o 16 4= —1
Tl {ceG:(e—-1)oL Cpit} ifi>0.

L/K is totally ramified if and only if Go = G, and is then wildly ramified
if and only if G; # {1}. If L/K is wildly ramified, we write ¢(L/K) for the
first positive ramification number, i.e. ¢(L/K) = max{t : G, = G:}. If G
has order p™k, where (p, k) = 1, then t(L/K) < ekp/(p— 1) (see Proposition
3(iv) below):- in particular, if G is a p-group then t(L/K) < ep/(p — 1).

Our main result is the following:

Theorem 1 Let L/K be a totally ramified abelian eztension of degree p™
with

t(L/K) < e”l -1,
If m > 2, assume that G is not cyclic. Then, for any integers r and 7', the
fractional Op-ideals B;" and PL" are isomorphic as OG-modules if and only
ifr=r" (mod p™).

The proof of this involves an analysis of the case where L/K is cyclic of
degree p, using the calculations of Ferton [6], and a reduction of the general
case to this special case using the notion of factor equivalence, which has
recently been studied extensively by Frohlich ([9], [10]). We will also use
standard ramification theory for local fields, as presented for instance in [14].
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The necessity of the hypothesis on ¢{(L/K) is shown by the following
example:- let K contain a primitive pth root of unity, and take L = K(?,/w),
where w generates the maximal ideal  of O. Then t(L/K) = ep/(p—1). It is
easily seen that every fractional Dy-ideal is a free module over the maximal
order in KG, and hence that any two such ideals are isomorphic as OG-
modules. We shall show that the conclusion of Theorem 1 is in fact false for
any cyclic extension of degree p with

ep
HL/K) > T2 -1,

so that, for extensions of degree p, Theorem 1 is best possible.

If we remove the hypothesis that L/ K be of p-power degree, our methods
can still be applied to give some partial results in certain cases. To illus-
trate this, we will prove the following generalisation of the non-cyclic case of
Theorem 1:

Theorem 2 Let L/K be a totally ramified abelian extension of degree p™k,
where (p, k) = 1, and suppose that

ekp
t(L/K) < -k
that G is not cyclic, and that
AP dit )
|
If 3" and P” are isomorphic as OG-modules, then either r = 1/

(mod p™k) or, interchanging r and r' if necessary, r = ap™ and v’ = ap™ +1

(mod p™k) for some a Z0 (mod k).

Factor equivalence yields no information about cyclic extensions, and,
at least in the simple formulation given in [9], is only applicable to abelian
extensions. One can, however, extend Theorem 1 to non-abelian extensions
and to cyclic p-extensions in the case p = 2. Indeed, without using factor
equivalence, we will prove the following supplementary result to Theorem 1:
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Theorem 3 Let L/K be a totally ramified extension of degree p™, with

ep
< —-1
t(L/K)_p 1 1

Then the p™ Op-ideals ;" (1 < r < p™) represent at least 2™ 'p distinct
isomorphism classes of DG-modules. In particular, if p = 2 then Py" and
P are isomorphic as OG-modules if and only if r = ' (mod 2™).

Before commencing the proofs of these results, we indicate how they can
be used to investigate the occurrence of extensions L/K with self-dual rings
of integers. Given any OG-lattice M, the dual lattice M* is defined to be
Homy(M, D), with the G-action (gf)(m) = 6(¢g~'m) for § € M*, g € G,
m € M. We say that Oy is self-dual if it is isomorphic to O1* as an OG-
module. The trace pairing L x L — K identifies O} with the inverse
different D75~ of L/K, so Op is self-dual if and only if Op = D k! as
OG-modules. Thus Theorem 1 has the following consequence:

Corollary 1 Let L/K be a totally ramified abelian extension of degree p™,
and let Pp=" = Dy k" be its inverse different. If Op is self-dual then

either v=0 (mod p™)

or  HIL/K)> ;e:”—l =1

or L/K 1is cyclic and m > 2.

Note that v is determined by the ramification groups of L/K ([14] IV
Proposition 4).

We end this section with some conditions on the associated order 2k
of L/K which ensure that Oy is self-dual. Recall that
AL/ = {a e KG:adp C DL}

(and more generally, the associated order of any fractional ideal P, is defined
by replacing both occurrences of O by P, in this definition). For any
element a = Zagg of KG, we write & = Y agg~".

g€G
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Proposition 1 Let L/K be an abelian extension.

(i) If 4p )k = AUk and Ap g = (Ar/k)™ as OG-modules, then Oy, is self-dual.
(i) If %Ar/x is a Hopf order in the Hopf algebra KG (cf. [15]), then O is
self-dual.

Proof. (i) Since O™ = D1k !, the associated order of Dp/x ' is 2z k, which
coincides with 2y x. Moreover, as 2p/x = (Ur/k)*, Ur/k is a (weakly) self-
dual order in the sense of [7] §8. By Theorem 10 of that paper, Oy and
D1k~ are both free over %k, and so are isomorphic.

(12) is a special case of (z): if p/k is a Hopf order then by [13] (k)™ =
Az k, since O is a principal ideal domain; and A /x = YUp/k since @ — a is
the antipode of the Hopf algebra KG.

2 Extensions of degree p

In this section, we will prove Theorem 1 for extensions of degree p, and will
also discuss almost maximally ramified extensions of degree p. We make use
of the calculations of Ferton [6], and largely follow her notation.

Thus let L/K be a totally ramified cyclic extension of degree p, and let
t=t(L/K). Then1 <t <ep/(p—1), and (t,p) = 1 unless t = ep/(p — 1)
([14) IV §2 Ex.3). Any such value of ¢ can occur (loc. cit. Ex.5).

Let t = pag+a with 0 < a < p— 1. Note that if t +1 > ep/(p — 1) then
ep—(p—1)<(p—1)t<epandt=a (mod p),so
ep—a . ) ep

t= f nl > — -1 1

) if and o yxft_p_1 (1)

Now let w (resp. ) be a generator of 9 (resp. Pr), and fix a generator o
of the Galois group G of L/K. Set f = 0 —1 € OG. Since (f+1)? = 0? = 1,

we then have 3
r=-X(2)r @

n=1
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If a # 0 then 7 is a normal basis for L/K,i.e. L = KG=*® ([3] Proposition
3). Fora+1—p<r<alet

4 ={a € KG:ar® € P }.

Then 4, is a fractional OG-ideal containing OG, and U, = P," as OG-
modules. From [6] Proposition 3 we have the following explicit description
of the lattices 4,:

Proposition 2 Ifa #0 anda+1—p <r < a then the elements

f .
= (0<i<p-1)

-

form an O-basis of i, where
it+a—r
vi(r) = | ————| .
o= =]

(For any real number y, [y] denotes the largest integer not exceeding y.)

We can now prove Theorem 1 for extensions of degree p:

Lemma 1 Let L/K be a totally ramified cyclic extension of degree p, such
that ep

t(L/IK) < — - 1.

@rx) < 52

For any integers r and r', ;" and P” are isomorphic as OG-modules if
and only if r =r' (mod p).

Proof. With the above notation, a # 0 by the hypothesis on ¢, and if r = '
(mod p) then certainly " = ;" . Thus, adjusting r and 7' by multiples of
p, and interchanging them if necessary, we may assume that a+1—p <r <
r' < a; it is then sufficient to show that if &, = 4./ then r = 7'

To simplify notation, let 4 = i, &' = 4, v; = y4(r), v{ = vi(r’). Then
v!<wy;<efor 0<i<p-—1. Any isomorphism 6 : 4 — 4 of DG-modules
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is determined by 6(1). Setting a = 6(1) € U’ and using Proposition 2, we
have

a—zc, = forsomec,eo
j=0 W’

The elements
el
.7

an— Vt+V Oslsp-l)

3=0

form an O-basis for #'. Using (2) to expand f“’j for ¢ + j > p, comparing
coefficients of 1 = f°, and noting that vy = vj = 0, we see that ¢, € O¥,
where O* denotes the group of units of 9. Without loss of generality, we
suppose ¢ = 1. Then 4’ has a basis consisting of the elements

ff - i Pt it p-1 fiti
QJ—W u —, + Z L~ Ty ,,+u JZ:_’.CJ'W. (3)
We will show that
fi+s
3.7 € ¢ whenever p—1<j<p-1 (4)
WY

Admitting this for the moment, we must have v — v; > 0 for each 1, since
the elements (3) lie in 4. We have already observed, however, that v} < ;,
so v = y; for 0 <4 < p—1. It then follows from the definitions of v; and v}
that » = ', Thus it only remains to prove (4).

Writing 7 + j = p + k and using (2), we have

fl+] p—-1 fk+n
u, +v - Z ( ) Vi +v

n=1

If k4 n > p then, using (2) again and noting that the binomial coefficients
are divisible by p, we have

k+n 2
(n)f G m——— o OG C oG C u.

WHitYs v.+u
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On the other hand, if £ + n < p then

k+n k+n
p f e = Y4 wu:‘+" u,—u f
n wl’i'f"/,' n wuk+n

and we must show that

e+ Vpyn — Vi —v; > O wheneveri+j=p+k>pand1<n<p-1. (5)
Clearly it is sufficient to take n = 1. Now
e+u,'¢+1—1/,-—1/;-
(i+j—p+1)t+a—'r’] [it+a—r] [jt+a—'r’]
p p p

> et [(l—p)tp—a+r]

T
= e—t4+ap+ [—]
p

i —p—l,ao=L—1and0$rSp—1,so
p—-1 p-1

e-—t+ao+[ ]—e—(—eP——l)+< z —1)+0=0;
P p—1 p—-1

whereas if t < p—ﬂ)—I — 1then (p—1)t < ep—aby(l),andr > a+l—p > —p,

SO
-1t
e_t+ao+[%] S u {oba +H

fed)- ]
-k

2

and since the left-hand side is an integer, it follows that

e—t+ag+ F] >0.
p
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Thus (5) holds in all cases, which completes the proof of (4) and thus of the
Lemma.

In [11], Jacobinski defines the notion of an almost maximally ramified
extension. In the case of a cyclic extension of degree p, the definition reduces
to the following condition:

L/K is almost maximally ramified < t > il - 1.

p_

Although it is unnecessary for the proofs of the three theorems, we will
now consider extensions with this property, thereby showing that Theorem
1 is best possible for extensions of degree p:

Lemma 2 Let L/K be an almost mazimally ramified cyclic extension of
degree p. Then O is self-dual as an OG-module. In particular, if t +1 >
ep/(p — 1) then the conclusion of Theorem I is false for L/K.

Proof. We first consider the maximally ramified case t = ep/(p — 1). Here,
K contains a primitive pth root of 1 ([12] Theorem 3), and L = K(P\/w)
for some generator w of . As noted after the statement of Theorem 1, it
follows that every fractional Oy-ideal is free over the maximal order in KG,
and hence is isomorphic to every other fractional Oy-ideal.

For any value of ¢, we have DE}K = 9", where, by [14] IV Proposition
4, v=(p-1)(t+1)=—-a—1 (modp). Ift+1=-ep/(p—1)thenv=0
(mod p), so certainly Op = D;}K; whilst if ¢ +1 > ep/(p — 1) then by (1),
t=(ep—a)/(p—1)with0<a<p—-2,50v#0 (mod p).

It remains to show that, if t = (ep —a)/(p—1) with 1 < a < p—2
then O = QE}K. Now Op = §lp and '.DE}K = Ugt1-p, SO Writing U = Lo and
U = Yg4q_p, it suffices to show that 4 = ¢, By Proposition 2, these two
lattices have O-bases

1 £

f—_ respectively L,- (0<i<p-1),
wYi wu‘.
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where
[it + a] , [(i + 1)«;]
v; = =1a9 +
p p
and
4 _ ; _
v = [Ll] _ a+[+_z’1]
p p
_ 0 ifi=0
- 1+0.0+V,‘_1 lfls‘l«sp—'l
Let f f
Oﬂ:].-l-—v{“:l-l-wl_*_‘10

We will show that multiplication by the element a of &' induces an O-linear
isomorphism between 4 and 4'; this map is then necessarily an isomorphism
of OG-modules. For 0 < i < p —2 we have
i i i+1
ai——wyi_vif_+f' Eu'

I
ws wYi wYi+1

since v; < v}. Also, using (2),

p—1 fp—l r-1 fn.
— ()Vp—1""Vp—1
e wvr-1 w'emt -1 + Z b"‘ v} !
w'r n=1

where

bn = 4 wu:,—y,_l —1=-aq .
n

Since vp_1 = e, b, has valuation v, — 1 —ag = Vp-1 2> 0, so b, € O for all
n. Thus a4 C 4, and the matrix expressing multiplication by « in terms of
the above bases of {4 and ' is

W~ 0 0 S 0
1 4™ 0 o b,
0 1 w4 - by
B = 0
w":'r-z_”p—l‘ bp_z
0 0 1 W1Vl L p
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To complete the proof, we must show that det(B) € D*.

Since @ < p — 1, there is an integer A with 1 < h < p — 2 such that

h=1) o<
L VI L

y; = (ao+1)l ifi<h

Vp = (do + l)h - 1.
Thus if 2 < n < h then v,—; > 0 and b, € P, while b; € O* as vy = 0. Also,
v, —vp = 14 ag + vh-1 — v = 1. Thus the matrix entries W~ and b,
(2 < n < h) lie in . It follows that det(B) = £w*o b, = £b; (mod P),
every other term in the expansion of det(B) lying in P. Thus det(B) € O*
as required.

We then have

We remark that if £ +1 > ep/(p — 1) there may be other isomorphisms
between ideals in addition to that given by Lemma 2. For example, in the
absolutely unramified case e = 1, any ideal P5;" must have as its associated
order either the group ring OG or the maximal order

sm=oG+lZa.

P sec

These are both self-dual orders in the sense of [7], so P." is free over its
associated order, and hence isomorphic to either OG or M. Thus there must
be many isomorphisms between the ideals Or, ¥y, ..., P~ . (The author is
indebted to D.Burns for this observation.)

In the situation of Lemma 2, Or need not be free over its associated order.
Indeed, Bertrandias, Bertrandias and Ferton [2] give a criterion for O to be
free when L/K is almost maximally ramified:- writing t/p = [ao; a1,. .., an)
for the continued fraction expansion of t/p, O is free over its associated
order if and only if n < 4. (The same is also true for almost maximally
ramified cyclic extensions of degree p™, m > 2:- see [1]). Thus if L/K 1is
almost maximally ramified and cyclic of degree p, with n > 5, then Op is
self-dual but not free over its associated order. The first example of this is
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p = 13, a = 8. The question of the existence of abelian extensions with
this property was raised in [5] (p148). Some elementary abelian examples of
degree p? are constructed in [4]; these have t + 1 = ep/(p — 1).

3 Factor equivalence

We now recall from [9] the notion of factor equivalence between OG-lattices
spanning the same K G-module. We will then derive a necessary and sufficient
condition for two fractional Oy-ideals to be factor equivalent.

Let T be a finite abelian group, let I'! denote its group of (complex-
valued) abelian characters, and let S(I'') denote the lattice of subgroups
of ', There is an inclusion-reversing bijection between the lattice of sub-
groups of T' and S(T'!), given by associating to each A < I' the subgroup
Xa ={x:x(A) =1} of T.

A division D of T't is an equivalence class of characters, two characters
being deemed equivalent if they generate the same cyclic subgroup of I't. We
write D for the subgroup generated by any element of D. Let Ix denote
the group of fractional ideals of O (written multiplicatively). We extend any
function f: S(I'') — Ik to the set of divisions D of I'! by defining

f(D) =TI f(C)P9,
c<b

where the product is over all subgroups of D, and g denotes the Mobius
function. By Mobius inversion, we then have

f(x)=II f(D) (6)

DCX

for every cyclic subgroup X of I't. The function f is said to be factorisable
if (6) holds for every subgroup X.

Now let M, N be two OI'-lattices spanning the same KT-module V. We
define a function f: S(I'') — Ik by setting

f(Xa) = [M*: N4 for each A <T,
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where M2, N2 denote the lattices of A-fixed points of M, N, and [ : |, is
the O-module index, defined for two O-lattices spanning the same K-space
(see e.g. [8] §3). The lattices M, N are said to be factor equivalent, written
M A N, if this function f is factorisable. This gives an equivalence relation
on the set of OI'-lattices spanning a given KT-module V, and moreover, it is
shown in [9] that M A N whenever M and N are isomorphic as OI'-modules.

We remark that factor equivalence is independent of the base field K
in the following sense:- if F' is a finite extension of K, and M, N are OpI-
lattices, then they are factor equivalent as such (i.e. working with Dp-module
indices) if and only if they are factor equivalent when considered as OT-
lattices by restriction of scalars. We will use this observation in the proof of
Theorem 2.

We now take M, N to be Dp-ideals, and T' to be the Galois group G.

Lemma 3 Let L/K be a totally ramified abelian eztension of degree p™, and
assume that its Galois group G is not cyclic. For any integers r, r', write

s=r—1=s0+ps;+-++p" sm_1+ 0"z
s'=r'—1=sy+psi+---+p" s, +p"2'
with 0 < s;,8i <p—1for0<i<m—1.

Then the OG-modules P, P are factor equivalent if and only if s} = s;+v
for 0 < i< m—1, where v is independent of i.

Proof. f r =+ (mod p™) then P," = P, so certainly B," A P.". Thus
we may assume that ¢ = &’ = 0.

Let v; = 5! — s; for 0 < ¢ <m — 1. Also, for k > 0, set

!

4m=[§y am=[%y v(k) = s'(k) — s(k).

Thus .
vkt vk AP Ry ifE<m
““'{0 if k> m

301



BYOTT

Let H be a subgroup of G of order p*, with fixed field F = L¥. Then
($7)F = NF = pp't®

(and similarly for ;™) since the smallest integer not less than r/p* is

r+pt—1
[T] =1+ s(k).
Thus
()7 (B )l = [Be'T®) : ppt B
= [DF: mFu(k)]o
= {p"(k),

since F/K is totally ramified. Hence the assertion ;" A " is equivalent
to the factorisability of the map f : S(G!') — Ik given by

f(Xg)= 2°*) for any H < G of order p*.
For j in the range 1 < 7 < m, consider the following three assertions:-

(I) f(Xg)= ][] £(D) for every H < G of order at least p™7;
DCXy

(IT) vm—i = Vg for 1 < i < 5;
(III) if D is a division of G! and D has order p? with d < j then
o) ifd=0

1

f(D)z{ P iemt ifd > 1

We shall prove by induction on j that (I) & (II) = (III) for each j. In
the case j = m, the equivalence (I) < (II) proves the Lemma.

For j = 1, (I) holds since Xpg is cyclic, being of order 1 or p, and (II)
holds trivially. For (III) we must consider divisions D for which D has order
1 or p. But f({1}) = $*(™ = o, whilst if D has order p then

f(D) = f(D)f({1})7" = g Vp7" = gome,
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Thus (III) holds for j = 1.

Now let 2 < 7 < m and suppose that (I), (II), (III) all hold with j replaced
by 7 — 1. As G is not cyclic, it has a subgroup H of order p™~7 such that
G/H is not cyclic. Thus any division D C Xg generates a group D of order
p? for some d < j—1. If d > 0 then D contains |D| = p?~*(p—1) characters,
and by (III) for j — 1, f(D) = g!Plvm-1/(P-1)_ For any such H, the condition
in (I) therefore becomes

gpv(m—i)=f({1}) H m”m—l/(?“l)’

1#x€Xy

or equivalently,

(m—4) =22
v(m—3j) = Vi1
J p—1 1
Using (II) for j — 1 and the definition of v(m — 7), this can be rewritten as
! 1
Um—j + (P + o4 PJ—I)'Um—l = I:_ 1 VUm-1,

i.e. Vm—j = Um-1. Thus (I) = (II) for j, and conversely if (II) holds for j
then (I) holds for j, except possibly when H is of order p™~7 and G/H is
cyclic. But (I) always holds when G/H is cyclic, so we have shown (I) &
(IT) for j. Finally, if D is a division for which D has order p’ then D = Xg
for some subgroup H < G of order p™~7 with G/H cyclic. Applying (I) and
arguing as above for the divisions {1} # D’ # D contained in D,

w2 = ) (1) £0)
D'
= 9 ;n(?i—l*l)ﬂm—l/(P—l) f(D)
so f(D) = ¥, where

m—g)— L1
= vyim-—y)— Vm—
Yy J p—1 1
. =1 _ 1
= (1+p+---+p"1)vm_1—p]p~1 Um-1

= pj_l'Um_l i
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Thus (III) holds for j, which completes the induction and the proof of the
Lemma.

The following corollaries indicate that factor equivalence considerations
go a long way towards proving Theorem 1 (in the non-cyclic case), but are
not in themselves sufficient.

Corollary 2 Let L/K be as in the Lemma, and let v be divisible by p, with
0<r<p™t Ifp," AR thenr=r" (modp™).

Proof. In the notation of the Lemma, s = p — 1 and s,_; = 0. Thus
v+(p—1)=sy<p—1landv+0=s],_, >0, whence v = 0.

Corollary 3 Let L/K be as in the Lemma. Then Op A Pr.

Proof. Taking r = 0 and ' = 1, we have s; = p— 1 and s = 0 for all ¢, so
the condition of the Lemma holds with v =1 — p.

4 Conclusion of the proofs

We begin with some ramification theory.

Proposition 3 Let L/K be a totally ramified extension of degree p™k, where
(p,k) =1 and m > 1. Let G be its Galois group. Then:-

(2) G1 has order p™, and G is a semidirect product of Gy by a cyclic group
C of order k;
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(1) if C is normal in G then, writing M = L for the fized field of C,
{M/K) = T HL/K)
(412) if k = 1 or if G is abelian then G has a normal subgroup H of indez p
whose fized field F = L¥ satisfies
HF/K) = 1 UL/K)
(tv) if C is normal in G then

HL/K) < 22,

p-1

(v) ifk =1 and m > 2 then G has a normal subgroup N of order p whose fized
field E = LV satisfies t(E/K) =t(L/K) and t(L/E) = t(L/K) (mod p).

Proof. (1): see [14] IV §2.
(i2) follows from (z) and [14] IV Proposition 14.

(i41): Giyq # Gy = Gy, where t = t(L/K), so Gy has order dividing p™~2.
If k = 1 take for H any subgroup of order p™~! containing Gi;;; then H is
normal in G being a subgroup of index p in a finite p-group. If G is abelian,
take for H any subgroup of order p™ 'k containing G41. In either case, H
has the required property by [14] IV Proposition 14.

(tv): If L/K has degree p then t(L/K) < ep/(p — 1) by [14] IV §2 Ex.3. In
the case k = 1 the result now follows from (:i¢). Finally, if k¥ > 1 and M is
as in (i7), then

ekp

HL/K) = ktH(M/K) < -

(v): Let n be the integer such that G, # Gny1 = {1}. Since G, < G, G
acts on G, by conjugation, and as G is a p-group, each orbit has p-power
cardinality. As at least one orbit, namely {1}, has cardinality 1, it follows
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that some element g # 1 of Gy, is central in G, so there is a subgroup N of
G, of order p, central and hence normal in G. N has the required properties
by [14] IV Propositions 2, 11 and 14.

We can now prove the three theorems:

Proof of Theorem 1. By Lemma 1, we may assume that m > 2, so G is not
cyclic. If r = ' (mod p™) then certainly ;" = $,". Writing s = r — 1,
s' = r'—1, we may therefore assume for the converse that 0 < s,s' < p™—1. If
P." = P," then these ideals are factor equivalent, so by Lemma 3, s, = s;+v
for some v, where the notation is as in the Lemma. We must show that v = 0.

Let H and F be as in Proposition 3(ii), and let @ = G/H. Taking
H-fixed points in the isomorphism ;" = P." of OG-modules, we obtain an
isomorphism (P.")¥ = ($.")¥ of OQ-modules. But, arguing as in the proof
of Lemma 3,

(er)H — mF1+cm_1,

and similarly for ;"' Since

HF/K) = t(L/K) < —2= —1,

we can apply Lemma 1 to the extension F'/K of degree p. Hence
l4sm1=1+s, ;=148m1+v (modp),

and since |v| < p — 1, it follows that v = 0 as required.

Proof of Theorem 2. Writing s = r — 1, s’ = 7' — 1, we can assume that
0 <s,s <pmk—1. Interchanging » and r’ if necessary, we assume also that
s’ > s.

Let C and M = L€ be as in Proposition 3. By hypothesis, ;" = i
as OG-modules, and taking C-fixed points, we obtain an isomorphism of
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OG;-modules

liﬂ'/k] - (“er)C o~ (er')C — gle-!-[a'/k].

By Proposition 3(ii) and the hypothesis on ¢(L/K), we can apply The-
orem 1 to the non-cyclic extension M/K of degree p™ to deduce that
1+ [s/k] = 1+ [s'/k] (mod p™). The assumptions on s and s’ ensure
that this congruence is an equality, so

0<s-s<k-1 (7

Now let L, = LS. We may regard 9;" and $.” as DG;-modules by
restricting the action of G, and they are factor equivalent as such. We may
also regard them as Op, Gy-modules, since G, acts trivially on L,, and, as
noted in the previous section, they are then still factor equivalent. Writing

s=so+ps1+-+p" sy +bp"

S =sg Pyt 4P s U
with0<s;,8:<p—1and 0<b<¥V <k -1,

and applying Lemma 3 to the extension L/L, of degree p™, we have s} = s;+v
for0<:<m-—1, where 1 —p <v <p-—1. Thus

s'—s=(ltpt - +p" o+ (b -b)p",

and comparing with (7) we have

™ -1
os(”p 1)v+(b'-b)p'"gk-1. (8)
By hypothesis,
olok ()
p-1 '

Thus if ' = b we must have v = 0, and so s’ = s, giving 7' = 7. On the other
hand, if ' — b > 1 then, since v > 1 — p, (8) and (9) can only be satisfied
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simultaneously by ¥ —b =1, v = 1 — p. This value of v forces s; = p — 1,
si=0forallz,s0 s =p™ -1+ (¥ —1)p™, s’ = b'p™. Thus, putting a = ¥/,
we have r = ap™, ' = ap™ + 1.

It only remains to show that a # 0 (mod k). Take H and F as in
Proposition 3(iii), so F/K is cyclic of degree p with Galois group @ = G/H,

and
e

HF/K)< - -1

Taking H-fixed points in the original isomorphism of OG-modules, we obtain
an isomorphism (P;")¥ = ($.")¥ of OQ-modules. Applying Lemma 1 to
F/K, we deduce

8

3/
1+ [m] =1+ [m] (mod p),

: 21 |- [2]
ie. 14 [k p"‘“lk] =1+ P (mod p),

which fails if a =0 (mod k).

Proof of Theorem 3. Let a be the integer such that ¢(L/K) =a (mod p),
1<a<p-1 Givenr with 1 <r <p™, set

s=r—1=80+psi+-- +p" "sm1 With0<s;<p-—1
as before, and define
Ir,L/IK)={t:0<i<m -2, s; >a}.
It is sufficient to prove the following implication:

I(r,L/K)=I(',L/K)

— !
and $m_1 = 8,_;.

P =P as OG-modules = { (10)

We will prove (10) by induction on m. If m = 1 then I(r,L/K) =
I(r',L/K) = 0, and (10) holds by Lemma 1. Now assume that m > 2. Take
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N and E as in Proposition 4(v) and set J = G/N. If ;" = %" as OG-
modules then taking N-fixed points gives the isomorphism of OJ-modules

1+[s/p) v @ _1+[s'/p)
Ry = Pg .

Since

A E—

and similarly for ', and since ¢(E/K) = t(L/K) = a (mod p), it follows
from the induction hypothesis that

{1:1<i<m-2,82>a} = {i:1<i<m-2, s >a}

and
1

Sm—-1=8,_1-

Thus to complete the induction, it only remains to show that so > a if and
only if s5 > a. For this we compare the Oth Tate cohomology functor

I_“IO(N _) = (-)N
’ Tri/e(-)

([14) VIII §1) on the ON-modules ;" and P,". Here Trr g denotes the
trace map from L to E. Let n = t(L/E),son =a (mod p) by Proposition
3(v). Then the different of L/E has valuation v = (p — 1)(n + 1) ([14] IV
Proposition 4) and

Tre(PL") = pglto)/e)
([14] III Proposition 7). Hence

pgle/PlH1 ~ 9Ok
Pglrtv)/el T k()

HY(N,p,") =

where

k(s) =[(1+s+v)/p] = [s/p] - 1.
If g, = ¢, as OG-modules then they are isomorphic as O N-modules, and
we must have k(s) = k(s'). Since v=—-1—a (mod p), this simplifies to

=555

Hence s¢ > a if and only if s) > a, completing the induction.
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