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The evolution of harmonic mappings with free boundaries

Michael Struwe

Abstract: We establish the existence of a global, partially regular weak solution to
the evolution problem for harmonic maps with free boundaries on a suitable support

hypersurface.

1. Let (M, g) be a m-dimensional manifold with boundary &M and let N be a com-
pact £-dimensional manifold, which for convenience we may regard as isometrically
embedded in some Euclidean space IR". Also let X be a k-dimensional sub-manifold
of R", $ = N N. Finally, let up = (u},...,u}) : M — N with uo(8M) C S be
given.

We study the existence of harmonic maps v : M — N < R™ solving the free

boundary problem

(1.1) —Au =T'(u)(Vu, Vu) LT, (N) ,
(1.2) uw(dM)C S ,
(1.3) —:;-uJ_T.,S on M,

where n denotes a unit normal vector field along M, A = Ajps is the Laplace-
Beltrami operator on M, and I' denotes a bilinear form related to the second fun-
damental form of the embedding N — R™. Finally, T, N denotes the tangent space
(in R®) of N at p, and L means orthogonal (in R™). Solutions of (1.1-3) can be

characterized as critical points of the energy

(1.4) E(u)=; / Vu2dM
M

on the space of maps
HY*(M;N) = {u € H**(M;R™);u(M) C N,u(dM) C S}.
Here, H'*(M;R"™) is the Sobolev space of L?-maps u : M — IR™ with Vu € L?;

the norm |Vul? is computed in the metric on M.
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As in [13] for a related problem, we approach (1.1)-(1.3) by means of the evolution

problem

(1.5) uy — Au = I'(u)(Vy, Vu) on M x [0,00],
(1.6) u(z,t) C S, for z € OM,t >0,

(1.7) %u(z,t)lTu(,’t)S, for z € OM,t >0 ,
(1.8) u(-,0) =up on M.

If m = 2 this strategy has been sucessfully implemented by Ma Li [10]. (See
also Dierkes-Hildebrandt-Kiister-Wohlrab [5] and Hildebrandt-Nitsche [7] for fur-
ther material on the two-dimensional case.) Here we confront the higher dimensional

case m > 3.
Assume all data are smooth. For simplicity, we consider only the case

M = B = B,(0) = {z € R™;|z| < 1}.

Moreover, we make the following assumption about X, the global “extension” of S

to the ambient Euclidean space:

There exists a ball U C IR™ containing N, whose boundary 8U
(1.9) intersects ¥ orthogonally in the sense that the normal vy to 9U at
a point p € X lies in T, 3.

In addition assume that the nearest neighbor projection 7y : U — X N U is well-
defined and smooth in U, and

(1.10) |D?*rg| - diam(U) < 1/2 .

Let Rz(p) = 2wg(p) — p be the reflection of a point p € U in L. Also we suppose
T is oriented by a smooth normal frame v = (v4,...,vp_k). An example of a
configuration (N, I) satisfying (1.9-10)is N = S™! c R*, T = R*x {0}, k < n—1,
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or a perturbation of IR* x {0} by a diffeomorphism & = id+ ¢7, with a smooth map
7 : IR™ —» IR™ having compact support, and |¢| < €9 = &9(7). Then we obtain the
following result reminiscent of the results in [2] for the evolution of harmonic maps

on closed domains, that is, with OM = 0.

Theorem 1.1: Suppose M = B, N, S,u, are as above and S satisfies conditions
(1.9-10). Then there exists a global weak solution u of problem (1.5-8) satisfying
the energy inequality

T
// [ue|*dz dt + E(u(T)) < E(uo),
o B

for all T > 0, and smooth on B x [0,00[ off a singular set of codimension > 2.
As t — oo suitably, u(t) converges weakly in H!?(B; N) to a weak solution uu, of
(1.1-3) which is smooth on B off a set of codimension > 2.

Remark 1.1: (i) If - in addition to assumptions (1.9-10) - the range u(B x [0, co|)
lies in a convex neighborhood of a point p on N, u is globally smooth and converges
uniformly on B to a smooth solution %o of (1.1-3) homotopic to ug.

(ii) Conversely, for instance in the case of a sphere as target manifold, it is known
that solutions to (1.5) may develop singularities in finite time, see [4], [1].

(iii) A result like Theorem 1.1 should also hold without the hypotheses (1.9-10)
on S; however, for a general support manifold S - already in the Euclidean case
N = R™ and in contrast to the two-dimensional case treated in [13], [10] - in higher
dimensions m > 3 the problem of boundary regularity for (1.5) poses considerable
difficulties and the construction of global, partially regular solutions to (1.5-8) or
to (2.1), (1.6-8) below is not yet within reach.

(iv) Similar results should hold on a general compact domain with boundary. In
fact, much of what follows is true for such general domains and we keep the notation

M in that case.

2. Let Us(N) be the §-tubular neighborhood of N in R?. We may choose § > 0
such that Us(N) C U, see (1.9), and such that the nearest neighbor projection
m : Us(N) — N is well-defined and smooth in Us(N). Let x € C5°(IR) be a non-
decreasing function satisfying x(s) = s for 0 < s < %:_’ x(s) = 8% for s > &2
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Following the approach of [2], we approximate (1.5-8) by the following evolution
problem for maps with range in R™:

"

(2.1) ue — Au + K (dist?(u, N)) = (M) -0
du 2

in M x [0,00[, with boundary and initial conditions (1.6-8). (2.1) is the evolution

equation for the functional

2.2) Ex(u)=3 / [1Vul? + Kx(dist?(u, V)| ana
M

for maps u : M — IR™.

Lemma 2.1: Let u be a smooth solution to (2.1), (1.6-8). Then we have

T
/ / lus?dM dt + Ex (u(T)) < Ex(uo) = E(uo)
oM

for all T > 0.

Proof: Multiply (2.1) by u, and integrate by parts. The boundary term vanishes

on account of (1.6-7).
O

For the following result hypotheses (1.9-10) on S are essential.

Lemma 2.2: Suppose u € C*(M x [0, T[;R™) is a smooth solution to (2.1), (1.6-8)
on M x [0,T[; then u and its first spatial derivatives are uniformly bounded and u
extends to a smooth solution of (2.1), (1.6-8) on M x [0, T).

Proof: The interior estimates easily follow from the energy estimate Lemma 2.1
and the interior regularity estimates for the heat equation; see for instance [9].
To obtain the estimates at the boundary we argue as follows. Note that by the
maximum principle for the heat equation and (1.6-7), (1.9) the image of u satisfies
u(z,t) € U for all (z,t), and by (1.10) the reflection of  in X is defined. Thus, in
the special case M = B, for z € IR™,t > 0 we may let

- _ Ju(=,t) if 2| <1,
Sety= {Rn(u(zllzl’,t)) i 2| > 1.
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Then # is of class C! on R™ x [0,T[ and satisfies

(2.3) z
o+ 40+ DRs(a) (K (s ula /o, 1), ) o (S22l 1)y )

= 2|z|* Dy (i)(Va, Vi) =: |2|*T's(4)(Va, Vi), if|z| > 1,

where A is an elliptic operator with Lipschitz coefficients, A = —A for |z| < 1, and

where 'y is a bilinear form related to the second fundamental form of ¥ C R™.

(2.3) is a parabolic system of the type

u + Au = f(-,u, Vu),
on any ball B, = B,(0), where

|f(ru,p)| < alpl* +B

with constants a,b € IR. Moreover, by (1.10), for p > 1 sufficiently close to 1 there

holds
a- suplu| < A,

where A > 0 denotes the ellipticity constant of the operator A on B,. By the
results of [6] for such systems, # is locally Hélder continuous on B,x]0,T]. Higher
regularity | V24| € L}, (B, x [0,T)), |V&| € Li,.(B, x [0,T)) then follows as in [9].
Finally, by [9; p. 593f.] we also obtain uniform bounds for Vi in Lz:: and hence 1,
and V2% in L}, for all p < co. By the Sobolev embedding theorem [9; Lemma II.

3.3] this then implies the desired bound.
O

The a-priori bounds of Lemma 2.2 now yield the following global existence result.

Proposition 2.1: Under the hypotheses of Theorem 1.1, for any K € IN there
exists a global solution u = ux € C*(B x [0, 0o[;R") to (2.1), (1.6-8). The solution
u is smooth in B x [0,00[ and satisfies the energy inequality Lemma 2.1.

Proof: Local existence follows from a fixed point argument as in [13]. For com-

pleteness we sketch the argument. Extend ug to IR™ by letting

(2.4) us(#) = Rz ("“ (ﬁ) )
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for z ¢ B, and fix p > 0, T > 0 sufficiently small. Let
V,(T) = {u € CY/2(B, x [0,T};IR™); u(0) = uo},

where C1+1/2(...) is the space of functions u which are continuously differentiable in
the spatial variable z and uniformly Hoélder continuous in time with Holder exponent
1. A norm is given by the Hélder constant and ||Vu||z~. - In [9;p.7f.] this space is

introduced as H1:1/2,

For u € V,(T) let v solve

~Kx'(dist?(u, N)) £ (u";—”-l) , if 2] < 1

—DRg(u)(KxX'(-)&(...)) + |z[*Ts(u)(VuVu), if |z| > 1,
on B, x [0, T] with boundary and initial data u. By the interior estimates for the

(25) v+ Av= {

heat equation we can bound v and its first and second derivatives in Hélder norm
on 8By, x [0,T] in terms of the C**'/2-norm of u on B, x [0,T] and uo. Define
new C2-Dirichlet data by letting

w(z,t) = Ry (v (Ezl-z-,t)) ,z € 8B, ,

and let % solve (2.5) with initial data uo and boundary data w. By (2.4) w and
up are compatible. Moreover, by the linear estimates for the heat equation (see
[7; Theorem IV. 9.1] ) the map F : u +— % is bounded from Cl"}(BT,, x [0,T7]) into

the space
w2t = {u € I?(B, x [0,T)); ue, V?u € L"}

for all p < 0o, which for p > m + 2 is compactly embedded into C1# (B, x [o, T]);
see [9; Lemma I1.3.3]. Finally, if T > 0 is sufficiently small, F maps a convex
C'+#.neighborhood of the function u(t) = u to itself. Hence F has a fixed point
u = F(u), satisfying (2.3) and the condition

u(z,t) = w(z,t) = Ry (v(z/|z|2,t))

on 8B, x [0,T]. But then also u;(z,t) = Rg (u (T;:‘F,t)) is a solution of (2.3) in
{(=,t);1/p < |z| < p} with the same initial and boundary data. It follows that
u = u; and thus u satisfies (2.1), (1.6-8). The local solution can be continued

globally on account of Lemma 2.2.
O
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To derive uniform interior estimates independent of K we need the following ana-

logue of the monotonicity formula from [14]. Fix zp = (z¢,%0) € M x]0,00[. Let

1 |$|’)
G(zyt) = —— —_
(=8) =~ ( 4J1]
be the fundamental solution to the heat equation. Then let
1 .
$,,(R) =9,,(R;u,K) = ERz /‘[|V'u.|2 + Kx(dlstz(u,N))]G(- — zo)dz ,

where we integrate over B x {f; — R?}. On a general domain we would need to

localize @ in coordinate charts via suitable cut-off functions, as in [2].

Lemma 2.3: There exist constants depending only on M and N such that for all
20 = (zo,%0) and 0 < R < Ry < /%y there holds

®.,(R) < exp(c(Ro — R))®:,(Ro) + c E(uo)(Ro — R).

Proof: At interior points this result was obtained in [2; Lemma 4.2]. At the bound-
ary, for simplicity we present the proof only for a half-space M = IRT, where

R} = {z = (z',2m) € R™;z,n >0},

and 2o = (0,0). (The general case then follows as in [2].) Consider the family of

scaled maps
ug(z,t) = u(Rz, R%t).

Note that ug satisfies (2.1) with R2K instead of K, and also satisﬁes.(l.ﬁ), (1.7).
Moreover,
®o(R;u,K) = ®,(1;ugr, R’K),

whence (at R = 1, say)
s (R;u,K) = P (1;ur, R?K)
4R o[y U, =~ 4R o(l5UR,

= / { Vuv (‘?dl—zun) + Kx(dist*(u, N))

St
w9 dist®(u,N)\ d
+ Kx (...)du — ) IR Gdz,
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where S, = IRT x {—1}. Integrating by parts in the first term, on account of (2.1)
and the fact that VG = G, this gives

_ [ |z Vu+ 2tuf?

= 2|¢| Gdz + /Kx(distz(u,N))Gdz >0,
Sy

St

as desired. Note that by (1.6-7) no boundary terms appear.

Denote by
1 :
ex(u) = -2-{|V'u.|2 + Kx(dist?(u, N))}

the energy density for the penalized equation. For a point zg = (zo,%9) € R™ x IR,
p > 0 also denote

Py(z) = {z =(z,t)jlz—zo| < p, to—p2<t< to}

the parabolic cylinder of radius p centered at zy, P, = P,(0) for brevity, and let

P (20) =Pp(20) N {zm > 0},
Py (20) =Pp(z0) N {zm < 0},

respectively.

Lemma 2.4: There exists a constant €9 > 0 depending only on M and N with the
following property: If for some zy = (zo,%0) € M x]0, 00 and R < ¢ the inequality

., (R;uk,K) <eo

is satisfied, then

sup ex(ux) < c(6R)'2 .
Psr(z0)

with constants ¢ depending only on M and N and § > 0 possibly depending also
on E(wo) and min {R,1}.

Proof: The proof for interior points £y € M is the same as that of Lemmas 2.4,
4.4 of [2]. We sketch the modifications at a boundary point zo. Again assume for
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simplicity that M = IRT and zo = 0. By reflection we may extend u to a solution
i of

—Kx'(distz(ﬁ.,N))zd; (éﬂ’—.‘,@&) 5 ifz, >0
—DRy(@)(Kx'(-.)£(...)) + Te(&)(Vi, Vi), if zm <0

on a full neighborhood of z¢. Scaling as in [2; p. 92], we obtain a solution v of

(2.6) @i — Adi= {

problem (2.6) for some K = % on Py, satisfying
eg(v) <4
and
ex(v)(0)=1.
Moreover, we have the differential inequality
(2.7) (8= A)eg(v) + [V?0]? < Ceg(v)

separately in P;" and P;". (The proof of this Bochner-type estimate can be conveyed
very easily from [2; p. 90].) Let us for brevity write egz(v) = e(v) in the sequel.
Our aim is to extend (2.7) to P;.
Due to the structure of (2.6), Ae(v) may have a singular component on the hy-
persurface {z,, = 0}. As in [13], we may control this component in the following
way.
Given ¢ € C§°(B), —1 < t < 0, we have
_/Ae(v)tpzdz = / [Oame(v)]ttpzdz'+2/Ve(v)V<p<pdz 5

{zm=0}

where [ ... denotes integration over B x {t}, and where we denote
[f(=',0)]% = lim f(z',2m) ~ lim f(=',2m)

for any function f.

To estimate the boundary integral we decompose
1 + K . +
[8,m e(v)]t — [8=... (|Vv|z)] _+ 1 [azmx(d.lstz(v, N))] _

= 3 [om 190)]
= [Bimvaam”]t + [B,M(V,,v)vz,v]j
= [Av8;,,v]t — 2[A,v0,,v]F + [Var - (3z...”vz'v)]t .
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But by (1.6), (1.7)
8,,vVav=0.

Hence, and on account of (2.6), (1.6), we have
[Bzne(®)] = (Tg(v)(Vv, V2),8,..0) — 2[A,08, v]T ,
where for clarity we now denote < ., - > the scalar product in IR". Using the normal

frame v = (v1,...,Vn—k) for I, the last term by (1.7) may be more conveniently

written

Apv8,, v = Z(A,rv, v;(v)){(vj(v), 82, v)

= - E<V,rv, Vo (V,-(v))> (u,-(v),azmv> .
j
Smoothly extend v; to IR". Then by the divergence theorem

/[8,,,. e(v)]-_"cpzdz' = /div ((I‘g(v)(Vv,Vv),Vtv)(pz) dz
{zm=0} )

:;E / div((V,:‘v,V,r(V_,-(t))))(uj(v),Vv)gaz)dz
i pi

< [(9%1195P + [90)¢dz + C [ 9P|Vl lolds
Pg Pl

< s/|V2'v|2¢p2dz+C(c)/|Vv|4<p2dz
Py Py
+0(e) [ 1voPIVPds ,
P,

and - choosing € > 0 sufficiently small - it follows that the inequality (2.7) - uptoa
factor - holds on P, in the distribution sense. But then the remainder of the proof

of [2] applies also in this case.
O

As in [2], we may now pass to the limit K — oco. Let ux be a sequence of smooth
solutions to (2.1), (1.6-8). We may assume that ux converges weakly to u in the

sense
Vug — Vu  weakly — *in L ([0, co[; Lz(M)) ,
i) 8 ;
5K~ 5t weakly in L?(M x [0,00(),

ug — u strongly in L, (M x [0,00[),
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and almost everywhere, where u : M x [0, 0o[— N.

Proposition 2.2: The limit © weakly solves problem (1.5-8). Moreover, u is
smooth and solves (1.5) classically on a dense relatively open set Qo C M x [0, oo
whose complement Q' has locally finite (m — 2)-dimensional Hausdorff measure on

each time slice M x {t = const.}. Moreover, u satisfies the energy inequality
T

/ / fue*dM dt + E(u(T)) < E(u) ,
oM
for all T > 0. Finally, as t — oo suitably, a sequence u(:,t) converges weakly in

HY(M;N) to a solution ue of (1.1-3) with E(ue) < E(uo) and smooth away
from a closed set Q" of finite (m — 2)-dimensional Hausdorff measure.

Proof: All proofs except (1.3), (1.7) are identical with those of [ 14; Theorem 6.1],
resp. [2; Theorem 1.5] in the case of harmonic maps on domains without boundary.
See (3] for an estimate of H™~2(Q'N{t = const.}). To see (1.3), (1.7) in the case of a
half-plane we extend ux by reflection to solutions #ix of equations (2.6), converging
weakly locally to a function @. On Qq, as in [2; p. 94], we have C*-convergence
ug — u, and (1.7) holds on Qo. Moreover, there holds K- dist (u, N) — ) weakly

in L}, (Qo), whence
(2.7) iy — Al € L},(Qo) -

Now let ¢ be an arbitrary testing function and let n € H»*,0<7<1,p=0ina
neighborhood of @', as in [2; p. 95]. Multiplying (2.7) by 7, we obtain that

oo o

/ /(ﬁg — A)pndzdt = / /{ﬂgcp + VaVelndzdt + F

0 R™ 0 R™
where

1/2
|F| < / V| |Vn| [olde dt < C(n) / Vulp?da dt
upp(Vn)

As in [2] we may choose a sequence of maps 7 as above with a uniform constant
C(n) = C such that 7 — 1 almost everywhere and (supp (V7)) — 0 in measure.
By absolute continuity of the Lebesgue integral, thus F' — 0, and (1.7) also holds
in the distribution sense. The proof of (1.3) is similar.
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Theorem 1.1 is an immediate consequence of Proposition 2.2. Remark 1.1 follows
by adapting the argument of [8] to our problem. Since this technique is by now

well-known we may omit the details.

REFERENCES

[1] Chen, Y. - Ding, W.: “Blow-up and global existence for heat flows of harmonic
maps”, Invent. Math. 99 (1990), 567-578
[2] Chen, Y. - Struwe, M.: “Existence and partial regularity results for the heat
flow for harmonic maps”, Math. Z. 201 (1989), 83-103
[3] Cheng, X:, “Estimate of singular set of the evolution problem for harmonic
maps”, preprint (1990)
[4] Coron, J.-M. - Ghidaglia, J.-M.: “Explosion en temps fini pour le flot des
applications harmoniques”, C.R. Acad. Sci. Paris 308, Ser. I (1989), 339-344
[5] Dierkes, U. - Hildebrandt, S. - Kiister, A. - Wohlrab, O.: “Minimal surfaces”,
vols. 1 and 2, Springer, Grundlehren Math. Wiss. 295/296, (in press)
[6] Giaquinta, M. - Struwe, M.: “An optimal regularity result for a class of quasi-
linear parabolic systems”, manusc. math. 36 (1981), 223-239
[7] Hildebrandt, S. - Nitsche, J.C.C.: “Minimal surfaces with free boundaries”,
Acta Math. 143 (1979), 251-272.
[8] Jost, J.: “Ein Existenzbeweis fiir harmonische Abbildungen, die ein Dirich-
letproblem 16sen, mittels der Methode des Warmeflusses”, manusc. math.
34 (1981), 17-25
[9] LadyZenskaja, O.A. - Solonnikov, V.A. - Ural’ceva, N.N.: “Linear and quasi-
linear equations of parabolic type”, Amer. Math. Soc. Transl. Math. Mono-
graphs 23, Providence (1968)
(10] Ma Li: “Harmonic map heat flow with free boundary”, preprint, Trieste (1990).
[11] Schoen, R.M.: “Analytic aspects of the harmonic map problem”, Seminar on
Nonlinear P.D.E. (Chern, ed.), Springer, Berlin (1984)
(12] Schoen, R.M. - Uhlenbeck, K.: “A regularity theory for harmonic maps”, J.
Diff. Geom. 17 (1982), 307-335
[13] Struwe, M.: “The existence of surfaces of constant mean curvature with free
boundaries”, Acta Math. 160 (1988), 19-64

(14] M. Struwe, “On the evolution of harmonic maps in higher dimensions”, J. Diff.

Geom. 28 (1988), 485-502

Mathematik, ETH-Zentrum, CH-8092 Ziirich

(Received October 11, 1990)

384



	
	The evolution of harmonic mappings with free boundaries.


