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REGULAR ORBITS OF HALL »-SUBGROUPS

By Alberto Espuelas and Gabriel Navarro

1. Introduction

Let V be a faithful KG-module and let H be a subgroup of G. When
does V contain a regular H-orbit?

If H is a p-subgroup of the solvable group G and O,(G) = 1, it has
been proved by the first author that H always has a regular orbit on V,
being p = char(K) odd ([1]).

This (not semisimple) result had Hall-Higman type applications : if
G is a solvable group and p is an odd prime number, then |G : Opip(G)lp
divides b(P), where P is a Sylow-p-subgroup of G and (as in [4]) b(P) =
max{x(1) | x € Irr(P)}.

It is not in general true that any subgroup H of G has a regular orbit
on V. However, if Ox(G) = 1, where 7 is the set of primes which divide
|H|, we will show that H does have a regular orbit on V' (when the group
G is of odd order).

It is our aim to prove the following.

Theorem. Let G be a group of odd order and let H be a Hall =-
subgroup of G. Let V be a faithful G-module, over possibly different finite
flelds of odd w-characteristic. Assume that Vo, () is completely reducible.

Then there exists v € V such that Cy(v) C Or(G).
As in (1], we give the following character degree application.

Corollary. Let G be a group of odd order and let H be a Hall =-
subgroup of G. Then there exists a € Irr(H) such that |G : Onx(G)|x
divides a(1). In particular, |G : Onx(G)|x < b(H) .
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2. Proofs

Next Lemma is a powerful tool for looking for regular orbits.

Lemma. Let G be a group of odd order having a faithful and irre-
ducible quasiprimitive module V over a finite field of odd characteristic.
Suppose that F(G) is noncyclic. Then V contains at least two regular
G-orbits.

Proof. See Lemma 2.1. of [2].

Proof of the Theorem. Let G be a counterexample minimizing
dimg (V).

(1) V is G-irreducible.

Proof. Let R be a Hall n/-subgroup of Oz (G). If h € H — Ox(G), let
1 # Y(h) a Hall n/-subgroup of [k, R].

If h € H—0,(G), we claim that there exists an irreducible G-submodule
V(h) of V such that Y(h) acts nontrivially on V(h).

Since Vp, () is completely reducible and the fields have 7-characteristic
observe that Vo

Write Vo

exi(G) 18 also completely reducible.

ericy = V1 © ... ® Vi, where the Vi’s are the homogeneous
components.

Since Y (h) > 1, suppose for instance that Y (h) acts nontrivially on
V.

Now consider the G-submodule ) . Viz and choose an irreducible
G-submodule W of it. We claim that V1 N W > 0. To prove this, let X be
an irreducible Oy (G)-submodule of W. Since for every z € G, the Vjz ’s
are homogeneous components, it follows that X C Vjz , for some = € G.
Since Wz = W, we will have that VN W > 0.

Suppose now that Y(h) acts trivially on W NV; and let ¥ be an
irreducible Ogq(g)-submodule of W N V;. Therefore, since V; is a direct

sum of modules isomorphic to Y, it follows that Y (k) acts trivially on V;.
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This shows that Y'(h) acts nontrivially on V(h) = W, as claimed.

If H = Ox(G) there is nothing to prove. Let U = 3 ey _o,(c) V(h)
a completely reducible G-submodule of V. If U < V, by induction, there
exists u € U such that Cg(u) C O«(G), where G = G/Cg(U). Let C =
Ce(U).

We claim that H N C = O,(G).

Let h € HNC — Ox(G). Since h € C, it follows that h acts trivially
on V(h). Therefore, [h,R] C kerV(h) and thus Y(h) acts trivially on
V(h), which is a contradiction. This proves that H N C C Ox(G). Now,
HNC CO.(G)NC =0(C)C HNC, as claimed.

Now we prove that O(G) = Ox(G)C/C. Let K/C = Ox(G).

Observe that [K/COx(G),Orn(G)/CO(G)] = 1.

If h € HNK — Ox(G), then [h, R] C [K,Orr(G)] € Ox(G)C. Since
C contains the n'-subgroups of O,(G)C, it follows that Y(h) C C, which
is a contradiction. This proves that K = O,(G)C , as we wanted.

Now, since H N C = O,(G) and Ch(u) C O,(G)C, it follows that
CH(u) C Ox(G) and we may assume that U = V.

Hence V is a completely reducible G-module.

If V is not irreducible, V = V; @ V2, where each V; is G-invariant. By
induction, let v; € V; such that Crcg(vi)/ce(vi)(vi) € Ox(G/Ca(Vi)) and
consider v = v; + vo. Then Cy(v) C OL(G).

Thus, we may assume that V' is an irreducible K G-module, for a finite

field K with odd characteristic.

(2) V is a quasiprimitive G-module.

Proof. Let N be a normal subgroup of G and put VN =V1 @... ® V4,
where the V;’s are homogeneous N-modules. Moreover, V; is an irreducible
Ng(V;)-module with V,-G = V. Let H; be a Hall m-subgroup of Ng(V1)
containing Ny (V1) and suppose that ¢t > 1.
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By induction, there exists v € Vi such that Cy, cq(vy)/ce(wi)(v1) C
Ox(Ne(V1)/Ce(V1)) = S/Ca(V1).

Now, G acts transitively on 2 = {V;, ..., V;} with kernel Gg.

By Corollary 1 of [3], we have that G/Gq has a regular orbit on the
power set of 2. Let A C €2 be a representative of such an orbit. Let g; € G
with Vig; = V,.

Let w=z1+...4+z¢ € V be defined as follows: z; = vg; if V; € A and
z; =—vg; f V; € Q—A.

Observe that since G is a group of odd order and the characteristic of
the field is odd, uz # —uforallz€e Gandu e V.

We see that Cy(w) C Ox(G). Suppose that h € Cy(w) and write
Vih = Vo(;)-Then zjh = z4(;). Since there is no z € G with vz = —v, we
have that V,(;) € Aif V; € A. This implies that 2 € Gg (i.e., 0(j) = j forall
j)- Consequently, gjhg;' € Cng(v;)(v) for all j. Hence h € ;—; _ ,S%,
which is a normal 7-subgroup of G.

(3) F(G) is cyclic.
Proof. If not, Lemma above gives us the existence of a regular orbit.

By Proposition (2.1) of [5], we may assume that V = GF(¢")* and
that G C J, where J = C, X M, (M = GF(q™)* acts as multiplications on
V and Cn = Gal(GF(q")/GF(q))). Moreover, GN M = F(G).

(4) There is no counterexample.

Proof. Let K and < o > be Hall 2’-subgroups of M and C,, respee-
tively, and let G* =< o > XK. Replacing G by some conjugate we may
assume that G C G*.

Also, observe that if the theorem is true for G* it is also true for G.
Hence, it is not loss to suppose G = G*.

Replacing again by some conjugate, we may assume that H =< 7 >

X K, where < 7 > and K, are Hall m-subgroups of < ¢ > and K, respec-
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tively.
It suffices to show that |U,cp—o, () Cv ()| < [V|.
Write H — O,(G) = Uj=1,.‘.
Uner-0,(c) Cv(h) = V. Then
V# =Uj=r,... tUnmek, Cv#(zim)).
Since for each j, U, cx, Cve(zjm) = {v € V¥ | v%i fv € Ky} is a
multiplicative subgroup of V# (cyclic), it follows that

+%jKx, where z; €< 7 >. Suppose that

V# = Upmek, Cv#(z;jm), for some j.

Following notation and Proposition (1.3) of [5}, if N = {z € V#|N,,(z) =
1}, where N, is the norm map (i.e., No(y) = yo(y)...o%? " (y)), then
N} = ;‘ZS,‘T]I, where s = o(z;).

By Proposition (1.3) of [5], we will have that N C K,. Then it follows
that |Kg| divides ¢®/* — 1.

Since, by Galois Theory, |[Cy#(z;)| = ¢™/* — 1, we have that K,, C
Cy#(z;). Thus < zj;, Kr >a<zj,K ><G.

Since z; & Ox(G), this is a contradiction.

Corollary. Let G be a group of odd order and let H be a Hall =-
subgroup of G. Then there exists a € Irr(H) such that |G : Oxx(G)ix
divides a(1). In particular, |G : Onx(G)|x < b(H) .

Proof. We may assume that O,,,(G) = 1. Let N = Or(G). Then,
fairly standard arguments show that C = Cg(F(N)/®(N)) C N. Write
V =Irr(F(N)/®(N)) and G = G/C. Thus, O,(G) = N/C.

Now, V is a faithful G-module such that Vo.(6) is completely reducible.
By the Theorem, there exists A € Irr(V') such that Cy(A\) C N. Let £ €
Irr( Cy(M)|)) and @ = €9 € Irr(H). Thus |H : N| divides a(1), as wanted.
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