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A SIMPLE CHARACTERIZATION OF ALMOST UNIFORM
CONVERGENCE BY STOCHASTIC CONVERGENCE

D. PLACHKY

Abstract. Motivated by Egorov's theorem and the characterization of the
equivalence of P-stochastic convergence and P-almost convergence by the
property of the probability distribution P to be purely atomic and con-
centrated on a countable number of pairwise disjoint P-atoms (cf. [1],

p. 68), it is proved that P-stochastic resp. P-almost convergence is
equivalent to P-almost uniform convergence (cf. [2], p. 89/90) if and
only if P is purely atomic and concentrated on a finite number of pair-
wise disjoint P-atoms. Furthermore, this property of P is equivalent to
the condition that any P-stochastic convergent sequence admits a P-almost
uniform convergent subsequence. Finally a proof is given that P is purely
atomic and concentrated on a finite number of pairwise disjoint P-atoms
if and only if there does not exist a purely finitely additive {0,1}-
valued probability charge, which vanishes for all P-zero sets.

Let P denote a probability distribution on a o-algebra $ of subsets of a
set Q, such that there exists a decreasing sequence Anezs, ne N, satisfy-
ing P(An)>0, neN, and nEI An=0. Then the sequence Xn’ ne N, of
random variables defined by Xn= nIAn converges pointwise but not P-almost
uniformly, i.e. there does not exist a sequence Anezs, ne N, described
above, if P-stochastic resp. P-almost convergence implies P-almost uniform

convergence. Furthermore, a sequence Anezs, ne N, of the type described

above does not exist if and only if P is purely atomic and concentrated on
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a finite number of pairwise disjoint P-atoms. This follows from the decom-
position P=aP, + (l-a)Pz, 0<as1, where Py is atomless and P, is purely
atomic with a countable number of pairwise disjoint atoms. Conversely, if
P is concentrated on a finite number of pairwise disjoint atoms, then P-
almost uniform convergence follows from P-stochastic convergence, if one
takes into consideration, that a real valued $-measurable function is
P-a.e. constant on a P-atom. Finally, since the sequence Xn, ne N, defined
by Xn= nIAn, where Anes, ne N, is decreasing and satisfies n§1 An=¢ and
P(An) >0, n€ N, does not admit a subsequence, which converges P-almost

uniformly, the following result has been proved:

Theorem. The following conditions are equivalent for a probability distri-

bution P:

(i) P-stochastic convergence implies P-almost uniform convergence;

(ii) P-almost convergence implies P-almost uniform convergence;

(ii1) any P-stochastic convergent sequence admits a P-almost uniformly
convergent subsequence;

(iv) P is purely atomic and concentrated on a finite number of pairwise

disjoint P-atoms.

Remark.

1. Condition (iv) is equivalent to the property of P, that there does not
exist some {0,1}-valued, purely finitely additive probability charge,
which vanishes for all P-zero sets (cf.[3], p. 187 - 189 for a different
proof). Clearly (iv) implies that there does not exist some {0,1}-
valued, purely finitely additive probability charge vanishing for all
P-zero sets. For the converse direction one might start from a decreasing
sequence Anes, ne N, satisfying n°§1 An=¢ and P(An)>0, ne N. Then

B, = Ag nAn-l’ neN, (A,=0), are pairwise disjoint subsets belonging
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to the underlying o-algebra $ of subsets of Q and satisfy OJ Bn=9.
Furthermore, since P(An) >0, neNN, and n§1 An=¢ is vah‘dr,F;ne might
assume that Bn#ﬂ holds true for all neIN. Let now Q* stand for the
probabiiity charge defined on the o-algebra s generated bv the Bn’
ne N, which satisfies Q*(Bn) =0, ne IN. An extension of Q* to some
{0,1}-valued probability charge Q on §, which vanishes for all P-zero

sets, proves the converse direction.

2. A similar reasoning yields the characterization of an algebra A of
subsets of a set @, which has the property that any finite, nonnegative
and finitely additive set function is already o-additive, by the con-
dition, that there does not exist a countable number of pairwise dis-
joint and nonvoid sets Al’AZ""’ belonging to A and satisfying

U An=§2. There exist infinite algebras of subsets of a set @ of this
2;;139 as the following example shows:

Example. Choosing 2= N and generated A by all singletons {n}, ne N~ {1},

i.e. A consists of all finite subsets of IN~ {1} and their complements. Then

AneA, pairwise disjoint and nonvoid, ne N, satisfying n§1 An= N, Teads to

the fact that An is a finite subset of N ~{1}, ne N, which is a contradic-

tion to U An=]N.
n=1

The importance of this example can be illustrated by introducing the
algebra A' generated by A and {1}, i.e. A'={A<N: A or AC finite} and the
propoability measure P on A' concentrated on {1} resp. the purely finitely
additive probability charge Q on A', which vanishes for all singletons

{n}, neN. Then P and Q coincides on A, i.e. in general a probability
measure P on an algebra A of subsets of a set Q might have extensions to

the algebra A' generated by A and some subset A of 2, which are not o-addi-
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tive probability charges on A'. This effect cannot occur, if A is a o-
algebra of subsets of a set 2 and A' denotes the o-algebra generated by A
and some subsets A of Q. A proof of this assertion follows from the fact
that u(ANA; +ASNA,) =P*(ANA;) +P*(A°NA,), Aj€A, j=1,2, where P*
denotes the outer measure of P and {AlnA+Aan2: AJ.E!\, j=1,2}=A"' is
valid, defines a finite measure p on A' satisfying P'<u for all probability
measures P' on A', which are equal on A to P. Furthermore, there exists
probability measures P' of this type, namely P'(Ar1A1+-A°r1A2)= P*(A11A1)+
PL(A°NA,) (resp. P'(ANA +ASNA,) =P (ANA ) +P*(A°NA,)), AjEd, j=1.2,

where P* denotes the inner measure of P.
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