

Werk

Titel: Remarks on fixed points of automorphisms and higher-order Weierstrass points in p...

Autor: Garcia, Arnaldo

Jahr: 1990

PURL: https://resolver.sub.uni-goettingen.de/purl?365956996_0069|log24

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

Remarks on fixed points of automorphisms and higher-order Weierstrass points in prime characteristic

ARNALDO GARCIA

In this note we show how to use a theorem of Neeman [3] to get, for curves over algebraically closed fields of prime characteristic, the result of Farkas and Kra (section V.2.12 in [1]) asserting that if an automorphism has three or more fixed points then each of them is a q-Weierstrass point, for infinitely many values of q.

Notations.

Let X be a non-singular irreducible projective curve of genus $g \geq 2$, defined over an algebraically closed field of characteristic p. We denote by $\Phi_q: X \to \mathbb{P}^{d-1}$, where d=g if q=1 and d=(2q-1) (g-1) if $q\geq 2$, the morphism given by a basis for the space of holomorphic q-differentials on X. To every point $P\in X$ there is a sequence $\epsilon_0(P)<\epsilon_1(P)<\ldots<\epsilon_{d-1}(P)$ of natural numbers, called the <u>order-sequence</u> of Φ_q at the point, which are the possible intersection multiplicities of the curve with the hyperplanes of \mathbb{P}^{d-1} at the branch centered at P. For all but finitely many points P on X this sequence is the same. The generic sequence is denoted by $\epsilon_0<\epsilon_1<\ldots<\epsilon_{d-1}$ and is called the <u>order-sequence</u> of the morphism Φ_q . The finitely many points P on X whose order-sequence differs from the generic one are called q-Weierstrass points. The morphism Φ_q is called <u>classical</u> if $\epsilon_i=i$ for $0\leq i\leq d-1$. (See Stöhr-Voloch [4]).

Remarks.

The first remark is essential in what follows and it says that Φ_q is classical, for infinitely many values of q. More precisely:

Remark 1. For an integer N relatively prime to the characteristic p and for each $0 \le \mu \le N - 1$, the following set is infinite:

$$\left\{ egin{array}{ll} q \in \mathbb{N} & q \equiv \mu(modN) ext{ and } \ \Phi_q ext{ is classical} \end{array}
ight\}.$$

<u>Proof:</u> The theorem 2.7 of Neeman [3] says that given integers a, g and p, p prime, there exists an integer b divisible by a and a power p^m of p such that, for any curve X of genus g over a field of characteristic p, any morphism given by a divisor of degree $b + kp^m$, $k \in \mathbb{N}$, is classical. Taking a = N(2g - 2) and k = l(2g - 2), $l \in \mathbb{N}$, in this theorem, there exists an integer c such that any morphism given by a divisor of degree $(cN + lp^m)(2g - 2)$, $l \in \mathbb{N}$, is classical. In particular, the morphism Φ_q is classical for $q = cN + lp^m$, $l \in \mathbb{N}$. Since N and p^m are relatively prime,

we choose a natural number l_0 so that $l_0p^m \equiv \mu(modN)$ and take $l=l_0+l_1N,\, l_1\in\mathbb{N}.$

Remark 2. Consider an automorphism of the curve X with order N relatively prime to the characteristic p. If it has three or more fixed points, then each of them is a q-Weierstrass point for infinitely many values of q with $q \equiv 1 \pmod{N}$, and also for infinitely many values of q with $q \equiv 0 \pmod{N}$.

<u>Proof:</u> The arguments used here are the ones in section V. 2.12 of Farkas-Kra [1]. (See also Cor. 3 in [2]). For fixed point P, the automorphism acts on the space of holomorphic q-differentials as the diagonal matrix (for a suitable choice of a basis):

diag
$$(\xi^{q+\epsilon_0(P)}, \xi^{q+\epsilon_1(P)}, \ldots, \xi^{q+\epsilon_{d-1}(P)}),$$

where ξ is a primitive N-th root of unity.

Let q > 1 be such that Φ_q is classical. Passing to a power T of the automorphism, we assume that N is a prime number. Computing the dimension of the space of T-invariant holomorphic q-differentials, we get the equality:

$$\#\{q + \epsilon_i(P) \mid q + \epsilon_i(P) \equiv 0 \pmod{N}\} = (2q - 1)(g_T - 1) + \nu(T)[g(1 - \frac{1}{N})],$$

where g_T is the genus of the quotient curve X/T, $\nu(T)$ is the number of fixed points of T and the brackets $[\ldots]$ denote the integer part of \ldots

Suppose that the fixed point P is not a q-Weierstrass point (i.e. $\epsilon_i(P) = i$ for i < d = (2q-1)(g-1)) and that $q \equiv 0$ or 1(modN). Using this in the equality above and Riemann-Hurwitz formula for $X \to X/T$, we get $\nu(T) \leq 2$. Remark 2 now follows from Remark 1.

<u>Remark 3.</u> Consider an automorphism of the curve X whose order is a prime number N distinct from the characteristic p. Take $q \equiv 1 \pmod{N}$ and let

$$\epsilon_0(P) < \epsilon_1(P) < \ldots < \epsilon_{d-1}(P)$$

be the order-sequence of Φ_q at a fixed point P for the automorphism. Denoting by \tilde{g} the genus of the quotient curve, we have:

$$ilde{g} = \# \left\{ egin{array}{ll} \epsilon_{\mathbf{i}}(P) & \epsilon_{\mathbf{i}}(P) \geq d-g \ ext{ and } \\ \epsilon_{\mathbf{i}}(P) \equiv -1 (mod N) \end{array}
ight\}.$$

<u>Proof:</u> This follows using the same arguments as before, after noticing that we always have (Φ_q being classical or not):

$$\epsilon_i(P) = i \text{ for } 0 \le i \le d - (g+1).$$

This remark gives a relation between the order-sequences at the fixed points.

GARCIA

Remark 4. Let G be an abelian group of automorphisms of the curve X with order N relatively prime to the characteristic p. Let $\tilde{X} = X/G$ be the quotient curve and $\pi: X \to \tilde{X}$ the projection. Denote by $R(\pi)$ the number of ramification points, that is $R(\pi) = \#\{P \in X | \tau(P) = P \text{ for some } \tau \in G \setminus id\}$. Assume that $R(\pi) \geq 3$. Then, each ramification point of π is a q-Weierstrass point for infinitely many values of q if one of the following conditions are satisfied:

- a) there exist a fully ramified point (in this case G is cyclic).
- b) the order N is an odd number.
- c) the order N does not divide 2g.

<u>Proof:</u> First of all we note that if there exists a point P on X with ramification index equals to N/2 and such that the only ramification points of $\pi_1: X \to X/H$, where H is the subgroup of G that fixes the point P, are the point P and its conjugate under G, then it follows (from Riemann-Hurwitz formula) that N divides 2g. The remark now follows by noticing that in the other cases each ramification point of π is a fixed point for some automorphism in G with three or more fixed points.

References

- [1] Farkas, H.M. and Kra, I. Riemann Surfaces. Graduate Texts in Math. 71. Springer-Verlag, New York (1980)
- [2] Horiuchi, R. and Tanimoto, T. Fixed points of automorphisms of compact Riemann surfaces and higher-order Weierstrass points. Proc. Amer. Math. Soc. 105, (1989), 856-860
- [3] Neeman, A. Weierstrass points in characteristic p. Invent. Math. 75 (1984), 359-376
- [4] Stöhr, K.O. and Voloch, J.F. Weierstrass points and curves over finite fields. Proc. London Math. Soc. 52 (1986), 1-19

Inst. de Mat. Pura e Aplicada Estrada Dona Castorina 110 22.460 - RIO DE JANEIRO - BRAZIL

(Received September 8, 1990)