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THE SINGULAR SET OF AN ENERGY MINIMIZING MAP
FROM B* TO §?

ROBERT HARDT AND FANG-HUA LIN

The singular set of an energy minimizing map from a four dimensional domain to S?
consists locally of a finite set and a finite union of Holder continuous curves.

0. Introduction.

Much is now known about the singular set of an energy minimizing map from a 3
dimensional domain to the 2 sphere §2. In the domain, it consists of isolated points [SU1].
At each such isolated point, there is a unique tangent map [S1] which is classified [BCL),
and the asymptotic behavior of the minimizer is well-studied [S1], [S2], [GW].

For a 4 dimensional domain, the Schoen-Uhlenbeck work [SU1] implies that the singular
set of an energy minimizing map is of Hausdorff dimension one. Here (5.1), for the case of
maps of a 4 dimensional domain into §2, we show that the singular set is locally a union
of a finite set and a finite family of Holder continuous closed curves having at most a
finite number of crodsings. In his important recent work on the uniqueness of cylindrical
tangent maps [S4], L. Simon has shown that these curves are actually C1'® smooth away
from the crossings and locally of finite length. The present work, being independent of
these uniqueness results and involving some miscellaneous results on minimizing tangent
maps, should be of independent interest.

In §3 we discuss the general structure and compactness of homogeneous minimizers from
B* to $2. These serve as tangent maps for general minimizers. Unfortunately, few examples

are known. The most important are the cylindrical maps w o (]ﬁ) corresponding to an
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orthogonal rotation w of §? and an orthogonal projection p : R* — R®. These exhibit
the line singularity p~1{0}. A point singularity is given by the homogeneous extension
H (Tf-,[) of the Hopf map H : §% — §? [GC]. In §6 we also show that the family of those

homogeneous energy minimizing maps from B* to §2 which are singular only at the origin
form a compact subfamily in H!. In particular, their restrictions to $* have their Hopf
invariants universally bounded. In §4 we control the location of singularities by combining
the well-known “persistence of singularities” for minimizers with the “persistence of regular
points” which is special to the problem here. We conclude that the nonisolated singular
point set is, at each sufficiently small scale, close in Hausdorff distance to some line segment.
With this we can apply in §5 the Reifenberg Topological Disk Lemma [R], [M, 10.5] to
obtain the desired structure of Holder continuous curves. For notational convenience we
here treat only domains in R*. One can easily adapt the discussion to handle general
Riemannian domains. For such modifications, see e.g. [HL2, §7].

An important remaining question concerns the uniqueness of the tangent map at a
crossing point of the singular set. Here we have not ruled out the possibility of the singular
curves spiralling slowly into the crossing point.

The authors appreciate discussions with L. Simon concerning his recent works [S3], [S4].

1. Preliminaries.
Here we collect for frequent reference various important results concerning energy min-
imizing maps. We use the following notations for open balls:
B'(a) = {z €R™: |z —a| <7}, BT =B[(0), B™ =B,

and occasionally delete the m when its value is clear from the context.
Suppose u : § — N is an energy minimizing map where (2 is a domain in R™ and N is
a compact Riemannian submanifold of some Euclidean space.

(1.1) [SU1, 2.4] (Monotonicity) r>~™ [ |Vu|?dz < s?~™ [ |Vu|?dz whenever B, C B, C
B, B,

Q and equality holds if and only if u is homogeneous i.e. u(z) = u (]";’I) The density

Ou(a) = liigl r?=m [ |Vu|’dz exists and is upper semi-continuous in a.
4 B.(a)

(1.2) [SU1, 2.5,4.7} For a € §, any sequence r; | 0 contains a subsequence s; so that the
scaled maps v; = u(a + s;(-))|B; converge strongly in H' to some homogeneous map v,
called a tangent map of u at a.

(1.3) [SU1, Th.2] The singular set Singu of discontinuities of u is closed and coincides
with {a € @ : ©Oy(a) > €} for some positive constant €g = €o(2, N). It is empty for
m < 2, discrete in § for m = 3, and has Hausdorff dimension < m — 3 for m > 4. The
restriction of u to  ~ Sing u is smooth.

(1.4) [SU1, 4.6] A sequence u; of energy minimizers that is weakly convergent in H! to
a map ue is actually strongly convergent in H?.
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(1.5) [SU1, 4.5,4.6] Any limit point a € Q of a sequence a; € Sing u; is a singular point of
%oo, and the convergence of u; to ue is uniform on each compact subset of 2 ~ Sing u .

(1.6) If Singv = {0} for some tangent map v of u at a, then, a is, by 1.2, 1.3, and 1.5, an
isolated point of Singu. Moreover, in this case v is unique [S1 §8].

(1.7) [BCL, 1.2] In case m = 3 and N = §?, a nonconstant tangent map must have the

form w { 177 ) for some orthogonal rotation w of R3.

(1.8) [HKL §3] In case N is simply connected, there is a constant Dg = Do(m,N) so
that r2=™ [ |Vu|?dz < Do whenever B,(a) C Q.
B,.(a)

(1.9) [HL1, 6.4] In case N is simply connected, a limit ue of energy minimizers is itself
energy minimizing.

2. Energy minimizing maps independent of a variable.

2.1 LEMMA. Suppose u € H}(B™,N) and w(y, z) = u(y) for all (y,z) € B™ x R. Then u
is energy minimizing if and only if w|(B™ x [0, R]) is energy minimizing for all R > 0.

PROOF: If u is energy minimizing, and @ € H!B x R,N) has trace
w|0(B x R) = w|0(B x R), then, for almost all z € [0, R], the minimality of u implies

V| dy > / |Viant|*dy > / |Vu|*dy.
Bx{z} Bx{z} Bx{z}

Integrating from y = 0 to y = R gives

|V |2dy > / |Vw|?dy.

B x[0,R] B x[0,R]
So w is minimizing..
Conversely, if u is not minimizing, then there exists a &« € H!(B, N) and 5 > 0 so that
%|0B = u|0B and
n+ / |Vi|ldy < /|Vu|2dy.

] ]

Let
u(-%) for —1<z< -yl

fly,z)=% u (fvﬁ) for |z| < |y|

(L) forlyl<z<1,
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and choose R>4+1n712 [ |Vf|[’dydz. With

Bx[-1,1]
f(y,z-1) for0<z<?2
9(y,z) = ¢ i(y) for2<z<R-2

f(yy—z+ R—1) for R—2<:z<R,
we see that g|0(B x R) = w|d(B x R) and

|Vg|?dydz = 2 / |Vf|*dydz + (R - 4)/|V&|2dy
B x[0,R] Bx[-1,1] ]

<2 [ (VfPdyds+(R-9) ( / |Vu|2dy—n)
8

Bx[-1,1]

< (R—4)/]Vu|2dy < /|Vw|2dydz.
B B

hence w is not minimizing. J
From this Lemma and 1.7, we obtain the

2.2 COROLLARY. Suppose w : BY — §2 is energy minimizing. If w is homogeneous and

independent of the last variable (i.e. w(y,z) = w (Tﬁ’ (]) ), then either w is a constant or

w(y,2) =w (]ﬁ) for some orthogonal rotation w of R3.

2.3 REMARK: Since w (]ﬁ) has energy 87 on the unit ball B®, w|B* N {z = +r} has
energy 8mv/1 — r2. Inasmuch as % = 0, Fubini’s theorem implies that w has total energy

1
8r [ /1 —ridr =4r?.
=1

3. Homogeneous energy minimizing maps from B* to 2.
3.1 THEOREM. There exist positive constants Dy, Ny, dy, C, a and, for € > 0, numbers
5 =B§(i? 52(2;2322: g] :{zl(lz)wfnzﬂ, %) so that any homogeneous energy minimizing map
(1) [|Vv|*dz < Do,
(2) ;3 N Sing v consists of an even number, not exceeding Ny, of points separated by

distances at least d,.
(3) For each point a € $° N Sing v, there is the asymptotic estimate

L [pelz-a) .
w6 —n [y | < -
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for some orthogonal rotation w, of R® and orthogonal projection p, : R* — R® with
Pa(a) =0.
(4)
r2 / |Vo|?dz < 47% + €
B.(b)

whenever a € $° N Singv, b€ B, |a — Tng < fB, and r € (0, 2|b]v].

PROOF: The energy bound (1) follows from 1.8 because S? is simply connected.

An argument similar to the proof of Lemma 2.1 with a cylindrical domain replaced by a
conical dvmain shows that v|S? is locally almost minimizing in the sense that there exists
a constant ¢ so that for all b€ §% and p > 0

|va|2d’H3 <cp+ / |th|2d’H3
$308,(b) $3nB,(b)

whenever h € H'(S*NB,(b),5?) agrees with v on §* N 9B,(b). Here C is also independent
of v.

For a € $3 N Singv, we find, by the argument of [SU §5], 1.9, and Corollary 2.2 that
any tangent map of v at a is energy minimizing and in the form w, o (ﬁ-[) as above.

The argument of [SU] or 1.6 implies that there are no other singularities in some §°
neighborhood of a. For the almost minimizing map v|S?, the asymptotic theory of [S]
and [GW] now gives the uniqueness of the tangent map and the asymptotic estimate (3).
Since w, is simply a rotation, the degree of each singularity of v|S® is £1. Moreover since
the total degree of v|§® is zero, half of the singularities are of degree +1 and half are of
degree —1.

The constants C, a above are, in principle, computable (See [GW]). On the other
hand, to obtain dyp we resort to a compactness argument. First we note that the almost
minimizing property of v|$® and the argument of [HKL §3] or else the minimizing property
of v, 1.8, and the elementary observation

z

B.(a)C{z: |a—ﬁ|<sin‘1rand1—r<|:c|<1+r}CB\/5;(a),
z

leads to the absolute energy density bound
p ! |Vianv[?dH® < E;  for all p > 0.
$2nB,(a)

Using this bound, we can now argue as in [AL] or [HL2] to obtain dy. That is, we first
assume, for contradiction, that there existed no such dy and find a sequence of homogeneous
energy minimizing maps v; : B* — s? along with distinct points a;, b; in $3 N Singv; so
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that the numbers r; = }|a; — b;| approach 0 as i — co. Rotating B*, we may assume
that each b; = (0,1). Letting wi(z) = w;((0,1) + riz) for z € B® x {0}, we infer from
the above energy density bound that, after passing to a subsequence, w; converges weakly
in H'(B® x {0}) to a map w. Using the almost minimality of v; and arguments in the
proofs of 1.4 and 1.9, we check that the convergence is actually strong in H! and that
w is energy minimizing. Moreover applying the monotonicity equality to each v; as in
[SU1, 2.5], we also find that w is homogeneous. In particular, Singw C {(0,0)}. However,
by construction, a singularity of w; converges, after passing to a subsequence, to a point
a€ 633(0) x {0}, which must be, by 1.5, a singularity of v. This contradiction gives do.

We readily obtain Ny as a constant .dg .
To prove (4) for a particular v, we use (3) and 2.3 to first choose v = 7(€) < }do so that
y? / [Volide < 4x7 + s
n'v(“)

whenever a € §° N Singv and then choose § < I so that

472 / |Vv|’dz < 47 + €
8, (b)

whenever |b — a| < 18 for some a € $° N Singv. Inequality (4) then follows by the
homogeneity of v and the monotonicity inequality. To see that A(e) and ~v(€) can be
chosen independent of v, we may use the uniform lower bound dy and the compactness of
the set of homogeneous minimizers in a contradiction argument as before. ||

3.2 LEMMA. (Compare [A, 2.26]) Suppose v : B™*! — N is homogeneous and energy
minimizing. Then ©,(0,1) < ©,(0,0) with equality if and only if v(y, z) is independent of
2.

PROOF: This follows essentially from the argument of [A, 2.26] which, for the reader’s
convenience, we will repeat here.

The homogeneity of v implies that the energy density ratio

riom / |Vv|*dz = ©,(0,0) for all r > 0.
B,(0,0)
From this and the monotonicity inequality (1.1) applied with center (0, 1)

0,(0,1) < p'™™ / |Vv|%dz < o'~ ™ / |Vv|?dz

B,(0,1) B,(0,1)
< lim r'=™ / |Vv|?dz < Lim r!~™ |Vo|?dz
r—00 r—oo
B.(0,1) B,41(0,0)
r 1-m
-l (75p)  e00-e00
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for 0 < p < 0. Here equality would imply, by the monotonicity identity [HL1], that v is,
homogeneous also about the point (0,1), i.e.

v(y,z) =v(ty, tz+1—-t) forallt>0.
Then for z # 1, we could set ¢t = (1 — z)~! to find that
v(y,2) = v(ty,0) = v(y,0)
and also note that v(y,1) = v(2y,2) = v(2y,0) = v(y,0). Thus v(y, z) would be indepen-
dent of 2. J§
3.3 COROLLARY. If v : B* — S§? is homogeneous and energy minimizing and if a €

$3 N Singv, then 472 = ©,(a) < ©,(0) with equality if and only if v =w o (ﬁ[) for some
rotation w of R® and orthogonal projection p : R* — R® with p(a) = 0.

PROOF: We may rotate to have a = (0,1) and apply 3.3 and 2.2. §

4. Isolated and nonisolated singularities.

4.1 DEFINITIONS:

Singy u = {b € Singu : $* N Sing v = @ for some tangent map v of u at b},

Sing, u = Singu ~ Sing, u.

By 1.6 one may change “some” to “every” in the definition of Singyu. Also by 1.1 and
1.5, each point of Singg u is an isolated point of Singu. Below in 4.4 we will verify that
these isolated points actually have no accumulation point in 2. First we show how, in
a strong sense, the points of Sing; u are not isolated, and, in fact, the singular set of a
minimizer approximates at each small scale the singular set of a homogeneous minimizer
as considered in 2.1.

4.2 LEMMA. For every € > 0, there is a positive § = 6(¢) so that if u : B — S? is energy
minimizing, (B; ~ By) N Singu # 0, 0 € Sing, u, and
272 / |Vul|?dz < 472 + 6,
B,

then, for some rotation w of R® and some orthogonal projection p : R* — R®,

p
Ju—wo (m) ”Hl(n;) =&

BNSingu C {z: dist(z,p{0}) < €},
and, for every z € [—1,1], (B} x {z}) N Sing, u # 0; hence,

BNnp {0} C {z: dist(z,Sing, u) < €}.
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PROOF: Suppose the theorem is false for some ¢ > 0. Then there is, for each positive
integer i, an energy minimizing map u; : B — §? with a singularity in B; ~ B, that
satisfies
272 / |Vu.~|2dz <4r?4it
B;

but that does not satisfy one of the above three conclusions. From the strong compactness
of minimizers 1.4, 1.9, we may, after passing to a subsequence, assume that
1) [[4i = o[l 1 gy — 08 i — 00
for some energy minimizing map v : B§ — §2. By lower semi-continuity of energy,

9=2 / |Vo[?dz < liminf 272 / |Vu;|?dz < 4n?.

1— 00
nz '2

On the other hand, by monotonicity 1.1, the above strong H! convergence, and 3.3,

2_2/|Vv|2dz > 0,(0) = lins r'2/|Vv|2d:r

T—

4
B3 B,

r—Q $—00

> limsup lim r~2 / [Vu;|*dz > ©,,(0) > 47>
B,

The resulting equality here and 1.1 imply that »(z) = v ( = ) Moreover,
87 ~ B, N Singv # @ by 1.3. Thus,

-er(3)

for a suitable rotation w and projection p by Corollary 3.3.
For notational convenience we now assume p(y,z) = y. The small energy regularity

theorem 1.3 implies that, for ¢ sufficiently large, u,~|(§% ~ (B? x R)) is continuous, in
particular,

3) B N Singu; C {z: dist(z,p"*{0}) < €}.

On the set ﬁ; ~ (B? x R), the u; converge, by 1.5, uniformly to w (ﬁ-[), hence, for all
z € [—1,1] and all : sufficiently large,

degu; | 0B? x {z} = degv | 9B} x {2} = £1
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Elementary topology now implies that, each u;|(8B2 x {z}) does not admit any continuous
extension to B? x {z}; in particular,

(B2 x {z}) N Singu; # 0.

To obtain the stronger conclusion that (B2 x {2})NSing, u; # 0, we observe that, otherwise,
(B2 x {z}) N Singu; would be contained in Sing, u;. Then, by 1.6, (B} x {z}) N Singu;
would be a finite set {ay,...,a;} and, for a small ¢ > 0, u; would be continuous on the
topological 3-ball formed from B? x {z} by replacing each flat 3-balls B3 (a;) x {z} by the
upper hemisphere 3¥B%(a;). But this would be inconsistent with u;|0B? x {2} having
degree 1. Thus, for all ¢ sufficiently large and all z € [-1,1],

(B2 x {z}) N Sing, u; # 0,
which along with (1), (2), and (3) gives the desired contradiction. |
4.3 THEOREM. For every € > 0, there is a positive R = R(e) and, for each energy mini-
mizing map u : B* — §? with 0 € Sing, u, a positive even integer k < No, so that to each
r € (0, R] is associated a homogeneous energy minimizing map v, : B* — S% such that

$3 N Sing v, has exactly k points,

[|u(r-) - Vel grmy < &

(B, ~B;) NSingu C {z: dist(z,Singv,) < re},
and, for every a € §* N Sing v, and s € [3r,r], 3B, NB,(sa) N Sing, u # §; hence,

B, ~ B;) NSingv, C {z: dist(z,Sing, u) < re}.
PROOF: If we can establish the above inclusions for all sufficiently small r for some such
homogeneous minimizer v, whenever € < %9-, then, from Theorem 3.1(2), we would see
that card (S% N Sing v,) is uniquely determined by 8B, N Singu and is independent of r.

Suppose for contradiction, that there is an energy minimizing map u : B* — §? and a

positive € < is‘?- so that one of the above conclusions fails for some sequence r; — 0 and any
choice of homogeneous minimizers v,;. Passing to a subsequence, we may by 1.4, assume
that

(1) ||u.- = v||H,(.) — 0 where u; = u(r;*)

and that v is a homogeneous energy minimizing map from B} to §2 with §3 N Singv = 0.
From 1.5 and Theorem 3.1 we easily deduce that, for 7 sufficiently large,

(B~ B,)NSingu; C {z: dist(z,Singv) < e};
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hence,
(2) (ﬁr; ~ B_?;) NSingu C {z : dist(z,Singv) < re}.

On the compact set _
B ~By ~ {z: dist(z,Singv) < ¢},
the u; converge, by 1.5, uniformly to v; hence by Theorem 3.1(3),
degu; | 3B, N 0B,4(a) = degv | 3B, N 3B,5(a) = +1

for all sufficiently large ¢, all s € [%, 1] ,and all a € $3 N Singv. For all such i, s, and a, we
find, as in the proof of 4.2, a point b € Singu; with [b¢| = s and |a — %:-| < €. Arguing as
before, we may assume that b ¢ Sing, u;, and so

8, N B.(sa) N Sing, u; # 0,

which, along with (1), (2), and (3) gives the desired contradiction with 7 sufficiently large
and v, =v. I

4.4 COROLLARY. For any energy minimizing map u from an R* domain Q into $%, the set
Sing, u is a discrete subset of Q2.

PROOF: If not, then there would, by 4.1, be a sequence b; € Sing, u convergent to a
point in © N Sing, u, which for notational convenience, we assume to be the origin. By
Theorems 4.3 and 3.1(2), each ]%::-[, for i sufficiently large, determines a point a;, the nearest
point, in the finite set $2 N Sing v,, where r; = 4|b;|3 and the normalized distance |a; — T%‘TI
approaches 0 as i — oco. Since Sing, u is, by 1.3 and 1.6, closed, we may find for each :
a nearest point ¢; in Sing; u to b;. Since both b; and ¢; are singular points, Theorem 4.3
implies that the normalized distances r; !|b; — c;| also approaches 0 as i — co. Choose and
fix 6 = 6 (j5) from Lemma 4.2 and observe that, for i sufficiently large,

77 |bi — |bilai| < B(6) and r;|b; — ci| < 7(6)

where 3 = §(6) and v = v(8) are as in Theorem 3.1. For such 7, 3.1(4) implies that

(rim)™? / |Voy, |2dz < 472 4 6.

B, v(b:)

Since ||u(ry-) — vy "H!(n,) — 0 as i — oo, we find that, for i sufficiently large,

(riy)~2 |Vu|?dz < 4% + 6.

B, v(bi)
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We now rescale by defining wi(z) = u(siz+c;) where s; = |b;—c;|. Thend; = s]'(b;—c;) €
§° N Sing w; and, by monotonicity 1.1,
4r? < O, (b:) = O, (0) < 272 / Vwil?dz
LH
=(2s;)72 / |Vu|?dz < (riy)™? / |Vul’dz < 47% + 6.
8., (%) B, ()

Thus we may apply Lemma 4.2 to w; to infer that
BN Singw; C {z: dist(z,p~'{0}) < %} and
Bnp~!{0} C {z: dist(z,Sing, w;) < 1—10-

for some projection p : R* — R®. The first inclusion implies that |p(d;)| < . Let e;
be the point on the line p~!{0} with |e;| = ; and e; - d; > 0. Then the second inclusion
implies that there is a point z; € B 1 (e;) N Sing; w;. But then

ll‘.‘ - d.l < lt,' - e,~[ + Ie,- - d,l <.l+4+ \/(.5)2 + (1)2 <1
Scaling back, we see that s;z; + ¢; € Sing,; u and
[bi — (sizi + ci) = si|zi — di| < 8; = |b; —ci.

This contradicts that c; is the nearest point to b; in Sing; u and completes the proof. J

5. Structure of the singular set.
5.1 THEOREM. For every € > 0, there is a positive number § = §o(€) so that if u : B} — §?
is energy minimizing, (ﬁl ~B ’}) N Singu # 0, and

22 / [Vul?dz < 472 + &,
83
then,
BN Singu C {z: dist(z,L) < €} and
BNLcC{z: dist(z,Sing; u) < €}
for some line L passing through 0, and
B, (b) N Singu C {z : dist(z,L}) < re} and
B.(b)N L C {z: dist(z,Sing, u) < re}
for each point b € BNSing, u, 0 < r < 1, and for some line L? passing through b. Moreover,
8, N Sing; u C T C BN Sing, u

for some single embedded Hélder continuous arc T
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PROOF: Recalling 4.2 and 3.3, we can, for € > 0, choose a positive 8y = By(€) so that, for
any rotation w and projection p as before,

/ | Vwo (ﬁl) [* de < 4n® + 28(0)
B, (%)

whenever dist(b,p~!{0}) < fy. From Lemma 4.2, we find that, with 6, = inf{16(¢), 6(Bo(€))}
we have, for all b € B N Sing, u,

/ |Vul’dz < 472 + 6(),
B,(b)
hence,
4n? < O,(b) < (2r)? / Vulfde < / VulPdz < 4 + 6(e)
B2, (b) B, (b)

for any positive r < 1. We wish to apply Lemma 4.3 to the mapping w? = u(b+ r()) la;
to obtain a projection p® so that

BN Singw? C {z: dist(z, (p2)"'{0} < €}, and

BN (p2)~'{0} C {z: dist(z,Sing, u) < €},

and thus obtain the estimates with L% = (p%)~*{0} + b. For this, we still need to verify
the hypothesis

(ﬁl ~ Bi) N Sing w? # 0, that is,

(1) (B.(b) ~ B3 (5)) N Singu # 0

for all positive r < 1. This is clearly true for r = }. But then applying 4.3 with r = 1
shows that (1) remains true for 2¢ < r < 7. Applying 4.3 with r = 2¢ then gives (1) for
2¢ - 4e < r < 2e. Continuing, we see that (1) holds true for all 0 < r < %, and we may
indeed apply 4.3 to each wy.

We have now verified precisely the conditions necessary to use Reifenberg’s topological
disk theorem [R], [M, 10.5.1]. In the notation of [M, 10.5.1] we need only fix ¢ smaller
than the ¢y associated with 1 dimensional sets in R*. We also observe that Reifenberg’s
argument actually guarantees that the resulting topological disk is Holder continuous with
the Holder exponeht depending on e. i

5.2 THEOREM. Suppose u is an energy minimizing map of an R* domain § into S?. Then
each point b € Singu has an open neighborhood N so that (N ~ {b}) N Singu consists
of an even number of disjoint embedded Hoélder continuous arcs I'y, T'z,...,T'x joining
{b} to a point of N. Moreover, k < Ny, and dist(T; N 8B,(a),T'; N 3B.(a)) > 3dor for
1<i<j< k and r sufficiently small.

PROOF: In case b € Sing, u, b is an isolated singularity. We now assume that b € Sing, u.
After a suitable translation and scaling, we may, using Corollary 4.4, assume that b = 0,
that 2 = B, and that Singyu = 0.
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First we choose §y = 6p(27*dy) as in Lemma 5.1. Then we choose 8 = B (360) and
7 = 7(360) as in Theorem 3.1(4). And finally we choose R = R(e) as in Theorem 4.3
corresponding to

e = inf{27246, 27%8do} < inf{272vbo, 272 ydo, 27'%d2}.

For each r € (0, R] choose an approximating homogeneous minimizer v, as in The-
orem 4.3. For each point a € $ N Singv, there is by 4.3 at least one point b €
635‘; NnB,. (34—“) N Singu. From Theorems 4.3 and 3.1 we then obtain the energy esti-
mate 1

(2ry)72 / |Vu|?dz < (2ry)~2 / | Vo, |2dz + 560 < 4n? + 6.
B2, (b2) B2, (82)

We note also that (B,,(a) ~ B:y(a)) N Singu # 0 by Theorem 4.3 and the fact that
€ is chosen suitably smaller than y. We can now apply Theorem 5.1 to the mapping
uf(z) = u(bs + r7z) | B to conclude that

ﬁ:}(b,,) NSingu C I'? C B, (ba) N Singu C {z : dist(z, L?) < 2 *dyry}

for some embedded Holder continuous arc I'* and some line L} passing through b,. Noting
that b, — a| < re < 2784dyrv?, we readily see that the direction of L? is very close to
radial and that

(ﬁ%r+%r7 ~ E%'-i") N {z : dist(z, Singv,) < er} C U ﬁ:,z(b,,),
a€Sing v,

hence,
(B, ~By,)NnSinguc | J T%c Singu
a€Sing v,

where s = %r + %r‘y and A =1- Zai—1?,5 By Theorem 4.3 each arc I'? intersects both the
outer sphere B, and the inner sphere 0B,,. Reasoning as in the beginning of the proof of
Theorem 4.3, we see from the above inclusions that I'? overlaps '], where @ is the nearest
point to @ in §° N Singvy,. Moreover, it is clear that I'2 U T, is also an arc.

Starting with r = R, we repeat the above argument with r = R, AR, A?R,.... We
then obtain the dedired arcs T';, Ga, ...,k by forming, for each a € $ N Sing vg, a union
of a chain of overlapping arcs starting with I'}y,. The remaining conclusions follow from
Theorem 4.3. 1

5.3 COROLLARY. Suppose u is an energy minimizing map of a bounded R* domain Q
into §? and both dQ and u | 3 are C' smooth. Then Singu is the union of a finite set

and a finite family of Holder continuous embedded closed curves with only finitely many
crossings.

PrOOF: Combine 4.4, 5.2, and boundary regularity [SU2], [HL1]. I
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6. Additional Remarks on Homogeneous Minimizers..

6.1 THEOREM. The family V;¢g of all homogeneous energy minimizing v : B* — §2 such
that v|S® is smooth is compact in H'.

PROOF: By (1.8), (1.4) and (1.9), any sequence in V;¢g contains a subsequence v; that is
strongly convergent to a homogeneous energy minimizing map v : B* — §2. If v|S® did have
a singular point a then we could, by 3.1, choose an € > 0 so that v|S® N 9B,(a) is smooth
of degree 1. By (1.5) this would also be true for the approximating map v;. But then
elementary topology implies that v;|S% N 8B.(a) would have a singularity, contradicting
that v; € Vreg. Thus Sing(v|$*) =0 and v € Vieg. I

6.2 COROLLARY. The family {v|S® : v € Vieg} is compact in C¥ for all k. In particular,
sup{Hopf invariant (v[$®) : v € V;¢g} < 00.

6.3 THEOREM. Suppose g is a smooth metric on S?, then there exists at least one ho-
mogeneous energy minimizing map v : B} — (82,¢) whose restriction to §? has degree
1

PROOF: Let g; be a smooth curve of metrics with gy being the standard round metric on
$2 and g; = g. Also let

T = sup{t : there exists a homogeneous energy minimizing map
v:B® — (8%,9) with deg(v|§?) = 1}.

Thus 7 > 0. Suppose 0 < ¢; < 7, ¢; T 7, and v; : B> — (S%,g,,) are homogeneous
energy minimizing maps with deg(v;|$2) = 1. Arguing as in [HKL §3] we find a universal
energy bound and that a subsequence of v; converges strongly to a homogeneous energy
minimizing map v, : B® — (8%, ¢,). By [SUL, Th.2], v,|S? is regular and the convergence
is uniform away from the origin. Thus deg(v,|S?) = 1.

If < 1 then we could choose 7 < 3; < 1, s; | 7, and find, for each ¢, a (not neces-
sarily homogeneous) energy minimizing map u; : B} — (§2,g;,) such that u;|$? = v,|§%.
Then a subsequence of the u; converge strongly in H! to an energy minimizing map
u, : B® — (§2,9,) with u,|S? = v,|S2. Thus they have the same energy on the unit ball,

E(ur,gr) = E(vr,gr).

(In fact u, = v, because a homogeneous energy minimizer is a unique for its boundary
data.) Since deg(v,|S?) # 0 there exist at least one point a; € Singu;. Moreover, by 1.5,
a; — 0 as ¢ — oo. Since s; > 7 the degree m; of any ta.ngent map w; of u; at a; has
absolute value at least (2). Since the restriction of w; to §2 is necessarily conformal, we
see that the energy density

0.,(ai) = 2|m;| Area(S?, g,,).

288



HARDT - LIN

Similarly ©,,(0) = 2 Area(52, g,) because deg(v-|S%) = 1. Monotonicity (1.1) implies now
the contradiction
E(tiryg,) = lim E(ui,g5) > liminf O, (a;)
$1—00 1—00
= liminf 2|m;| Area(S?, g,;) > 4 Area(S%,g,) = 2(ur, g-).
1—00
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