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The Tangent Surface of a Rational Algebraic
Space Curve

Heinz Oberheim

Introduction

Let C be a rational algebraic curve in projective 3-space over the complex numbers
and let ¢ : P! — C C IP? be its normalization. Assume C is not contained in a
plane.

The union of the tangent lines to the points of C is called the embedded tangent
surface Te C IP3. Its normalization T¢ is a geometrically ruled surface on IP? (cf.
[2], prop. 3), hence the projectivization of a rank 2 bundle £. We call To = IP(£)
the abstract tangent surface of C.

Thus two rank 2 bundles on IP! are associated with C: the normal bundle N
of C in IP® and £. By a theorem of Grothendieck both are direct sums of line
bundles N = O(a) & O(b) and £ = O(c) ® O(d). If C is a smooth curve of degree
n then a + b = 4n — 2. Hence it suffices to determine |a — b|. This is done in
[2]...[5] where also the variety of all smooth curves of degree n with fixed a and
b is investigated. The geometrical meaning of |a — b| remains open.

Our note deals with the calculation of ¢ and d. The sum ¢ + d is not an
invariant of the tangent surface; but the difference e := |c — d| determines T¢ up
to isomorphism since T¢ is isomorphic to a Hirzebruch Sigma surface

e := P(O & O(—e)).

We prove that e vanishes for smooth curves, but not necessarily for cuspidal curves.
It can be computed from the normalization map ¢ (prop. 2). The values which oc-
cur for curves of degree n and fixed number of cusps are determined in proposition
1 and 3.

Proposition 6 gives an idea of a geometrical meaning of the invariant e: Each
hyperplane H C IP?® cuts out a section s of the tangent surface. The self in-
tersection number of s is determined by the number of points (counted without
muliplicity) in H N C. As a consequence we get that e is large when there is a
hyperplane in IP® that meets C in few points.
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Finally we give examples that e is not determined by the numerical invariants
of the curve. All results can easily be extended to curves in IP".

The abstract tangent surface is constructed via the Gauss map & : IP! — G4
which maps p € IP! to the tangent line to C in ¢(p). @ corresponds to a surjective
morphism of sheaves on IP?

0e0B0H0—£—0 1)

where € is the pullback of the universal (rank 2) bundle on G4 and deg £ = deg Tc.
Equivalently (1) can be viewed as a mapping from the ruled surface IP(£) to IP3
that maps each fibre to a line in IP? (cf. lemma V.2.4 in [7]). So IP(€) is the
abstract tangent surface and we have to compute the splitting index of €.

Moreover morphism (1) gives the link to the normal bundle since by formula
IV.18 in [8] the kernel of (1) is isomorphic to NV © ¢*(O(1)). Especially

deg N = deg T¢ + 2n.
Some terminology: For p € IP! the set
R, = {ord,p*s : s € H'(IP*,0(1))}
contains four integers. For 0 < ¢ < 3 the numerical tnvariant a,, is defined by
R, ={0,1+ a1p,2 + a1p + 2,3 + 1 + t2p + 3p}.

The points p € IP! with ay, > 0 are the ramification points of ¢ and their images
in IP® are called the cusps of C. Remember the Pliicker formulas (cf. [9] and [1]):

deg Tc=2n—-2- ) ay, (2)
pEP!

4deg C =3 a1, +2) oz + ) gy — 12 (3)
Cuspidal Rational Curves
Assume that C is of degree n. Then ¢*O(1) = O(n) and for 0 <1 < 3
s; i= ¢*X; € H(P!,0(n))

is a homogeneous polynomial of degree n in two variables (say Tp and T;). We
may form the partial derivative

0s;/0T; € H°(P*,0(n — 1)).
To construct the Gauss map ® consider the morphism
b:08..60-0(n-1)d0(n-1)
given by the matrix

M= Bso/BTo 333/6T0
- 880/6T1 333/6T1 ’
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Using the Euler relation
ns = Ty03/0To + T10s /0Ty
we see that the first numerical invariants of ¢ appear in the following way:
a1, = min{ord,|M;;| : 0 <1 < 5 <3} (4)

where the M;; denote the 2 by 2 minors of M. In the unramified points of ¢ the
morphism b is surjective and defines a map from {p € IP! : a;, = 0} to G% which
in fact parametrizes the tangents to C. The Gauss map @ is the unique extension
of this map to all points of IP.

Let £ := Im(b). Then € is a coherent subsheaf of O(n — 1) ® O(n — 1) and
thereby is locally free of rank two either. So the morphism

b:060..680—-E-0
describes @ and we get the abstract tangent surface as
To = P(E).

The degree of £ is equal to the degree of the embedded tangent surface as calculated
in the Plicker formula (2). As an immediate consequence we get:

Proposition 1 Let To = £, be the abstract tangent surface of a (possibly singular)
rational curve C in IP3, Then

0<e< Z ap and e = Z a3, mod 2
peP? peP?

If C has no cusp then e = 0.

If the four homogeneous polynomials s; are known the invariant can be calcu-
lated by linear algebra:

Proposition 2 Let W C IP! be the set of ramification points of . Let s :=
¢*H € H°(IP*,O(n)) for a hyperplane H C IP? that contains no cusp of C.

(i) Form e N
H°(PP!,E(-m)) = {(f,9) € H'(PL,O(n-m—-1)dO(n—m—1)):
ordy(~f g + 9795 2 ay for all p€ W}

(i) Let k € N be the smallest number such that there exist homogeneous polyno-
mials f and g of degree k and

ordy(— faﬁ,_;-l + ggT’—o) > au, (5)

for allp € W. Then

E=0(n—-1+k— ) 01,)®O0(n—-1-k)
pEW

and

e= Y oy, —2k
pEW
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Proof: For simplicity assume H = {X, = 0}, s = so. Consider the diagram

06...00 % On-1)60(n-1)

N lE
O(n) d O(2n — 2)

where E is defined by the matrix

E= To Ty
- —6.3/6T1 63/6T°
Let U := {p € IP! : s(p) # 0}. Then Ejy is an isomorphism since for all p € U
det E(p) = T10s/0Ty + Tp0s/8Ty = ns(p) # 0

So we have to determine the image of E o M:

nSo nsy nsa nss
EM =
( 0 [Mo| |Mol |M03|)

By equation (4) we know that the divisor of
fi=gcd{|Mu|:0<:< 3}
is

D(f) =3 awp

pEW
So it is obvious that for V C IP! and (g, k) € (O(n) & O(2n — 2))(V)
(9,h) € Im(E o M)

if and only if forall pe W
ordyh > ayp.

Since Eyy is an isomorphism and b is surjective outside of W C U this proves (i).

Part (ii) is a direct consequence of (i).

The number k in part two of the proposition can be found by simple linear
algebra if the ramification points of ¢ are known. Thus we can compute the
invariant of the abstract tangent surface and we may ask which values of e occur.

The general Pliicker formula (3) implies

> o< %(" -3)
PEW

and as proved in [1] this bound is sharp. Nevertheless the invariant e cannot take

all values:

Proposition 3 (i) If T, is the abstract tangent surface of a rational curve C

in IP® not contained in a plane. Then

e <min( ) ayp,n —3)
PEW
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(1) If0<e<k<n-3and e =k mod 2 then there is a rational curve C of
degree n in IP® such that

S ap=k and To 2 5,
PEW
Proof: £ is a subbundle of O(n — 1) & O(n — 1) and therefore e < n — 1.
Case e=n—1: Then £ = O 4 O(n — 1). The projection

T:080(n-1)—-0—=0

defines a section of i (cf. (7] proposition V.2.6.) that is mapped to a curve of
degree 0, i.e. a point on the embedded tangent surface. So all tangents of C' meet
a common point which contradicts the finiteness of the normalisation map.

Casee=n—2: ThenE =0dO(n—2)or &€ =0O(1)d O(n — 1) The first
case is excluded by the same argument as above. The second case means that the
section of T¢ that corresponds to the projection to O(1) is mapped to a curve of
degree 1, i.e. all tangents of C meet a common line. But then the dual curve C*
is contained in a plane and C' = C** is a plane curve either. This proves (i).

All possible values of e can be generated by curves that have only one cusp.
The following example proves part (ii). m]

Example 4 Let 0 < e< k<n—-3and e =k mod 2; m := (k —e)/2. Let the
curve ¢ : IP! — C C IP3 be defined by
plts = h) = (5 +E " 40510 e D)
Then ay1.0) = k, a1, = 0 for all other points and
Te =%,

Proof: We just calculate the tangent surface:
s 1= Tg + Tg~ ™I suffices the assumptions of proposition 2. So we have to
find homgeneous polynomials f, g of minimal degree such that

ord(l,o)(—f('nTo""1 + (n—=m)TF ™ 'T) + gmTy~ T 1) > k.

Since 2m < k the degrees of f and g are minimal if we combine the zero polynomial
taking f = t™~! and ¢ = n+(n—m)t™. So the invariant is k—2m = e as predicted.
(]

The polynomials f and g we chose above not only satisfied equation (5) but

even
Os 0Os
for t9om; ©
In general polynomials f and g of minimal degree that fulfill this condition are
Os 1 Os 1
= - 7
f=omn ™= omn M

where h = gcd(8s/8To,0s/0Ty) and deg f = deg g = n — 1 — deg h. We may
interpret the number n — deg h as the number of pairwise distinct zeros of s or
geometrically as the intersection points of the curve C and the hyperplane H C IP?
corresponding to s counted without multipicities (but counting the branches of C
at each intersection point) since we have
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Remark 5 For each homogeneous polynomial s € C[Ty, Th],p € P! and k > 1
) 0Os Os
ordps =k +1& mm(ord,ﬁo,ordpa—ﬁ) =k

For a hyperplane H C IP3 let §(H NIP!) denote the number of pairwise distinct
zeros of the hyperplane section s = ¢*H. We get the following bound on e:

Proposition 6 Let

k := min{§(H NIP') : H C IP® hyperplane that contains no cusp of C}.

Then
2k-2-Y a;, >0 = e<2%k-2-) ay
PEW PEW
2k—2—2a1,$0 = e=—2k+2+2a1,
PEW PEW

Proof: Assume that £ = O(a) @ O(b) witha < banda+bd=2n-2 -3 ay,.
Choose a hyperplane H such that §(H NIP!) = k and s := ¢*H. Let f, g and
h be as in formula (7). Then f and g satisfy (6) and are of degree k — 1. Hence
H(IPY,EQ O(k —n)) #0. We get b>n — k and

e=2b—(a+b)>-2k+2+) ay
To complete the proof consider the surjective morphism
b:0(n-1)d0(n—-1)—>0O(2n—2—-degh) — 0

defined by the matrix (—;8s/9T, +9s/8T,). Since £ = O(a)® O(b) the morphism
by := byj¢ is also described by homogeneous polynomials (u,v). Because h(p) # 0
for all p € W proposition 2 implies

w := ged(u,v) = [] (prto — pot1)™>.
PEW

So factoring out w we get
b3:E—>O(2n—2—degh—)Y a,) — 0
But b3 can only be surjective if either
b < 2n—2-—2a1,—degh

or
a=2n—-2-3 oy, —degh.

a
When starting the work on this paper we thought that e might be determined

by the distribution of the numerical invariants. So we conclude with two example
curves having the same invariants but different tangent surfaces.
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Example 7 Consider the rational curves: ¢; : IP* — C; C IP? and p, : P! —
C; C IP? defined by

p1(to : 1)
(pz(to . t1)

Then for allpe P! and 0< 1< 3

(18 + 6tgty + 15t583 + tot : t3t3 - tatd : £3)
(t3 + 6tgts + tots : o83 : 2t + tots : £3)

ip(p1) = aip(p2)
but ’f‘c, =¥, and f’c, = ¥
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