

Werk

Titel: The Tangent Surface of a rational Algebraic Space Curve.

Autor: Oberheim, Heinz

Jahr: 1990

PURL: https://resolver.sub.uni-goettingen.de/purl?365956996_0068 | log28

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

The Tangent Surface of a Rational Algebraic Space Curve

Heinz Oberheim

Introduction

Let C be a rational algebraic curve in projective 3-space over the complex numbers and let $\varphi: \mathbb{P}^1 \to C \subset \mathbb{P}^3$ be its normalization. Assume C is not contained in a plane.

The union of the tangent lines to the points of C is called the *embedded* tangent surface $T_C \subset \mathbb{P}^3$. Its normalization \tilde{T}_C is a geometrically ruled surface on \mathbb{P}^1 (cf. [2], prop. 3), hence the projectivization of a rank 2 bundle \mathcal{E} . We call $\tilde{T}_C \cong \mathbb{P}(\mathcal{E})$ the abstract tangent surface of C.

Thus two rank 2 bundles on \mathbb{P}^1 are associated with C: the normal bundle \mathcal{N} of C in \mathbb{P}^3 and \mathcal{E} . By a theorem of Grothendieck both are direct sums of line bundles $\mathcal{N} \cong \mathcal{O}(a) \oplus \mathcal{O}(b)$ and $\mathcal{E} = \mathcal{O}(c) \oplus \mathcal{O}(d)$. If C is a smooth curve of degree n then a+b=4n-2. Hence it suffices to determine |a-b|. This is done in [2]...[5] where also the variety of all smooth curves of degree n with fixed a and b is investigated. The geometrical meaning of |a-b| remains open.

Our note deals with the calculation of c and d. The sum c+d is not an invariant of the tangent surface; but the difference e:=|c-d| determines \tilde{T}_C up to isomorphism since \tilde{T}_C is isomorphic to a Hirzebruch Sigma surface

$$\Sigma_e := \mathbb{P}(\mathcal{O} \oplus \mathcal{O}(-e)).$$

We prove that e vanishes for smooth curves, but not necessarily for cuspidal curves. It can be computed from the normalization map φ (prop. 2). The values which occur for curves of degree n and fixed number of cusps are determined in proposition 1 and 3.

Proposition 6 gives an idea of a geometrical meaning of the invariant e: Each hyperplane $H \subset \mathbb{P}^3$ cuts out a section s of the tangent surface. The self intersection number of s is determined by the number of points (counted without muliplicity) in $H \cap C$. As a consequence we get that e is large when there is a hyperplane in \mathbb{P}^3 that meets C in few points.

Finally we give examples that e is not determined by the numerical invariants of the curve. All results can easily be extended to curves in \mathbb{P}^n .

The abstract tangent surface is constructed via the Gauss map $\Phi: \mathbb{P}^1 \to G_2^4$ which maps $p \in \mathbb{P}^1$ to the tangent line to C in $\varphi(p)$. Φ corresponds to a surjective morphism of sheaves on \mathbb{P}^1

$$\mathcal{O} \oplus \mathcal{O} \oplus \mathcal{O} \oplus \mathcal{O} \to \mathcal{E} \to 0 \tag{1}$$

where \mathcal{E} is the pullback of the universal (rank 2) bundle on G_2^4 and deg $\mathcal{E} = \deg T_C$. Equivalently (1) can be viewed as a mapping from the ruled surface $\mathbb{P}(\mathcal{E})$ to \mathbb{P}^3 that maps each fibre to a line in \mathbb{P}^3 (cf. lemma V.2.4 in [7]). So $\mathbb{P}(\mathcal{E})$ is the abstract tangent surface and we have to compute the splitting index of \mathcal{E} .

Moreover morphism (1) gives the link to the normal bundle since by formula IV.18 in [8] the kernel of (1) is isomorphic to $\mathcal{N}^{\vee} \odot \varphi^*(\mathcal{O}(1))$. Especially

$$\deg \mathcal{N} = \deg T_C + 2n.$$

Some terminology: For $p \in \mathbb{P}^1$ the set

$$R_p = \{ \operatorname{ord}_p \varphi^* s : s \in H^0(\mathbb{P}^3, \mathcal{O}(1)) \}$$

contains four integers. For $0 < i \le 3$ the numerical invariant α_{ip} is defined by

$$R_p = \{0, 1 + \alpha_{1p}, 2 + \alpha_{1p} + \alpha_{2p}, 3 + \alpha_{1p} + \alpha_{2p} + \alpha_{3p}\}.$$

The points $p \in \mathbb{P}^1$ with $\alpha_{1p} > 0$ are the ramification points of φ and their images in \mathbb{P}^3 are called the *cusps* of C. Remember the Plücker formulas (cf. [9] and [1]):

$$\deg T_C = 2n - 2 - \sum_{p \in \mathbb{P}^1} \alpha_{1p} \tag{2}$$

4deg
$$C = 3\sum_{1p} \alpha_{1p} + 2\sum_{2p} \alpha_{2p} + \sum_{3p} \alpha_{3p} - 12$$
 (3)

Cuspidal Rational Curves

Assume that C is of degree n. Then $\varphi^*\mathcal{O}(1) = \mathcal{O}(n)$ and for $0 \le i \le 3$

$$s_i := \varphi^* X_i \in H^0(\mathbb{P}^1, \mathcal{O}(n))$$

is a homogeneous polynomial of degree n in two variables (say T_0 and T_1). We may form the partial derivative

$$\partial s_i/\partial T_i \in H^0(\mathbb{P}^1, \mathcal{O}(n-1)).$$

To construct the Gauss map Φ consider the morphism

$$b:\mathcal{O}\oplus\ldots\oplus\mathcal{O} o\mathcal{O}(n-1)\oplus\mathcal{O}(n-1)$$

given by the matrix

$$M = \begin{pmatrix} \partial s_0 / \partial T_0 & \dots & \partial s_3 / \partial T_0 \\ \partial s_0 / \partial T_1 & \dots & \partial s_3 / \partial T_1 \end{pmatrix}.$$

Using the Euler relation

$$ns = T_0 \partial s / \partial T_0 + T_1 \partial s / \partial T_1$$

we see that the first numerical invariants of φ appear in the following way:

$$\alpha_{1p} = \min\{\operatorname{ord}_{p}|M_{ij}| : 0 \le i < j \le 3\}$$
(4)

where the M_{ij} denote the 2 by 2 minors of M. In the unramified points of φ the morphism b is surjective and defines a map from $\{p \in \mathbb{P}^1 : \alpha_{1p} = 0\}$ to G_2^4 which in fact parametrizes the tangents to C. The Gauss map Φ is the unique extension of this map to all points of \mathbb{P}^1 .

Let $\mathcal{E} := \operatorname{Im}(b)$. Then \mathcal{E} is a coherent subsheaf of $\mathcal{O}(n-1) \oplus \mathcal{O}(n-1)$ and thereby is locally free of rank two either. So the morphism

$$b: \mathcal{O} \oplus \ldots \oplus \mathcal{O} \to \mathcal{E} \to 0$$

describes Φ and we get the abstract tangent surface as

$$\tilde{T}_C = \mathbb{IP}(\mathcal{E}).$$

The degree of \mathcal{E} is equal to the degree of the embedded tangent surface as calculated in the Plücker formula (2). As an immediate consequence we get:

Proposition 1 Let $\tilde{T}_C = \Sigma_e$ be the abstract tangent surface of a (possibly singular) rational curve C in \mathbb{P}^3 . Then

$$0 \leq e \leq \sum_{p \in \mathbb{P}^1} \alpha_{1p}$$
 and $e \equiv \sum_{p \in \mathbb{P}^1} \alpha_{1p} \mod 2$

If C has no cusp then e = 0.

If the four homogeneous polynomials s_i are known the invariant can be calculated by linear algebra:

Proposition 2 Let $W \subset \mathbb{P}^1$ be the set of ramification points of φ . Let $s := \varphi^* H \in H^0(\mathbb{P}^1, \mathcal{O}(n))$ for a hyperplane $H \subset \mathbb{P}^3$ that contains no cusp of C.

(i) For $m \in \mathbb{N}$

$$H^{0}(\mathbb{P}^{1},\mathcal{E}(-m)) \cong \{(f,g) \in H^{0}(\mathbb{P}^{1},\mathcal{O}(n-m-1) \oplus \mathcal{O}(n-m-1)) : \\ ord_{p}(-f\frac{\partial s}{\partial T_{1}} + g\frac{\partial s}{\partial T_{0}}) \geq \alpha_{1p} \text{ for all } p \in W\}$$

(ii) Let $k \in \mathbb{N}$ be the smallest number such that there exist homogeneous polynomials f and g of degree k and

$$ord_{p}\left(-f\frac{\partial s}{\partial T_{1}}+g\frac{\partial s}{\partial T_{0}}\right) \geq \alpha_{1p}$$
 (5)

for all $p \in W$. Then

$$\mathcal{E} = \mathcal{O}(n-1+k-\sum_{p \in W} lpha_{1p}) \oplus \mathcal{O}(n-1-k)$$

and

$$e = \sum_{p \in W} \alpha_{1p} - 2k$$

Proof: For simplicity assume $H = \{X_0 = 0\}, s = s_0$. Consider the diagram

$$\mathcal{O}\oplus\ldots\oplus\mathcal{O} \stackrel{ extbf{M}}{
ightarrow} \mathcal{O}(n-1)\oplus\mathcal{O}(n-1) \ \searrow \ \downarrow E \ \mathcal{O}(n)\oplus\mathcal{O}(2n-2)$$

where E is defined by the matrix

$$E = \left(egin{array}{cc} T_0 & T_1 \ -\partial s/\partial T_1 & \partial s/\partial T_0 \end{array}
ight)$$

Let $U:=\{p\in\mathbb{P}^1: s(p)\neq 0\}$. Then $E_{|U}$ is an isomorphism since for all $p\in U$

$$\det E(p) = T_1 \partial s / \partial T_1 + T_0 \partial s / \partial T_0 = ns(p) \neq 0$$

So we have to determine the image of $E \circ M$:

$$EM = \left(egin{array}{ccc} ns_0 & ns_1 & ns_2 & ns_3 \\ 0 & |M_{01}| & |M_{02}| & |M_{03}| \end{array}
ight)$$

By equation (4) we know that the divisor of

$$f := \gcd\{|M_{0i}| : 0 < i \le 3\}$$

is

$$D(f) = \sum_{p \in W} \alpha_{1p} p$$

So it is obvious that for $V \subset \mathbb{P}^1$ and $(g,h) \in (\mathcal{O}(n) \oplus \mathcal{O}(2n-2))(V)$

$$(g,h) \in \operatorname{Im}(E \circ M)$$

if and only if for all $p \in W$

$$\operatorname{ord}_{p} h \geq \alpha_{1p}$$
.

Since $E_{|U}$ is an isomorphism and b is surjective outside of $W \subset U$ this proves (i). Part (ii) is a direct consequence of (i).

The number k in part two of the proposition can be found by simple linear algebra if the ramification points of φ are known. Thus we can compute the invariant of the abstract tangent surface and we may ask which values of e occur. The general Plücker formula (3) implies

$$\sum_{p \in W} \alpha_{1p} \leq \frac{4}{3}(n-3)$$

and as proved in [1] this bound is sharp. Nevertheless the invariant e cannot take all values:

Proposition 3 (i) If Σ_e is the abstract tangent surface of a rational curve C in \mathbb{P}^3 not contained in a plane. Then

$$e \leq \min(\sum_{p \in W} \alpha_{1p}, n-3)$$

(ii) If $0 \le e \le k \le n-3$ and $e \equiv k \mod 2$ then there is a rational curve C of degree n in \mathbb{P}^3 such that

$$\sum_{p \in W} lpha_{1p} = k$$
 and $\tilde{T}_C \cong \Sigma_e$

Proof: \mathcal{E} is a subbundle of $\mathcal{O}(n-1) \oplus \mathcal{O}(n-1)$ and therefore $e \leq n-1$. Case e = n-1: Then $\mathcal{E} = \mathcal{O} \oplus \mathcal{O}(n-1)$. The projection

$$\pi:\mathcal{O}\oplus\mathcal{O}(n-1)\to\mathcal{O}\to 0$$

defines a section of \tilde{T}_C (cf. [7] proposition V.2.6.) that is mapped to a curve of degree 0, i.e. a point on the embedded tangent surface. So all tangents of C meet a common point which contradicts the finiteness of the normalisation map.

Case e=n-2: Then $\mathcal{E}=\mathcal{O}\oplus\mathcal{O}(n-2)$ or $\mathcal{E}=\mathcal{O}(1)\oplus\mathcal{O}(n-1)$ The first case is excluded by the same argument as above. The second case means that the section of \tilde{T}_C that corresponds to the projection to $\mathcal{O}(1)$ is mapped to a curve of degree 1, i.e. all tangents of C meet a common line. But then the dual curve C^* is contained in a plane and $C=C^{**}$ is a plane curve either. This proves (i).

All possible values of e can be generated by curves that have only one cusp. The following example proves part (ii).

Example 4 Let $0 \le e \le k \le n-3$ and $e \equiv k \mod 2$; m := (k-e)/2. Let the curve $\varphi : \mathbb{P}^1 \to C \subset \mathbb{P}^3$ be defined by

$$\varphi(t_0:t_1)=(t_0^n+t_0^{n-m}t_1^m:t_0^{n-k-1}t_1^{k+1}:t_0^1t_1^{n-1}:t_1^n)$$

Then $\alpha_{1(1:0)} = k$, $\alpha_{1p} = 0$ for all other points and

$$\tilde{T}_C \cong \Sigma_c$$

Proof: We just calculate the tangent surface:

 $s:=T_0^n+T_0^{n-m}T_1^m$ suffices the assumptions of proposition 2. So we have to find homgeneous polynomials f,g of minimal degree such that

$$\operatorname{ord}_{(1:0)}(-f(nT_0^{n-1}+(n-m)T_0^{n-m-1}T_1^m)+gmT_0^{n-m}T_1^{m-1})\geq k.$$

Since $2m \le k$ the degrees of f and g are minimal if we combine the zero polynomial taking $f = t^{m-1}$ and $g = n + (n-m)t^m$. So the invariant is k-2m = e as predicted.

The polynomials f and g we chose above not only satisfied equation (5) but even

$$-f\frac{\partial s}{\partial T_1} + g\frac{\partial s}{\partial T_0} = 0 ag{6}$$

In general polynomials f and g of minimal degree that fulfill this condition are

$$f = \frac{\partial s}{\partial T_0} \frac{1}{h} \text{ and } g = \frac{\partial s}{\partial T_1} \frac{1}{h}$$
 (7)

where $h = \gcd(\partial s/\partial T_0, \partial s/\partial T_1)$ and $\deg f = \deg g = n-1 - \deg h$. We may interpret the number $n - \deg h$ as the number of pairwise distinct zeros of s or geometrically as the intersection points of the curve C and the hyperplane $H \subset \mathbb{P}^3$ corresponding to s counted without multipicities (but counting the branches of C at each intersection point) since we have

Remark 5 For each homogeneous polynomial $s \in \mathbb{C}[T_0, T_1], p \in \mathbb{P}^1$ and k > 1

$$ord_p s = k + 1 \Leftrightarrow \min(ord_p \frac{\partial s}{\partial T_0}, ord_p \frac{\partial s}{\partial T_1}) = k$$

For a hyperplane $H \subset \mathbb{P}^3$ let $\sharp (H \cap \mathbb{P}^1)$ denote the number of pairwise distinct zeros of the hyperplane section $s = \varphi^* H$. We get the following bound on e:

Proposition 6 Let

 $k := \min\{ \sharp (H \cap \mathbb{P}^1) : H \subset \mathbb{P}^3 \text{ hyperplane that contains no cusp of } C \}.$

Then

$$\begin{array}{lll} 2k-2-\sum\limits_{p\in W}\alpha_{1p}>0 & \Rightarrow & e\leq 2k-2-\sum\limits_{p\in W}\alpha_{1p} \\ \\ 2k-2-\sum\limits_{p\in W}\alpha_{1p}\leq 0 & \Rightarrow & e=-2k+2+\sum\limits_{p\in W}\alpha_{1p} \end{array}$$

Proof: Assume that $\mathcal{E} = \mathcal{O}(a) \oplus \mathcal{O}(b)$ with $a \leq b$ and $a+b=2n-2-\sum \alpha_{1p}$. Choose a hyperplane H such that $\sharp (H \cap \mathbb{P}^1) = k$ and $s := \varphi^*H$. Let f, g and h be as in formula (7). Then f and g satisfy (6) and are of degree k-1. Hence $H^0(\mathbb{P}^1, \mathcal{E} \odot \mathcal{O}(k-n)) \neq 0$. We get $b \geq n-k$ and

$$e=2b-(a+b)\geq -2k+2+\sum \alpha_{1p}$$

To complete the proof consider the surjective morphism

$$b_1: \mathcal{O}(n-1) \oplus \mathcal{O}(n-1) \to \mathcal{O}(2n-2-\deg h) \to 0$$

defined by the matrix $(-\frac{1}{h}\partial s/\partial T_1, \frac{1}{h}\partial s/\partial T_0)$. Since $\mathcal{E} = \mathcal{O}(a) \oplus \mathcal{O}(b)$ the morphism $b_2 := b_{1|\mathcal{E}}$ is also described by homogeneous polynomials (u, v). Because $h(p) \neq 0$ for all $p \in W$ proposition 2 implies

$$w:=\gcd(u,v)=\prod_{p\in W}(p_1t_0-p_0t_1)^{\alpha_{1p}}.$$

So factoring out w we get

$$b_3: \mathcal{E} \to \mathcal{O}(2n-2-\deg h-\sum \alpha_{1p}) \to 0$$

But b_3 can only be surjective if either

$$b \leq 2n - 2 - \sum \alpha_{1p} - \deg h$$

or

$$a=2n-2-\sum \alpha_{1p}-\deg h.$$

When starting the work on this paper we thought that e might be determined by the distribution of the numerical invariants. So we conclude with two example curves having the same invariants but different tangent surfaces.

Example 7 Consider the rational curves: $\varphi_1: \mathbb{P}^1 \to C_1 \subset \mathbb{P}^3$ and $\varphi_2: \mathbb{P}^1 \to C_2 \subset \mathbb{P}^3$ defined by

$$\varphi_1(t_0:t_1) = (t_0^6 + 6t_0^5t_1 + 15t_0^4t_1^2 + t_0t_1^5: t_0^3t_1^3: t_0^2t_1^4: t_1^6)
\varphi_2(t_0:t_1) = (t_0^3 + 6t_0^5t_1 + t_0t_1^5: t_0^3t_1^3: t_0^2t_1^4 + t_0t_1^5: t_1^6)$$

Then for all $p \in \mathbb{P}^1$ and $0 < i \le 3$

$$\alpha_{ip}(\varphi_1) = \alpha_{ip}(\varphi_2)$$

but $\tilde{T}_{C_1} \cong \Sigma_2$ and $\tilde{T}_{C_2} \cong \Sigma_0$.

References

- [1] Eisenbud, D., Harris, J. Divisors on General Curves and Cuspidal Rational Curves, Invent. math. 74, 371-418 (1983)
- [2] Eisenbud, D., van de Ven, A. On the Normal Bundles of Smooth Rational Space Curves, Math. Ann. 256, 453-463 (1981)
- [3] Eisenbud, D., van de Ven, A. On the Variety of Smooth Rational Space Curves with Given Degree and Normal Bundle, Invent. math. 67, 89-100 (1982)
- [4] Ghione, F., Sacchiero, G. Normal Bundles of Rational Curves in P³, manuscripta math. 33, 111-128 (1980)
- [5] Ghione, F., Sacchiero, G. On the Varieties Parametrizing Rational Space Curves with Fixed Normal Bundle, manuscripta math. 37, 217-228 (1982)
- [6] Harris, J., Hulek, K. On the Normal Bundle of Curves on Complete Intersection Surfaces, Math. Ann. 264, 129-135 (1983)
- [7] Hartshorne, R. Algebraic Geometry, Graduate Texts in Math, Springer Verlag (1977)
- [8] Kleiman, S.L. The Enumerative Theory of Singularities, in: Real and Complex Singularities, Oslo 1976, P.Holm (ed.), Sijthoff and Noordhoff (1977), 297-396
- [9] Piene, R. Numerical Characters of a Curve in Projective n-Space, in: Real and Complex Singularities, Oslo 1976, P.Holm (ed.), Sijthoff and Noordhoff (1977), 475-495

Heinz Oberheim Mathematisches Institut Heinrich-Heine-Universität D-4000 Düsseldorf

(Received April 13, 1989; in revised form April 21, 1990)

