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GENERATORS FOR THE DERIVATION MODULES AND
THE RELATION IDEALS OF CERTAIN CURVES

Dilip P. Patil and Balwant Singh

Let O be a curve in the affine algebroid e-space over a field K of
characteristic zero. Let D be the module of K-derivations and P the
relation ideal of O@. Generators for D and P are computed in several
cases. It is shown in particular that in the case of a monomial curve
defined by a sequence of e positive integers some e — 1 of which form an
arithmetic sequence, u(D) < 2e — 3 and u(P) < e(e — 1)/2.

INTRODUCTION

Let O be a reduced and irreducible curve in the affine algebroid
e-space over a field K of characteristic zero. Let D = Derg(O) and
let P be the relation ideal of ©. We consider the question of finding
minimal sets of generators for the module D and the ideal P and in
particular determining the cardinalities u(D) and u(P) of these sets.
While the question for P is a very standard one and has been studied
extensively, the question for D arose in our attempt to compute the
O-module Diff%(0)/(Diffk(®))?, where Diff* denotes the module of
differential operators of order at most ¢. The computation of this object
is of interest in the context of Nakai’s Conjecture a stronger version of
which states that if Diff%(0) = (Diffx(@))? then O is regular. An
additional motivation was provided by a striking similarity we observed
in several cases between the behaviours of x(D) and u(P). We note this
similarity while describing our results in the following paragraph.
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If e = 1 then pu(P) = 0 and u(D) = 1. If e = 2 then p(P) =1 and
u(D) < 2 [4]. We can explicitly construct in this case two generators
for D (Theorem (1.1)). For e = 3 both u(D) and p(P) are unbounded.
The unboundedness of u(P) was proved by Moh [7] by constructing a
sequence {P,} of prime ideals of R = K[[ Xy, X1, X]] such that u(P,) =
n+ 1. We can prove the unboundedness of (D) by showing that for the
same examples u(Derk(R/P,)) = 2n (Theorem (2.1)). For e = 3 again
the situation is different in the case of monomial curves. In this case
(D) <3 [6] and u(P) <3 [3]. We generalize these two results as fol-
lows: A sequence of e terms is called an almost arithmetic sequence
if some e — 1 of its terms form an arithmetic sequence. We show that if
e > 3 and O is a monomial curve defined by an almost arithmetic se-
quence then p(D) < 2e—3 (Theorem (4.1)) and u(P) < e(e—1)/2 (The-
orem (4.3)) and that these bounds are sharp (Examples (4.6)). These
results generalize those of [6] and [3], since any 3-term sequence is an
almost arithmetic sequence. The results on x(P) hold without any re-
striction on the characteristic of K. For e > 4 both u(D) and u(P) are
unbounded even for monomial curves (5], [1].

If O is a monomial curve and its semigroup is symmetric then
u(DP) < 2 [5]). So, in consistency with the pattern noted above, one
may expect that, for a fixed e, u(P) is bounded for monomial curves
whose semigroups are symmetric. This is indeed the case if e < 4 and
is an open question in general [2].

In proving our results we give in fact an explicit construction of a set
of generators for D and P in each case. In the case of a monomial curve
defined by an almost arithmetic sequence this construction (Theorem
(4.5)) is used by Patil [9] to prove that such curves are set-theoretic
complete intersections.

While proofs of (1.1) and (2.1) can be found in [8], those of the
results on monomial curves are given in section 4. Our main tool for
proving these results is an explicit description of a standard basis of
the semigroup generated by an almost arithmetic sequence (Theorem
(3.5)), which might also be of some interest in the context of a linear
Diophantine problem of Frobenius (cf. [10]).

NOTATION. [a,b]={i€ Z|a<i<b}.
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1. CONSTRUCTION OF GENERATORS FOR THE DERIVATION
MODULE OF A PLANE CURVE

Suppose e = 2. Represent O in the form O = K[[X]][Y]/(f) with f
monic in Y of degree n = ordx y)(f). Let z,y, fz, f, denote respectively
the natural images of X,Y, 8f/0X, 8f/8Y in O. Since O is reduced, f,
is a nonzero divisor in O. Let L = @} K((z))y’ be the total quotient
ring of O. For j € [0,n—1] define 7; : L — K((z)) by A = ¥72 m;(A)y?
for A€ L.

For i > 1let ¢; = Y720 mi(fz/fy)®ac1(yH91). For I C [1,n]
let M(I) denote the |I| x |I| matrix whose (i,j)-entry is giy;_1
and put D(I) = det(M(I)). For r € [0,n] let us define b, =
inf {ord; (D (I)) | I C [1,n], |I| =r}. Then by = 0. Let k € [0,n — 1]
be maximum with b_; > bg > -+ > br_1 > bx, where b_; = 0. If k> 0
then let h € [0,k — 1] be maximum with by_y — by > br_3 — bg.

For r € [0,n—1] denote by N, the matrix obtained from M([1,r+1])
by replacing its last row by (1,y,%%,...,y"). Let ¥1 = z~¥det(N;) with
w = bg. f £ > 0 then let ¢ = :c‘“det(N;.) with v = bp41, and if
k = 0 then let ¢ = 0. For i = 1,2, let D; € Derg(O, L) be given by
Di(z) = ¥i, Di(y) = —vifz/fy-

(1.1) Theorem. Dy, D, belong to Derg(©) and generate it.
Proof. See [8]. 1

2. MOH’S EXAMPLES

Let m,n,\ € Z withm > 2, n =2m -1, A > n(n + 1)m and
ged(m,2) = 1. Let O = K[[X™(1+Y), X"+, X"+2]] C K[[T]], where
X=T™Y=T*Putv=Xnm, u=(n-2)(n+1), F; = Xuvtiym-2

! d
forzZOandﬁ_T-&-i;.
(2.1) Theorem. The O-module Derg(0O) is minimally generated by
the 2n elements X™t2§, Fo(1 — vY )8, Faf, ..., Fa18, 1YS,. .., F,Y6.
Proof. See [8]. i
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3. A STANDARD BASIS OF THE SEMIGROUP GENERATED BY
AN ALMOST ARITHMETIC SEQUENCE

Let T' C Z* be a semigroup with ged(T') = 1 and let mg € T — {0}.
The set S = {y € T' | vy — mo ¢ I'} is called the standard basis of T
w.r.t. mp, and it has the following obvious property: Every a € Z has
a unique expression a = amg + o with a € Z, o € S; moreover, a € T
if and only if a > 0.

Our aim in this section is to describe S in case I' is generated by
positive integers mo,my,...,mpy1, where my < m; < --- < my is an
arithmetic sequence and my4; is arbitrary. It is clear that if p = —1
then S = {0}, whereas if p = 0 then S = {im; | i € [0,m — 1]}. So we
assume that p > 1.

Put n = mp4q and let IV = 37 Z*m;. Then I' = I + Z*n. For
i>01let ¢; € Z, r; € [1,p] and g; € IV be defined by i = ¢;p + r; and
gi=qmp+my,. Let u=min{i > 0| g; ¢ S}, v=min{b>1]|bn € I}
and V = [0,u — 1] X [0,v — 1]. Let = denote = (mod my).

(3.1) Lemma. (a) 0=g9< g1 <92 <---.In particular, go € S and
u>1.

(b) Leti,j € [0,p]. Then mi + m;j = (1 — €)mg + Mitj_ep + My
withe =0 or1 accordingasi+j<pori+j>p.

(c) gi+g9;=emo+ gitj withe =1 or 0 according asr; +1; < p or
ri+71;>D.

(d) Every element of T' (resp. I') can be ezpressed in the form
amg + gi + bn (resp. amg + g;) with a,i > 0,b € [0,v —1].

(e) Let (i,b),(j,c) € V withi < j,b> c and g; + bn = g; + cn. Then
(4,0) = (4 ¢)-
Proof. (a), (b) and (c) are easily verified using the fact that
mop < my < --- < my is an arithmetic sequence.

(d) Let y = amo + dm, + Y0} e;m; € IV with a,d,¢; > 0. By (b)
and induction on ¢ = Y27, ¢; we may assume that ¢ < 1. If ¢ = 0 then
7 = amp + dmp = amo + gap. If ¢ = 1 then ¥ = amo + dmyp + m; =
amg + gdp+: for some 4. This proves the assertion for IV, whence also for

T, since vn € I''.

(e) (b—c)n = g;—gi = gj—i by (c). Since gj_; € S by the definition
of u, we get (b — c)n € I’ whence b = ¢ by the definition of v. So
0 = g;—i € S, showing that g;_; = 0 whence i = j by (a). |
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(3.2) Lemma. There ezist unique integersw € [0,v—1}, z € [0,u—1],
A>1,p2>0,v > 2, such that (a) gu = Amo+wn; (b) vn = pmo+g;;
(¢) Gu—z+(v—w)n=vmy.

Proof. The uniqueness of w and 2 is immediate from (3.1)(e), since
wn = g, and g, = vn, and the uniqueness of A, u, v is now a consequence.
We show their existence. Since g, —mg € T', we have g, = Amg+ g; +wn
with A > 1,4 > 0, w € [0,v — 1] by (3.1)(d). By (3.1)(a) i < u and by
(3.1)(¢) gu—i = (A + €)mp + wn ¢ S, since A > 1. Therefore ¢ = 0 and
we get (a). Next, by (3.1)(d) write vn = pmg + g, with g,z > 0 and z
minimal. Suppose z > u. Then by (3.1)(c) vn = (g — €)mo + gz—u + gu
with ¢ € [0,1] whence by (3) (v —w)n = (p— € + A)mo + go—u € T'.
Therefore w = 0 by the definition of v, and we get a contradiction to the
minimality of z. Thus 2z < u, proving (b). (c) is now immediate from
(a), (b) and (3.1)(c), noting that v > 2, since g,_, > mo. 1

In the sequel the symbols w, 2, A, p, v will have the meaning assigned
to them by the above lemma.

Let W=[u-2,u—1] x[v—w,v—-1]. Let p: V — T be the map
defined by p(z,b) = gi + bn.

(3.3) Lemma. SCp(V -W).

Proof. For 4,8 € T write ¥ >= f to mean that ¥ > § and y = .
Let 4 € T'. Then by (3.1)(d) there exist ¢,b > 0 such that v >= g; + bn.
Choose this expression with ¢+ minimal. Suppose ¢ > u. Then g; + emg =
gi—u + Amo + wn with ¢ € [0,1] by (3.1)(c) and (3.2) whence vy >=
gi—u + (b + w)n, a contradiction, proving that i < u. Now, among all
expressions ¥ >= ¢; + bn with ¢ € [0,u — 1],b > 0, choose one with b
minimal. Suppose b > v. Then v >= g;4. + (b — v)n by (3.1)(c) and
(3.2), so that i+ z > u by the minimality of b. Write i+ z = j + u. Then
j €[0,u—1] and gi+, = (A — €)mo + g; + wn >= g; + wn by (3.1)(c)
and (3.2) whence ¥ >= g; + (b — v + w)n. This is a contradiction, since
b—v+w < b Thus ¥ >= ¢; + bn with (¢,b) € V. Now, if y € S then
v = g; + bn € p(V). This proves that S C p(V). If (¢,b) € W then by
(3.1)(c) and (3.2) gi+bn = (v —e)mo+ gi—ut: + (b—v+w)n with v > ¢
whence p(i,b) ¢ S. Thus S C p(V - W). ]

(3.4) Lemma. Let (i,b),(j,c) € V — W with g; + bn = g; + cn. Then
(4,8) = (4, ¢).
Proof. We may assume that i < j. Suppose (%,b) # (j,c). Then b < ¢
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by (3.1)(e). Now, gj—i + (c—b)n =0 = gy—, + (v — w)n by (3.1)(c) and
(3.2). Since (j,c) ¢ W,wehavej—i<j<u-—-zorc—-b<c<v-w.
Therefore by (3.1)(e) j —i < u—z and ¢— b < v—w whence (j —i+2,0)
and (0,v + b — ¢) are distinct points of V. Now, since g, = vn, we get
gi—i+z = (v + b — c)n, contradicting (3.1)(e). 1

(3.5) Theorem. p induces a bijection V — W-=5S.

Proof. p|y_w is injective by (3.4) and S C p(V — W) by (3.3). To
show that p(V — W) C S, let (i,b) € V — W. Then p(i,b) = o for some
o € S. By (3.3) o = p(j,c) with (j,c) € V — W whence (i,b) = (4, c¢) by
(3.4). Thus p(i,d) € S. |

4. GENERATORS

Let O = K[[T™0,T™,...,T™e-1]], where K is a field, T is an inde-
terminate, e > 3 and mg, my,..., M1 i8 an almost arithmetic sequence
of positive integers. Our aim in this section is to construct generators
for the module D = Derg(O) and the relation ideal P of O.

Let T be the value semigroup of O. Put p = e — 2. We may assume
that ged(T') = 1 and that mp < m; < --- < m, is an arithmetic se-
quence. If myp = m, then O is a plane monomial curve in which case
it is trivial to write down generators for D and P. We assume therefore
that mg < m; < --- < m, and now use freely the notation of section 3.

(4.1) Theorem. If char (K) = 0 then u(Derg(0)) < 2e — 3.

Proof. Let

H=u-pu-1]x{v-w-1}, Ha=[u—z-pu—2-1]x {v-1},
H=HUH and I = VNH Put Ty = T — {0}. Let A =
{a € Z* | a+T4 CT}andlet A’ = A —T. Then Derg(0O) is generated
(minimally) by the set {T"‘“diT | @ € A’ U {0}} [6, p- 875]. So it is
enough to prove the following

(4.2) Lemma. mo+ A’ C p(I). In particular, |A’| < |p(I)| < 2p =
2e — 4.

Proof. Let a € A’ and write a = amg + o with a € Z,0 € S. Since
a ¢T and a + mo € T, we have a = —1 whence mg + a = ¢. By (3.5)
write 0 = g; + bn with (i,b) e V- W.Sincee+n-mg=a+nerl,
we have 0 + n ¢ S. Therefore (i,b + 1) ¢ V — W by (3.5) whence

332



PATIL - SINGH

b=v-—w-1lorb=v-1. Since 0 + mp —mp =a+ m, €T, we have
gi+p+bn = o+ myp ¢ S. Therefore (i +p,b) € V—W by (3.5). It follows
thatif b= v—w—1 (resp. b =v—1) theni+p > u (resp. i+p > u-—2).
Therefore (i,b) € I whence o € p(I). 1

(4.3) Theorem. Let R = K[[Xy, X1,...,Xe-1]] and let P = ker(n),
wheren : R — O is given by n(X;) = T™:. Then u(P) < e(e —1)/2.

The generators are described explicitly in Theorem (4.5) below.

Let J be the ideal of R generated by {&; | i,5 € [1,p — 1]}, where
&ij = XiXj — X7 Xiyj—epXS with e = 0 or 1 according as i + j < p or
i+j7>p

Let M denote the set of all monomials in the X;’s. For X* ¢ M
define 9(X*) = degyn(X*). For i > 0 put G; = X X,,. Then 8(G;) =
gi- Put Y = X,41. For X® € M define f(X*) = X* — X3G;Y®, where
by (3.5) a > 0 and (%,b) € V — W are the unique elements satisfying the
equality 8(X*) = 8(X8G;Y?®). Then f(X*) € P, f(X5X*) = X§f(X*)
for ¢ > 0 and

(x) X*-XPeP<&=>9(X*)=0(XP)
< f(X*) - f(XP) = X> - XP.
Let Q = J+ (6,00, »PpresW0,-+-»Ppra_,), Where 8 = Y* — X£G,,

@; = Gupi— X3 1 X;Y¥ and 9 = Gu—zt;Y"" "Xy ' X;. Then Q C P
by (3.1) and (3.2) and, since &; = &ji, p(Q) < e(e —1)/2.

(4.4) Lemma. (a') If i’ J 2 0 and X €6 M then
f(GiG;X®) — X§f(Giy;X®) € J with € =1 or 0 according as
ritr;<p or rit+r;>p.

(b) Ifi >u, b >0 then f(G,'Yb) € Q + (f(Gi_qu""”)),

(¢) Ifi>u—z, b>v—w then f(G:Y?®) € Q + (f(Gi—ut:Y P~ "*)).

Proof. (a) We have G;G; — X§Giy; = X3+%¢,. € J C P, where
g=¢g,r=ri,8=gj,t=rjand & =0if r = por ¢t = p. So (a) follows
from ().

(b) Let r = ry,t = ri_y. Suppose t +7 < p. Then i = u+ sp+ ¢
for some s > 0 whence G; = G,Gute. Therefore f(G;Y®) =
G0, + X} 1 f(X:GepY®+™) by (*), proving (b) in this case, since
XiGyp = Gi_y. Ht+ 1 > p then by (a) and (x) f(GiY?) €
F(Gi_uGuY?) +Q = Gi_uYPpo + X3 f(Gi-uY ") + Q. This proves (b).
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(c) is proved similarly by using ; in place of ;. 1

(4.5) Theorem. The relation ideal P is generated by the set

{gij | 1<i< J SP= 1} U {0:¢0v" s )‘pp—r.:¢07“ '1¢p—r._,}-
In particular, u(P) < e(e — 1)/2.

Proof. For j =1,2,3,let Q; = Q + ({f(G:Y?®) | (i,b) € U;}), where
Uy =V, Uy =[0,u—1) x Z* and U3 = Z* x Z*. Then, since Q C P,
it is enough to show that PC Q3 C Q2 C Q1 C Q.

P C Q3 : It is easily checked that P is generated by binomials
X — XP with 8(X*) = 8(XP). Therefore by () P is generated by
{f(X*)| X* € M}. Writing a = (ao,...,ap4+1) it is clear by induction
on aj+- - -+ay_1 that there exist a, 4, b > 0 such that X*—XgG;Y® € J
whence by () f(X*) € X$f(GiY®) + J C Q3. Thus P C Q3.

Q3C Qz2: Ifi>u, b>0then f(G:iY?) € Q + (f(Gi-uY?™)) by
(4.4). Therefore by induction on 1, f(G;Y?®) € Q2 for all (i,b) € Us.

Q2 C Q1 : We show by induction on b that f(G;Y?®) € Q; for
all (i,b) € U,. This is clear if b < v. Suppose b > v. Then by (%)
f(GiY?) = G;Yb0 + X§ f(G:G.Y® ") and by (44) f(G:G.Y* ™) €
J + (F), where F = f(G;4.Y%?). So it is enough to show that F € Q;.
If i+ z < u then F € Q; by induction. If i + 2 > u then by (4.4) F €
Q+(f(Gisz—uY®?**)) C Q1 by induction, since (i+z—u,b—v+w) € Uz
and b—v+w < b.

Q1 € Q: We show by induction on i that f(G;Y?®) € @ for all
(i,b) € V. If (i,b) € V — W (in particular, if i = 0) then f(G;Y®) = 0.
If (i,5) € W then by (4.4) f(GiY?) € Q + (f(Gi—utY*~"+*)) C Q by
induction, since (i —u+ z,b—v+w)eVandi—u+z<i. |

(4.6) Examples. Let p,g € IN. Let m; = 2¢(2p + 1) — p + 4 for
i€ [0,p], n=mpy1 =mp+2p+1and e=p+ 2. Then the bounds of
Theorems (4.1) and (4.3) are attained, i.e. (a) u(Derx(0)) = 2e — 3 if
char (K) = 0; (b) u(P) = e(e — 1)/2.

Proof. (a) is proved by showing that the inclusion mg + A’ C p(I)
and the inequality |p(I)| < 2e — 4 of (4.2) are equalities. To prove (b) it
is checked that r, = r,_, = 1 and the set of generators for P given by
(4.5) is minimal. See [8] for details. ]
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