

Werk

Titel: Generators for the Derivation modules and the relation ideals of certain curves.

Autor: Patil, Dilip P.; Singht, Balwant

Jahr: 1990

PURL: https://resolver.sub.uni-goettingen.de/purl?365956996_0068 | log26

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

GENERATORS FOR THE DERIVATION MODULES AND THE RELATION IDEALS OF CERTAIN CURVES

Dilip P. Patil and Balwant Singh

Let \mathcal{O} be a curve in the affine algebroid e-space over a field K of characteristic zero. Let \mathcal{D} be the module of K-derivations and P the relation ideal of \mathcal{O} . Generators for \mathcal{D} and P are computed in several cases. It is shown in particular that in the case of a monomial curve defined by a sequence of e positive integers some e-1 of which form an arithmetic sequence, $\mu(\mathcal{D}) \leq 2e-3$ and $\mu(P) \leq e(e-1)/2$.

INTRODUCTION

Let \mathcal{O} be a reduced and irreducible curve in the affine algebroid e-space over a field K of characteristic zero. Let $\mathcal{D} = \operatorname{Der}_K(\mathcal{O})$ and let P be the relation ideal of \mathcal{O} . We consider the question of finding minimal sets of generators for the module \mathcal{D} and the ideal P and in particular determining the cardinalities $\mu(\mathcal{D})$ and $\mu(P)$ of these sets. While the question for P is a very standard one and has been studied extensively, the question for \mathcal{D} arose in our attempt to compute the \mathcal{O} -module $\operatorname{Diff}_K^2(\mathcal{O})/(\operatorname{Diff}_K^1(\mathcal{O}))^2$, where Diff^i denotes the module of differential operators of order at most i. The computation of this object is of interest in the context of Nakai's Conjecture a stronger version of which states that if $\operatorname{Diff}_K^2(\mathcal{O}) = (\operatorname{Diff}_K^1(\mathcal{O}))^2$ then \mathcal{O} is regular. An additional motivation was provided by a striking similarity we observed in several cases between the behaviours of $\mu(\mathcal{D})$ and $\mu(P)$. We note this similarity while describing our results in the following paragraph.

If e=1 then $\mu(P)=0$ and $\mu(\mathcal{D})=1$. If e=2 then $\mu(P)=1$ and $\mu(\mathcal{D}) \leq 2$ [4]. We can explicitly construct in this case two generators for \mathcal{D} (Theorem (1.1)). For e=3 both $\mu(\mathcal{D})$ and $\mu(P)$ are unbounded. The unboundedness of $\mu(P)$ was proved by Moh [7] by constructing a sequence $\{P_n\}$ of prime ideals of $R = K[[X_0, X_1, X_2]]$ such that $\mu(P_n) =$ n+1. We can prove the unboundedness of $\mu(\mathcal{D})$ by showing that for the same examples $\mu(\operatorname{Der}_{K}(R/P_{n}))=2n$ (Theorem (2.1)). For e=3 again the situation is different in the case of monomial curves. In this case $\mu(\mathcal{D}) \leq 3$ [6] and $\mu(P) \leq 3$ [3]. We generalize these two results as follows: A sequence of e terms is called an almost arithmetic sequence if some e-1 of its terms form an arithmetic sequence. We show that if $e \geq 3$ and \mathcal{O} is a monomial curve defined by an almost arithmetic sequence then $\mu(\mathcal{D}) \leq 2e-3$ (Theorem (4.1)) and $\mu(P) \leq e(e-1)/2$ (Theorem (4.3)) and that these bounds are sharp (Examples (4.6)). These results generalize those of [6] and [3], since any 3-term sequence is an almost arithmetic sequence. The results on $\mu(P)$ hold without any restriction on the characteristic of K. For $e \geq 4$ both $\mu(\mathcal{D})$ and $\mu(P)$ are unbounded even for monomial curves [5], [1].

If \mathcal{O} is a monomial curve and its semigroup is symmetric then $\mu(\mathcal{D}) \leq 2$ [5]. So, in consistency with the pattern noted above, one may expect that, for a fixed e, $\mu(P)$ is bounded for monomial curves whose semigroups are symmetric. This is indeed the case if $e \leq 4$ and is an open question in general [2].

In proving our results we give in fact an explicit construction of a set of generators for \mathcal{D} and P in each case. In the case of a monomial curve defined by an almost arithmetic sequence this construction (Theorem (4.5)) is used by Patil [9] to prove that such curves are set-theoretic complete intersections.

While proofs of (1.1) and (2.1) can be found in [8], those of the results on monomial curves are given in section 4. Our main tool for proving these results is an explicit description of a standard basis of the semigroup generated by an almost arithmetic sequence (Theorem (3.5)), which might also be of some interest in the context of a linear Diophantine problem of Frobenius (cf. [10]).

NOTATION. $[a, b] = \{i \in \mathbb{Z} \mid a \le i \le b\}.$

1. CONSTRUCTION OF GENERATORS FOR THE DERIVATION MODULE OF A PLANE CURVE

Suppose e=2. Represent \mathcal{O} in the form $\mathcal{O}=K[[X]][Y]/(f)$ with f monic in Y of degree $n=\operatorname{ord}_{(X,Y)}(f)$. Let x,y,f_x,f_y denote respectively the natural images of $X,Y,\ \partial f/\partial X,\ \partial f/\partial Y$ in \mathcal{O} . Since \mathcal{O} is reduced, f_y is a nonzero divisor in \mathcal{O} . Let $L=\bigoplus_{j=0}^{n-1}K((x))y^j$ be the total quotient ring of \mathcal{O} . For $j\in[0,n-1]$ define $\pi_j:L\to K((x))$ by $\lambda=\sum_{j=0}^{n-1}\pi_j(\lambda)y^j$ for $\lambda\in L$.

For $i \geq 1$ let $g_i = \sum_{j=0}^{n-1} \pi_j(f_x/f_y)\pi_{n-1}(y^{i+j-1})$. For $I \subseteq [1,n]$ let M(I) denote the $|I| \times |I|$ matrix whose (i,j)-entry is g_{i+j-1} and put $D(I) = \det(M(I))$. For $r \in [0,n]$ let us define $b_r = \inf\{\operatorname{ord}_x(D(I)) \mid I \subseteq [1,n], |I| = r\}$. Then $b_0 = 0$. Let $k \in [0,n-1]$ be maximum with $b_{-1} > b_0 > \cdots > b_{k-1} > b_k$, where $b_{-1} = \infty$. If k > 0 then let $h \in [0,k-1]$ be maximum with $b_{h-1} - b_h > b_{k-1} - b_k$.

For $r \in [0, n-1]$ denote by N_r the matrix obtained from M([1, r+1]) by replacing its last row by $(1, y, y^2, \ldots, y^r)$. Let $\psi_1 = x^{-w} det(N_k)$ with $w = b_k$. If k > 0 then let $\psi_2 = x^{-u} det(N_k)$ with $u = b_{k+1}$, and if k = 0 then let $\psi_2 = 0$. For i = 1, 2, let $D_i \in Der_K(\mathcal{O}, L)$ be given by $D_i(x) = \psi_i$, $D_i(y) = -\psi_i f_x/f_y$.

(1.1) Theorem. D_1, D_2 belong to $Der_K(\mathcal{O})$ and generate it. **Proof.** See [8].

2. MOH'S EXAMPLES

Let $m, n, \lambda \in \mathbb{Z}$ with $m \geq 2$, n = 2m - 1, $\lambda > n(n + 1)m$ and $gcd(m, \lambda) = 1$. Let $\mathcal{O} = K[[X^n(1+Y), X^{n+1}, X^{n+2}]] \subseteq K[[T]]$, where $X = T^m$, $Y = T^{\lambda}$. Put $\nu = \lambda/nm$, u = (n-2)(n+1), $F_i = X^{u+i}Y^{m-2}$ for $i \geq 0$ and $\delta = T\frac{d}{dT}$.

(2.1) Theorem. The \mathcal{O} -module $\operatorname{Der}_K(\mathcal{O})$ is minimally generated by the 2n elements $X^{n+2}\delta, F_0(1-\nu Y)\delta, F_2\delta, \ldots, F_{n-1}\delta, F_1Y\delta, \ldots, F_nY\delta$.

Proof. See [8].

3. A STANDARD BASIS OF THE SEMIGROUP GENERATED BY AN ALMOST ARITHMETIC SEQUENCE

Let $\Gamma \subseteq \mathbb{Z}^+$ be a semigroup with $\gcd(\Gamma) = 1$ and let $m_0 \in \Gamma - \{0\}$. The set $S = \{\gamma \in \Gamma \mid \gamma - m_0 \notin \Gamma\}$ is called the standard basis of Γ w.r.t. m_0 , and it has the following obvious property: Every $\alpha \in \mathbb{Z}$ has a unique expression $\alpha = am_0 + \sigma$ with $a \in \mathbb{Z}$, $\sigma \in S$; moreover, $\alpha \in \Gamma$ if and only if $a \geq 0$.

Our aim in this section is to describe S in case Γ is generated by positive integers $m_0, m_1, \ldots, m_{p+1}$, where $m_0 < m_1 < \cdots < m_p$ is an arithmetic sequence and m_{p+1} is arbitrary. It is clear that if p = -1 then $S = \{0\}$, whereas if p = 0 then $S = \{im_1 \mid i \in [0, m_0 - 1]\}$. So we assume that $p \ge 1$.

Put $n=m_{p+1}$ and let $\Gamma'=\sum_{i=0}^p \mathbb{Z}^+\mathbf{m}_i$. Then $\Gamma=\Gamma'+\mathbb{Z}^+\mathbf{n}$. For $i\geq 0$ let $q_i\in \mathbb{Z}$, $r_i\in [1,p]$ and $g_i\in \Gamma'$ be defined by $i=q_ip+r_i$ and $g_i=q_im_p+m_{r_i}$. Let $u=\min\{i\geq 0\mid g_i\notin S\},\ v=\min\{b\geq 1\mid bn\in \Gamma'\}$ and $V=[0,u-1]\times [0,v-1]$. Let \equiv denote $\equiv\pmod{m_0}$.

- (3.1) Lemma. (a) $0 = g_0 < g_1 < g_2 < \cdots$. In particular, $g_0 \in S$ and $u \ge 1$.
- (b) Let $i, j \in [0, p]$. Then $m_i + m_j = (1 \varepsilon)m_0 + m_{i+j-\varepsilon p} + \varepsilon m_p$ with $\varepsilon = 0$ or 1 according as $i + j \le p$ or i + j > p.
- (c) $g_i + g_j = \varepsilon m_0 + g_{i+j}$ with $\varepsilon = 1$ or 0 according as $r_i + r_j \leq p$ or $r_i + r_j > p$.
- (d) Every element of Γ (resp. Γ') can be expressed in the form $am_0 + g_i + bn$ (resp. $am_0 + g_i$) with $a, i \geq 0, b \in [0, v 1]$.
- (e) Let $(i,b), (j,c) \in V$ with $i \leq j, b \geq c$ and $g_i + bn \equiv g_j + cn$. Then (i,b) = (j,c).

Proof. (a), (b) and (c) are easily verified using the fact that $m_0 < m_1 < \cdots < m_p$ is an arithmetic sequence.

- (d) Let $\gamma = am_0 + dm_p + \sum_{i=1}^{p-1} c_i m_i \in \Gamma'$ with $a,d,c_i \geq 0$. By (b) and induction on $c = \sum_{i=1}^{p-1} c_i$ we may assume that $c \leq 1$. If c = 0 then $\gamma = am_0 + dm_p = am_0 + g_{dp}$. If c = 1 then $\gamma = am_0 + dm_p + m_i = am_0 + g_{dp+i}$ for some i. This proves the assertion for Γ' , whence also for Γ , since $vn \in \Gamma'$.
- (e) $(b-c)n \equiv g_j g_i \equiv g_{j-i}$ by (c). Since $g_{j-i} \in S$ by the definition of u, we get $(b-c)n \in \Gamma'$ whence b=c by the definition of v. So $0 \equiv g_{j-i} \in S$, showing that $g_{j-i} = 0$ whence i = j by (a).

(3.2) Lemma. There exist unique integers $w \in [0, v-1]$, $z \in [0, u-1]$, $\lambda \geq 1$, $\mu \geq 0$, $\nu \geq 2$, such that (a) $g_u = \lambda m_0 + wn$; (b) $vn = \mu m_0 + g_z$; (c) $g_{u-z} + (v-w)n = \nu m_0$.

Proof. The uniqueness of w and z is immediate from (3.1)(e), since $wn \equiv g_u$ and $g_z \equiv vn$, and the uniqueness of λ, μ, ν is now a consequence. We show their existence. Since $g_u - m_0 \in \Gamma$, we have $g_u = \lambda m_0 + g_i + wn$ with $\lambda \geq 1, i \geq 0$, $w \in [0, v - 1]$ by (3.1)(d). By (3.1)(a) i < u and by (3.1)(c) $g_{u-i} = (\lambda + \varepsilon)m_0 + wn \notin S$, since $\lambda \geq 1$. Therefore i = 0 and we get (a). Next, by (3.1)(d) write $vn = \mu m_0 + g_z$ with $\mu, z \geq 0$ and z minimal. Suppose $z \geq u$. Then by (3.1)(c) $vn = (\mu - \varepsilon)m_0 + g_{z-u} + g_u$ with $\varepsilon \in [0,1]$ whence by (a) $(v-w)n = (\mu - \varepsilon + \lambda)m_0 + g_{z-u} \in \Gamma'$. Therefore w = 0 by the definition of v, and we get a contradiction to the minimality of z. Thus z < u, proving (b). (c) is now immediate from (a), (b) and (3.1)(c), noting that $v \geq 2$, since $g_{u-z} > m_0$.

In the sequel the symbols w, z, λ, μ, ν will have the meaning assigned to them by the above lemma.

Let $W = [u-z, u-1] \times [v-w, v-1]$. Let $\rho: V \to \Gamma$ be the map defined by $\rho(i, b) = g_i + bn$.

(3.3) Lemma. $S \subseteq \rho(V - W)$.

Proof. For $\gamma,\beta\in\Gamma$ write $\gamma\geq\equiv\beta$ to mean that $\gamma\geq\beta$ and $\gamma\equiv\beta$. Let $\gamma\in\Gamma$. Then by (3.1)(d) there exist $i,b\geq0$ such that $\gamma\geq\equiv g_i+bn$. Choose this expression with i minimal. Suppose $i\geq u$. Then $g_i+\varepsilon m_0=g_{i-u}+\lambda m_0+wn$ with $\varepsilon\in[0,1]$ by (3.1)(c) and (3.2) whence $\gamma\geq\equiv g_{i-u}+(b+w)n$, a contradiction, proving that i< u. Now, among all expressions $\gamma\geq\equiv g_i+bn$ with $i\in[0,u-1],b\geq0$, choose one with b minimal. Suppose $b\geq v$. Then $\gamma\geq\equiv g_{i+z}+(b-v)n$ by (3.1)(c) and (3.2), so that $i+z\geq u$ by the minimality of b. Write i+z=j+u. Then $j\in[0,u-1]$ and $g_{i+z}=(\lambda-\varepsilon)m_0+g_j+wn\geq\equiv g_j+wn$ by (3.1)(c) and (3.2) whence $\gamma\geq\equiv g_i+(b-v+w)n$. This is a contradiction, since b-v+w< b. Thus $\gamma\geq\equiv g_i+bn$ with $(i,b)\in V$. Now, if $\gamma\in S$ then $\gamma=g_i+bn\in\rho(V)$. This proves that $S\subseteq\rho(V)$. If $(i,b)\in W$ then by (3.1)(c) and (3.2) $g_i+bn=(v-\varepsilon)m_0+g_{i-u+z}+(b-v+w)n$ with $v>\varepsilon$ whence $\rho(i,b)\not\in S$. Thus $S\subseteq\rho(V-W)$.

(3.4) Lemma. Let $(i,b), (j,c) \in V - W$ with $g_i + bn \equiv g_j + cn$. Then (i,b) = (j,c).

Proof. We may assume that $i \leq j$. Suppose $(i, b) \neq (j, c)$. Then b < c

by (3.1)(e). Now, $g_{j-i} + (c-b)n \equiv 0 \equiv g_{u-z} + (v-w)n$ by (3.1)(c) and (3.2). Since $(j,c) \notin W$, we have $j-i \leq j < u-z$ or $c-b \leq c < v-w$. Therefore by (3.1)(e) j-i < u-z and c-b < v-w whence (j-i+z,0) and (0,v+b-c) are distinct points of V. Now, since $g_z \equiv vn$, we get $g_{j-i+z} \equiv (v+b-c)n$, contradicting (3.1)(e).

(3.5) Theorem. ρ induces a bijection $V - W \stackrel{\approx}{\longrightarrow} S$.

Proof. $\rho|_{V-W}$ is injective by (3.4) and $S \subseteq \rho(V-W)$ by (3.3). To show that $\rho(V-W) \subseteq S$, let $(i,b) \in V-W$. Then $\rho(i,b) \equiv \sigma$ for some $\sigma \in S$. By (3.3) $\sigma = \rho(j,c)$ with $(j,c) \in V-W$ whence (i,b) = (j,c) by (3.4). Thus $\rho(i,b) \in S$.

4. GENERATORS

Let $\mathcal{O}=K[[T^{m_0},T^{m_1},\ldots,T^{m_{e-1}}]]$, where K is a field, T is an indeterminate, $e\geq 3$ and m_0,m_1,\ldots,m_{e-1} is an almost arithmetic sequence of positive integers. Our aim in this section is to construct generators for the module $\mathcal{D}=\mathrm{Der}_K(\mathcal{O})$ and the relation ideal P of \mathcal{O} .

Let Γ be the value semigroup of \mathcal{O} . Put p=e-2. We may assume that $\gcd(\Gamma)=1$ and that $m_0 \leq m_1 \leq \cdots \leq m_p$ is an arithmetic sequence. If $m_0=m_p$ then \mathcal{O} is a plane monomial curve in which case it is trivial to write down generators for \mathcal{D} and P. We assume therefore that $m_0 < m_1 < \cdots < m_p$ and now use freely the notation of section 3.

(4.1) Theorem. If char (K) = 0 then $\mu(\operatorname{Der}_K(\mathcal{O})) \leq 2e - 3$.

Proof. Let

 $H_1 = [u-p,u-1] \times \{v-w-1\}, \ H_2 = [u-z-p,u-z-1] \times \{v-1\}, \ H = H_1 \cup H_2 \text{ and } I = V \cap H. \text{ Put } \Gamma_+ = \Gamma - \{0\}. \text{ Let } \Delta = \{\alpha \in \mathbb{Z}^+ \mid \alpha + \Gamma_+ \subseteq \Gamma\} \text{ and let } \Delta' = \Delta - \Gamma. \text{ Then Der}_K(\mathcal{O}) \text{ is generated (minimally) by the set } \{T^{\alpha+1}\frac{d}{dT} \mid \alpha \in \Delta' \cup \{0\}\} \text{ [6, p. 875]}. \text{ So it is enough to prove the following}$

(4.2) Lemma. $m_0 + \Delta' \subseteq \rho(I)$. In particular, $|\Delta'| \leq |\rho(I)| \leq 2p = 2e - 4$.

Proof. Let $\alpha \in \Delta'$ and write $\alpha = am_0 + \sigma$ with $a \in \mathbb{Z}, \sigma \in S$. Since $\alpha \notin \Gamma$ and $\alpha + m_0 \in \Gamma$, we have a = -1 whence $m_0 + \alpha = \sigma$. By (3.5) write $\sigma = g_i + bn$ with $(i,b) \in V - W$. Since $\sigma + n - m_0 = \alpha + n \in \Gamma$, we have $\sigma + n \notin S$. Therefore $(i,b+1) \notin V - W$ by (3.5) whence

b=v-w-1 or b=v-1. Since $\sigma+m_p-m_0=\alpha+m_p\in\Gamma$, we have $g_{i+p}+bn=\sigma+m_p\notin S$. Therefore $(i+p,b)\notin V-W$ by (3.5). It follows that if b=v-w-1 (resp. b=v-1) then $i+p\geq u$ (resp. $i+p\geq u-z$). Therefore $(i,b)\in I$ whence $\sigma\in\rho(I)$.

(4.3) Theorem. Let $R = K[[X_0, X_1, \ldots, X_{e-1}]]$ and let $P = \ker(\eta)$, where $\eta: R \to \mathcal{O}$ is given by $\eta(X_i) = T^{m_i}$. Then $\mu(P) \leq e(e-1)/2$.

The generators are described explicitly in Theorem (4.5) below.

Let J be the ideal of R generated by $\{\xi_{ij} \mid i, j \in [1, p-1]\}$, where $\xi_{ij} = X_i X_j - X_0^{1-\varepsilon} X_{i+j-\varepsilon p} X_p^{\varepsilon}$ with $\varepsilon = 0$ or 1 according as $i + j \leq p$ or i + j > p.

Let \mathcal{M} denote the set of all monomials in the X_i 's. For $X^{\alpha} \in \mathcal{M}$ define $\partial(X^{\alpha}) = \deg_T \eta(X^{\alpha})$. For $i \geq 0$ put $G_i = X_p^{q_i} X_{r_i}$. Then $\partial(G_i) = g_i$. Put $Y = X_{p+1}$. For $X^{\alpha} \in \mathcal{M}$ define $f(X^{\alpha}) = X^{\alpha} - X_0^{\alpha} G_i Y^b$, where by (3.5) $a \geq 0$ and $(i, b) \in V - W$ are the unique elements satisfying the equality $\partial(X^{\alpha}) = \partial(X_0^{\alpha} G_i Y^b)$. Then $f(X^{\alpha}) \in P$, $f(X_0^{\alpha} X^{\alpha}) = X_0^{\alpha} f(X^{\alpha})$ for $c \geq 0$ and

$$(*) X^{\alpha} - X^{\beta} \in P \iff \partial(X^{\alpha}) = \partial(X^{\beta})$$
$$\iff f(X^{\alpha}) - f(X^{\beta}) = X^{\alpha} - X^{\beta}.$$

Let $Q = J + (\theta, \varphi_0, \dots, \varphi_{p-r_u}, \psi_0, \dots, \psi_{p-r_{u-z}})$, where $\theta = Y^v - X_0^{\mu} G_z$, $\varphi_j = G_{u+j} - X_0^{\lambda-1} X_j Y^w$ and $\psi_j = G_{u-z+j} Y^{v-w} - X_0^{\nu-1} X_j$. Then $Q \subseteq P$ by (3.1) and (3.2) and, since $\xi_{ij} = \xi_{ji}$, $\mu(Q) \le e(e-1)/2$.

- (4.4) Lemma. (a) If $i, j \geq 0$ and $X^{\alpha} \in \mathcal{M}$ then $f(G_iG_jX^{\alpha}) X_0^{\varepsilon}f(G_{i+j}X^{\alpha}) \in J$ with $\varepsilon = 1$ or 0 according as $r_i + r_j \leq p$ or $r_i + r_j > p$.
 - (b) If $i \ge u$, $b \ge 0$ then $f(G_iY^b) \in Q + (f(G_{i-u}Y^{b+w}))$.
 - (c) If $i \ge u z$, $b \ge v w$ then $f(G_i Y^b) \in Q + (f(G_{i-u+z} Y^{b-v+w}))$.

Proof. (a) We have $G_iG_j - X_0^{\epsilon}G_{i+j} = X_p^{q+s}\xi_{rt} \in J \subseteq P$, where $q = q_i, r = r_i, s = q_j, t = r_j$ and $\xi_{rt} = 0$ if r = p or t = p. So (a) follows from (*).

(b) Let $r = r_u, t = r_{i-u}$. Suppose $t + r \leq p$. Then i = u + sp + t for some $s \geq 0$ whence $G_i = G_{sp}G_{u+t}$. Therefore $f(G_iY^b) = G_{sp}Y^b\varphi_t + X_0^{\lambda-1}f(X_tG_{sp}Y^{b+w})$ by (*), proving (b) in this case, since $X_tG_{sp} = G_{i-u}$. If t + r > p then by (a) and (*) $f(G_iY^b) \in f(G_{i-u}G_uY^b) + Q = G_{i-u}Y^b\varphi_0 + X_0^{\lambda}f(G_{i-u}Y^{b+w}) + Q$. This proves (b).

- (c) is proved similarly by using ψ_j in place of φ_j .
- (4.5) Theorem. The relation ideal P is generated by the set $\{\xi_{ij} \mid 1 \leq i \leq j \leq p-1\} \cup \{\theta, \varphi_0, \dots, \varphi_{p-r_u}, \psi_0, \dots, \psi_{p-r_{u-z}}\}$. In particular, $\mu(P) \leq e(e-1)/2$.
- **Proof.** For j = 1, 2, 3, let $Q_j = Q + (\{f(G_iY^b) \mid (i,b) \in U_j\})$, where $U_1 = V$, $U_2 = [0, u 1] \times \mathbb{Z}^+$ and $U_3 = \mathbb{Z}^+ \times \mathbb{Z}^+$. Then, since $Q \subseteq P$, it is enough to show that $P \subseteq Q_3 \subseteq Q_2 \subseteq Q_1 \subseteq Q$.
- $P\subseteq Q_3$: It is easily checked that P is generated by binomials $X^{\alpha}-X^{\beta}$ with $\partial(X^{\alpha})=\partial(X^{\beta})$. Therefore by (*) P is generated by $\{f(X^{\alpha})\mid X^{\alpha}\in \mathcal{M}\}$. Writing $\alpha=(\alpha_0,\ldots,\alpha_{p+1})$ it is clear by induction on $\alpha_1+\cdots+\alpha_{p-1}$ that there exist $a,i,b\geq 0$ such that $X^{\alpha}-X_0^aG_iY^b\in J$ whence by (*) $f(X^{\alpha})\in X_0^af(G_iY^b)+J\subseteq Q_3$. Thus $P\subseteq Q_3$.
- $Q_3 \subseteq Q_2$: If $i \ge u$, $b \ge 0$ then $f(G_iY^b) \in Q + (f(G_{i-u}Y^{b+w}))$ by (4.4). Therefore by induction on i, $f(G_iY^b) \in Q_2$ for all $(i,b) \in U_3$.
- $Q_2 \subseteq Q_1$: We show by induction on b that $f(G_iY^b) \in Q_1$ for all $(i,b) \in U_2$. This is clear if b < v. Suppose $b \ge v$. Then by (*) $f(G_iY^b) = G_iY^{b-v}\theta + X_0^{\mu}f(G_iG_zY^{b-v})$ and by (4.4) $f(G_iG_zY^{b-v}) \in J + (F)$, where $F = f(G_{i+z}Y^{b-v})$. So it is enough to show that $F \in Q_1$. If i+z < u then $F \in Q_1$ by induction. If $i+z \ge u$ then by (4.4) $F \in Q + (f(G_{i+z-u}Y^{b-v+w})) \subseteq Q_1$ by induction, since $(i+z-u,b-v+w) \in U_2$ and b-v+w < b.
- $Q_1 \subseteq Q$: We show by induction on i that $f(G_iY^b) \in Q$ for all $(i,b) \in V$. If $(i,b) \in V W$ (in particular, if i=0) then $f(G_iY^b) = 0$. If $(i,b) \in W$ then by (4.4) $f(G_iY^b) \in Q + (f(G_{i-u+z}Y^{b-v+w})) \subseteq Q$ by induction, since $(i-u+z,b-v+w) \in V$ and i-u+z < i.
- (4.6) Examples. Let $p, q \in \mathbb{N}$. Let $m_i = 2q(2p+1) p + i$ for $i \in [0, p]$, $n = m_{p+1} = m_0 + 2p + 1$ and e = p + 2. Then the bounds of Theorems (4.1) and (4.3) are attained, i.e. (a) $\mu(\text{Der}_K(\mathcal{O})) = 2e 3$ if char (K) = 0; (b) $\mu(P) = e(e-1)/2$.
- **Proof.** (a) is proved by showing that the inclusion $m_0 + \Delta' \subseteq \rho(I)$ and the inequality $|\rho(I)| \leq 2e 4$ of (4.2) are equalities. To prove (b) it is checked that $r_u = r_{u-z} = 1$ and the set of generators for P given by (4.5) is minimal. See [8] for details.

REFERENCES

- [1] Bresinsky, H.: On prime ideals with generic zero $x = t^{n_i}$, Proc. Am. Math. Soc. 47, 329-332 (1975)
- [2] Bresinsky, H.: Symmetric semigroups of integers generated by 4 elements, Manuscr. Math. 17, 205-219 (1975)
- [3] Herzog, J.: Generators and relations of abelian semigroups and semigroup rings, Manuscr. Math. 3, 175-193 (1970)
- [4] Kunz E., Waldi, R.: Über den Derivationenmodul und das Jacobi-Ideal von Kurvensingularitäten, Math. Z. 187, 105-123 (1984)
- [5] Kraft, J.: Singularity of monomial curves, Thesis, Purdue University, 1983
- [6] Kraft, J.: Singularity of monomial curves in \mathbb{A}^3 and Gorenstein monomial curves in \mathbb{A}^4 , Can. J. Math. 37, 872-892 (1985)
- [7] Moh, T.T.: On generators of ideals, Proc. Am. Math. Soc. 77, 309-312 (1979)
- [8] Patil, D.P., Singh, Balwant: Generators for the derivation modules and the prime ideals of certain curves, Preprint, Tata Inst. Fundam. Res., Bombay, 1990
- [9] Patil, D.P.: Certain monomial curves are set-theoretic complete intersections, Manuscr. Math.
- [10] Selmer, E.S.: On the linear Diophantine problem of Frobenius,J. Reine Angew. Math. 293/294, 1-17 (1977)

School of Mathematics Tata Institute of Fundamental Research Homi Bhabha Road Bombay 400005, India.

(Received March 31, 1990; in revised form June 22, 1990)

