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Estimates for the Eigenvalues of Hill’s Equation
and Applications for the Eigenvalues of the Laplacian on
Toroidal Surfaces

Brigitte Beekmann and Hermann Lokes

In this paper we give upper and lower bounds for each eigenvalue A, of Hill’s differential
equation. We apply the results to toroidal surfaces of revolution in order to get estimates
for the eigenvalues of the Laplacian in terms of curvature expressions; they are sharp for
the flat torus. As an example, we investigate the standard torus in IR3; here, the bounds
depend on the radii only.

We wish to thank Uwe Abresch for many helpful discussions and hints.

1 Introduction and Results

The problem of the eigenvalues of the second-order differential equation with periodic

coefficients

(py'Y +(As-q)y=0, (1)
called Hill’s Equation (1877), has been extensively investigated for a long time. We came
across this problem in a particular situation, namely while trying to find geometrically
meaningful bounds for the eigenvalues of the standard circular torus. Eventually, we
realized that our results could be formulated for Hill’s Equation in general.

In (1), we suppose that A € IR and that p, g, s are real continuous periodic functions,
all with the same period L (> 0); moreover we assume that p and s are positive and
that p’ is continuous. For the general theory see [CL], [E], [MW]. Of special interest are
solutions y of (1) satisfying the periodic boundary conditions

y(0) = y(L), ¥'(0)=y'(L) 2)

(periodic eigenvalue problem). The parameters A with periodic solutions are the eigenva-
lues of the differential equation, and the corresponding solutions the eigenfunctions.
The eigenvalues form an infinite sequence of the type

A0</\1S’\2<A35/\4<---<A2n-—1SA2n<--- (3)

([E], S. 27; here, we do not include the semi-periodic problem).
In certain transformations of equation (1), there appear terms which may be expressed
by the so-called “Schwarz’ Differential” S(f) of a function f; for its definition see 2.3.
The main results of this paper are two theorems which give upper and lower bounds for
the eigenvalues of the periodic eigenvalue problem (1); the proofs are obtained (in section
2) in a surprisingly simple way from two classical theorems, namely Sturm’s Comparison
Theorem and a theorem of O. Haupt (1914) on the zeros of the eigenfunctions of (1).

1.1 Theorem: Assume that the function p in (1) is twice differentiable, and let P, be
a primitive of 1/p. By means of the coefficient functions in (1), we define the “estimating

function” o fnsd g 1
P 4 O il 2 .1 _ -
B e 3((L) w o+ 2S(P.)).
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Then we have the following bounds for the eigenvalues of (1) (where for abbreviation
Ao1i= Ao )
Aan-1 < A
:!el%(l)l}‘]Bn(t) -1 < Agn < zlé}a]Bn(z)
Periodic re-parametrization of the differential equation does not change the eigenva-
lues but the boundary function B, and, therefore, the upper and lower bounds for the
eigenvalues. This observation leads to

1.2 Theorem: Let the assumptions of Theorem 1.1 hold. Let G:={g€ C?|g¢>0, g
periodic with period L}, My:= } foL g(t)dt for g € G and let G be a primitive of g. We
define the extended estimating function

3) Blgh= f((%”)’nz (Mig)2+§-%S(P.)+%S(G)).
Then
Q0 sup i Ba(a)(z) € Muncs € an < S max Bu(o)(a),

and for the first eigenvalue we get the equation

() s1p n}g)n Bo(9)(z) = %o = inf gllgai]Bo(y)(z)

With the special choice g = \/3/p, we get the estimating function

s = () 4+ 38((E) -3+ 222,

ps ps ps p

which can be used to obtain explicit bounds for the spectral gaps, which are of the size
expected by Weyl’s asymptotic formula:

1.3 Corollary: The gaps between two successive eigenvalues are bounded by

A2n — A2n-1 < max Bo(\/_]—)(x)— min Bo(\/.ﬁ;)(z) =t A(‘—:,\/ﬂ'ﬁ) S

z€[0,L] €[o,L]

and

A2nt1 — Azn < (LZM) (2n +1)+A( \/7;)

Note the significantly different behavior of the two bounds for large n.
As a special case of 1.3 we obtain a sufficient condition for the coexistence of two
linearly independent periodic solutions (coexistence problem, cf. [MW], p. 90ff):

1.4 Corollary: For the class of differential equations (1) with ps =1 and q/s =
const. = b € IR, all eigenvalues (for n > 1) are double eigenvalues:

Mn-1 = dan = Ba(s) = (2r)2n? /o Ls(t)dt)_2 +b.
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1.5 Remark: For special choices of g, the estimating function becomes particularly

simple, e.g. with g =1/p or g = p, we obtain in 1.2 the terms: S(P.) = S(G) or
! .

-18(P)+38(G) = (%—) , Tespectively.

Which choice of g is especially convenient depends on the coefficient functions and on
the number of the eigenvalue under consideration. With g = 1/pw? for w € G the left
equality of Theorem 1.2 (ii) yields the same expression for Aq as is obtained in [PW], p.
38, by the maximum principle, cf. the proof of Theorem 1.2.

In §3, these results are applied to the eigenvalues of the Laplacian on surfaces of
revolution homeomorphic to the torus (cf. [Bk 1], §7), and in this way we obtain estimates
containing curvature expressions of the surface. In order to be able to formulate the result
1.6, we briefly sketch the necessary notions. By the action of the rotation group O(2) on
the surface, the eigenspace E) of an eigenvalue A splits up into the isotypical components
Ef\‘ with respect to the irreducible representations of O(2) , which are characterized by
their winding number k. The eigenvalues A with Ef # {0} will be called k-eigenvalues.
The search for eigenfunctions in E} leads to a differential equation of Hill type with
eigenvalue A.

The metric of such surfaces of revolution is given by (gi;) = ((1, r(?),) , with a L-
periodic function 7 (cf. §3).

1.6 Theorem: On a surface of revolution homeomorphic to the torus the following
estimates for the k-eigenvalues Ak of the Laplacian are valid:

in BE <X <A < inf .
328,2‘{3115"(9)(’) < A1 S Xaa < inf max Ba(g)(=)
with 22
21\ 2 2 1 1 1
ko). — (2%\%, 2 (_9_ y _IK--B?24-=
Biok=(T) ™ (5f) +m-3K-38°+356),
where K denotes the Gauss curvature and B the geodesic curvature of the parallels. The
bounds are sharp for the flat torus and g = 1.

For concrete estimates, one may try different choices of g, adapted to the metric of
the surface. For instance, the choice ¢ = r* with a € IR yields

oo = (F)' (i) + 7 - ok -t

with 8 = (a + 1)/2, cf. 3.3. This shows quite well the asymptotic behavior of the
eigenvalues on toroidal surfaces:

A'2‘n—17 A";n ~ 0("’2) + o(kZ)

In §4, we consider the imbedded standard torus T' (with radius S and meridian radius
R)in IR® and we derive some estimates for its eigenvalues. For the first eigenvalue of each
k-spectrum (k > 0,7 = 0) we obtain the bounds

k? k k?

_—25’\05 2 _ R2
(S+R) S2—-R
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(see 4.1 and 4.2), and for the higher eigenvalues (n > 0) we get the estimates (cf. 4.3)

71.2 k2 1 1 k k ﬂ2 k2 1 1
s - < < < = - .
Bt (S+R? 2R(S+R) ~ A1 SAam S (5 - R)? & 2R(S-R)

These bounds show the asymptotic behaviour of the eigenvalues as R — 0, i.e. if the
torus degenerates to a circle (with fixed radius S): then
2

lim A

fm X = =3, and for v > 1: }lti_{l.loA,'f:OO.

The first eigenvalue of each k-spectrum remains finite and tends to the corresponding
eigenvalue of the circle of radius S; all the other eigenvalues tend to co.

Remark: In [Bk 1], 16.4, 5, we investigated the eigenvalues of surfaces consisting in a
cylindrical tube with half-spheres on both ends. Here, only the invariant eigenvalues A2
remain finite (for B — 0, the length H of the cylinder staying fixed) and tend to the
eigenvalues of a vibrating string with fixed ends of length H, whereas all k-eigenvalues
(k > 1) tend to infinity.

For the example of the standard torus with radius R = 1 we computed the eigenvalues
(using Fortran NAG DO02KAF and [Ho]) and compared them with the new estimates.
The figures on the next page show the first seven k-eigenvalues for £k = 0,1,2 and the
corresponding bounds as functions of § for 1 < § < 5. As was to be expected, the quality
of the bounds increases with S, n and k. For § — 1 the torus degenerates and so do our
upper bounds. For small § (1 < § < 2 say), Rayleighs® principle yields better bounds
for A5 and )%, since they remain finite for § — 1; for example one gets Ak < 2k? and
A5, < (n+1)?+ (2n+1)k? in the limit § — 1.

The same effect can be seen when considering other known upper bounds. For instance,
Yang and Yau have shown that for the first eigenvalue A;(T') of the complete spectrum,
M(T) < 167 /vol T = —fz (cf. [C], p. 94). Thus, for S/R — 1 (more general whenever
the torus becomes “narrow”), our upper bounds are worse.

In [Bk 1], some estimates for the eigenvalues on toroidal surfaces have been derived,
too, but only as subordinate matter. The estimates of this paper are generally better,
with the same restrictions for /R — 1 as described above. In this context, we want to
note that the upper bound given in [Bk 1}, 15.8 (ii) for imbedded tori is only valid for the
cases %rm < L; in the other cases the formula has to be alterated. This restriction is
missing there.

Comparing our lower bound for the first invariant eigenvalue A9, (4.3), to the upper
bound of Yang and Yau, one can conclude that the 1-eigenvalue A} equals the first eigen-
value of the complete spectrum, viz. A} = A;, at least for §/R > 1.579. In tendency this is
always the case when S 3» R or when the volume of the surface becomes large compared
with its distance from the axis of revolution. (When comparing with known estimates for
the eigenvalues always keep in mind that usually the eigenvalues are simply sorted with
respect to their growth, disregarding the classification by the winding number k.)

Thus the question as to the cases, in which our estimates improve known ones, cannot
be answered in a general way. The answer depends on the choice of the function g in
Theorems 1.2 and 1.6, it depends on the shape of the manifold and also on the type k
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of the spectrum and on the number n of the eigenvalue under consideration. The known
estimates, e.g. those due to Cheeger, Yang-Yau, Rayleigh and others, see [C], are either
upper bounds or lower bounds and pertain often only to the first eigenvalue and are
independent of the winding number k.

The aim of this paper is to present a method (to be developed in §2) which follows from
the Theorems of Haupt and Sturm in a simple way, which immediately yields two-sided
estimates for each eigenvalue and which is tailor made to handle the problem of eigenvalues
of the torus and its periodic differential equation. Such global assertions on intervals for
each eigenvalue were known only in special cases, to the best of our knowledge (cf. [MW],
p. 77). Also, the significance of our estimates originates rather from the bounds for the
higher eigenvalues than from those for the first eigenvalues. In fact, our estimates virtually
are bounds for the length of the intervals of instability JA2n—1,Azn[ of Hill’s equation (cf.
[E], p. 19ff, [MW], p. 12ff, [Ho]).

2 Proof of Theorems 1.1 and 1.2

We consider the differential equation (1) with boundary conditions (2) and the sequence
(3) of its eigenvalues, as described in the introduction. For the sake of convenience we
recall the mentioned result about the zeros of the eigenfunctions 1, with eigenvalue ), ,
cf. [CL], p. 214, [E], p.39 or [MW], p.11, or the original papers [Ha), [H 1], [H 2J:

2.1 Theorem (O. Haupt, 1914): (i) 4o has no zeros in [0, L],
(ii) t2n—1 and iy, have exactly 2n zeros in [0,L).

Equally well-known and much older is the Comparison Theorem, which we restate in
terms of our given equation; for abbreviation put @ := As — g (cf. e.g.[CL], p. 208):

2.2 Theorem (Sturm): Suppose v, is a real solution on (0,L) of (py') + @1y = 0
and v, a real solution on (0,L) of (py’)’ + Q2y = 0. Let Q2(z) > Q1(z) for z € (0,L).
If z1,z5 € (0,L) are two successive zeros of v, then v, must vanish at some point of
(31,22).

2.3 The Schwarz’ Differential or Schwarz’ Derivative is an invariant which appears
when transforming Hills’ equation into standard form (cf. e.g. [Ca], p. 116ff, [K], p. 120).

For f’' # 0 it is defined as
" 3 "
stn=L7-3(L)

froo2vf
it obeys the chain rule
S(fog)=9"S(f)og+ S(g),

hence S is invariant under (real) Mébius transformations (homographies), i.e. for h(z) =
“;’ﬁ with ad — be # 0, we have S(hog) = S(g). From the identity

0=S(fof™)=f2S(f™")of+S(f)

follows the expression for the Schwarz’ Derivative of the inverse function:

S(f Yo f= ~71,;S(f)-
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2.4 For the proof of Theorem 1.1, we put y = p~'/2y and transform equation 1)
into the standard form
v +Vv=0 (4)

with 1p% 1p" 1 1 1 s
17 3y TS0 = 38(P)+ (e —a) = S(A~B)
(P.and Bg as in 1.1). Then v and y have the same period and the same zeros.

First, let n > 1 and let v be a periodic solution of (4) with eigenvalue A = Az, or
A = A2n-1. Then, by 2.1, we know that v has exactly 2n zeros in [0, L) ; if we extend v
on the interval [0,vL), v € IN, by periodic continuation, then v has exactly 2vn zeros.
In the same interval, we consider the function

; T
S(z) = sm((2un - I)E) ;
this function has 2vn — 2 zeros in (0,vL) and satisfies the differential equation
” 1.my2
w +((2n—;)—L-) w=0. (5)
If we assume 1.axd
((2n - ;)Z) >V on(0,vL),

then each solution of (5) vanishes at least once between any two successive zeros of v, by
2.2, and consequently S has at least 2vn — 1 zeros in (0,vL), a contradiction. Hence
there is an zg € [0, L] such that
1.7\2
V(zo) 2 ((2n--)7) -

Hence by definition of V,

T=z9 2 (((211. - ;1/.);,—)2 + %BO)‘Z=ZO z

consequently

A > sxex%(i,{}‘](gan - %)%)2 + Bo) "

and this is true for all v € IN. Letting ¥ — oo yields

. (P(2m\2 4 ) .
> == = 2 (2) 3
= zletftl)flbl(s( L) n" + B |(x) zgféfh_B (2) (62)
this holds for both A = Az,,—; and A = Ap,.
The upper bound
'\2n-1 S ’\271 S ma-XBu (Gb)

in 1.1 follows similarly using sin ((2un + l)ff) and the assumption V > ((2n + %)f)z .

The assertion for n = 0 can be proved by 2.1 alone: We know that the eigenfunction vo
which belongs to the first eigenvalue Mg has no zero in [0, L]; let vg > 0. If we assume that
V > 0 (resp. V < 0), then v = —Vvo < 0 (resp. > 0), hence v} is strictly decreasing
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(resp. increasing) and therefore vy is not periodic — a contradiction. Thus there is an
Zo € [0, L] such that 0 = V(zo) = (£(do — Bo))(z0) , i.e. Ao = Bo(zo). Therefore

,’éh‘,fhﬂ"(’) <o < ‘é’[&’b&(z)’ (M

which proves Theorem 1.1. (]

2.5 Proof of Theorem 1.2: Let g € G, M, and B,(g) be given as in Theorem 1.2.
Clearly B,(g) = Bn(cg) for all ¢ € IR,c > 0. Without loss of generality, we therefore can
choose g such that My = 1. Let

T
Gla):= [ gttt
()
thus g = G', and let F be the inverse function of G. Then
F(0)=0, F(L)=L, F(z+L)=F(z)+ L, (8)

since the same assertions obviously hold for G. The function F is strictly increasing and
F:IR — IR is bijective.

Now, let y be a periodic solution of Hill’s equation (1) with eigenvalue A\. We consider
the re-parametrization 2z = y o F. Since y solves (1),

(pv" + Py + (s —q)y) o F = 0,
and therefore the following differential equation for z holds:
F” 1 Z'
(Po F)' — 2 5) g + o F)m + (A-(s0 F) - (g0 F)) z = 0. 9)

Because of the periodicity of y and the properties (8) of F, the function z is also of period
L, and so are the functions p = %{7, §=F'-(soF)and g= F'-(qo F). Since F' >0,
we have p,3 > 0. Thus the periodic boundary value problem

)Y +(A5-9z=0 (10)

has exactly the same eigenvalues as (1) and fulfills the same conditions regarding the
coefficient functions. Therefore, Theorem 1.1 is applicable and gives estimates for the
eigenvalues of (10). In the expression

5= B2+ T Ls(h)
B,.—§<(L)n+,~’ 28(P)

observe that P, = P, o F and therefore
~5(P) = F”((—S(P.) +S(FM) o F) ,
using the formulas of 2.3. By elementary calculations, we then obtain

g _P((2m\2 , 1 ¢ 1 1 -1)
B"—s((L) % F%F-l”p 5S(P)+5S(FY))oF.
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We now make the simple but crucial observation that the extrema of this function B,
are invariant under re-parametrization; this allows us to combine B, with G = F~1.
Therefore

Bn oG = Ba(g)
(note that 1/(F"2 0 F~1) = ¢?). By 1.1, applied to By, o G, we get

i < -1 < < 5
in Bu(9)(z) < Man-1 € Aam < max Bn(9)(z) (11)
This is assertion (i).
. 7 =t g p

In the particular case n = 0, we choose g = 1/pw? with w € G; then = = —= — 2;
and 1 1

= A
Bo(m) = sw( (pw') +qw) .

Assertion (i) for n = 0 now gives

L(-@uwY +q)@). (1)

. 1 N, max
L O < <
min ( (pw') +qw)(z) <X s z€[0,L] Sw

z€[0,L] sSw
The left-hand inequality has already been shown in [PW], p. 38, with the help of the
maximum principle. If we choose w to be an eigenfunction yo of Ao (assume yo > 0),
then w = yo solves the differential equation (1):

((ev6) = awo) = —os0,

and therefore By (I/p yg) = Ao. This means equality in (11) for » = 0 and proves the
second assertion of Theorem 1.2. ]

2.6 Corollary 1.3 follows by straightforward calculations.

For Corollary 1.4, note that for ps = 1, ¢/s = const. and with g = /s/p we get
max B, (¢g) = min B,(g).

2.7 Remark. Eastham also gives an upper bound for Az, ([E], p. 42, 3.3.2):

n < St (7

and equality occurs only when ¢ = 0, p(z) = const., s(z) = const. However for this result,
one has to assume that the complex Fourier coefficients ¢; of ¢ vanish for 0 < j < 2n,
a condition which often is not satisfied in applications, for instance in the standard torus
example, which will be investigated in section 4. Our estimates do not require these re-
strictions.

3 Applications to toroidal surfaces of revolution

Our motivation for the preceding investigations was the study of the eigenvalues of
the Laplacian on the standard torus imbedded in IR® (and endowed with the induced
metric) and moreover on all surfaces of revolution diffeomorphic to it. On the flat tori the
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eigenvalues are explicitly known (see e.g. [C], p. 28, or [BGM], [Br], [SW]); in other cases
one only has estimates for the eigenvalues, especially for the first one, e.g. the bounds
given by Cheeger, Yang and Yau, Rayleigh’s quotient and others, cf. [C].

A surface of revolution diffeomorphic to the torus is the standard torus in IR®

T ={((2+sinT) cosep, (2+sinT) sing, cos7) | T € [0,2r], ¢ € [0,27]},

but endowed with any Riemannian metric which is invariant under the group O(2) of
the rotations about the z— axis and the reflections at planes containing the rotation axis.
These Riemannian metrics may differ from the ordinary metric induced by IR® on the
standard torus; it may happen that such surfaces cannot be embedded into IR® as surfaces
of revolution in the usual sense (with a generating curve). This notion even includes some
of the flat tori; in fact, a flat torus is a surface of revolution in the sense of our definition
if and only if it may be defined by a rectangular lattice. For details, see [Bk 1], [Bk 2].

The meridians of 7' are minimal geodesics, they are all of the same length L; the
arc length parameter is denoted by ¢t € [0, L]. The parallels, the orbits under O(2) , are
orthogonal to the meridians and are parametrized by the angle ¢. Using (,¢) as local
coordinates, the metric on T is of the form

(8i3) lte) = ( (1) r((:)z )

with a twice differentiable function r:[0, L] — IR}, which we may define on IR by periodic
extension.

This definition is based on a specific action of the group O(2) as transformation group
on the surface; the set of fixed points of any reflection consists of two disjoint meridians.
There are other Riemannian manifolds diffeomorphic to the torus which admit different
actions of O(2) as a group of isometries, for instance the equilateral torus, which is not
covered by our definition.

Since the Laplacian A commutes with isometries, one obtains an action of O(2) on
the eigenspaces Ey of A and eventually a decomposition of each E) into the isotypic
components with respect to the irreducible representations of O(2). These irreducible
representations are one- or two-dimensional; the twodimensional representations are cha-
racterized by the winding number k € IN\{0}.

Among the one-dimensional representations, only the trivial one has to be considered;
it will be assigned the winding number k = 0. Given a decomposition of E) into O(2) -
invariant irreducible subspaces, the isotypic component E} is defined to be the sum of
the irreducible components with winding number k. The eigenvalues A with Ef # {0}
will be called k-eigenvalues; we order them as an increasing sequence, the so-called k-
spectrum: 0 < M < M <M <o <5 <A < ..., where k = 0,1,2,.--. The
elements of EY are the eigenfunctions which are invariant under the action of O(2) , and
0 = A3 < A < A--- is the invariant spectrum. For k > 1, A} is positive. In the
numbering of the eigenvalues, we follow [E], [MW], contrary to [Bk 1] and consistent with
sections 1, 2.

The elements of E} are called k-eigenfunctions, and we call them pure eigenfunctions
if they are contained in an irreducible subspace of Ef . In the above defined coordinates
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the pure k-eigenfunctions are of the form

F(t,¢) = f(t) cos k(¢ — ¢0) (13)

with f € C?[0, L] (cf. [Bk 1], 9.3, or [Bk 2]).

The fact that the variables are separated in F(2, () implies that the partial differential
equation for the pure eigenfunctions becomes an ordinary differential equation for f: in
the local coordinates ¢, ¢, the equation

0*F ' OF 1 8%F
AF-AF = o = T3 " F0ga -

leads to , 2
.
f”+;f'+(/\—-ﬁ)f=0. (14)

Observe that the existence of a basis consisting of separated eigenfunctions follows from
the action of O(2), we do not need to make an ansatz with separated solutions.

The eigenvalues of (14) are exactly the k-eigenvalues Ak, Clearly, dim E{ < 2 and
dim E¥ € {0,2,4} for k > 1. If F is a pure eigenfunction as in (13) with eigenvalue A%, _,
or M5 . the system of its nodal lines evidently consists of 2k meridians (k > 0) and a
number of parallels. By Haupt’s Theorem 2.1, this number is 2n, the number of zeros of
f in the interval [0, L). Therefore

3.1 Theorem: On surfaces of revolution diffeomorphic to the torus, the eigenfunctions
with eigenvalue % have exactly 2k sectors as nodal domains, and the pure eigenfunctions
with eigenvalue \5,_; or M5, (n > 1) have exactly 4kn nodal domains, bordered by
parallels and equidistant meridians.

3.2 Proof of Theorem 1.6: We identify (14) with Hill’s equation by multiplying with

r and putting p=s=r, ¢g= "r—z Thus the estimating function B,(g) depends on k and
becomes

21\ 2 g\?2 kK 1 1 1

keoy_ (7). 2( 9 F e _l1p2, 1
B9 = (T) " (3r) +7 - 3K -38°+356), (15)
where K = —r”/r and B = r'/r are the Gauss curvature and the geodesic curvature of
the parallels, respectively. Therefore Theorem 1.6 is a direct reformulation of Theorem
1.2 ]

3.3 Corollary of Theorem 1.6: With g = r®, a € IR, the estimating function B¥ in
Theorem 1.6 becomes

27\ 2 ™\ k2
ke ay _ (22 2(_° . _ fA2R?
Bn(r)“'(L)n(Mra)'*'rg ﬂK ﬂBv

where 8 = (a +1)/2.

Proof: With g = r*, we obtain —1 K — 1 B? + 15(G) = -BK - p*B2. o

3.4 Special cases of the corollary:
Put 7min: = min 7(t), Tmax:= maxr(t), 7o:= Tmax/Tmin > 1, and define Kpin, Kmax simi-
larly.
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(1) If @ = —1 then g = 1/r and B = 0. Therefore

2r\2 , 1 k2 x 2m\2 5, o Kk?
(—IT) n ;g"';z—— < AZn—l < /\2,. < (TL—) n To+£.

This gives very simple bounds especially for the first k-eigenvalue AJ.
(2) If a =0 then g =1 and M, = 1. Thus

2m\2 , . (K 1 1, r (2T, o1 1.,
(—L-) n +nun(r—2—§K—ZB) < ,\2,._ <A £ (-f) n +ma.x(r———K——B )

(3) The choice a =1, i.e. g =r, gives

(2w)2n2l2+mm(——K Bz) XN < < (.2L1) ro+ma.x(k——K Bz)
Remark: If one wants to use the same function g for all n then the choice g = 1 is optimal
for large n.
3.5 With the choice § = £k in 3.3, we get
21\ 2 2 k2
ke, F2k-1y _ (2T\* 2( 9 L _2p2
Bh(rFY) = (T) (Mg) +— FhK - KB
For n = 0, this gives the same bounds as can be obtained by Barta’s Theorem, see the

proof of 14.7 in [Bk 1]; these estimates for A% are of the same type as the result 14.1 in
[Bk 1] on spherical surfaces of revolution.

4 The imbedded standard tori
Now, we consider the class of tori generated by rotating a circle of radius R around
an rotation axis so that its center traces out a circle of radius § (§ > R), and endowed

with the standard metric, i.e. the metric induced from IR3. In our description of surfaces
of revolution, their metrics are determined by

r(t)= S+ Rsin ¢, (16)

and

1 1

Tmax = SR, toin = SR, Kmax = ro— gy Kuin = ~rs— gy

L=2rR. (17)

In this case where r is explicitly known, we can use specific functions g to get good bounds
for the A from the results of section 3.

First, we consider the case n = 0. For k = 0, A3 = 0; hence assume k > 0. We start
from Corollary 3.3: with g = r*, 8 = (a + 1)/2, the expression Bf(g) becomes

B0 = (¥~ 2~ Bhsin + (5% - B)(sinke)”) / (5 + Rsin e)”
This can be written as a quadratic polynomial in X(t):=1 / (S + Rsin -kt) :

BE(r*) = aX? + bX + ¢
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with a = K2+ 82($7 —1) > 0, b = £(8—-26?), ¢ = 2(* - B). Maximal values of B5(r*)
can occur only when X’ = 0 (since at 2aX + b = 0 the parabola has its minimum), i.e.
at ty = ZR € [0,2rR] and ¢; = 3R € [0,27 R]. At these points,

k? 1
By(r*(t1,2)) = StRET %(S tR)

In order to optimize the upper bounds of A5 which can be obtained in this way, we have
to determine (3 such that the maximum of these two values becomes minimal. This is the
case precisely for

2Ii!2
B=Bo= - .
With this value of 3, Corollary 3.3 gives
k2
k
4.1 M m—

which is a fairly good upper bound for the first eigenvalue of each k-spectrum, A5, for
large S.

Bounds for general A%, (v > 0,k > 0) may be obtained Corollary 3.4. With g = 1/r,
3.4 (1) gives

1 (S-R? , k? 1 (S+R? , k?

. < .
12 mETRE T GErRE S M S S mE R T oy

Further estimates can be derived from Corollary 3.4 (2), i.e. with ¢ = 1: The term
A:= f;— — 3K — 1B? has its extrema at the points ¢; = ZR and t; = 3R, where the
geodesic curvature B of the parallels vanishes. Using (17), one thus obtains

n? k? 1 1 n? k? 1 1
3 — <M< <
3 mt ma S S @t TRt EG o Ry

(.S'+R)2 2R(S+R) -
For n > 1,k > 0, these bounds are better than those of 4.2, but for n = 0, k£ > 1, the
result 4.2 is better than 4.3. Both estimates improve those which can be obtained from
3.4 (3).
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