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QUASISYMMETRY AND UNIONS

Jussi Vaisala

1. Introduction

1.1. Let X and Y be metric spaces with distance written as |a — b, and let
n : [0,00) — [0,00) be a homeomorphism. An injective map f : X — Y is called
n—-quasisymmetric, abbreviated n-QS, if |a — z| < t|b — z| implies

|f(a) = f(2)| < n()If(b) — f(=)]

for every triple of points a,b,z € X and for every t > 0. If f is 7-QS in a
neighborhood of each point in X, it is called locally n—QS. The basic theory of QS
maps is given in [TV] and [Va3].

An increasing map f : R! — R! of the real axis is n—QS if and only if it
is p—QS in the classical sense of Beurling and Ahlfors; here  and p depend only
on each other. For homeomorphisms between open sets in the euclidean n—space
R"™, n > 2, local quasisymmetry is equivalent to quasiconformality. The following
lemma gives a precise form of this statement. For proofs, see [Vis, 2.3,2.4] and
[AVV, 5.23]. We let B(x,r) denote the open ball with center z and radius r and
abbreviate quasiconformal as QC.

1.2. LEMMA. Suppose that n > 2, that G and G' are open sets in R™ and
that f : G — G' i3 a homeomorphism. If f is locally n-QS, then f 1s K-QC with
K =n(1)" L. If f is K-QC and B(z,ar) C G for some a > 1, then f|B(z,r) is
n-QS with n depending only on K and a.

This paper deals with the following problem: Suppose that X = E;U...UE,
and that f: X — Y is an injective map such that each restriction f|E; is locally
7-QS. Is f locally 7,-QS with some 7;? The following example shows that the
answer can be negative in very simple cases: Define f : R! — R! by f(z) = z
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for z < 0 and f(z) = z? for z > 0. Then f is a homeomorphism, which is QS in
(—00,0] and in [0, 00) but not in any neighborhood of the origin.

In 3.10 we show that the answer is positive in the case where X and Y are
open sets in R®, n > 2. As a special case we obtain a new removability theorem
for quasiconformal maps (Theorem 3.3). The related result 3.12 states that a
homeomorphism f : G — G is QS if fis QC in G and QS on 0G. This was
suggested to the author by O. Martio.

The proofs are based on an improved version of F.W. Gehring’s local max-
imum principle for QC maps [Ge, Theorem 2.1]. This is given in Section 2, and
the main results in Section 3. Some open problems are stated in 3.16.

I thank Olli Martio for useful and enjoyable discussions and Pekka Alestalo
for careful reading of the manuscript.

2. The local maximum principle

2.1. Terminology. In the rest of the paper we assume that n > 2. We consider
open sets G,G' in R™, which are not necessarily connected. A homeomorphism
f: G — G is called K-quasiconformal if f is K—quasiconformal in each com-
ponent of G. If F C O0G, the cluster set clus(f,F) of f at F' is the set of all
points y € R® = R™ U {oo} such that there is a sequence of points zj € G with
z; — 19 € F and f(z;) - y.

As in the introduction, B(z, ) denotes the open ball with center z and radius
r, and we abbreviate B(r) = B(0,r). For spheres we write S(z,r) = 8B(z,r) and
S(r) = S(0,r). For 0 < r < s the open spherical annulus B(s) \ B(r) is written as
A(r, 8).

A domain is an open connected set. We first give an elementary topological
result:

2.2. LEMMA. Suppose that Dy, D, are domains in a locally connected topo-
logical space X with D; N Dy # 0 and that U is a component of Dy N Dy with
D, #U # D,. Then U meets both D, and 8D,.

Proof. It suffices to show that OU meets 8D;. Since the connected set D,
meets U and X \ U, there is a point z € Dy N 9U. We show that z € dD;.

Clearly z € U ¢ D;. If z ¢ OD,, then z € D; N D,, and we can choose
a domain V withz € V C Dy N D;. Since UNV # (), theset W =U UV is
connected and hence W C U. This implies z € U, a contradiction. o

2.3. THEOREM (local maximum principle). Suppose that G and G' are open
sets in R™ and that f : G — G' is a K-quasiconformal homeomorphism. Suppose
also thatr > 0, 0 < ¢ < 1, b > 0 and that B(r) \ G contains two points z1,,
with |z1| < qr and |z1 —z2| > br. If R > 0 and

clus(f,8G n B(r)) Cc B(R),

then
fIGN B(qr)] C B(cR),
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where c i3 a constant depending only on the data v = (K,n,q,b).

Proof. We may assume that GNB(gr) # 0. Then also the sets F' = 6GNB(r)
and E = clus(f, F) are nonempty. Let o' € G N B(gr) and write y' = f(z'). It
suffices to find a bound |y'| < ¢R, ¢ = ¢(v). We may assume that |y'| > 2R.

Let 4" be the ray {ty’ : ¢ > 1} and let ' be the component of v' N G’
containing y’. Then 8 = f~!8' is a half open arc starting at ' and clustering
to 0G. Since it cannot cluster to points in F, it has a subarc 8y C B(r) with
diameter d(f,) = (1 — g)r.

Let D be the component of GN B(r) containing B,. Since z; € B(gr)\G, 8D
meets B(gr). Fix a point z; € 8D N B(gr) and choose a number b; = b;(v) with
by < b/2 and by < 1 — q. We first show that D N B(r) contains a point z2 with
|21 — 29| > by7.

Assume that this is false. Since the connected set W = B(r)\ B(z1, b;r) does
not meet 8D, we have either W C D or WND = §. In the first case, z; and x, are
in B(z;,b17), which implies |z; — x2| < 2b;r < br, a contradiction. In the second
case, D C B(z1,b;r) C B(r). Hence D is a component of G, and 8fD C E. This
implies fD C B(R) and thus fD N ' = 0, which is again a contradiction. The
existence of z; is proved.

We next show that the set V = D N f~!B(2R) has a component V; with
d(Vp) = byr/2. Suppose that this is false. Since 21, z2 € OV, there are components
Vi, Vo of V with distance d(z;,V;) < byr/4. Then V] # V;, since otherwise

IZ] - 22| < d(zl,Vl) + d(V]) + d(Z2,Vl) < byr.

Since V) C B(z1,3b17/4), we have V; C B(r). If z € 8V; N D and |f(z)| < 2R,
there is a connected neighborhood W C D of z with fD C B(2R). Then WU V;
is a connected set in V', and hence V}; is not a component of V. It follows that

Vi C (B(r)ndD)U f1S(2R),

and thus
dfVi C EU S(2R).

The case fV; C F is impossible, because then 0V} C 8D and thus V; = D. Hence
0fVi meets S(2R). Since the annulus A(R,2R) is connected, it is contained in
fVi. Since f is injective, this yields fV, C B(R). Since fV; is a component
of fV = fD N B(2R), Lemma 2.2 implies fV, = fD. This gives V, = D, a
contradiction. The existence of V} is proved.

As usual, we let A(A, B;C) denote the family of all paths joining the sets
A and B in C. We next show that the family I'y = A(fq, Vo; B(r)) is minorized
[Vay, 6.3] by ' = A(Bo, V, D). Let v be a path in I'; starting at fy and terminating
at Vy. If v lies in D, then v € I'. If v goes out of D, let 7; be the maximal
subpath of v in D, starting at . Then ; converges to 9D N B(r), and hence fv;
converges to E. It follows that a subpath of 4; is in I'. By [V4&;, 6.4] this implies
M(T) > M(T;). Since the diameters of By and V, are at least b;r/2, standard
modulus estimates yield M(T;) > ¢ = co(n, by) > 0; see e.g. [GM, 2.6] and [GV,
Lemma 3.3].
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On the other hand, fT' is minorized by the family associated to the ring
A(2R,|y'|), and hence

M(ST) < wa_y(In %)l—".

Since M(T') < KM(fT'), these inequalities give the desired estimate |y'| < ¢R, ¢ =
c(v). o

2.4. Remarks. If G C B(r), then fG C B(R), and the theorem holds with
c=1. IfG ¢ B(r) and G is connected and meets B(gr), one can choose b = 1—gq.
Thus Gehring’s result [Ge, Theorem 2.1] is a special case of 2.2.

With the aid of suitable inversions we obtain from 2.3 the following "local
minimum principle”:

2.5. THEOREM. Suppose that G and G' are open sets in R™ and that f : G —
G' is o K-quasiconformal homeomorphism. Suppose also that 0 ¢ GUG', r >
0,0<g<1,co>1 and that A(gr,cor)\G # 0. If R > 0 and

clus(f,0G \ B(gr)) N B(R) = 0,

then
fIG\ B(r))n B(R/c) =,

where ¢ depends only on v = (K,n,q,co).

3. Main results

3.1. Notation. Let G and G' be open sets in R", n > 2, and let f: G — G
be a homeomorphism. If B(z,r) C G, we let L(z, f,r) and I(z, f,r) denote the
supremum and infimum of |f(y) — f(z)| over y € S(z,r). The number

L(z, f,r)
Iz, f,r)

is called the metric dilatation of f at z, often also the linear dilatation. By the
metric definition of quasiconformality [Va;, 34.1], f is QC if and only if H(z, f)
is bounded over z € G. If, in addition, H(z, f) < c almost everywhere in G, then
fisc*1-QC.

The main result of this paper is Theorem 3.10. Its proof is based on the
removability theorem 3.3, which is in fact a special case of 3.10.

We start with an easy distortion result for maps of spherical rings. A different
proof appears in [MN, Lemma 2].

H(z, f) = limsup
r—0

3.2. LEMMA. Suppose that r > 0, a > 1 and that f is a K-QC map of the
annulus A = A(r/a,ar) onto a domain A' not containing the origin. If z,y € S(r),
then |f(z)| < ¢|f(y)| with c depending only on (K,n,a).
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Proof. We may assume that |f(z)| > |f(y)|. Let k and k' denote the quasi-
hyperbolic metrics [GP] of A and A’, respectively. Integration along a circular arc
in S(r) gives

1

Hence [GO, Theorem 3] implies that k'(f(z), f(y)) is bounded by a constant
b= b(K,n,a). On the other hand, since d(f(y),04") < |f(y)|, [GP, (2.2)] yields

k(z,y) < —

a

' If(z) — (W)l |£(=)|
K'(f(=), f(y)) 2 In(1+ 17 )2In Lok

Hence the lemma is true with c = €. o

3.3. THEOREM. Suppose that G,G' are open sets in R", that E is closed in
G, and that f : G — G' i3 a homeomorphism such that f|G\ E is K-QC and f|E
locally n-QS. Then f is K;-QC with K, depending only on v = (K,n,n).

Proof. Let g € E. According to the metric definition of quasiconformality it
suffices to find an upper bound H(zg, f) < ¢(v). We may assume that zo = 0 =
f(zo). Choose r > 0 such that B(2r) C G and such that f|B(2r) N E is n-QS. It
suffices to find an estimate

(34) [f(@)] < elf(v)l

for z,y € S(r) with ¢ = ¢(v).

If the annulus A = A(r/2,2r) does not meet E, (3.4) follows from 3.2. Hence
we may assume that there is a point z; € EN A. If z € EN B(2r), the quasisym-
metry condition implies

(3.5) 1£(2)] < n(4)]f(z1)]-

Write G; = G\ E. We want to apply the local maximum principle 2.3 with
the substitution (G,gr,r) — (Gi,r,2r). Since 0 and z; are in B(2r) N E with
|21] > r/2, we can choose b = 1/4. By (3.5) we can choose R = 7(4)|f(21)|. Hence
2.3 gives

f[B(r)\ E] C B(ein(4)|f(z1)])
with ¢; = ¢;(K,n) > 1. Hence
1f(z)] < exn(4)lf(z1)l

for all z € S(r).
Similarly we can apply the local minimum principle 2.5 with (gr,r,¢o) —
(r/2,7,2). By quasisymmetry we have

If(2)] 2 £ (z0)1/n(4)
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for all z € E\ B(r/2). Hence 2.5 yields

I£@)] = [£(21)|/can(4)
for all y € S(r) with c; = c2(K,n), and we obtain (3.4) with ¢ = cic2n(4)?. o

3.6. Remarks. 1. We can replace the local n—quasisymmetry in 3.3 by the
following weaker condition: There is H > 0 such that for every z € E there is
s > 0 such that |a — 2| < 4|b — z| < s implies | f(a) — f(z)| < H|f(b) — f(z)|. The
number 4 can be replaced by any number o > 1, but K; will then depend on H
and a.

2. S. Rickman [Ri, Lemma 2] proved in 1969 a removability result with a
weaker condition on f|E. However, in that result E could not always be completely
removed. I do not know whether the local quasisymmetry in 3.3 can be replaced
by Rickman’s condition.

3. One can replace the local n—quasisymmetry in 3.3 by a local n-quasimébius
condition. The result is then valid for maps in the extended space R"™ = R"U{co}.
This version is easily reduced to 3.3 by auxiliary Mobius maps; cf. the proof of
3.15.

3.7. LEMMA. Suppose that G and G' are open sets in R™, that f : G — G’ s
a locally QS homeomorphism and that E C G with f|E locallyn — QS. Ifzo € E
and zg 18 a point of outer density for E, then H(zo, f) < n(1).

Proof. Write H = n(1). We may assume that 2o = 0 = f(z¢). Choose rp > 0
such that B(r¢) C G, f|B(ro) N E is n—QS and f|B(r¢) is 7, —QS for some 7.
Since f is n—QS in B(r¢) N E, we may assume that B(ro) N E is closed. Fix t with
0 <t<1/4and set

Fit)={r:0<r <rg, mn_1(S(r) \ E) < tm,_1(S(r))}.

Here my_; is the (n — 1)-dimensional measure on S(r). Since 0 is a point of
density for E, F(t) has the origin as a point of right-hand linear density. Writing
L(r) = L(0, f,r) and I(r) = l(0, f,r) we want to estimate the ratio L(r)/I(r).

Assume first that r € F(t). Choose z; € S(r)NE such that |f(z1)| is minimal.
Then

(3.8) 1f(z)l < [f(2)] < H|f(e1)]

for every z € S(r)NE. Let z € S(r) \ E and let C be the cap of the form
S(r) N B(z,r") such that m,_;(C) = 2tm,_1(S(r)). We can write ' = a(t)r
where a(t) — 0 as t — 0. Since r € F(t), we can choose a point y € C N E. Since
fIB(ro) is 71 —QS, (3.8) implies

|f(@) < 1f@)] + 1£(=) — f(y)]

<IfW)+ m('i,;,—y'nf(y)i

S (@ +m(a®))H|f(21)l,
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and similarly a lower bound
|f(2)] = (1 = m(a(®)|f(z1)l.
For small ¢ we have 7;(a(t)) < 1, and then

L(r) _ 14 mi(a(t))
(39) 1 < T=m (@)

for every r € F(%).
Next assume that 0 < r < rg and r ¢ F(t). Since the origin is a point of
right-hand density for F(t), we can find a number r; € F(t) such that

r/(1+B(r)<rm<r

where 3(r) — 0 as r — 0. Suppose that « € S(r) and set y = r1z/r. Using again
the n1—quasisymmetry of f|B(r¢) we obtain

If(@)] < 1f W) + 1f(=) - f(v)I

suwn+mdﬂ;”nﬂwl

< L(ry)(1 + n1(B(r))).
Since {(r) > I(ry), this and (3.9) give

L(r) . A +m(Br))(A +m(a())) .
i(r) = 1—mi(a(t))

for every r < rq. Letting first » — 0 and then t — 0 yields H(0,f) < H. ©

3.10. THEOREM. Suppose that G and G' are open sets in R™ and that
f:G — G is a homeomorphism. Suppose also that G = E; U ...U E, and that
fIE; is locally n — QS for each j. Then f is K — QC with K = n(1)"~1.

Proof. We first show that f is K;—QC with K; depending on n,n and s. If
s = 1, this follows from 1.2. Proceeding inductively, assume that the assertion
is true if the number of the sets E; is less than s. Fix zo € G. It suffices to
show that f is K;—QC in a neighborhood ot zo. We may assume that z, € Ej.
Choose a neighborhood U C G of zg such that f|U N E; is n—QS. By [TV, 2.25]
we may assume that U N E; is closed in U. By the inductive hypothesis, f is
K,—QC in U\ E; with K, = K3(n,n,s — 1). Applying 3.2 with the substitution
G — U, E— E;NU we conclude that f|U is K;—QC with K; = K;(n,n,s).
Hence H(z, f) is bounded for z € G.

In view of 1.2, 3.7 and the density theorem, H(z, f) < n(1) for almost every
z € G. The theorem follows from the metric definition of quasiconformality, see
3.1. o
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3.11. Remarks. 1. In the special case where s = 2 and FE; is closed in G, 3.10
gives 3.3.

2. The hypothesis that f|E; be locally n—QS can be weakened in 3.10 as in
3.6.1 and 3.6.3.

3.12. THEOREM. Suppose that G and G' are domains in R™ and that f :
GG isa homeomorphism such that f|G is K—QC and f|0G n—QS. Then f
18 71 —QS with n; depending only on v = (K,n,n).

Proof. In the theorem the closures and boundaries are taken in R". However,
if G is unbounded, the set clus(f, ) cannot contain any finite point of G. Hence
we can extend f to a homeomorphism, also written as f : G U {0} — G U
{oo}, f(c0) = co. In the rest of the proof all closures, boundaries and complements
are taken in R".

If G = R", then G' = R", and f is 7;—QS by Lemma 1.2. Thus we may
assume that G # R™ # G'. By continuity and by [Vés, 2.9] it suffices to show that
f|G is weakly H—QS with H = H(v). Let zq, a,b € G with |a—x¢| < [b—zo| = 7.
Writing R' = |f(a) — f(zo)|, 7' = |f(b) — f(z0)| we must show that

(3.13) R < Hr'

for some H = H(v). We normalize o = 0 = f(zo) by auxiliary translations. If
2r < d(0,0@G), then (3.13) follows from Lemma 1.2. Hence we may assume that
2r > d(0,0G).

Suppose first that there are numbers r; and ry such that r' <r; <r, <R’
and such that G’ contains the spherical annulus A’ = {y : r; < |y| < r2}. We shall
show that

(314) T2 S AT]

for some A = A(v). We may assume that A CG. Set A= f~'A', and let Cy and
C, be the components of R" \ A with co € C;. Since A separates {0, b} from a,
there are two possibilities:

Case 1. {0,b} C Co, a € Cy. Let T'4 be the path family associated to the
ring A. By the Teichmiiller estimate [V&;, 11.9] we have M(I'4) > ¢, > 0. Since

M(T4) < KM(fT4) = Kwp_1(In :—2)“",
1

this yields (3.14).

Case 2. {0,b} C Cy, a € Cy. Let C be the co—component on R" \ G. Then
B = GNC is a component of G. Since A separates B and a, A’ separates fB
and f(a), which implies fB C B(r;). Since fB is bounded and f~|fB QS, B
is bounded, which means that G is bounded. The component Cy meets G, since
otherwise fCy would be the co—component of A’, which is impossible. Choose a
point z; € Cy N OG. Let L be a line through z;. Choose points z9,z3 € LN B
such that z; € [z2, z3]. Writing y; = f(z;) we have

|z1 — z2|
|z3 — 2|

Iyl —y2|
<n(

lys — y2| ~ )< n(d).
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Since A' separates y; and yz, we have |y; — y2| > 7o — 1. Since |yz — y2| < 274,
we obtain (3.14) with A =1 4 2n(1).

Write § = d(0,0G) < 2r and §' = d(0,0G"). If r' < &', the well-known

distortion theorem of Gehring gives
1/2<r/§ < O%(r'/&"),

where ©% : [0,1) — [0,00) is a homeomorphism; see [V&;, 18.1]. Hence in every
case there is M = M(v) > 1 such that §' < Mr'. We can thus choose a point
ys € 0G' with |ys| < Mr'. If R' < 3AMr', then (3.13) holds with H = 3\M.
Assume that R’ > 3AM7r'. The annulus

Al = {y:2Mr' < |y| < 3AM7'}
is not contained in G', since otherwise (3.14) gives a contradiction. Choose a point

ys € A1 NOG".
We apply the local maximum principle 2.3 with

(G, fyqryr) = (G', f71 — 24, 2Mr'  3AM?)
where £4 = f~!(y4). Since y4,ys € G and
lys| < Mr', |ys| < 3AMT', |ys — ys| 2 lys| — lya| = M7,
the hypotheses of 2.3 are satisfied with b = 1/3\. Writing
E =B(3\Mr')ndG, E = f'E'

we thus have

fHB(2Mr") N G'] C B(z4,c(v)d(E)).
Since B(2MTr') contains 0 and f(b), this implies
r=|b] < |b— 24| + |z4] < 2¢d(E)
and
la — 24| < la| + |z4| < 7 + cd(E) < 3cd(E).

Writing F' = B(eq,4cd(E) N 8G), another application of the local maximum prin-
ciple gives

|f(a) = ya| < e1(v)d(fF).
Since E C F, [TV, 2.5] yields

d(fF) _
d(E") —

277(3%) < 2n(8c).

Combining these inequalities we obtain

R' = |f(a)] < |f(a) — ya| + |ya] < (12¢179(8¢) + 1)Mr' = Hr'. ©
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__ 3.15. THEOREM. Suppose that G and G' are domains in R™ and that f :
G — G' is a homeomorphism such that f|G is K—QC and f|0G 6-quasimébius.
Then f is 6,-quasimébius with 6, depending only on v = (K, 8,n).

Proof. We may assume that G # 0, since otherwise the result is well known
[Vay, p. 232). Fix a point z9 € G and choose Mobius maps a and 3 of R™ with
a(zg) = 0o = B(f(zo)). Then g = ffa~!|aG is a homeomorphism g : oG — AG,
glaG is K—QC and ¢|0aG 6—quasimébius. Since g(oo) = oo, g|8aG is 6-QS. By
3.12 g is 7;-QS with n; depending only on v. By [Va4, 3.2] ¢ is 6;—quasimobius
with 6; depending only on v. o

3.16. Open problems. 1. Is 3.10 true for countable unions? The essential
question is whether f is QC, since the estimate H(z, f) < n(1) a.e. follows then
as in 3.10.

If each f|E; has a K—QC extension to a neighborhood of E; with a fixed K,
the answer is positive by [Va,, Theorem 2]. Indeed, f is then K—QC.

2. In Theorem 3.10 we can replace the K—quasiconformality of f by the
condition that f is locally n;—QS with n; depending on n and n. Can n; be
chosen to be independent of n?

3. Problem 2 is related to the following important question: Is a locally n—QS
homeomorphism f : R® — R™, n > 2, globally n;—QS with n; depending only on
n?

4. Are there any infinite-dimensional versions of the results of this paper? We
give an elementary result, which is valid in all spaces of dimension at least two. In
other respects it is considerably weaker than Theorem 3.10. The definition of the
metric dilatation H(z, f) in 3.1 can obviously be extended to the present situation.

3.17. THEOREM. Suppose that G and G' are open sets in a normed vector
space X with dim X > 2 and that f : G — G' is a homeomorphism. Suppose
also that G = Ey U...U E, where each E; is closed in G and each f|E; is locally
n—QS. Then H(z, f) < n(1)° for every z € G.

Proof. Set H = n(1). To prove that H(zo,f) < H*® we may assume that
zo =0 = f(z). Since the sets E; are closed in G, we may assume, replacing G by
a neighborhood of 0, that 0 € E; for every j. Choose 7o such that B(ry) C G and
such that f|§(r0)ﬂEj isn—QSforall j. Let 0 < r < rp and let z,y € S(r). Since
dim X > 2, S(r) is connected. Hence we can pick a finite sequence Fi, ..., F
of distinct sets E; such that z € Fy, y € Fx and F; N Fj4; N S(r) # @ for all
1< j <k —1. Choose points z; € F; N Fj4; N S(r). Then

1f(@)| < HIf(e1)| < B?|f(22)| < ... < H¥f(y)l.

Thus H(0,f) < H¥*< H*. o
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