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Regularity of Ideals and their Radicals

M. S. Ravi

Abstract. In this paper we compare the regularity reg I of a homogeneous ideal I C
K(zi,...,z,) with that of its radical. We prove that reg I > reg /T if R/I is a Buchsbaum
R-module or if I is a monomial ideal. We also prove the same result when VT defines a

non-singular curve in P® under some additional hypotheses

Introduction. Let R = K[z;,..,z,] be the graded polynomial ring. Recall that a graded
R-module, N is said to be k-regular if [H},(N)]; = 0 for all 4,5 € Z such that i4+5 > k+1.
Here M = (z;,..,2,) denotes the maximal ideal of R. The regularity of N denoted by
reg N is defined to be the smallest integer k for which N is k-regular. Recently there has
been interest in finding upper bounds on the regularity of a homogeneous ideal I of R. The
upper bounds depend on whether I is a radical ideal. For instance, if I is a saturated ideal
defining a reduced, one-dimensional subscheme X of P™~! then the regularity of I is at
most linear in the degree of X ([GLP]). On the other hand, for a general one-dimensional
subscheme X of degree d and arithmetic genus g, the best possible upper bound on the
regularity of the saturated ideal defining X is given by d(d—1)/2+1 — g ([B],[G]). In view
of this it seems reasonable to us to compare the regularity of an ideal I with that of its

radical v/T. In particlar, we address the following question:
QUESTION. Let I be a homogeneous ideal of R. Is it always true that reg (vVI) < reg (I)?

We have not yet been able to answer this question in its complete generality. In this

paper, we shall answer the question in the affirmative in the following cases:

(1) % is a Buchsbaum R-module (Prop. 1.1).
(2) Iis a monomial ideal (Thm 3.4).
(3) In some cases when /T defines a curve in P® (Section 4).
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1. Buchsbaum case. For details on the definition and properties of Buchsbaum modules,

we refer to [S-V,1].

ProPoSITION 1.1. Let I C R be a homogeneous ideal such that R/I is a Buchsbaum R-
module of depth at least 1. Let J C I be another homogeneous ideal such that dim(R/I) =
dim(R/J). Then reg(J) > reg(I).

PROOF: By induction on dim(R/I). Since K is an infinite field, there exists a linear form
h in R which is generic for I and J ([B-St},1.5).

(1) If dim(R/I) = 1 then (J,h) C (I,h) and dim R/(I,h) = dimR/(J,h) = 0. If
reg(J,h) = m, then [(J,h)]lm = [R]m ([B-St],1.7). Therefore [(I,R)]m = [R]m
and hence (I,h) is also m-regular. Since the depth of R/I > 1, I is a saturated
ideal. So by ([B-St],1.8) I is also m-regular. Hence reg (I) < reg (J,h). But
reg (J,h) < reg (J).

(2) If dim(R/I) > 1 then R/(I,h): M is also a Buchsbaum module of depth greater
than or equal to one. Therefore by the induction hypothesis
reg (J,h) > reg ((I,h) : M). Now by ([S-V 2], Lemma 2) reg ((I,k) : M) =
reg (I). Hence reg (J) > reg (J,h) > reg (I). I

COROLLARY 1.2. Let X contained in P™ be an arithmetically Buchsbaum scheme. Let
Y be another subscheme of P™ such that dimY = dimX and X C Y. Then reg (Ix) >

reg (Iy).

2. Grobner basis algorithm. Before we prove our result for monomial ideals we wish to
recall some facts about the algorithmic construction of free resolutions using the Grobner
basis algorithm. This construction is originally due to [Spe], [Sch] and [Z].Further details
of this construction can also be found in [B] and [M-M)]. Here we shall only define the terms

and state the facts we shall be using in our proof.

Let M = @R(—m.) be a free module over the polynomial ring. Let e;,..,e; be a

canonical basns for M. We first define a total ordering on the monomials of R which
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satisfy the following two properties :

(1) If the total degree of X is less than the total degree of X# then X* < XA.

(2) If X* < XP then for any non-zero monomial X7, X*X7 < XPX".
There are many such orders, for our purpose we fix one such order. We can extend this
order to ‘monomials’ in M, that is elements of M of the form X %e;, by defining an order
on the e;, say

e <ex<....< e

Define X“e; < XPe; if either i < j or i = j and X* < XP. Now, given any h € M define
in(h) to be the largest monomial occurring in h with non-zero coefficient. Let T be an

ordered finite subset of M. Given any h € M we define rem (h) mod T recursively as

follows:
(1) Let k = h.
(2) If k = 0 or there is no f € T such that in(k) is a multiple of in(f) then rem (h)
mod T = 0.

(3) Let f be the smallest element in T such that in(f)aX* = in(k). Let | = k —aX“f.
(4) Set k =l and proceed to Step 2.
T C M is called a Grobner basis for a submodule P of M if T C P and for any h €
P, rem (h) mod T =0.

Given X = z{'..z% and XP = z['..zf~ we define X* V XP = X7 where v; =

n

max{a;,B;}. We also denote v as a V 8. Given h,k € M we define hSk as follows:

(1) Let h = aX“e;+ terms of lower order with respect to the total order < . Similarly
let the highest term in k be 56XPe;. Here a and b are in K.

(2) fh=0o0rk=0o0ri3#jthen hSk =0.

(3) Ifi = j, define § and ¥ by @V f = a + v = B + 8. Define hSk = X"h — £X°k.

FacT 1. If T C M is a finite subset such that for any f,g € T, rem (fSg) mod T =0,
then T is a Grobner basis for the submodule generated by T'.

Let T = {f1,..., f~} be a Grobner basis for a submodule P of M. Then for each pair
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1 < i< j <r, we have an expression of the form f;Sf; = Y [_,; hijfk, which in turn
gives a relation among the f; of the form Y ;_, g;;jfk =0. Let M' = éR(—nzi) where
m; = deg(f;). We define a map ¢ from M' to P by sending the i** basis'=ellement d; to f;.
Then ¢ is onto and further, for each pair 1 <i < j <r, s;;=3;_, g;;jdk € Ker(¢).

FAcT 2. With notation as above Ker(¢) is generated by T = {s;;|1 <i < j <r}.

We can make the map ¢, minimal by the following process: If d, (say) occurs with an
invertible coefficient a in a syzygy s € T, then we set M' = §R'(—m;) and define a
new map, also called ¢, by sending the i** basis element d; to }TI This map to P is also
surjective and further Ker(¢) is generated by

r—1 3
T = {Z h;d; + %:(—t + ad,.)| Vs = Z hidy € T}.
k=1 1

We can continue this process until none of the d; occur with an invertible coefficient in

any of the syzygies. At this stage ¢ is minimal, that is, Ker(¢) C (z1,...,z,).M".

3. Regularity of monomial ideals. Let I C R be a monomial ideal, that is, I has a set
of generators of the form {X}]. We assume that this is a minimal set of generators for I.
Let I' = N™. Let o; = (ai1,...,@in) and k; = mia.x{a,-,-} for each j =1,..,n. Let a = ) k;
and A = N°. Let R' = K[z11,12,.+yT1kyyT21y -1y T2k -y Tk, ] and J C R' be a monomial

ideal with a set of generators given by {Xp"}'; where 8; = (Bi11, s Birky» Biz1, ---Bink, ) € A

1 if agj Z l
Biji =

and

0 otherwise.

Hence J is a squarefree monomial ideal. Our main object in this section is to show that

reg (J) = reg (I) > reg (vVI). Define ¢: R' — R by
¢(z,~1) = 2; and ¢(z,-,-) =1 ifj > 1,
Further let 3 from R' to R be defined by

1/)(3,']') =T for all ]

80



Ravi

We first note that ¢(J) = VI and %(J) = I. Further let
S = {(c11,+nk,) € Ala;i; <1 and for each i, a;; =1 => ay =1 for k < j}

and
T= {(ﬁh"’ﬂn) € Flﬁl S kx}

Now ¢ and % can be considered as maps from S to T in the obvious way. Note that 1 is

a 1-1, onto map from S to T'.

DEFINITION 3.1. We say that {M', P',M, P} is ¢-compatible if the following conditions
hold:
1) M' = éR’(—m;) with a canonical basis e}, ..,e]. Each e} has a degree in A denoted
by deglA(eﬁ). For each i, deg a(e}) € S and m; = total degree of €.
2) M= éR(—n;) with a canonical basis ej,..,e;. degr(e;) = ¢(deg a(e})). ni =
total dclagree of e;. Note that n; < m;.
(3) P' is a A-homogeneous submodule of M'. There exists a set of A-homogeneus
generators {h}}] for P' with deg a(h}) € S.
(4) If ¢ : M' — M is defined by

$(>_ fieh) =) d(fi)es-

then P = ¢(P'), and P is generated by {h; = ¢(h})}].

With the above setting we would first like to remark that the h; are I-homogeneous.
We can define the concept of ¥-compatibility in an analogous way. The main difference in

this case is that the total degree of e; equals the total degree of e;.

LEMMA 3.2. Let {M', P', M, P} be ¢-compatible. Then we can construct a commutative

diagram as follows:
ML 0
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where o is minimal and {Mj, Ker(c), My, Ker()} is ¢-compatible.

PROOF: Let {h’} be the A-homogeneous generators for P' assured by definition 3.1. Since

h}; is A-homogeneous, it is of the form

R = zl:aj,-X"i‘e;
where ]
a;; Vdeg a(e;) = deg a(h}) for alli = 1,..,l and qj; € K.
Let h; = ¢(h}). Let us order the basis elements of M' and M consistently, say
e; <ey<..<eyand e; < ez... <ey.

Now 4(in(h})) = in(4(h})) = in(h;). Hence from the definition of h;Sh; it is clear that
¢(hiSh}) = hiShj. Also, hiSh}; are A-homogeneous and deg a(h;Sh}) € S. Further,
for any two A-homogeneous elements g' and k' in M', in(g') divides in(h') implies that
in(¢(g')) divides in(4(h')). Hence, we can construct a Grébner basis {h.}] for P’ such that
{#(h}) = h;)}] forms a Grébner basis for P. Define M; = éR’(—m,-) with a canonical
basis d},..,d,. Define ¢ from M; by sending d; to h}. Define ldeg ad; = deg ahj. By the
observations above we can ensure that if t' = 5] gid} is a generator for Ker(c) provided
by the algorithm, as described in Section 2, then ¢ = ) #(g;)d; is the corresponding
generator for Ker(7), with 7 and d; defined analagous to o and d}. Also note that t' is
A-homogeneous. Now, we can use the method described in Section 2 to make the map o
minimal. In this process, if we eliminate d; because it occurs with an invertible coefficient
in a syzygy t' then d; also occurs with an invertible coefficient in ¢(t'). The new generators

obtained remain A-homogeneous with their degree in S. Hence, eventually we can make

o minimal with {M7,Ker(o), M;,Ker(7)} being ¢-compatible. Il

LEMMA 3.3. Let {M', P', M, P} be )-compatible. Then we can construct a commutative

diagram as follows :
M; 2 .p— 0
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where both o and v are minimal. Further, {M;, Ker(c), My, Ker(v)} is 4-compatible.

PRrROOF: The proof follows the same lines as that of the previos lemma. The main ob-
servation is that ¥(in(h})) = in(3(h})) and therefore ¥(h}sh}) = %(h;)S¥(h}) and also
deg a(hiSh}) € S. The rest of the proof is identical to the proof of Lemma 3.2 except for
the additional observation that a generator ¥(h}) for P occurs in a syzygy v¥(t') with an
invertible coefficient, if and only if, the coefficient of A! in t' is invertible. Hence the map

v is also minimal. J§
THEOREM 3.4. Let I C R be a monomial ideal. Then reg (I) > reg (V).

PROOF: Let {X*}] be a minimal set of generators for I. We construct J C R' as
indicated before. As already noted 3(J) = I and ¢(J) = VI. We can apply Lemma 3.2
to {R',J,R, I} to get:

M s J ===

o4

Mo _"’o_+ \/— e}, 0
where M, = @R (—=mo,;) and My = @R(—no ;) and mo; > ng,;. Here the map o is

minimal. But th.\s construction can be 1terated to give the following :

Ok Oo

0 — Mj, — e — M, — J — 0
‘| dl dl
0 — > My — s s — s My — VT —— 0

where M} = @R (—=m;;) and M; = EBR(—nJ ;). Here the top row is a minimal resolution

of J and the bottom row is a resolutlon of v/I. Hence by [B-St)
reg (J) = max(mj,; — j) 2 max(nj; — j) > reg (VI).
i N

Similarly, using Lemma 3.2 we get :

0 — M, = + M Ny, B
di +|
0 W N —— s Ne —2 4 T ' 0
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where both the top and bottom rows are minimal resolutions. Here N; = @R(—m;j,;).
i
Hence

reg (J) = n‘;a],x(mj‘.- —j)=reg(I). 1
REMARK. The fact that reg (J) = reg (I) has also been proved in [D-E-P].

4. Non-reduced structures on space curves. From now on let X contained in P*® be
a non-singular, non-degenerate curve over the complex numbers of degree d and genus g.

Let T be the ideal sheaf of X in P3.

The conormal sheaf Z7/Z? is a locally free sheaf of rank two on X of degree —4d —2g + 2.
We first recall the following results:

THEOREM ([H-S]). Let Nx be the normal bundle of X and let £ be an invertible subsheaf
of Nx. If g > 1 then deg L < 3d+ 2g —5.

THEOREM ([E-V]). Let X contained in P be a smooth rational curve of degree d. Then

~ Opl(—2d+ 1- a) (4] Opl(—2d+ 1 —+—a)

NG

where 0 < a < d-—4.

PROPOSITION 4.1. Let X contained in P® be a non-singular curve of degree d and genus

g such that d > g. Then %" is (5n + 3)-regular.

PROOF: Let M be an invertible subsheaf of % of maximal degree. Then by ([Gu],p.81)
deg M > —2d —2g+1. Let £ be the quotient sheaf. Then by the results mentioned above
deg £ > —3d—2g+5. So ’IZT is an extension of locally free sheaves of degree > —3d—2g+5.

Now —-;Tf" ~ Sym™ Z%. Hence there is a filtration of 725 as follows:
I ¥ I ¥t

I‘n

m:FoDFID....DFn.g.]:O
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where F;/Fiyq ~ M® QL") for i = 0, ..n ([Ha],2,Ex.4.12). Now by the hypothesis that
d > g we have that deg M® @ L®("~9) @ Ops(5n +2) > 2g — 1. Hence H'(P3, Tf—}T(Sn +
2)) = 0. Hence it is (5n + 3)-regular. |

REMARK 4.2. By using the Riemann-Roch theorem on %}y and induction on n it can be

shown that
X(T™(m)) :(m; 3) _ T_nd(_f;fi) +(2d+ g)[n(nz— D, (- 1)(:n ~1n,
+(g- 1)n(nz+ 1) n(n2~ 1) n(n- 1)6(277, ~1)

THEOREM 4.3. Let X be a non-singular curve of degree d and genus g, such that d > g
and d > 20. Let T be the ideal sheaf of X in P?. Let X be a non-reduced structure on
X whose ideal sheaf in P3, J is such that I"*! C J C I™ for some n. Then reg J >
regI™ > reg I.

PROOF: From the sequence

J - i

= Intl T+l T

—0

and Prop. 4.2 we get that Z’} is also (5n + 3)-regular. Therefore from the sequence:

In
0-J—-I"—> 7 -0

we get that H!(P3,I"(m)) is a quotient of H!(P3?, J(m)) for all m > 5n + 2. Now we

can check by a direct computation with the formula for x(Z"(m)) in Remark 4.3 that

x(IT*(5n + 2)) < 0. Hence H!(P3,I™(5n + 2)) # 0. Further, for any m H?*(Z™(m)) #

0 = H?(P3,J(m)) #0. Hence reg J > reg I™. 1

REMARK. The restriction that d > 20 can be dropped if g > 1 by replacing (5n + 3) by
(3n + 1) in the calculations above.

Recall that a line L is said to be an m-secant line to X if it intersects X at finitely many

points and H°(P3, I—(:%) > m. It is well known that if a curve X has an m-secant line

85



Ravi

then reg Z > m. Now if X is any non-reduced structure on X then the multiplicity of L
along X is at least m. Hence reg Iy >rm. Now we recall a result of D’Almeida:

THEOREM ([D]). Let X be an irreducible non-singular curve in P3. If X lies on a surface
of degree < 3, then H'(P3,Z(n)) # 0 implies that X has a (n + 2)-secant.

Remark: Though the statement of the result in [D] is different from the above, it is clear

from the proof that the above statement is proved there.

COROLLARY 4.6. Let X be a non-singular curve in P? lying on a surface of degree < 3.

Then for any non-reduced structure X on X, reg T < reg Ig.

PRrROOF: If H'(P3,I(n)) # 0 then by the above theorem X has an (n + 2)-secant line. So
by our previous observation reg Ty > n+2. On the other hand, H?(P?,Z(n)) # 0 always
implies that H?(P3,Z¢(n)) # 0. Hence reg T < reg Ig. I

Remark: The above Corollary implies that any curve of type (m,n) on a smooth quadric
surface in P3 cannot be a set-theoretic complete intersection of surfaces of degrees e and

fife+ f-1<m.
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